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We experimentally investigate active motion of spherical Janus colloidal particles in a viscoelastic fluid.

Self-propulsion is achieved by a local concentration gradient of a critical polymer mixture which is

imposed by laser illumination. Even in the regime where the fluid’s viscosity is independent of the

deformation rate induced by the particle, we find a remarkable increase of up to 2 orders of magnitude of

the rotational diffusion with increasing particle velocity, which can be phenomenologically described by an

effective rotational diffusion coefficient dependent on the Weissenberg number. We show that this effect

gives rise to a highly anisotropic response of microswimmers in viscoelastic media to external forces,

depending on its orientation.
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Nature offers a plethora of microswimmers moving in
complex fluid environments [1], whose properties can
deviate from Newtonian behavior due to the presence of
suspended macromolecules and colloidal particles [2].
Some examples are bacteria in polymeric solutions [3],
spermatozoa in cervical mucus [4], andmicrobial pathogens
in stomach mucus [5]. All of these fluids are viscoelastic;
i.e., they may exhibit either liquid- or solidlike behavior,
depending on imposed deformation rates. Understanding
the dynamics of such kinds ofmicroscopic systems is a topic
of fundamental significance in statistical mechanics, as they
exhibit new types of nonequilibrium processes [6].
Despite their biological and application-related rel-

evance, most experiments with autonomous synthetic
microswimmers which are self-propelled, e.g., by diffu-
siophoresis [7–9] and thermophoresis [10], were performed
in Newtonian fluids [1]. In contrast, only a few studies have
considered non-Newtonian fluids [11–25] where viscoe-
lasticity [11–13,15–17], shear thinning [20–23], and shear
thickening [20] strongly impact self-propulsion. Previous
studies with biological microswimmers suggest that, under
such conditions, the dynamical response of the liquid to
configurational body changes (e.g., flagellar and undula-
tory motion) during self-propulsion must be considered
[17,18] and can lead to either an increase [11,13,16–19,24],
a decrease [12,14,17,18,23], or no change [21] of their
swimming speed. To avoid specific effects due to such
configurational changes and to focus on how the transient
strain of viscoelastic fluids couples to the swimmer’s
stochastic motion, experiments with rigid microswimmers
of simple shape are required.
In this Letter, we study the motion of artificial micro-

swimmers in a viscoelastic fluid. Their self-propulsion is
achieved by light illumination, which allows us to adjust
the propulsion velocity. Contrary to Newtonian liquids, we
observe a drastic increase of their rotational diffusion with
increasing velocity. Such enhancement is independent of

whether the velocity is acquired by self-propulsion or by
an external force, and it can be quantitatively described
by a rotational diffusion coefficient dependent on the
Weissenberg number. We find that the microstructural
relaxation of the fluid due to the particle’s directed motion
leads to a strong coupling of rotational to translational
dynamics, with striking consequences for self-propulsion
in the presence of external bias.
As artificial microswimmers, we use half-coated spheri-

cal silica particles (diameters of 2r ¼ 7.75 and 4.32 μm)
coated with 50 nm carbon caps. When such particles are
suspended in a binary mixture with a lower critical point
and illuminated with light, the fluid locally demixes, which
causes a self-diffusiophoretic motion (for details, see
Ref. [9]). As a binary mixture we use water and propylene
glycol propyl ether (PnP), whose lower critical point is
31.9 °C and 0.4 PnP mass fraction. Such a mixture exhibits
Newtonian behavior with viscosity η ¼ 0.004 Pa s at 25 °C.
To render this mixture viscoelastic, we add 0.05% poly-
acrylamide (PAAm). Figure 1 shows the corresponding
phase diagrams of the binary and the ternary system and
demonstrates that the addition of PAAm only leads to a
small shift of the critical point. Below Tc ¼ 31.4 °C the
ternary mixture is homogeneous, and increasing the tem-
perature above Tc leads to phase separation via spinodal
decomposition, as shown in the inset of Fig. 1(a).
In contrast to the critical behavior, rheological properties

of the water-PnP mixture are strongly modified by the
presence of a PAAm polymer. This is demonstrated by
active microrheology, where a colloidal particle is driven
by optical tweezers through the mixture [26]. We find that
the fluid is viscoelastic, with a stress-relaxation time
τ ¼ 1.65� 0.10 s. We obtain the fluid’s viscosity η by
moving the particle at constant velocity v and measuring
the resulting drag force, f ¼ 6πrvη. The corresponding
flow curve is shown in Fig. 1(b), where we plot the
dependence of η on the Weissenberg number, Wi ¼ vτ

2r
,

PRL 116, 138301 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
1 APRIL 2016

0031-9007=16=116(13)=138301(5) 138301-1 © 2016 American Physical Society

Konstanzer Online-Publikations-System (KOPS) 
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-410789

Erschienen in: Physical Review Letters ; 116 (2016), 13. - 138301 
https://dx.doi.org/10.1103/PhysRevLett.116.138301

http://dx.doi.org/10.1103/PhysRevLett.116.138301
http://dx.doi.org/10.1103/PhysRevLett.116.138301
http://dx.doi.org/10.1103/PhysRevLett.116.138301
http://dx.doi.org/10.1103/PhysRevLett.116.138301


where τ is the fluid’s relaxation time and v=ð2rÞ the typical
rate of deformation. For a low Wi, the fluid is characterized
by a zero-shear viscosity η0 ¼ 0.100� 0.015 Pa s (solid
line), where Stokes’s law f ∝ v is valid, as shown in the
inset of Fig. 1(b). For a larger Wi, we find a thinning
behavior which is characteristic of most polymeric solu-
tions, where η decreases with an increasing Wi [26,27].
The experimental situation is represented in Fig. 2(a). A

small volume of a dilute suspension of Janus particles in the
viscoelastic mixture is confined in a cell (height h ¼ 4r).
Because of this confinement, both translational and rota-
tional dynamics are limited to 2D [28]. The cell temperature
is kept constant at T ¼ 293 K < Tc, and self-propulsion
is then induced by homogeneous laser illumination
(λ ¼ 532 nm), where the propulsion velocity is set by the
light intensity [9]. Under our conditions, particles always
move oppositely to the cap [29], as sketched in Fig. 2(a).
Particle’s position r ¼ ðx; yÞ and orientation n ¼
ðcos θ; sin θÞ are determined fromvideo images by detecting
its barycenter and the contrast between its capped and
uncapped sides, respectively [Fig. 2(b)]. At a fixed laser
intensity, we determine themean particle velocity v from the
time evolution of r, which allows us to compute theWi. In all
of the experiments shown below, v < 1 μms−1, which
correspond to Wi < 0.3. Accordingly, all of our measure-
ments were performed in the regime where η is independent
of the Wi and equal to η0 [cyan-shaded region in Fig. 1(b)].
In the absence of laser illumination, the translational
and rotational diffusion coefficients determined from
experiments are D0

t ¼ ð3.69� 0.60Þ × 10−4 μm2 s−1 and
D0

r ¼ ð1.84� 0.40Þ × 10−5 s−1 for a 2r ¼ 7.75 μm par-
ticle, respectively, which corresponds to η0 ¼ 0.150�
0.025 Pa s. This value of η0 will be used in the remainder
of the Letter [30].
Figure 2(c) shows typical trajectories of a self-propelled

particle measured over 1500 s for increasing (from left to
right) laser intensities. The arrows show the corresponding

particle orientation n. In contrast to Newtonian liquids,
where rotational diffusion is constant and independent of
the propulsion velocity, here this is obviously not the case,
since we observe an increase of the curvature of the
trajectories with an increasing v. While at small v the
trajectories are rather straight, at high v the particle
performs several turns over the same time interval. For
comparison, the rotational diffusion time of our particles in
a Newtonian liquid with η0 ¼ 0.150 Pa s is 1=D0

r ¼ 15 h;
i.e., the particle would not show a visible change in
orientation over 1500 s.
To quantify the above observations, we compute the

mean-square displacement of the angular particle orienta-
tion θ, hΔθðtÞ2i ¼ h½θðt0 þ tÞ − θðt0Þ�

2i, where the brack-
ets denote an average over the time variable t0. The results
are shown for different velocities v in Fig. 3(a). The
subdiffusive behavior at t≲ τ [the shaded area in the inset
of Fig. 3(a)] is a result of the elasticity of the fluid [31–33].
For t≳ τ, hΔθðtÞ2i shows a diffusive behavior. However,
the slope of hΔθðtÞ2i strongly deviates from 2D0

r , i.e.,
from the value expected for a Newtonian fluid [the
dashed line in Fig. 3(a)] and for passive colloidal probes
in thermal equilibrium with the surrounding viscoelastic
fluid [34]. Instead, the slope increases with an increasing v.
Phenomenologically, this corresponds to an effective rota-
tional diffusion coefficient D

ðWiÞ
r , which depends on the

Weissenberg number

hΔθðtÞ2i ¼ 2D
ðWiÞ
r t: ð1Þ

FIG. 2. (a) Schematic illustration of the self-propulsion of Janus
particles by light-induced demixing of the viscoelastic fluid.
(b) Relevant coordinates for describing the 2D particle’s motion.
(c) Examples of trajectories of the self-propelled particles at
different velocities. From left to right, v ¼ 0.032 μms−1,
0.188 μms−1, 0.227 μms−1, 0.398 μms−1, and 0.534 μms−1.
The arrows represent the orientation n.

FIG. 1. (a) Phase diagram of a viscoelastic mixture of PnP and
an aqueous (0.05% mass) PAAm solution (circles), and of the
same binary mixture without a polymer (squares). (Inset) Snap-
shot of the spinodal decomposition of the viscoelastic mixture at
0.4 PnP mass fraction and 32 °C. (b) Viscosity of the viscoelastic
mixture as a function of the Weissenberg number determined by

active microrheology. (Inset) Drag force as a function of the
imposed velocity. The solid line represents Stokes’s law.
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In Fig. 3(b) we plot as squares the dependence of D
ðWiÞ
r ,

normalized by D0
r, as a function of Wi for a 2r ¼ 7.75 μm

particle. We find that D
ðWiÞ
r dramatically increases and

saturates above Wi ≈ 0.1 at a value which is about 400D0
r .

An identical behavior is observed also for other particle
sizes (diamonds correspond to particles that are 4.23 μm in
diameter) and thus hints at a size-independent feature.
The previous findings suggest that such a diffusive

enhancement is a generic feature originating from the flow
field around the particle. In fact, unlike in a Newtonian
liquid, a nonsteady flow is induced as the particle moves
through a viscoelastic fluid since the relaxation of the local
stress takes place over a time scale ≈τ, during which the
fluid is driven out of equilibrium. Consequently, such a
fluctuating flow field can exert random forces and torques
on the particle coupled to those originating from thermal
collisions with the fluid molecules, which can be inter-
preted as enhanced diffusion. A similar effect has been
observed in active microrheology of dense colloidal sus-
pensions [35,36], where the coupling between a driven
particle and the slow structural relaxation of the suspension
enhances the nonequilibrium fluctuations of the particle
position. Thus, an enhancement of both rotational and
translational diffusion should also be observed when
driving a particle through a viscoelastic fluid by an external
field. Therefore, we also measure the rotational diffusion
coefficient D

ðWiÞ
r for the same Janus particles while

sedimenting in a tilted sample cell, without laser illumi-
nation to avoid self-propulsion [37]. At an inclination angle
α, the particle is dragged through the fluid by a gravita-
tional force Fg ¼ gmb sin α, where g is the acceleration of
gravity and mb the particle’s effective mass. In Fig. 3(b) we
plot as circles D

ðWiÞ
r =D0

r as a function of the Wi (obtained

from the mean settling velocity v) for a 2r ¼ 7.75 μm
particle. Although self-propulsion and passive sedimenta-
tion of Janus particles display entirely different transla-
tional dynamics, we find an almost identical behavior of
D

ðWiÞ
r =D0

r . This quantitative agreement is, at first glance,
surprising because the flow field and thus the strain in the
liquid is not generally identical in both cases [38]. Hence,
we provide evidence that the flow field generated by the
Janus microswimmers in our experiments is Stokesian-like,
as recently proposed in Ref. [29]. Furthermore, we observe
that the translational diffusion coefficient D

ðWiÞ
t is also

enhanced with an increasing Wi, as shown in the inset of
Fig. 3(b). However, the enhancement is not as pronounced
as the rotational one. This is a common feature of non-
equilibrium fluctuations, whose properties are frequently
observable dependent and where an effective temperature is
well defined only under very specific conditions [39,40].
Our results show that the enhancement of rotational

diffusion is independent of whether the particle velocity
is caused by self-propulsion or by an external field.
Therefore, the same effective description must be valid
for a self-propelled particle under gravity. In this case, the
relevant parameter for the Weissenberg number is the total
velocity v ¼ jvsp þ ðFg=6πη0rÞj, resulting from the propul-
sion velocity vsp and the settling velocity ðFg=6πη0rÞ. We
demonstrate this in Fig. 4(a), where we plot as circles and
squares the dependence of D

ðWiÞ
r on v for 2r ¼ 7.75 μm

Janus particles at two different inclination angles α and for
different laser intensities. We find that the combination of
self-propulsion and gravity leads to an enhancement of the
rotational diffusion quantitatively similar to that plotted in
Fig. 3(b), whose phenomenological fit is represented as solid
lines in both Figs. 3(b) and 4(a).
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FIG. 3. (a) Mean-square angular displacement for an active particle (2r ¼ 7.75 μm) moving at different velocities v in the viscoelastic
fluid. From bottom to top, v ¼ 0.032 μms−1, 0.101 μms−1, 0.188 μms−1, 0.398 μms−1. The dashed line represents the case of a
particle in a Newtonian fluid with the same η0 for all v’s. (Inset) Log-log representation of the main figure. (b) Rotational diffusion
coefficient as a function of the Weissenberg number for self-propelled particles of diameter 2r ¼ 7.75 μm (square) and 2r ¼ 4.32 μm
(diamond) and a passive particle (2r ¼ 7.75 μm) under gravity (circle). (Inset) Translational diffusion coefficient perpendicular (right
side triangle) and parallel (triangle) to the applied force for a passive particle (2r ¼ 7.75 μm) under gravity.
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Although the above effective description of rotational
diffusion of microswimmers in a viscoelastic fluid is rather
simple, it has profound implications for their response to
external forces [41,42]. We point out that in a Newtonian
liquid, rotational diffusion of a colloidal particle originates
solely from the collisions with the fluid molecules, thus
resulting in a complete decoupling of rotational from
translational motion, regardless of whether the particle is
passive, self-propelled, or externally driven. Indeed, in
Fig. 4(a) we show as crosses the rotational diffusion
coefficient of a Janus particle (2r ¼ 7.75 μm) actively
moving though a Newtonian liquid (water-PnP) under
gravity (α ¼ 5°) at different laser intensities. In this case,
even for velocities similar to those achieved in the visco-
elastic mixture, the rotational diffusion coefficient is
independent from v and equal to that given by the
Stokes-Einstein relation D0

r ¼ kBT=ð8πη0r
3Þ. This is in

stark contrast to viscoelastic fluids, where the coupling
between translational and orientational degrees of freedom
is expected to give rise to a strong dynamical dependence
on the particle orientation in the presence of an external
force. In Fig. 4(b) we demonstrate this effect, where an

active particle, whose velocity at α ¼ 0° is
vsp ¼ 0.080 μms−1, is subject to gravity (α ¼ 25°), at
which the settling velocity is 0.180 μms−1. Depending
on its orientation relative to gravity g, different velocities v
can be achieved. First, when the orientation is approx-
imately perpendicular to g (θ ≈ 0°), the mean velocity
(v ≈ 0.200 μms−1) leads to the mean-square angular dis-
placement plotted in the inset of Fig. 4(b). Its effective
rotational diffusion coefficient with this orientation is
D

ðWiÞ
r ≈ 102D0

r . Because of such a rather large value of
D

ðWiÞ
r , the particle is able to perform a rotation of 90° during

the measurement time (10 min). With its new orientation
(θ ≈ 90°), i.e., antiparallel to g, the resulting mean velocity
is smaller (v ≈ 0.090 μms−1). Then, the corresponding
mean-square angular displacement has a smaller slope,
as shown in the inset of Fig. 4(b), which corresponds to
D

ðWiÞ
r ≈ 53D0

r . Consequently, the probability for the par-
ticle to remain with such an orientation must be higher than
before, as experimentally verified.
It should be mentioned that such a behavior is not

expected to be particular to external forces, but also to other
types of biases commonly found in most situations, e.g.,
confined geometries [28,43], external flows [44–46], and
extended gradients [47]. In all of these cases, the micro-
swimmer’s velocity strongly depends on its position or
orientation relative to, e.g., a solid wall, the flow direction,
or a chemical gradient, which can result in an anisotropic
response when moving in viscoelastic media.
In conclusion, we have investigated the self-propulsion of

Janus particles in a viscoelastic fluid. Our study represents
the first experimental realization of autonomous synthetic
microswimmers in a non-Newtonian environment, which
have allowed us to uncover the role of viscoelasticity in
active Brownian motion. We have found a dramatic
enhancement of the rotational diffusion of the particles with
an increasing propulsion velocity, which can be phenom-
enologically described by an effective rotational diffusion
coefficient dependent on the Weissenberg number. This
nonequilibrium phenomenon, absent in Newtonian fluids,
arises from the coupling between the particle’s directed
motion and themicrostructural relaxation of the surrounding
fluid.We have demonstrated that this effect leads to dramatic
changes in the dynamical response of self-propelled par-
ticles, depending on their orientation relative to an external
force. Thus, our findings have important consequences for
the behavior of microswimmers subject to other types of
biases, as those commonly induced by external flows,
gradients, and confined geometries.
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Kümmerer for the particle tracking analysis, and Celia
Lozano for the helpful discussions. This work was finan-
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FIG. 4. (a) Rotational diffusion coefficient of a 2r ¼ 7.75 μm
particle as a function of its velocity resulting from different
laser intensities and distinct inclination angles, moving in the
viscoelastic fluid at α ¼ 5° (circle), α ¼ 25° (square) and in a
Newtonian fluid at α ¼ 5° (times). Solid line, same guide for the
eye as in Fig. 3(b); dashed line, Stokes-Einstein relation.
(b) Trajectory and orientation of a self-propelled particle moving
in the viscoelastic fluid, with an average initial orientation
perpendicular (red arrows) and then antiparallel (green arrows)
to g. (Inset) Mean-square angular displacement corresponding to
these two configurations.
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