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ABSTRACT: Second-harmonic generation in plasmonic
nanostructures is known to enable the observation of modes
with vanishing dipolar moments, i.e., having small radiation
losses and thus long lifetimes. With the aid of a full wave
numerical method, we study the far-field temporal dynamics of
the linear and nonlinear responses of a silver nanorod driven
by femtosecond pulses. The results show that the plasmons
lifetime is observable in the decaying field oscillations surviving
after the exciting pulse, for both processes, and fits with the
damped harmonic oscillator model. In addition, using a
detailed mode analysis, we find that the multipolar characteristic of the nonlinear radiation is strongly influenced by both the
pulse central frequency and width. Implications for the accurate measurement of plasmon lifetime with the help of nonlinear
optics are discussed, especially the need to carefully disentangle the linear and nonlinear plasmon dynamics.
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P lasmonic nanoparticles are well known for their ability to
confine light below the diffraction limit.1,2 As a

consequence of this light concentration, the electromagnetic
field intensity can be locally enhanced by several orders of
magnitude.1−3 These localized surface plasmon resonances are
versatile, and their properties depend upon several parameters,
such as the nanostructure shape, material, surrounding medium,
and the coupling between nanoparticles.4,5 Among the different
parameters that describe a plasmon resonance, the lifetime is of
prime importance, since it controls the field enhancement.6

Furthermore, the coherent control of the field localization in
both time and space is intrinsically linked to the plasmon
lifetime.7−10 However, the plasmon damping time is very short
(10 fs and below) and is thus difficult to measure
experimentally.11,12

Recently, time-resolved photoemission electron microscopy
has emerged as a useful approach for studying plasmon
dynamics, allowing the detection of electron oscillations at the
nanoscale.13−15 In this context, optical techniques used for the
characterization of ultrashort laser pulses have been extended
for the investigation of the ultrafast response of plasmonic
systems,16−18 including nonlinear effects.19 These optical
measurements are based on interferometry and rely on the
evaluation of the autocorrelation function. This is generally
performed by recording the nonlinear light conversion, either
second-harmonic generation (SHG)16−18 or third-harmonic
generation,20,21 as a function of the time delay between the light
traveling through the two branches of an interferometer. A
broadening of the autocorrelation function, in comparison with
a nonresonant reference (as a BBO crystal for example), is

indeed caused by the field enhancement induced by the free
electron collective oscillations.
During the past few years, particular attention has been

devoted to the SHG from plasmonic nanostructures,22,23 and
SHG from plasmonic nanostructures with various shapes and
properties has been reported.24−30 A key recent advance in this
field has been the design of double-resonant nanostructures to
boost the nonlinear optical conversion at the nanoscale.31−35

These results emphasize the importance of the plasmonic
modes at both the fundamental and second-harmonic (SH)
frequencies in the overall nonlinear optical conversion process.
To investigate the relation between the modes at the excitation
and emission wavelengths in detail, it was recently proposed to
combine eigenmode analysis with the evaluation of the
SHG.36−38 However, the distinct plasmon dynamics at the
fundamental and SH frequencies have not been addressed so
far, despite important implications for the coherent control of
nonlinear radiation, as well as for the accurate measurement of
the plasmon lifetime using nonlinear optical processes.
In this article, we study numerically the second-order

nonlinear response of a silver nanorod driven by femtosecond
pulses under plane-wave illumination. We use a frequency
domain surface integral equation (SIE) method to compute the
linear and nonlinear fields as well as the eigenmodes of the
silver nanorod. We show that single-eigenmode dynamics
behaves like a damped harmonic oscillator,12 in both the linear
and nonlinear regimes. A multipolar analysis of the time-
dependent far-field intensity for different pulse central
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frequencies and widths is also conducted, revealing the
importance of the modal structure to interpret the radiated
signals at the SH wavelength.

■ THEORY

Numerical simulations are made using a frequency domain full
wave method, namely, the surface integral equation.39 Only the
surface of the nanorod is discretized with triangular elements,
and the scattering problem is solved by enforcing the boundary
conditions on the fields at the nanostructure surface. Harmonic
oscillations of the form e−iωt are assumed throughout this
article, with = −i 1 . The angular frequency ω has rad·s−1

units, but we use electronvolts (eV) to express it, i.e., ω = hν/q0
with ν the frequency in Hz, h Planck’s constant, and q0 the
elementary charge.
A temporal signal with a finite duration is necessarily

composed of more than one frequency, and the second-order
nonlinearity will lead to sum-frequency generation (SFG) in
addition to SHG.40 Neglecting optical rectification (ωm−ωm)
and difference-frequency generation (ωm−ωn), the second-
order nonlinear polarization P(2)(t) due to the complex
harmonic fields E1(t) and E2(t) of the form Em(t) =
Em(ωm)e

−iωmt is40

= + +
ω

ω

ω
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with P2ω1
= ϵ0χ

(2)E1
2, P2ω2

= ϵ0χ
(2)E2

2, and Pω1+ω2
= 2ϵ0χ

(2)E1E2.

The first two terms in eq 1 correspond to SHG and the last one
to SFG.
The second-order nonlinearity is assumed to come uniquely

from the surface of the nanoparticle where the centrosymmetry
of the silver crystal is effectively broken. Furthermore, we
consider only the χ⊥⊥⊥

(2) component of the second-order
susceptibility tensor,41−43 the subscript ⊥ referring to the
component normal to the surface. In the following, the method
described in refs 44 and 45 to compute SHG is modified to also
compute the nonlinear polarization due to SFG. We consider
that the frequency range of interest is far from any electronic
resonances in silver and that the second-order process is
parametric, thus leading to a χ⊥⊥⊥

(2) that is real and frequency
independent.40 Furthermore, because no comparison is made
between the relative amplitude of the linear and nonlinear
fields, the value of the nonlinear susceptibility relatively to the
linear susceptibility is not relevant, and we set χ⊥⊥⊥

(2) = 1 without
loss of generality. Additionally, we make the undepleted pump
approximation and neglect the energy transfer of second-order
waves back to fundamental waves.
The SFG computation can be schematized in four steps in

the time domain, as shown in Figure 1. First the incoming pulse
Einc excites the system and the resulting linear response EL is
computed. This linear response is then used to create the
nonlinear sources PNL at the surface, through the nonlinear
susceptibility χ⊥⊥⊥

(2) . Those nonlinear sources in turn excite the

system at the nonlinear frequencies to give the nonlinear fields
ENL. Throughout this article PNL is referred to as the nonlinear
excitation; the color red is used for spectra at the excitation
wavelength, while blue is used for the nonlinear response of the
system.
In the small-particle limit, the two main contributions to

SHG are expected to be due to electric quadrupolar and dipolar
modes, noted E2 and E1, the latter being allowed by retardation
effects.46 Using the standard excitation−radiation schematic
notation,47 these processes are written E1 + E1 → E2 and E1 +
E2 → E1, where the symbols on the left and right refer to the
nature of the modes respectively at the fundamental and
nonlinear stages. The exact nature of the nanorod modes,
transverse or longitudinal, also has to be detailed here. The
nonlinear quadrupolar emission comes from the interaction of
two dipoles, whereas the dipolar nonlinear emission comes
from the interaction of a dipole and a quadrupole, both at the
fundamental stage.
Ohmic and radiative losses are both present in plasmonic

systems; thus the plasmon oscillations are damped over time
and each eigenmode is characterized by a complex eigenfre-
quency ωc = ωr + iωi. If no excitation is present, any quantity A
associated with one eigenmode (field, charge, current, ...)
evolves according to the damped harmonic oscillator equation.
Indeed, since the computations are done in the frequency
domain, the temporal evolution is of the form A(t) ∝ Re{e−iωt}.
Replacing ω by ωc leads to

ω∝ ω

A t t( ) cos( )e t

r
i (2)

with ωi < 0, as required for having a decaying amplitude. An
example of the response of a damped harmonic oscillator to a
Gaussian pulse is shown in the Supporting Information, Figure
S1. Notably, there is a delay between the maximum of the
driving pulse and the maximum of the response. Indeed,
because of causality, the impulse response of a damped
harmonic system vanishes for t < 0 and is thus asymmetric with
respect to t = 0. The maximum of the response that is given by
the convolution of the impulse response and the excitation can
then only occur at a time larger that the incoming pulse
maxima. Additionally, as the exciting pulse becomes longer, this
delay increases, due to the fact that the system has more time to
build up its response. As shown in Figure S2, this delay also
increases as the central frequency of the pulse becomes close to
the resonant frequency ωr of the oscillator and increases with
the pulse temporal width Δt. This effect will be apparent in the
subsequent analysis of the dynamical response of the silver
nanorod.
The eigenmodes are obtained by using complex frequency

excitation to find poles of the nanostructure response48 and
then verified to be eigenvectors of the SIE matrix.37 An
analytical continuation of the permittivity function in the
complex plane is needed for the eigenmode computation; thus
a Drude model is used to find the eigenmode. The model is

Figure 1. Schematized computation of the SFG temporal signals. The incoming pulse Einc(r, t) excites the structure and generates the linear response
EL(r, t). The linear response is used to obtain the nonlinear surface polarization PNL(r ∈ ∂V, t) at the nanostructure boundary ∂V. Finally, these
nonlinear sources are used to compute the scattered nonlinear field ENL(r, t). This sketch illustrates the SFG process in the time domain, although
each computation step is performed in the frequency domain (see text).
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fitted to the experimental values of ref 49 in the range 1.5 < ω <
3 eV. The parameters of the model are ωp = 9.3 eV, γ = 0.03
eV, and ϵ∞ = 4.3, with ωp the plasma frequency, γ the damping
constant, and ϵ∞ the permittivity for ω → ∞. The background
is assumed to be water, with refractive index nbg = 1.33, i.e., ϵbg
= 1.77. This choice is made to render our result comparable to
possible experimental findings, where nanoparticles are usually
suspended in water or deposited on a substrate. The effective
background permittivity of the latter medium depends on its
composition but is indeed closer to that of water than vacuum.
For the femtosecond pulse, we consider a Gaussian pulse

envelope S(ω) in the frequency domain, with width Δω and
centered at ω0,

ω = ω ω ω− − Δ
S( ) e ( ) /20

2 2

(3)

The corresponding temporal signal is also a Gaussian with
width Δt = 2π/Δω, and the full width at half-maximum is given

by fwhm= Δ ≈ Δt t2 2 ln(2) 2.35 . The total energy of the
pulse is given by ∫ |S(ω)|2 ∝ Δω, so that it scales linearly with
the width of the pulse, in both frequency and time domains.
The construction of the temporal signal from the frequency
domain computation is made using a Fourier transform as
detailed in the Methods section.

■ RESULTS

In this section, we present the dynamics of the linear and
second-order nonlinear responses of a single silver nanorod of
total length 120 nm and diameter 40 nm with hemispherical
ends, Figure 2(a).
We consider that the pulse excitation is built from plane-

waves with electric field polarization and propagation vectors
respectively parallel and normal to the nanorod axis Oz and use
the experimental values of ref 49 for the silver permittivity.
Harmonic Response and Eigenmodes. The scattering

spectrum (electric field intensity integrated over the sphere) of
the silver nanorod for monochromatic plane-waves incident
normally to the nanorod axis is shown in Figure 2(b), as well as
the corresponding SH spectrum. In the linear spectrum, a
strong peak at ∼1.7 eV is observed due to the longitudinal
dipolar mode (LD). Two other features between 3.0 and 3.5 eV

also appear, due to higher order modes with a nonvanishing
dipolar moment along Oz. The SH spectrum reveals a first
small peak at 2.80 eV corresponding to the longitudinal
quadrupole resonance (LQ) and one strong resonance at 3.5
eV. This SHG maximum is mainly due to the dipolar resonance
linearly excited at 1.74 eV but is also expected to benefit from
the transverse dipolar (TD) mode and higher order modes at
the SH frequency. Indeed, since the real part of the permittivity
becomes positive at ω ≈ 3.8 eV, all the plasmonic modes will
have resonant frequencies below 3.8 eV. From Figure 2(b), it is
thus expected that some high-order modes participate in the
SHG scattering due to the fact that the nonlinear sources PNL
are spectrally near 3.5 eV. A multipolar decomposition of the
far field50 is also conducted for the SHG signal, Figure S3, and
reveals only dipolar and quadrupolar emissions. The small peak
at 2.8 eV is composed of 85% quadrupolar emission, whereas
the emission peak at 3.5 eV is 98% dipolar. As stated in Section
2, the SHG emission arises mainly from two excitation
channels, coming from the modes presented in Figure 2(c).
The first one is the interaction of the LD mode with itself to
excite the LQ mode at the SH frequency. Using the previously
introduced notation and specifying the precise nature of the
modes, this excitation channel is E1

LD + E1
LD →E2

LQ. Higher
order modes with even charge distribution parity along the Oz
axis, like the LQ mode, can be excited through identical
processes involving higher order modes at the linear stage. The
other excitation channel allows a dipolar emission at the SH
frequency through the interaction of the LD and the transverse
quadrupolar (TQ) mode, the latter being excited by retardation
effects, i.e., phase difference of the driving field across the
nanorod diameter in the Oy direction. This excitation channel is
E1
LD + E2

TQ → E1
TD. As in the case of the quadrupolar nonlinear

emission, other higher order modes having the transverse
characteristic, i.e., odd charge distributions along Oy, can
contribute to the dipolar nonlinear radiation through similar
processes, since their symmetry does not forbid it. Figure 2(c)
shows the four eigenmodes discussed above, where the arrows
indicate the dipolar moments’ orientations. Their complex
eigenfrequencies, as well as their plasmon lifetimes and
associated quality factors, are given in Table 1. The fit of the
Drude model used to obtain the eigenmodes is optimized up to

Figure 2. (a) Sketch of the excitation configuration. (b) Plane-wave scattering spectrum, linear monochromatic response (red curve), and
corresponding SHG (blue curve). The SHG on the left of the vertical dashed line is multiplied by a factor 100 to highlight the resonance of the LQ
mode. The red dots and horizontal lines respectively indicate the central energies ω0 and width 2Δω0 at the fundamental stage for the pulses used
here. The blue dots give the central frequency of the corresponding nonlinear excitation PNL without taking into account the influence of the linear
response, i.e., ω0

NL = 2ω0. The position of the eigenmodes presented in (c) are shown on the top abscissa. (c) Surface charge distributions σ of the
four eigenmodes discussed here. LD stands for longitudinal dipole, LQ for longitudinal quadrupole, TD for transverse dipole, and TQ for transverse
quadrupole; see Table 1. Black arrows represent the local dipolar moment orientations.
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3 eV; the parameters for the TQ and TD modes are thus
expected to slightly deviate from those effectively existing with
the experimental permittivity data. Since the real and imaginary
parts of the permittivity are both underestimated around 3 eV
in our case, the real part of the eigenfrequency would be smaller
and the imaginary part larger; that is, the experimental mode is
likely to be red-shifted and more lossy.
Pulse Excitation, Linear Regime. We now consider a

pulse, centered at t = 0, with a Gaussian frequency envelope
with ω0 = Re{ωLD} = 1.74 eV, i.e., centered at the longitudinal
dipolar resonance, and width Δω = 0.071 eV, leading to a
Gaussian pulse with fwhm = 22 fs. Figure 3 shows the spectrum
and temporal dynamics of the Ez component of the electric
field, oriented along the nanorod axis, at a distance R = 10 μm
in the forward direction (x = 0, y = R, z = 0). Even though the
pulse spectral width is smaller than the width of the harmonic
response Eh(ω), the response E(ω) = Eh(ω) S(ω) is indeed
narrower than the pulse, Figure 3(a), and must thus correspond
to a longer time signature. This is indeed what is observed in
the temporal plots shown in Figure 3(b). At all times, the field
corresponding to the blue curve shows a π/2 phase shift with
respect to the driving pulse (black curve); see zoomed-in plot
in Figure 3(c,d), a typical behavior for a forced oscillator driven
at its resonant frequency. At larger times t ≳ 75 fs, Figure 3(d),
when the amplitude of the excitation pulse becomes negligible,
an exponential decay of the oscillating field amplitude is
observed, as expected for a free damped harmonic oscillator. In

order to confirm that the behavior observed at t ≳ 75 fs is due
to the LD resonance, the field evolution given by eq 2 with the
parameters of the LD mode given in Table 1 is superposed to
the full wave computations, blue circles in Figure 3(d). The
excellent agreement between the full wave computation and the
dynamics associated with the LD mode demonstrates that the
latter plays the dominant role in the system; furthermore, this
demonstrates how the knowledge of the modes supported by a
system can be used to reconstruct its dynamics.12 The
exponential decay envelope is prolonged before t ≈ 78 fs to
clearly show the transition between forced and free regimes.
Note that the maximum of the driving pulse indeed occurs at t
= nbgR/c0 = 44.36 fs, with c0 = 299 792 458 ms−1, Figure 3(b).
In addition, it is apparent that the maximum of the field
response is delayed relatively to the driving pulse maximum,
another well-known feature of harmonic oscillators driven at
their resonances; see Figures S1 and S2.

Pulse Excitation, Nonlinear Regime. The nonlinear
response of the nanorod is now studied for a pulse with the
same width as in the Pulse Excitation, Linear Regime section
but centered at ω0 = Re{ωLQ/2} = 1.4 eV, i.e., at half the LQ
resonance. This is done to avoid the excitation of higher order
modes at the SH frequencies and thus concentrate only on the
LQ and TD mode radiation, which are expected to be the only
contributions at the nonlinear frequencies around 2.8 eV in the
small-nanoparticle limit; see Figure 2(b). The width of the
pulse, Δω = 0.071 eV, further ensures that the contribution of
the high-order modes above ωTD remains negligible. In Figure 4
we show the Ey component of the electric field at a distance R =
10 μm and at a ±45° angle in the Oyz plane as well as in the Oz
direction.
The electric fields taken at the ±45° angles exhibit a clear

resonant dynamic with a long lifetime due to the LQ mode; see
Table 1. In the Oz direction (0°), the LQ mode cannot radiate
and the field observed (blue curve) is thus solely due to the TD
mode. Since the TD mode is driven below its resonant
frequency and is relatively lossy, τTD = 3.93 fs, only its forced
behavior is observed and the temporal response is symmetric
with respect to its center. To understand why the TD mode

Table 1. Eigenmode Eigenfrequencies, Lifetimes Given by τ
= h/(2πq0|ωi|), and Quality Factors Q = ωr/|ωi|

a

ωr (eV) ωi (eV) τ (fs) Q

LD → 1.74 −0.0936 7.03 18.5

LQ ←→ 2.80 −0.0244 27.0 115

TQ ↓ ↑ 3.27 −0.0418 15.7 78.3

TD ↑ 3.38 −0.168 3.93 20.1
aLD stands for longitudinal dipole, LQ for longitudinal quadrupole,
TQ for transverse quadrupole, and TD for transverse dipole. Arrows
indicate the local dipolar moments as in Figure 2(c).

Figure 3. Linear response of the Ez component at a distance of 10 μm in the forward (positive y) direction. (a) Spectra obtained with
monochromatic plane-wave excitations (dashed blue curve), frequency envelope of the pulse centered at ω = 1.74 eV with Δω = 0.071 eV (black
curve), and the linear response driven by the pulse (blue curve). (b) Time domain electric field evolutions of the driving pulse (black line) and the
linear response (blue curve). (c) Zoom-in on the forced regime. The vertical line highlights the π/2 phase shift between the excitation and the
response. (d) Zoom-in on the free harmonic motion and fit of the damped harmonic oscillator free response with the parameters of the longitudinal
dipolar eigenmode. The black arrowhead indicates where the fit was made.
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shows a response as strong as the LQ mode even though its
resonant frequency is relatively far from 2 × 1.4 = 2.8 eV, one
needs to consider a few points. First, the TD mode is spectrally
broad due its large eigenfrequency imaginary part (Im{ωTD} =
−0.168 eV), and since it is a dipolar resonance it is better
coupled to the far field than the LQ. Indeed, the multipole
decomposition of the SHG spectrum gives a 15% contribution
of the dipole component for a harmonic plane-wave excitation
at 2.8 eV; see Figure S3. Second, even though the central linear
frequency is fixed at 1.4 eV, the LD resonance is effectively
blue-shifting the linear response maximum, making the
maximum of the nonlinear excitation closer to the TD
eigenfrequency. Finally, the linear pulse width is 0.071 eV, so
that the effective spectral width of the nonlinear excitation PNL
can be expected to be roughly twice this value, making the
spectral overlap between PNL and the TD even greater.
We observe in Figure 4(c) that the electric fields in the

forward (45°, red line) and backward (−45°, green line)
directions have slightly different amplitudes for t ≲ 60 fs. The
difference in the field amplitudes in the ±45° directions for t ≲
60 fs is caused by the interference between the LQ and TD
modes, as already reported in the continuous regime in refs 51
and 52. Indeed, the electric field orientation associated with the
quadrupolar and dipolar emissions at the two observation
points is different, Figure 4(d), and interferes constructively in
the backward direction and destructively in the forward
direction. Let us note that the constructive/destructive
interferences can generally happen in either direction depend-
ing on the relative spectral position of the excitation and the
LQ and TD modes.52 To further study this phenomenon, the
sum of the two responses in the ±45° directions (red+green
curves) is computed, and it is observed that the result, black
symbols in Figure 4(a,c), fits almost perfectly with the
transverse dipolar response taken in the Oz direction (blue
curve). The extremely small discrepancy is fortuitous: it is due
to the difference in amplitude of the dipolar and quadrupolar
radiations in the ±45° and Oz direction as well as to the relative
amplitude of each mode. Let us note that a similar interference
effect between the TD and LQ modes also exists for the Ez

component of the fields (data not shown). The temporal
overlap of the sum of the two fields in the ±45° and Oz
directions, respectively due to the LQ and TD modes, thus
confirms that the TD resonance is indeed the source of the
observed amplitude difference in the ±45° directions.
For times t ≳ 65 fs the short-lived TD mode vanishes with

the exciting pulse so the interference process disappears and the
two fields in the ±45° directions retrieve the same amplitude,
Figure 4(b). As for the linear response in the Pulse Excitation,
Linear Regime section, at t ≳ 65 fs, the behavior of a free
damped harmonic oscillator is observed. The parameters of the
LQ mode are used to plot eq 2 (red circles), which fit with
great accuracy the computed field evolution in the +45°
direction, the same agreement being expected in the backward
−45° direction due to the symmetry of the geometry. We
additionally notice that during the time where the interference
between the two modes occurs, Figure 4(c), the two fields at
±45° are not perfectly out of phase as they should be if only the
LQ mode was excited, Figure 4(d). This is because the TD and
LD modes do not have the same phase with respect to the
nonlinear excitation and thus to each other. The interference
created by the TD mode thus modifies the relative phase shift
between the fields in the ±45° directions. When the dipolar
mode vanishes, the two fields retrieve their relative π phase shift
(Figure 4(b)), as expected for a purely quadrupolar radiation.
Finally, we observe again a shift between the excitation
maximum and the response of the quadrupolar mode. As was
the case in the linear regime, we see that the eigenmodes are of
prime importance in the study of the spectral and dynamical
behavior of the SH response of plasmonic nanoparticles.

Multipolar Analysis. Finally, we study the nonlinear
temporal response of the nanorod for various pulse parameters.
Six different pulses at two different central frequencies and with
three different widths are considered, viz., ω0 = 1.4 and 1.74 eV;
Δω = 0.071, 0.14, and 0.21 eV. The three spectral widths
correspond respectively to a temporal fwhm of 22, 15, and 7 fs
for the field amplitude, and the effective fwhm for the
corresponding intensity is given by fwhm/ 2 . The central
frequencies and widths of the pulses at the fundamental stage

Figure 4. Nonlinear response for a pulse of central frequency ω0 = 1.4 eV and width Δω = 0.071 eV. (a) Ey component of the electric field at a
distance of 10 μm. Red, green, and blue curves respectively show the field in the forward 45° (z = y), backward −45° (z = −y), and top 0° (z = 0)
directions. The black curve is the sum of the green and red curves. The blue and black curves are vertically shifted for clarity. (b, c) Details of the
time evolution shown in (a). The vertical dashed line in (c) highlights the phase difference between the fields. The arrowhead in (b) indicates the
time where the fit with the LQ mode was made. (d) Radiation patterns of the LQ and TD modes in the Oyz plane and corresponding qualitative
amplitudes of the Ey field component at the positions where the fields of panels (a)−(c) are evaluated.
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are shown in Figure 2(b). The corresponding nonlinear central
frequencies, obtained by multiplying by 2 each linear one, are
also shown as blue dots. Note however that the real excitation
of the nonlinear process comes from the linear response and
will thus not necessarily have a maximum at 2ω0 nor a Gaussian
shape due to the resonant character of the linear response. For
each case, we project the time-dependent linear and nonlinear
far fields onto the vector spherical harmonics to decompose the
radiation into multipole moments.50 The results are shown in
Figure 5, where the panels (a)−(f) show the linear and
nonlinear scattered intensities and the panels (g)−(l) the
dipolar and quadrupolar components of the nonlinear scattered
intensity. Other multipolar moments are found to be negligible,
and the linear response is purely dipolar. To clarify the plot, the
linear intensity is shown only at the peak values of the
oscillations, indicated by red markers, since the dynamics does
not involve any additional effect compared with the ones
presented in the Pulse Excitation, Linear Regime section.
Additionally, the intensity is integrated over the range 25 < t <
120 fs for both linear and nonlinear signals and normalized to
the weakest case, which is ω0 = 1.40 eV and Δω = 0.071 eV.

The corresponding data are shown in each panel, thus
providing the total energy of the radiated fields. Every curve
in Figure 5(a−f) is normalized to the maximum intensity of the
corresponding curve for the case ω0 = 1.4 eV and Δω = 0.071
eV, which gives the weaker linear and nonlinear peak signals.
Finally, the exciting pulses are all normalized to have unit
energy so that the comparison of the peak and integrated
intensities reflects the intrinsic efficiency of the linear and
nonlinear signal generations. We recall Parseval’s theorem that
states that the energy of a signal in the frequency domain is
proportional to the energy of the temporal signal, ∫ |E(ω)|2 dω
∝ ∫ |E(t)|2 dt, the proportionality constant being dictated by
the definition of the Fourier transform.53 Thus, the integrated
intensities in the time domain can be explained by analyzing the
corresponding spectra. Concerning the linear dynamics, every
case shows a fully dipolar response (data not shown), as
expected from the excitation of the LD mode; see Figure 2. For
the pulse centered at 1.4 eV, Figure 5(a−c), it appears that the
peak and the integrated intensity increase as the pulse shortens.
Indeed, the shorter the pulse, the broader the spectrum, and
since the central frequency is here below the LD peak, a

Figure 5. Multipolar analysis of the linear and nonlinear radiations. Six different pulses are considered, at central energies ω0 = 1.4 and 1.74 eV and
widths Δω = 0.071, 0.14, and 0.28 eV. (a−f) Linear (red symbols, value on the left vertical axis) and nonlinear (blue curve, value on the right vertical
axis) scattered intensity. The pulse parameters (ω0, Δω) are indicated in the top right corner of each plot. For clarity the linear response is taken
only at the maxima of IL(t). Each linear and respectively nonlinear curve are normalized to the corresponding curve in (a). We observe that both the
linear and nonlinear peak intensities are minimal for the pulse parameters used in panel (a). The linear intensity integrated in the range 25 fs < t <
120 fs is indicated in the plots and normalized to the one in (a). The black arrowheads on the horizontal axis indicate the center of the exciting pulse
at 44.36 fs, whereas the red and blue ones indicate the maximum of the linear and nonlinear responses. (g, h) Corresponding multipolar
decompositions of the nonlinear radiations. Multipoles other that electric dipolar and quadrupolar components are found to have negligible
contributions. The intensity integrated in the range 25 fs < t < 120 fs is indicated in the top left corner of each plot and normalized to the one in (g).
The colored arrowheads on the horizontal axis indicate maxima of the dipolar and quadrupolar components when possible. Note that the indicated
fwhm is given for the field, not the intensity.
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broadening means a better overlap with the LD resonance at
1.74 eV and thus a stronger signal. This better overlap with the
resonance also leads to a slight increase in the delay between
the driving pulse and the linear response; see the black and red
arrowheads, respectively. On the other hand, when the pulse
central frequency is tuned to the LD resonance at 1.74 eV, the
shorter pulses lead to a weaker integrated signal (compare
Figure 5(d−f)), and it additionally appears that the peak
intensity slightly increases for shorter pulses. Keeping in mind
that each excitation pulse is normalized to have unit energy, the
broadening of the spectrum, which is linked to the reduction of
the pulse duration, leads to a weaker maximum amplitude of
the pulse spectrum that is centered at the LD resonance. This
could explain the decrease in integrated intensity, but not the
slight increase in peak intensity for shorter pulses. We first
recall that the maximum of the temporal signal can be linked to
the integrated signal because E(t = 0) ∝ ∫ E(ω) dω, which is
indeed different from the energy ∫ |E(ω)|2 dω. To explain the
increase in peak intensity that occurs parallel to the decrease in
integrated intensity, we multiplied three Gaussians (with the
width of the pulses used in this section and having unit energy)
with a damped harmonic oscillator spectral line-shape in order
to simulate the linear response E(ω) of the system. We then
compared the results of ∫ E(ω) dω and ∫ |E(ω)|2 dω and
found a good qualitative agreement with the previous results,
namely, a decrease of the energy and a slight increase of the
integrated signal (data not shown). Finally, we observe that for
the pulse centered at 1.74 eV, Figure 5(d−f), the linear
response delay is the largest, and it decreases for shorter pulses,
as expected for a pulse that shortens; see Figure S2. The
nonlinear field dynamics is first studied for femtosecond pulses
centered at 1.4 eV, Figure 5(a−c,g−i). In panels (a)−(c), the
nonlinear intensity oscillations do not decrease down to zero at
short times. This effect is easily understood by looking at the
multipolar decomposition, panels (g)−(i). It appears that the
dipolar and quadrupolar components, mainly due to the TD
and LQ modes, respectively, are out of phase, as explained in
the Pulse Excitation, Nonlinear Regime section. When the
driving pulse vanishes, only the long-lived quadrupole mode
remains and the scattered intensity oscillations can indeed
vanish periodically. Indeed, the TD mode has a lifetime of 3.93
fs and thus cannot outlive the exciting pulse. As the pulse
shortens and its spectrum broadens, the overlap between the
nonlinear excitation spectrum and the TD mode increases.
Thus, it appears that the short-lived dipolar component due to
the TD mode becomes predominant during the excitation and
that the quadrupolar component takes the lead afterward; see
panels (g)−(i). The strong intensity difference between the
dipolar and quadrupolar components is due to the fact that
dipolar modes are intrinsically more efficient to radiate in the
far-field and that, as shown in Figure S3, there is a non-
negligible dipolar contribution to the SHG around 2.8 eV.
Notice the different vertical axis scales that indicate that the
quadrupolar component still increases from panels (g) to (i),
the maxima of the IQ curve being respectively 1, 1.8, and 2.5. In
panel (i), at around 48 fs, one can also observe a small dip in
the quadrupolar component envelope, caused by the
interference between the LQ mode and higher order modes
having a quadrupolar far-field response. Additionally, the overall
nonlinear response is also stronger in both peak and integrated
intensity for shorter pulses, due to the corresponding stronger
linear response. When the central pulse energy is resonant with
the LD mode, ω0 = 1.74 eV, the nonlinear signal is mainly

dipolar, Figure 5(d−f,j−l). Indeed, the nonlinear excitation is
now centered around 2 × 1.74 = 3.48 eV, close to the TD
mode at 3.38 eV and far from the LQ mode. Nevertheless, a
long-lived oscillation is observed for the two shortest pulses,
panels (k) and (l). The decay observed is too slow to be
attributed to the TD mode and thus originates from a higher
order mode having a nonvanishing dipolar moment in the Oy
direction. As discussed in the Harmonic Response and
Eigenmodes section, such high order modes are expected to
have resonant frequencies around the nonlinear excitation PNL
in the present case, explaining further the strength of this
dipolar component. This is also in agreement with the SHG
spectrum shown in Figure S3, where the SHG response is
mostly dipolar around the peak at 3.5 eV. The total energy of
the signals follows the evolution of the linear response; that is, a
smaller integrated intensity is obtained for shorter pulses.
Overall, the maximum peak and integrated intensities are
indeed obtained when the pulse is centered at the longitudinal
dipolar resonance mode for both the linear and nonlinear fields.
The delayed-response behavior of a mode excited at resonance
is also apparent in the nonlinear signals, keeping in mind that
the source of the nonlinear signal is the linear response, which
is itself delayed with respect to the exciting pulse. For the pulse
centered at 1.4 eV, the nonlinear excitation PNL is close to the
LQ mode, and thus the delay between the linear response and
the quadrupolar component is large and increases with the
pulse duration. For the shortest pulse, panel (i), interferences
with high-order modes make the measure of the delay not
pertinent. On the other hand, the nonlinear excitation is far
from the TD mode, leading to a vanishing delay for the dipolar
component. Concerning the pulse centered at 1.74 eV, the
nonlinear excitation is now close to the TD mode, and we
observe a delay of the dipolar response that increases with the
pulse duration as expected.

■ CONCLUSION

The dynamics of the linear and second-order nonlinear fields
scattered by a single silver nanorod under femtosecond pulse
plane-wave illumination have been studied. The linear response
was first presented to establish the method. It was shown that it
is indeed possible to observe the dynamics of single
eigenmodes that behave like damped harmonic oscillators.
Then the nonlinear scattered fields were studied, first in detail
for the case where the longitudinal quadrupolar mode is
resonant at the nonlinear frequency. It was observed that the
transverse dipolar mode interfered with the quadrupolar mode
during the time when the excitation pulse is still present, but
that only the quadrupolar response remains afterward, due to
its longer lifetime. Finally, a multipolar analysis of the scattered
field was conducted for two different pulse center energies and
three different widths. Different responses are observed
depending upon the pulse width and center frequency, like a
switch between quadrupolar and dipolar dominant emissions
over time as well as changes in the peak intensity value or the
total energy radiated. It appears that the modal structure of the
nanorod is of high importance to correctly understand the
temporal evolution of the nonlinear fields. These results
provide new insight into the linear and nonlinear dynamics of
localized surface plasmons, as one could tailor the exciting pulse
parameters to achieve a variety of dynamical responses.
Furthermore, these results are important regarding the accurate
measurement of plasmon lifetime with the help of nonlinear
optics.16−18 Indeed, to do so, one needs to carefully disentangle
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the linear and nonlinear plasmon dynamics as discussed in this
article.

■ METHODS

To reconstruct a temporal signal from its frequency
components, the following inverse Fourier transform is used:

∫ ω ω= = ω−

−∞

∞
−

E t E t E( ) { }( ) ( )e di t1

(4)

The temporal signal E(t) must be real; hence E(−ω) = E*(ω),
where * denotes the complex conjugate. Equation 4 then
reduces to

∫ ω ω= ω

∞
−{ }E t E( ) 2Re ( )e di t

0 (5)

A finite amount of frequencies ωn is computed, and the above
integral reduces to a sum. Consequentially E(t) becomes T-
periodic with T = 2π/δω, δω being the constant frequency step
between each considered frequency ωn. To correctly retrieve
the plasmon dynamics, it is mandatory that the periodicity
induced by the frequency sampling is sufficiently large
compared to the largest plasmon lifetime. Plasmons are
known to have lifetimes on the order of femtoseconds, and
we choose δω = 0.02 eV, leading to T = 207 fs.
To construct the linear and nonlinear temporal signals, the

first step is to compute a set of N linear harmonic solutions
Eh(ωn) at equally spaced frequencies between ωA and ωB,
which can then be used to form any signal E(ω) having a
limited bandwidth ωA ≤ ω ≤ ωB. Eh(ωn) effectively acts as a
transfer function, so that the response E(ωn) of the nanorod to
an excitation having the spectrum S(ωn) is E(ωn) = Eh(ωn)
S(ωn), meaning that each frequency component Eh(ωn) is
weighted according to the function S(ωn). One then has to
make a second-order computation for each possible pair of
frequencies (ωm, ωn) composing the femtosecond pulse, taking
into account the different weights of each component:

ω ω ω ω

ω ω ω ω

+ =

=

E E E

E S E S

( ) ( ) ( )

( ) ( ) ( ) ( )

m n m n

m m n nh h (6)

and adding accordingly the pairs that give the same frequency.
The total number of combinations is N2 with N SHG and (N2

− N) SFG combinations. Since the process (ωm, ωn) gives the
same nonlinear response as (ωn, ωm), only half of the SFG
computations have to be performed. Thus, the total number of
required nonlinear computations is N + (N2 − N)/2 = (N2 +
N)/2. The temporal responses, both linear and nonlinear, are
obtained using eq 5.
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