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Dynamics of SARS‑CoV‑2 
mutations reveals 
regional‑specificity and similar 
trends of N501 and high‑frequency 
mutation N501Y in different levels 
of control measures
Santiago Justo Arevalo 1,2*, Daniela Zapata Sifuentes1, César J. Huallpa 3, 
Gianfranco Landa Bianchi1, Adriana Castillo Chávez1, Romina Garavito‑Salini Casas1, 
Carmen Sofia Uribe Calampa1, Guillermo Uceda‑Campos2,4 & Roberto Pineda Chavarría1

Coronavirus disease 2019 (COVID‑19) is a contagious disease caused by severe acute respiratory 
syndrome coronavirus 2 (SARS‑CoV‑2). This disease has spread globally, causing more than 161.5 
million cases and 3.3 million deaths to date. Surveillance and monitoring of new mutations in the 
virus’ genome are crucial to our understanding of the adaptation of SARS‑CoV‑2. Moreover, how the 
temporal dynamics of these mutations is influenced by control measures and non‑pharmaceutical 
interventions (NPIs) is poorly understood. Using 1,058,020 SARS‑CoV‑2 from sequenced COVID‑19 
cases from 98 countries (totaling 714 country‑month combinations), we perform a normalization 
by COVID‑19 cases to calculate the relative frequency of SARS‑CoV‑2 mutations and explore their 
dynamics over time. We found 115 mutations estimated to be present in more than 3% of global 
COVID‑19 cases and determined three types of mutation dynamics: high‑frequency, medium‑
frequency, and low‑frequency. Classification of mutations based on temporal dynamics enable us to 
examine viral adaptation and evaluate the effects of implemented control measures in virus evolution 
during the pandemic. We showed that medium‑frequency mutations are characterized by high 
prevalence in specific regions and/or in constant competition with other mutations in several regions. 
Finally, taking N501Y mutation as representative of high‑frequency mutations, we showed that level 
of control measure stringency negatively correlates with the effective reproduction number of SARS‑
CoV‑2 with high‑frequency or not‑high‑frequency and both follows similar trends in different levels of 
stringency.

Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), a single-stranded positive RNA virus that infects humans. Since the �rst reported 
cases in December 2019, the disease has spread globally causing more than 161.5 million con�rmed cases and 
3.3 million deaths as of May  16th1.

Since the emergence of COVID-19, signi�cant genomic sequencing e�orts have played a central role in 
furthering our understanding of the evolutionary dynamics of the virus. �is has allowed the identi�cation of 
mutations that appeared early in the pandemic (and that now seem to be �xed in the  population2–6), as well as 
monitoring of the e�ectiveness of vaccines against variants coding for mutations in the  spike7–12. Both under-
score the importance of timely identi�cation and surveillance of mutations with signi�cant representation in 
the population, to e�orts aimed at containing transmission of the virus.
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�e combination of virus spread by droplets through close  contact13,14, the large number of asymptomatic 
 cases15,16, the absence of e�ective pharmaceutical treatments at the beginning of the pandemic and the delays in 
production and distribution of  vaccines17, leave non-pharmaceutical interventions as the most e�ective measures 
to contain the spread of COVID-19 for a large fraction of the world’s population.

Di�erent studies have evaluated the relationship between non-pharmaceutical interventions (NPIs) and the 
decrease in the number of  cases18,19, the reproductive  number18,20,21, the case fatality  rate22, the contagion  rate23, 
and the number of SARS-CoV-2  importations24,25. By contrast, the e�ect of NPIs on speci�c mutations has 
been less well-studied. Pachetti et al.22 analyzed how lockdown policies might have in�uenced the dynamics of 
some SARS-CoV-2 mutations; however, results are primarily qualitative and little quantitative description of the 
reported e�ect is provided. Muller et al.26 use phylogenetic methods to estimate the importance of SARS-CoV-2 
introductions on increasing the relative frequency of the D614G mutation, implicitly showing that international 
movement can a�ect the relative frequency of mutations.

Here, using 1,058,020 genomes from sequenced COVID-19 cases, we analyze the temporal dynamics of 
SARS-CoV-2 mutations estimated to be present in more than 3% of global COVID-19 cases. We then investigate 
whether mutations are region-speci�c and if there is a correlation between level of lockdown policies and the 
e�ective reproduction number of speci�c mutations.

Results and discussions
115 mutations overpass presence on 3% of global COVID‑19 cases and most of them are 
non‑synonymous. We performed a by case normalization of the frequencies of the mutations from 
1,058,020 genomes all around the world. �e relative frequency of cases where a mutation is present was named 
Normalized Relative Frequency of a genomic position: NRFp. �e NRFp of each mutation was calculated from 
genomes and the number of cases of 714 country-month combinations, including 98 countries from January 
2020 to April 2021.

�is normalization allowed us to identify mutations that have not been reported in other global studies, such 
as that of Castonguay et al.27. �is is because in many countries the number of sequenced genomes is low and 
certain mutations could go unnoticed. �us, we identi�ed 115 mutations with NRFp > 0.03 (Fig. S1); this means 
that those mutations are estimated to be present in more than 3% of the COVID-19 cases globally. Considering 
that the sum of the reported cases from the 714 country-month combinations analyzed was 120,008,410 cases, 
an NRFp of more than 0.03 means that those mutations were present in more than 3,600,252 global COVID-19 
cases.

Table S1 summarizes the features of these 115 mutations. Based on those 115 mutations, we calculated a dN/
dS ratio of 4.1 that could imply positive selection occurring in the SARS-CoV-2 genome. Additionally, S and 
N proteins did not show synonymous mutations and presents ~ 74% of the total non-synonymous mutations 
suggesting that positive selection is predominantly in those two ORFs.

Mutations show three types of temporal dynamics. �e dynamics of the 115 mutations were ana-
lyzed through calculating the NRFp in each month from January 2020 to April 2021 (Fig. 1). We assigned type of 
temporal dynamics to the mutations according to the NRFp in di�erent months and the change of NRFp between 
months. �us, three types of temporal dynamics were observed: (i) high-frequency mutations (HF) that never 
show negative NRFp changes greater than 1%, and increased rapidly in NRFp since their appearance (Fig. 1a), 
(ii) medium-frequency mutations (MF) that alternates between negative and positive NRFp changes and pre-
sents at least one month with NRFp greater than 15% (Fig. 1b), and (iii) low-frequency mutations (LF) that also 
have an alternation between negative and positive NRFp changes but at a NRFp ever below 15% (Fig. 1c).

HF mutations are characterized by a rapid increase in global frequency following their appearance (Fig. 1a). 
�is could be due to positive selection without competition and/or by other e�ects related to population dynamics 
such as control measures implemented by countries aimed at controlling transmission. Mutations in this category 
appeared in two well-de�ned stages of the pandemic. �e �rst group is composed of four mutations that now 
appear to be globally �xed. �ey emerged at the beginning of the pandemic in January 2020, reaching more than 
0.75 NRFp in April 2020 (Fig. 1a, Group 1). �e second group rapidly increased in frequency in December 2020, 
and have continued to increase since then (Fig. 1a, Group 2).

Some HF mutations identi�ed here have been widely  reported28 due to their presence in variants of concern. 
�e �rst and second groups contained Spike mutations well known due to their possible implications in trans-
missibility, (e.g. D614G in the �rst  group29,30 (Fig. S2b)), and vaccine e�cacy (e.g. Δ69–70, N501Y, and E484K, 
all present in the second  group31,32 (Fig. S2b,e)). In the future, analysis of the dynamics of other mutations in 
this way could help facilitate rapid identi�cation of other mutations of concern.

By contrast, some of the MF and LF mutations that we observed have not been less previously reported to a 
signi�cant degree, with descriptions either limited to speci�c countries or  regions33–35, or not reported at all, (e.g. 
K997Q on nsp3 and S202C on N protein). However, those mutations are present in several months throughout 
the pandemic and we did not observe evidence of the extinction of any of these mutations (relative frequency of 
0 or near to 0 in two or more consecutive months) (Fig. 1b,c).

One possibility for the existence of MF and LF mutations is that some bene�ts may be conferred to SARS-
CoV-2 but competition with other variants prevents rapid increases in their frequency increase across the popu-
lation. Such dynamics have been observed in evolution experiments for other  organisms36,37. Furthermore, the 
coexistence of di�erent lineages of the same organism in the context of frequency-dependent interactions has 
been reported in  yeast38 and  bacteria39,40, and have highlighted that this can be bene�cial for the organism. In the 
case of virus, epitope diversity and host-speci�c adaptation can be bene�cial for the viral  population41.
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Figure 1.  �ree di�erent temporal dynamics of SARS-CoV-2 mutations. Normalized by cases Relative 
Frequency (NRFp) of the mutations by month. (a) high-frequency mutations (HF) never show negative NRFp 
changes greater than 1%, and increased rapidly since their appearance. (b) medium-frequency mutations (MF) 
alternates between negative and positive NRFp changes and presents at least one month with NRFp greater 
than 15% (c) low-frequency mutations (LF) that also have an alternation between negative and positive NRFp 
changes but at a NRFp ever below 15%. Error bars represent inter-region variation as weighted variance.
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Some of the MF mutations are region‑specific while other have medium frequencies in various 
regions. In our previous  work42, we observed that the mutation T85I in nsp2 has a higher frequency in North 
America than in other continents. Here, we show that this MF mutation maintains this tendency, persisting since 
its appearance at a global NRFp of ~ 0.2 (Fig. S3a). Interestingly, and in contrast to HF mutations (that are typi-
cally similarly frequent across several analyzed regions, with an exception being a group of recent mutations that 
are more frequent in South America (Figs. S4, S5)), most of the MF mutations (18 of 29) analyzed here are most 
frequent in a speci�c region (Fig. 2).

Figure 2.  MF mutations are region-speci�c or have mid-frequencies in several regions. (Le�-column) 
Normalized by cases Relative Frequency (NRFp) of the mutations by month separated by regions 
(green = Africa, red = Asia, blue = Europe, grey = North America, purple = Oceania, yellow = South America). 
(Middle-column) Total NRFp by region of the analyzed medium-frequency mutations. Numbers in each 
bar represents the estimated total number of cases of the particular mutation in that region. (Right-column) 
Chi-square p-value and Pearson residuals analysis of medium-frequency mutations. Upper line corresponds 
to the mutant state and the bottom line to the not-mutant state. Grey and red boxes mean negative or positive 
association with the state, respectively. Intensity of the colors means higher residuals that means greater 
contribution. (a–e) Region-speci�c medium-frequency mutations and (f–j) not-region-speci�c medium-
frequency mutations.
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To explore whether MF mutations showed a region-speci�c pattern, we analyzed the dynamics of ten subtypes 
of MF dynamics in six di�erent regions (Africa, Asia, Europe, North America, Oceania, and South America) 
(Fig. S6). Our results show that �ve subtypes had a NRFp greater than 0.3 for at least three consecutive months 
in only one region (Fig. 2a–e, le� column). Relatedly, mutations belonging to these subtypes had a higher relative 
number of cumulative cases (NRFp) in a speci�c region, compared to other regions (Fig. 2a–e, middle column).

�en, we examined whether the proportions of estimated COVID-19 cases caused by MF mutations were 
di�erent between regions. Chi-square p-values showed that in all the MF subtypes at least one region have dif-
ferent proportions (Fig. 2, right column). Pearson residuals analysis showed which of the regions have larger 
or smaller mutant proportion than expected (meaning positive or negative association, red and grey squares, 
respectively) and which region has a greater degree of association (color intensity). �e �ve subtypes that showed 
region-speci�c patterns also showed that just one region is positively associated and that it has the highest degree 
of association to that speci�c mutation (Fig. 2a–e, right column). By contrast, other �ve subtypes showed positive 
association to more than one region with a variety of degrees of association (Fig. 2f–j, right column).

We further analyze the �ve subtypes that showed region-speci�c pattern (Fig. 2a–e). Country analysis of the 
relative frequencies (Figs. S7, S8) and the cumulative number of cases (Figs. S9, S10) showed that those muta-
tions are found in more than one country of the region. Some of them follows a similar pattern of frequency 
changes in two or more countries within the region (S7b, S7d and S8), whereas others have a particular pattern 
of frequency change in one particular country (S7a and S7c). Analysis of the cumulative number of cases by 
country showed that, although several countries present COVID-19 cases of the particular mutations, in most 
cases few countries contributes to most cases (S9a, Brazil; S9b, Argentina, Brazil, Chile; S9c, USA; S9d, Canada, 
Mexico, USA; S10, Italy, Spain, UK).

A decline of the frequency can be seen for some MF mutations in the last months (Fig. 2b–d), this can be 
explained because new mutations leave out of competition those mutations, or due to a delay between the col-
lection date and the submission date of genomic samples. Using genomic data from August 10th 2021, we re-
analyzed three mutations that clearly showed this decline (Fig. 2b (I33T), c (A222V), and d (P67S)). We found 
very similar patterns in the countries analyzed (Fig. S11, S12), therefore, leave out of competition by other 
mutations is a more plausible scenario.

LF mutations followed similar patterns to those observed for MF mutations (Figs. S13, S14). �us, the MF 
and LF dynamics seems to be due to: (i) high prevalence of mutations in speci�c regions, (ii) globally dispersed 
bene�cial mutations in constant competition with other variants, or (iii) a combination of these two e�ects.

SARS‑CoV‑2 carrying  HFN501Y mutation follows similar trends than SARS‑CoV‑2 without 
 HFN501Y in different levels of control measures. �e rapid increase in global frequency of HF muta-
tions and the observation that those mutations appeared at two very de�ned stages of the pandemic (Fig. 1a) lead 
us to hypothesize that, at least part of this abrupt increase is due to the fact that limited or minimal levels of con-
trol measures and NPIs may permit that HF mutations to spread even faster than not-HF mutations that when 
stronger control measures and stronger NPIs are present. An alternative hypothesis could be that strict control 
measures give a large competitive advantage to more transmissible variants (HF mutations), enabling them to 
persist and continuing to transmit, whilst their less transmissible counterparts (not-HF mutations) die out.

To test these hypotheses, we analyzed whether di�erent degree of control measures could a�ect di�erently 
to SARS-CoV-2 genomes bearing the HF mutation N501Y  (HFN501Y) or not bearing the HF mutation N501Y 
(not-HFN501Y) in nine countries that have more than 15 sequenced genomes per week during March 2020 to 
April 2021. We selected this mutation because it is present in three variants of concern (B.1.1.7, B.1.35, and P.1)43 
and is a good example of the behavior of HF mutations (Fig. 1a, Supplementary Fig. S2a). Additionally, and in 
contrast to HF mutations belonging to group 2, mutations in the �rst group of HF mutations (Fig. 1a, group 1) 
may have been aided by founder e�ects in the early stages of the pandemic. For this reason, we did not analyze 
them in this part of our study.

First, we estimated the e�ective reproduction number (Rt) of  HFN501Y or not-HFN501Y (Fig. 3a) and measure 
the correlation with the level of stringency (Fig. 3b). �e level of stringency is a measure of the level of control 
policies based on nine response indicators including school closing, workplace closing, cancel public events, 
restrictions on gathering size, close public transport, stay-at-home requirements, restrictions on internal move-
ment, restriction on international travel and public information  campaigns44.

We found signi�cant negative correlation between the Rt a�er 14 days that the level of stringency was imple-
mented and the level of stringency in eight of the nine countries analyzed (Fig. 3b). In all these eight countries 
linear regression model explained at least 23% of the variance in the Rt of  HFN501Y (Fig. 3b), and the e�ect size 
measured by the R-value of spearman correlation showed in the worst case a value of 0.48, with all the others 
R-value between 0.5 and 0.81 (Fig. 3b). In the case of India, the Rt of  HFN501Y showed a positive correlation with 
level of stringency. It is known that e�orts in molecular testing in India have changed during the  pandemic45 
Time-varying di�erences in the intensity and capacity of molecular testing can produce signi�cant biases in the 
estimation of Rt. Overall however, our results show a signi�cant negative correlation between degree of control 
measure stringency and Rt in eight of the nine countries analyzed.

We also found that, independently of the level of stringency imposed, the Rt of  HFN501Y was signi�cantly 
higher than not-HFN501Y, potentially explaining why  HFN501Y increase its frequency faster than not-HFN501Y 
since its appearance in the nine countries considered here (Fig. 4a). Interestingly, when we analyzed the Rt of 
SARS-CoV-2 genomes bearing an MF mutation  (MFR203K) and compare it with the Rt of genomes without the 
MF mutation (not-MFR203K) we observed that in some stages of the pandemic the Rt of  MFR203K is higher than not-
MFR203K but in other cases the opposite was observed (Fig. S15). �is explains why this mutation did not increases 
its frequency steadily and can be an evidence of constant competition between  MFR203K and not-MFR203K.
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Figure 3.  E�ective reproduction number (Rt) of  HFN501Y and not-HFN501Y are correlated with level of 
stringency. (a) Each panel shows the estimated e�ective reproduction number of SARS-CoV-2 bearing (blue) 
or not (grey) the HF mutation N501Y (HF or notHF, respectively) in di�erent countries. Grey bars are showing 
the level of stringency. Shades show a 97.5% con�dence interval in the estimation of Rt. (b) Correlation of Rt 
a�er 14 days of the implementation of the level of stringency with the level of stringency. Each panel shows the 
independent analysis of di�erent countries. Spearman correlation values (R), R-square of the linear regression 
model  (R2), and p-value of the correlation is showed in the le�-up of each panel in this order. Colors represent 
the same as in (a).
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Figure 4.  E�ective reproduction number (Rt) of  HFN501Y is higher than not-HFN501Y but similarly a�ected by 
the level of stringency. (a) Statistical comparison between the bootstrap distribution of the Rt of SARS-CoV-2 
bearing (blue) or not (grey) the HF mutation N501Y (HF or notHF, respectively) in di�erent levels of stringency. 
Points represent the mean and the lines represent the 25 and 75 percentiles of the bootstrap distribution. 
**Means p-value lesser than 0.05 and ns means p-value higher than 0.05. (b) Plot of the change of Rt in the time. 
Change of Rt was calculated as the Rt 14 days a�er the day of interest subtracted to the Rt mean between the day 
of interest and 13 days a�er that day. Grey bars are showing the level of stringency. Colors represent the same as 
in (a).
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Finally, to explore whether di�erent stringency levels di�erentially a�ect the dynamics and transmission of 
 HFN501Y and not-HFN501Y, we calculated the change in Rt during several months where di�erent levels of strin-
gency were implemented (Fig. 4b). �e patterns of the change of Rt between  HFN501Y and not-HFN501Y were almost 
identical (Fig. 4b) and R values of spearman correlation of  HFN501Y and not-HFN501Y with Rt were similar in most 
cases (Fig. 3b), indicating that both could be similarly a�ected by the changes in stringency levels.

Taken together, although  HFN501Y presented higher Rt in lower levels of stringency indicating that  HFN501Y 
spread was likely helped by mild lockdown policies in some stages of the pandemic, this e�ect was also observed 
in not-HFN501Y. In conclusion, the results of this section showed control measures and their associated stringency 
probably a�ecting  HFN501Y and not-HFN501Y in a similar fashion; thus, our two initial hypotheses are not sup-
ported by these results. Instead, the rapid increase of frequency of  HFN501Y is justi�ed primarily by its generally 
increased transmissibility (i.e. a higher Rt which is always greater than the Rt of not-HFN501Y), rather than the 
implementation of speci�c control measures.

Limitations of the study. Stringency level is calculated from set of policies applied in each country that 
do not necessarily operate or function the same in di�erent countries due to, for instance, variations in socio-
cultural and economic factors. �us, comparisons at country level have variation that limit the reliability and 
interpretability of the results presented here, especially when compared with other countries. Moreover, di�erent 
combinations of policies can generate the same level of stringency—the fact that several policies were applied 
together to generate a stringency index precludes e�orts to evaluate the e�ect of a speci�c policy on the e�ective 
reproduction number of SARS-CoV-2.

A�er control measures are implemented (re�ected as an increase to the stringency index) Rt changes from 
a higher value to a lower value. �is process generates a time-window of intermediate Rt before the Rt reach a 
plateau that indicates how much the policy lowered the Rt. �ese intermediate values of Rt introduce a bias in the 
correlation between Rt and the level of stringency. Furthermore, if a country changes the stringency level in time-
windows less than those necessary for the Rt to stabilize, the estimations of correlation get more complicated.

Our correlation analysis showed that in seven of the nine countries analyzed lower levels of stringency are 
correlated with higher Rt values. �is could be an evidence of a possible e�ect of lockdown policies in the Rt. 
However, causal inference model is known to be a more accurate approach to test causality.

Although the methodology of normalization by cases alleviates the di�erences in the number of genomes 
sequenced by country, con�dence in the calculation of relative frequencies of mutations is still low in regions 
with a low number of genomes sequenced. For example, a mutation with 0.5 relative frequency that comes from 
a sample of 15 genomes will have a con�dence interval between 0.25 and 0.75; on the other hand, a sample of 150 
genomes will generate a con�dence interval between 0.58 and 0.42. Also, the number of cases is still subjected 
to bias due to for instance, the di�erence in the number of tests that each country performs, as occurs in India.

Conclusions
Normalization by cases of the frequency of mutations is an important tool for global analyses in a pandemic 
where not all the countries possess the same capacity to sequence SARS-CoV-2 genomes. �is process par-
tially mitigates di�erences in available genomes, but does not eliminate this problem. Worldwide e�orts to help 
countries with fewer sequencing resources would improve our understanding of the adaptation and evolution 
process of SARS-CoV-2.

�ree types of dynamics of mutations are described here and named “high-frequency” (HF), “medium-
frequency” (MF), and “low-frequency” (LF). �e three types are represented in all the months analyzed, and 
found in non-structural and structural proteins, and synonymous and non-synonymous mutations. Di�erences 
in the dynamics could be due to di�erent forces acting on each of these types of mutations and the implications 
of all of them need to be studied to better understand the adaptation process of SARS-CoV-2.

Medium and low-frequency mutations maintain roughly constants global frequency due to their higher 
prevalence on speci�c regions and/or because they are in constant competition with other mutations in several 
regions. We showed some mutations with a high degree of region-speci�city and others that presented mid-
frequencies in several regions. Higher prevalence in speci�c regions may be due to speci�c-host characteristics. 
Constant competition in several regions may be due to the fact that they are bene�cial mutation in the presence 
of other mutations with a similar degree of bene�t. Some mutation can be leave out of competition when others 
bene�cial mutations appear. Our analysis, also shows evidence that some MF mutations have a reduced relative 
frequency a�er several months of high frequencies in a speci�c region.

In this pandemic, human behavior has strongly a�ected the adaptive process of the SARS-CoV-2 through 
continuous implementations and changes to implemented control measures. Our analysis presents evidence that 
the high-frequency mutation N501Y is more transmissible (showed for its greater e�ective reproduction number) 
than not-N501Y, but also that control measures do not signi�cantly favor the growth of any one in particular. 
Instead, we observe that policies have a similar impact on both.

Methods
Normalized by cases relative frequency of mutations on the SARS‑CoV‑2 genome. To per-
form mutation frequency analysis considering the number of cases in each country we followed similar steps as 
described in Justo et al.42, with some modi�cations: we �rst downloaded 1,221,746 genomes from the GISAID 
database (as of April 24th, 2021). Sequences with less than 29,000 nt were removed and the resulting sequences 
were aligned against the reference SARS-CoV-2 genome (EPI_ISL_402125) from nt 203 to nt 29,674 using 
ViralMSA.py46,47. From this alignment, we removed sequences with more than 290 Ns, more than 0.05% unique 
mutations, and/or more than 2% gaps. A�er those �lters, we had 1,058,020 genomes. Subalignments were gener-
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ated by grouping sequences by country and month. Subalignments with less than 15 sequences were not consid-
ered in the analysis. Nucleotide relative frequencies of each genomic position on each of 714 subalignments each 
corresponding to a di�erent country-month combination (including 98 countries) were calculated. Normalized 
relative frequencies (NRFp) were calculated as the weighted mean of the relative frequencies in each subalign-
ment with the number of cases as the weight. �e number of cases for each month and country was obtained 
from the European Centre for Disease Prevention and Control (https:// www. ecdc. europa. eu/ en/ publi catio ns- 
data/ downl oad- todays- data- geogr aphic- distr ibuti on- covid- 19- cases- world wide). �e NRFp is an estimation of 
the percentage of global COVID-19 cases where a particular mutation is present. �e same procedure was done 
to obtain the NRFp of the mutations by months or by regions. Data manipulation was done using R and python 
scripts.

Analysis of region‑specific mutations. �e frequencies by country-months of each mutation were 
obtained from the previous calculation. �en, the Normalized relative frequencies (NRFp) by region (Africa, 
Asia, Europe, North America, Oceania, South America) were calculated as the weighted mean of the relative fre-
quencies of each country-month belonging to a speci�c region using the number of cases as the weight. Number 
of cases with a particular mutation in each country was estimated by multiplying the relative frequency of the 
mutation with the number of cases in a speci�c country-month. �en, we added the cases belonging to a speci�c 
region and chi-square analyses were done using R  so�ware48.

Estimation of effective reproduction number of SARS‑CoV‑2 mutations. We select nine coun-
tries (Australia, Canada, Germany, India, Japan, Netherlands, Switzerland, United Kingdom, USA) with at least 
15 sequenced genomes by week from March 2020 to March 2021. Raw number of cases by days were obtained 
 from49 and used to estimate the number of cases by day for a speci�c mutation. In the case of MF mutation 
R203K, R203, and N501, we multiply the relative frequencies of the genomes with the state of interest (R203K, 
R203 or N501) in a determined week by the number of cases in the day. For instance, if 1 week presented 30% 
of genomes with the mutation R203K, and the number of cases on Monday of that week was 100. �us, the 
estimated number of cases with this mutation in that day was 30. In the case of the HF mutation N501Y we �rst 
calculated the relative frequencies of that mutation in each week and then adjusted the relative frequencies to a 
logistic regression model using R  so�ware50. �e number of cases estimated for the MF and HF mutations by day 
were used to estimate the e�ective reproduction number using  EpiFilter51.

Correlation analysis between stringency levels and effective reproduction number. �e strin-
gency index by country by day was obtained  from49. Analysis of Spearman correlations and linear regression 
models of the e�ective reproduction number 14 days a�er the level of stringency was implemented with strin-
gency index in each country by each state (mutant or not mutant) was done using  R48 and the packages  ggplot252 
and  ggpubr50.

Statistical differences between effective reproduction number of SARS‑CoV‑2 mutations in 
different levels of stringency. To determine if SARS-CoV-2 with  HFN501Y and not-HFN501Y mutations 
presented statistical di�erences in Rt in di�erent levels of stringency, we categorize the stringency index in 
ten levels: 0–10 = 0, 11–20 = 1, 21–30 = 2, 31–40 = 3, 41–50 = 4, 51–60 = 5, 61–70 = 6, 71–80 = 7, 81–90 = 8, and 
91–100 = 9. We estimated the distribution of the e�ective reproduction number 14 days a�er the level of strin-
gency was implemented in each level of stringency by bootstrap using 1000 replicates. Level of stringency with 
at least 10 Rt points were considered in the bootstrap analysis. We also used bootstrap methods to estimate the 
distribution of the di�erence of the Rt assuming that both Rt  (HFN501Y and not-HFN501Y) comes from the same 
distribution and calculate the p-value of the observed di�erence.

Calculation of change in time of the effective reproduction number of SARS‑CoV‑2 muta‑
tions. Change of Rt was calculated by subtracting the value of Rt 14 days a�er the day of interest with the 
mean of the Rt from the day of interest to 13 days a�er the day of interest.

Data availability
Publicly available datasets were analyzed in this study. �is data can be found at: gisaid.org. All the code used 
to perform the analysis of this manuscript is publicly available in: https:// github. com/ sanju sare/ Justo_ et_ al_ 
2021_ SR.
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