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Abstract: We study pulsed second harmonic generation in metamaterials 
under conditions of significant absorption. Tuning the pump in the negative 
index range, a second harmonic signal is generated in the positive index 
region, such that the respective indices of refraction have the same 
magnitudes but opposite signs. This insures that a forward-propagating 
pump is exactly phase matched to the backward-propagating second 
harmonic signal. Using peak intensities of ~500 MW/cm2, assuming 
χ(2)~80pm/V, we predict conversion efficiencies of 12% and 0.2% for 
attenuation lengths of 50 and 5μm, respectively. 
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Recently, researchers have devoted a great deal of attention to negative index materials (NIM) 
[1,2], perhaps in a manner comparable in scope and magnitude to the interest that photonic 
band gap (PBG) materials have enjoyed for the last two decades [3,4].  Just as was the case 
for PBG materials, the study of NIMs appears to be characterized by a transitional stage 
during which workers have realized that the concept is quite appealing and powerful, 
probably because it calls for the re-evaluation of many of the same basic principles that have 
been developed for ordinary materials [5,6]. This gradual evolution of the field is 
accompanied by new opportunities and, as is often the case, by just as many challenges. A 
simple, representative example is nonlinear frequency conversion, second harmonic 
generation (SHG) in particular. The issue of SHG in bulk NIMs has been addressed by Lapine 
et al [7], who discussed the introduction of nonlinear elements in the microwave regime, and 
Agranovich and co-workers [8], and Shradivov et al [9], who have suggested that a forward 
propagating pump beam tuned in the negative index region, having a negative carrier wave 
vector, could be phase-matched to a backward-propagating second harmonic signal tuned in 
the positive index range and having positive wave vector. They showed that the efficiency of 
the process approaches 100% in the absence of absorption. Popov and co-workers [10] have 
also studied steady-state SHG in the context of bulk materials, and found that the Manley-
Rowe relations can be unusual when compared to ordinary PIMs, due to the phase matching 
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that occurs between counter-propagating beams. Also recently, Gorkunov at al have proposed 
the use of a doubly resonant system to induce perfect phase matching conditions, and order of 
magnitude enhancement of SHG [11]. 
 SHG in NIMs has also been studied in cavity environments.  It has been pointed out that 
SHG can occur for standard, centro-symmetric materials near the zero-n gap [12] of a Bragg 
grating made of alternating NIM/PIM layers [13].  It turns out that a combination of field 
localization and coherent oscillations of the nonlinear dipoles located at the structure's 
interfaces leads to conversion efficiencies at least an order of magnitude larger than those 
achievable in the same length of a nonlinear, phase-matched, bulk material. In a related 
development, coupled cavities composed of nonlinear PIMs and linear NIMs [14] also display 
advantages over more conventional cavities because the NIM materials make better mirrors, 
leading to improved field localization effects and enhanced emission. 
 The overarching theme that characterizes all the works cited above is that SHG is efficient 
only if absorption inside the NIM is negligible. In fact, all linear and nonlinear theoretical 
approaches used to model NIMs have relied heavily on the assumption that absorption should 
be avoided. Although this constraint may not be crucial in cavity surroundings if NIM layers 
are relatively thin, the issue becomes critical in bulk environments. Naturally, this is a severe 
restriction that can raise serious questions in the minds of arbiters and ordinary readers alike, 
and may also lead one to question whether any proposed NIM-related phenomenon is 
observable in a bulk setting. Any predictions must in fact be ultimately reconciled with the 
fact that experimental observations [15] strongly suggest that incident waves are significantly 
attenuated in NIMs. For this reason, in this paper we focus on the proposed phase-matched 
scheme for backward second harmonic generation, similar to that discussed in references 
[8,9], and show that the process remains efficient even when absorption plays a significant 
role.  Specifically, using the Drude model, the integration of Maxwell's equations in the time 
domain reveals that a medium having the following, generic characteristics: (i) a χ(2) ~ 
80pm/V; (ii) pumped with pulses at least 2.5ps in duration, with peak intensities 
~500MW/cm2; is still capable of generating a backward-propagating (reflected) SH signal at a 
remarkable ~12% conversion efficiency rate even though the pump attenuation depth is 
roughly 50μm, and an equally impressive ~0.2% conversion rate for attenuation depths  of 
5μm.  
 We begin by writing nonlinear, second order polarization and magnetization as follows: 

    (2) (2);NL P NL Mχ χ= = •P E • E M H H ,                            (1) 

where (2)
Pχ  and (2)

Mχ  are the electric and magnetic nonlinear coefficients, respectively. 

Assuming linearly polarized fields of the type: 
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the nonlinear polarization and magnetization may be written as: 
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where (2)
2( , ) 2 Pz tω ω ωχ= *

P E E , (2) 2
2 ( , ) Pz tω ωχ=P E  (2)

2( , ) 2 Mz tω ω ωχ= *

M H H , and 
(2) 2

2 ( , ) Mz tω ωχ=M H .  The inclusion of linear dispersion is straight forward [16-18], and 
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Maxwell's equations then take the following form: 
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where the temporal derivatives arise from the linear dispersion of the medium, 
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, and so on, and both ε and μ are complex functions of frequency 

(allowing for causal material dispersion) and of the spatial coordinate (allowing for spatial, 

material discontinuities).  We have chosen rλ =1μm as the reference wavelength, and have 

adopted the following scaling: / rzξ λ=  is the scaled longitudinal coordinate,  / rctτ λ=  

is the time in units of the optical cycle, 2β πω= �  is the scaled wave vector, and / rω ω ω=�  

is the scaled frequency. Although they contain no approximations other than the assumption 
that the medium is isotropic, under most circumstances Eqs.(4) may be simplified. For 
instance, in ordinary dielectric materials the dispersion length (associated with the second 
order temporal derivative on the left hand sides of Eqs.(4)) varies from a few millimeters for 
few-cycle pulses, to a few meters for pulses several tens or a few hundred wave cycles in 
duration. NIMs, however, are more dispersive than ordinary materials, as described by either 
a Drude or a Lorentz model near a resonance condition. Nevertheless, typical dispersion 
lengths in regions of interest range from several hundred to several thousand wave cycles, 
depending on incident pulse width.  In any case, the typical absorption length that we 
consider, which varies from 5μm to approximately 50μm, may be several orders of magnitude 
smaller than higher order dispersion lengths. This fact by itself obviates the need for the 
inclusion of higher order terms beyond the first order temporal derivative, which affects the 
group velocity of the pulse and should be preserved.  As a result, Eqs.(4) may be simplified to 
read: 
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An inspection of both Eqs.(4) and (5) suggests that they are symmetric with respect to the 
introduction of either a nonlinear polarization or magnetization. Therefore, one could just as 
easily treat a magnetic nonlinearity [19], and obtain qualitatively similar results.  Moreover, 
while we do not dwell on the precise origin of the nonlinearity, one can reasonably assume 
that the nonlinearity resides in the nonlinear dipoles, and/or that the dipoles (both electric and 
magnetic) are embedded within a background medium that responds nonlinearly [19]. With 

these considerations in mind, we assume (2) 0Mχ = , and present our results. 

 In Fig.(1) we show the typical Drude dispersion, assuming 

( )2 2

2

/
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, and taking 2 2/ 1p rω ω =  (the plasma frequency 

corresponds to the reference frequency); the damping coefficient (also scaled by the reference 

frequency) is 310γ −=� .  This choice results in an attenuation length of approximately 50μm, 
so that the intensity of the peak of the pulse drops to 1/e of its input value within that distance, 
and it is down to approximately 1% at 200 microns from the surface.  One may compare this 
to the degree of absorption (i.e. imaginary part of the index) exhibited by GaAs at λ~890nm. 
 In the same figure we also report the general trend of the conversion efficiency as a 
function of normalized frequency (we do not scale it for simplicity), and we also identify 
pump and SH tuning ranges. To obtain the conversion efficiency curve shown we used 
incident pulses approximately 600fs in duration, or 200 wave cycles, and peak field values of 
~104 Volts/m.  We then calculated the total SH energy emitted in both directions, defined as 

( ) ( , )TW U dτ ξ τ ξ
∞

−∞

= ∫ , where the integrand represents the local, instantaneous, energy 

density, normalized by the initial pump energy.  We estimate that the second order dispersion 

length, defined as 

2
(2) ~

| '' |D

pL
k

τ
, where pτ  is pulse duration, and 

2

2
''

k
k

ω
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, ranges 

between 800 rλ for 20 wave cycle pulses, to about 46 10 rλ×  for 200 wave cycle pulses. 

Therefore, we are well justified in taking the necessary steps to distill Eqs.(5) from Eqs.(4).  
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Fig. 1. Real (blue curve-left axis) and imaginary (red curve-right axis) parts of the index of 

refraction for the Drude model, with
310γ −=� . The SH conversion efficiency, η, is also 

shown (solid black line with empty triangles-arbitrary scale).  η sweeps across seven orders of 

magnitude from its minimum to its maximum, at the phase matching condition. ω�  and 2ω�  
indicate the tuning ranges of the fundamental and SH fields. The arrows point to the 
magnitudes of the indices of refraction at the fundamental and SH frequencies where the phase 
matching condition is approximately satisfied. 

   

 Figure 1 features the larger point we wish to make: at 0.7905ω ≈� , which corresponds 
to the highest SH efficiency at twice that frequency, the index of refraction calculated from 

the Drude dispersion is 0.600278 0.002024n iω = − +
�

. At the second harmonic 

frequency, 2 1.581ω ≈� , the index of refraction is positive, 

2 0.599929 0.000253n iω = +
�

. The phase matching condition between fundamental and 

SH pulses, which requires ( )2 2 0k kω ω− = , is nearly exactly satisfied for the backward 

generated SH pulse [8,9]. Neglecting the imaginary part, we have: 

( ) ( ) 3
2 22 2 2 | | 2 | | ~ 2 10k k n nω ω ω ωπ ω ω −− = − + ×

� � � �

� � . 

 In Fig. 2 we show the typical scenario that unfolds as a 200 wave-cycle, 500MW/cm2 
incident pulse (corresponding to a field ~3x107V/m) crosses into a nonlinear NIM from 
vacuum. The pump is quickly attenuated, as a SH pulse is generated in the backward direction 
and rapidly exits the medium. The Drude dispersion reveals that the SH absorption length is 
approximately ten times larger compared to the pump absorption length, as can easily be 
deduced from the relative magnitudes of the imaginary part of the index. 
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Fig. 2. A 600fs (200 wave cycles) pump (blue curve) is incident on a NIM (shaded region) 

from vacuum, and tuned to 0.7905ω =� .  The choice 
310γ −=� results in an 

attenuation depth of ~50μm.   Most of the SH signal (red curve) is generated backward under 

nearly exact phase matching condition, at 2 1.581ω =� .  

  

 The study of pulsed dynamics reveals several noteworthy characteristics. For instance, in 
Fig. 3 we depict the conversion efficiency as a function of incident pulse duration, for two 

values of the damping coefficient. Given 310γ −=� , SHη  varies from ~2.5% for pulses 200fs 

in duration, to ~12% for pulses ~2.5ps long.   On the same figure we also show the 

conversion efficiency for 210γ −=� .  Changing γ�  in this fashion leads to an order of 
magnitude increase in the imaginary part of the index, and reduces the attenuation depth 
down to 5μm, with marginal effects to the real part of the index. Nevertheless, the conversion 
efficiency still reaches ~0.2%.  The figure also suggests that the efficiency improves by 
increasing pulse duration. This can be understood in terms of incident pulse bandwidth: as we 
increase pulse duration, more of the pulse comes into the phase matching condition, which is 
almost exactly satisfied at the carrier wavelength. 
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Fig. 3. SH conversion efficiency (%) as a function of incident pulse duration, for 
310γ −=� and 

210γ −=� , assuming χ (2)~80pm/V and a peak intensity of ~500MW/cm2.  

For
310γ −=� , the attenuation depth is ~50μm. For

210γ −=� , the attenuation depth is 

drastically reduced to ~5μm.  Quasi-monochromatic pulses, i.e. pulse duration greater than 
2.5ps, yield conversion efficiencies of ~12% and ~0.2%, respectively. 

  

In Fig. 4 we show the Fourier decomposition of the incident and scattered pump fields.  We 
have three major components: (i) the input wave packet; (ii) a transmitted component, having 
negative wave vector; and (iii) a low intensity, reflected component.  Reflection is small (less 
then 1 part in 107), because we have assumed that ε=μ, a restriction that can easily be 
removed.  
 In Fig. 5 we show the Fourier components of the SH signal. Here, too, we find three major 
components: (i) the one generated backward, that has already exited into free space, at twice 
the incident pump wave-vector; (ii) the phase matched component, traveling backward inside 
the medium toward the entrance interface, with wave vector almost precisely at twice the 
pump wave vector; (iii) a forward-moving, SH component, generated far from the phase 
matching condition, which is being absorbed away. 
 

0.1

1

10

0 1x10-12 2x10-12 3x10-12

Pulse Duration (sec)

η SH
 (

%
)

310γ −=�

210γ −=�

0.1

1

10

0 1x10-12 2x10-12 3x10-12

Pulse Duration (sec)

η SH
 (

%
)

310γ −=�

210γ −=�

#69149 - $15.00 USD Received 21 March 2006; revised 8 May 2006; accepted 10 May 2006

(C) 2006 OSA 29 May 2006 / Vol. 14,  No. 11 / OPTICS EXPRESS  4753



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.   Fourier decomposition of the incident ( kω� ) and scattered pump pulses.  The wave 

number is dimensionless. The transmitted wave packet ( ( ))k nω ω
�

� is a superposition of 

negative wave vectors, even though the pulse propagates in the forward direction. There is a 

small reflected component propagating backward in free space ( kω−
�

). 

  

 The conversion efficiencies that we report are large by any measure, considering the 
amount of absorption we have introduced. Even though the magnitude of the nonlinear 
coefficient may be somewhat large, all things being equal, i.e. χ(2) and incident peak power, it 
would be possible to obtain similar conversion efficiencies if, in the absence of absorption, 
two conditions could be satisfied: (i) exact phase and (ii) group velocity matching. For 
comparison purposes, if a 200fs, 500MW/cm2 pulse were incident on a semi-infinite, ideally 
matched medium having n~1.42, one obtains a conversion efficiency of η~10% after the peak 
of the pulse propagates ~45μm.  In contrast, the introduction of an index mismatch due to 
normal material dispersion (we consider a typical index variation of ~6% between 
ω (n~1.42)and 2ω (n~1.52)), along with an appropriate group velocity mismatch 

( 2~ /1.57; ~ / 2.2g gV c V cω ω� �

), reduces the conversion efficiency dramatically down to 

η~0.01%, with further decreases if absorption is added.  We should note that a group velocity 
mismatch has a much less pronounced impact on conversion efficiency compared to an index 
mismatch, as expected, but it can make its impact felt, particularly for shorter pulses.  
However, it is not feasible to simultaneously have phase and group velocity matching in a 
bulk medium, as natural material dispersion generally does not allow it.   
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Fig. 5.  Fourier decomposition of the generated SH field.  The wave number is dimensionless, 
as in Fig. 4. The positive component identifies a mismatched signal propagating forward inside 

the medium ( 2 (2 )k nω ω
�

� ), that is eventually absorbed away.  The negative components 

correspond to a signal that has already emerged in vacuum, and has twice the incident wave 

vector ( 2k ω−
�

), and a signal traveling in the negative direction, inside the medium 

( 2 (2 )k nω ω−
�

� ), that will eventually exit into the vacuum.  

 

Indeed it is possible to have effective phase matching and achieve approximately similar 
group velocities for the fundamental and SH waves in photonic band gap structures, where 
geometrical dispersion can be used to compensate the naturally occurring material dispersion 
[20, 23]. Nevertheless, absorption usually has a detrimental effect that significantly reduces 
conversion efficiency under any circumstances where the beams co-propagate, including 
resonant conditions. In contrast, the unusual phase matching conditions that naturally occur in 
a NIM for counter-propagating waves also suffer the effects of absorption, but not to the same 
detrimental degree because the rapid decay of the pump along the positive direction is 
accompanied by an equally swift exponential increase of the SH signal toward the nearby 
entry surface. In addition to nearly exact phase matching conditions, the fields overlap for the 
entire duration of the pump pulse, and the impact of absorption is minimized. 
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 In conclusion, we have shown that second harmonic generation can occur in a NIM and be 
relatively efficient in the presence of significant absorption.  Assuming a Drude dispersive 
model, we have shown that a phase matching condition established between counter-
propagating fundamental and second harmonic waves helps boost conversion efficiencies up 
to 12% for the reflected SH component when the attenuation depth of the NIM is 
approximately 50μm, χ(2)~80pm/V, and peak pump intensity is ~500MW/cm2.   The 
interaction is consumed entirely near the surface interface, where both fields are more intense. 
In the absence of absorption, similar conversion efficiencies are possible in bulk PIMs, only 
by imposing simultaneous phase and group velocity matching. Finally, our calculations show 
that conversion efficiencies of order 0.2% are also possible, even when the attenuation depth 
is approximately 5μm, and suggest that similarly efficient higher harmonic generation and 
parametric amplification may be also achievable in a multi-wave mixing environment under 
conditions of significant absorption.   
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