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Abstract: Shunting inhibitory cellular neural networks with continuous time-varying rates and
inputs are the focus of this research. A new model is considered with compartmental passive decay
rates which consist of periodic and Poisson stable components. The first component guarantees
the Poisson stability of the dynamics, and the second one causes irregular oscillations. The inputs
are Poisson stable to take into account the more sophisticated environment of the networks. The
rates and inputs are synchronized to obtain Poisson stable outputs. A new efficient technique for
checking the recurrence, the method of included intervals, is applied. Sufficient conditions for
the existence of a Poisson stable solution and its asymptotic stability were obtained. Numerical
simulations of Poisson stable outputs as well as inputs are provided. Examples of the model with
Poisson stable rates, inputs and outputs confirm the feasibility of theoretical results. Discussions
were undertaken to provide additional light on the relation of the obtained results with practical and
theoretical potentials of neuroscience. Quantitative characteristics are suggested, which can be useful
for the future applications of the results. In particular, the center of antisymmetry for the degree of
periodicity is determined.

Keywords: shunting inhibitory cellular neural networks; compartmental passive decay rate; Poisson
stable inputs, outputs and rates; the method of included intervals; asymptotic stability of outputs

1. Introduction

Cellular neural networks (CNNs), introduced in [1], immediately gained wide recog-
nition to focus on parallel asynchronous computing processes. In recent years, many
algorithms for image processing, pattern recognition, evaluation of the dynamics of me-
chanical systems, etc., were successfully implemented with CNNs.

Shunting inhibitory cellular neural networks (SICNNs) were proposed in [2] and have
been extensively applied in psychophysics, optimization, speech, robotics, adaptive pattern
recognition, vision and image processing, among other tasks.

In SICNNs, neighboring cells exert mutual inhibitory interactions of the shunting
type. In its original formulation, they describe the dynamics of the cell Cij, i = 1, . . . , m,
j = 1, . . . , n, by the following nonlinear ordinary differential equation,

x′ij(t) = −aijxij(t)− ∑
Ckl∈Nr(i,j)

Ckl
ij f (xkl(t))xij(t) + vij(t). (1)

Here, xij indicates the ijth neuron state, coefficient aij represents the passive decay
rate, Ckl

ij ≥ 0 denotes the strength of the coupling of the cell Ckl conveyed to the cell Cij,
f (xkl) is the activation function, and vij(t) is the external input to cell Cij.
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SICNNs are a grid of cells, such that each cell Cij is connected with cells of its r-
neighborhood. Here, we follow the definition in [1], where the r-neighborhood Nr(i, j) is
defined as

Nr(i, j) = {Ckl : max(|k− i|, |l − j|) ≤ r, 1 ≤ k ≤ m, 1 ≤ l ≤ n},

with fixed natural numbers m and n.
It is of strong interest to replace the constant rates in SICNNs by time-varying ones,

and many researchers have investigated the dynamic behavior of SICNNs, wherein pas-
sive decay rates are periodic [3], anti-periodic [4,5], almost periodic [6–8] and pseudo-
periodic [9,10] functions.

We investigate the following SICNNs with continuous time-varying coefficients:

x′ij(t) = −(aij(t) + bij(t))xij(t)− ∑
Ckl∈Nr(i,j)

Ckl
ij f (xkl(t))xij(t) + vij(t), (2)

where the rates are compartmental and consist of two components such that aij(t) are
periodic whilst bij(t) and inputs vij(t) are Poisson stable functions.

The following concept is fundamental for the present study.

Definition 1 ([11]). A function ψ(t): R → R, bounded and continuous, is said to be Poisson
stable if there is a sequence of moments tp, tp → ∞ as p→ ∞, such that the uniform convergence
ψ(t + tp) ⇒ ψ(t) is valid on each bounded interval of the real axis.

Consider the sequence τp, p = 1, 2, . . . , such that tp = τp(modω), and ω > 0 is a fixed
number. It is clear that 0 ≤ τp < ω. Hence, there exists a subsequence τpl , l = 1, 2, . . . , which
converges to a real number τω. Consequently, one can find a subsequence tpl , l = 1, 2, . . . ,
of the convergence sequence tp, such that tpl → τω(mod ω) as l → ∞. The number τω is said
to be Poisson shift for the convergence sequence. The set of all Poisson shifts, T ω, is not
empty, and is of several or even infinite number elements. In what follows, κω = in f T ω,
0 ≤ κω < ω, is called the Poisson number for tp, p = 1, 2, . . . , and ω.

2. Methods

It is historical fact that Poisson stability emerged in works [12,13] and then spread
to many areas of applied mathematics, similarly to how periodic, quasi-periodic and
almost periodic motions [14–19] spread. In recent decades, the dynamics were intensively
considered in neuroscience [3,6–8,20–24]. Currently, Poisson stable motions are the most
sophisticated type of recurrence [25–28].

It is natural to assume that Poisson stable motions should be considered in neuro-
science due to the arguments common with those for other types of recurrence, such as
periodicity and almost periodicity. The dynamics admit an additional significant reason to
be involved in research since it is strongly adjoint with chaos [29].

A new technique, the method of included intervals, was introduced and developed in
papers [30–35] and book [36] to approve Poisson stability for solutions in differential
equations and neural networks. The approach strongly differs from the comparability
method in [37–40].

In papers [33–35], it is shown that the Poisson stable motions became chaotic if one
equipped them with the unpredictability property. It is a very remarkable result since it
was proven that a chaotic trajectory can be Poisson stable and vice versa. Moreover, the
dynamics are enriched with infinitely many unstable recurrent motions [36,41,42] which
strongly relate to the cognitive activity [43–46]. This is why one can apply to the dynamics
of neural networks effective methods of chaos control such as OGY method and Piragas
method, which are very useful in neural models study and their applications [47].

In this paper, SICNNs with Poisson stable passive decay rates and inputs are studied.
Moreover, the rates of cell activity have a special structure consisting of two components.
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One of them is periodic, responsible for the overall dynamics and stability whilst the second
is Poisson stable, causing irregular behavior in SICNNs. The passive decay rates and inputs
are synchronized by the common moments of convergence on bounded intervals. The
relationship between periodic and Poisson stable functions has been studied in [32].

3. Main Results

Using the result for differential equations [48], one can convince that the following
lemma is valid.

Lemma 1. A function y(t) = (yij(t)), i = 1, . . . , m, j = 1, . . . , n, bounded on the real axis, is a
solution of (2) if and only if the following equations are true,

yij(t) = −
∫ t

−∞
e−
∫ t

s aij(u)du
(

bij(s)yij(s) + ∑
Ckl∈Nr(i,j)

Ckl
ij f (ykl(s))yij(s)− vij(s)

)
ds. (3)

Throughout the paper, the norm for bounded functions u : R→ R, ‖u‖ = supt∈R |u(t)|,
will be used.

Denote by B the set of rectangle matrix-functions φ(t) = (φij(t)), i = 1, 2, . . . , m, j =
1, 2, . . . , n, with Poisson stable entries such that |φij(t)| < H, i = 1, 2, . . . , m, j = 1, 2, . . . , n,
where H is a positive number. All the functions are with the common convergence sequence
tp, p = 1, 2, . . . . Moreover, determine the norm ‖φ(t)‖0 = maxi,j ‖φij(t)‖ in the set.

Let us define the operator Πφ(t) = (Πijφ(t)), φ ∈ B, i = 1, . . . , m, j = 1, . . . , n, where

Πijφ(t) ≡ −
∫ t

−∞
e−
∫ t

s aij(u)du
(

bij(s)φij(s) + ∑
Ckl∈Nr(i,j)

Ckl
ij f (φkl(s))φij(s)− vij(s)

)
ds. (4)

We shall need the following assumptions:

(C1) The functions aij(t) are ω-periodic, such that
∫ ω

0 aij(u)du > 0, i = 1, . . . , m,
j = 1, . . . , n;

(C2) Functions bij(t) and vij(t), i = 1, 2, . . . , m, j = 1, 2, . . . , n, are Poisson stable with the
common convergence sequence tp, p = 1, 2, . . . ;

(C3) The Poisson number κω is equal to zero;
(C4) ∃ m f > 0 such that sup|s|<H | f (s)| = m f ;
(C5) ∃ L > 0 such that | f (s1)− f (s2)| ≤ L|s1 − s2| if |s1| < H, |s2| < H.

Condition (C1) implies that there exist constants Kij ≥ 1, λij > 0 which satisfy

e−
∫ s

t aij(u)du ≤ Kije
−λij(t−s),

for all i = 1, . . . , m, j = 1, . . . , n.
We will use notations:

mb
ij = sup

t∈R
|bij(t)|, mv

ij = sup
t∈R
|vij(t)|, i = 1, 2, . . . , m, j = 1, 2, . . . , n.

The additional assumptions are required.

(C6) Kij(mb
ij + (m f + LH)∑Ckl∈Nr(i,j) Ckl

ij ) < λij, i = 1, . . . , m, j = 1, . . . , n;

(C7)
Kijmv

ij

λij − Kijm f ∑Ckl∈Nr(i,j) Ckl
ij − Kijmb

ij
< H, i = 1, . . . , m, j = 1, . . . , n.

Lemmas A1 and A2 for the following proof are from Appendix A.

Theorem 1. Suppose that assumptions (C1)–(C7) hold; then, the system (1) admits a unique
asymptotically stable Poisson stable solution.
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Proof. Firstly, we prove the completeness of B. Let φk(t) = (φk
ij(t)), i = 1, 2, . . . , m,

j = 1, 2, . . . , n, be a sequence converging on R to a limit function φ(t). Consider a sec-
tion [a, b], −∞ < a < b < ∞, and i = 1, 2, . . . , m, j = 1, 2, . . . , n. We have that

|φij(t + tp)− φij(t)| ≤ |φij(t + tp)− φk
ij(t + tp)|+ |φk

ij(t + tp)− φk
ij(t)|+ |φk

ij(t)− φij(t)|. (5)

For sufficiently large p and k, it can be attained that each term on the right hand-
side of (5) is less than ε

3 for an arbitrary small ε > 0 and t ∈ [a, b]. The inequalities
|φij(t + tp)− φij(t)| < ε, i = 1, 2, . . . , m, j = 1, 2, . . . , n, imply that φ(t + tp) → φ(t) uni-
formly on [a, b]. The completeness of B is shown.

Under conditions (C1)–(C7), the operator Π is invariant in B (see Lemma A1) and
contractive (see Lemma A2). According to the contraction mapping theorem, there exists a
unique Poisson stable solution, z(t) = (zij(t)), i = 1, 2, . . . , m, j = 1, 2, . . . , n, of the neural
network (2).

Now, consider the stability of solution z(t). It is correct that for all i = 1, . . . , m,
j = 1, . . . , n,

zij(t) = e−
∫ t

t0
aij(u)duzij(t0)−

∫ t

t0

e−
∫ t

s aij(u)du
(

bij(s)zij(s) + ∑
Ckl∈Nr(i,j)

Ckl
ij f (zkl(s))zij(s)− vij(s)

)
ds.

Let x(t) = (xij(t)), i = 1, . . . , m, j = 1, . . . , n, be another solution of model (2). One can
write that

xij(t) = e−
∫ t

t0
aij(u)duxij(t0)−

∫ t

t0

e−
∫ t

s aij(u)du
(

bij(s)xij(s) + ∑
Ckl∈Nr(i,j)

Ckl
ij f (xkl(s))xij(s)− vij(s)

)
ds.

Using the formula

xij(t)− zij(t) = e−
∫ t

t0
aij(u)du(xij(t0)− zij(t0)

)
−
∫ t

t0

e−
∫ t

t0
aij(u)du

(
bij(s)xij(s)− bij(s)zij(s)+

∑
Ckl∈Nr(i,j)

Ckl
ij f (xkl(s))xij(s)− ∑

Ckl∈Nr(i,j)
Ckl

ij f (zkl(s))zij(s)
)

ds = e−
∫ t

t0
aij(u)du(xij(t0)− zij(t0)

)
−

∫ t

t0

e−
∫ t

t0
aij(u)du

(
bij(s)xij(s)− bij(s)zij(s) + ∑

Ckl∈Nr(i,j)
Ckl

ij f (xkl(s))xij(s)−

∑
Ckl∈Nr(i,j)

Ckl
ij f (zkl(s))xij(s) + ∑

Ckl∈Nr(i,j)
Ckl

ij f (zkl(s))xij(s)− ∑
Ckl∈Nr(i,j)

Ckl
ij f (zkl(s))zij(s)

)
ds,

we have that

|xij(t)− zij(t)| ≤ e−
∫ t

t0
aij(u)du|xij(t0)− zij(t0)|+

∫ t

t0

e−
∫ t

t0
aij(u)du

(
|bij(s)||xij(s)− zij(s)|+

∑
Ckl∈Nr(i,j)

Ckl
ij | f (xkl(s))− f (zkl(s))||xij(s)|ds + ∑

Ckl∈Nr(i,j)
Ckl

ij | f (zkl(s))||xij(s)− zij(s)|
)

ds ≤

Kije
−λij(t−t0)|xij(t0)− zij(t0)|+

∫ t

t0

Kije
−λij(t−t0)

(
mb

ij + (LH + m f ) ∑
Ckl∈Nr(i,j)

Ckl
ij

)
|xij(s)− zij(s)|ds,

for all i = 1, 2, . . . , m, j = 1, 2, . . . , n.
Apply the Gronwall–Bellman Lemma to get

|xij(t)− zij(t)| ≤ Kij|xij(t0)− zij(t0)|e
(Kij(mb

ij+(m f +LH)∑Ckl∈Nr(i,j) Ckl
ij )−λij)(t−t0),

for each i = 1, 2, . . . , m, j = 1, 2, . . . , n.
The condition (C6) confirms that the solution z(t) is asymptotically stable.
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We shall then illustrate the theoretical results by numerical simulations.
It is known [49] that there exists a Poisson stable sequence ρi, i ∈ Z, which is the

solution for the logistic discrete equation

λi+1 = µλi(1− λi), (6)

where i ∈ Z, and µ ∈ [3 + (2/3)1/2, 4] is a fixed parameter. The sequence is a discrete
version of the Poisson stable function. The section [0, 1] is invariant with respect to (6) for
the considered values of µ.

In the examples below, we will use the Poisson stable function Θ(t) [49] which is the
unique bounded on the real axis solution of differential equation

Θ′ = −3Θ + W(t), (7)

where W(t) = ρi for t ∈ [hi, h(i + 1)), i ∈ Z and h is a positive real number. The number
h is called the length of step for the piecewise constant function W(t), and for the function
Θ(t).

Example 1. Let us consider the system,

dxij

dt
= −(aij(t) + bij(t))xij − ∑

Ckl∈N1(i,j)
Ckl

ij f (xkl)xij + vij(t), (8)

where i = 1, 2, j = 1, 2, 3, f (s) = 0.5arctan(s), C11
ij = 0.04, C12

ij = 0.03, C13
ij = 0.05,

C21
ij = 0.01, C22

ij = 0.06, C23
ij = 0.02. For each fixed k = 1, 2, and l = 1, 2, 3, the co-

efficients Ckl
ij are the same for all i, j, such that the cell Ckl belongs to N1(i, j). The functions

aij(t) are periodic with period ω = π, such that a11(t) = 3 + cos(4t), a12(t) = 2 + sin(2t),
a13(t) = 4 + sin(4t), a21(t) = 5 + cos(2t), a22(t) = 3 + sin(6t), a23(t) = 6 + sin(4t). The
functions bij(t) and vij(t) are Poisson stable, b11(t) = 0.5Θ(t), b12(t) = 0.3Θ(t),
b13(t) = 0.2Θ(t), b21(t) = 0.7Θ(t), b22(t) = 0.8Θ(t), b23(t) = 0.3Θ(t), v11(t) = 5Θ(t),
v12(t) = 4Θ2(t), v13(t) = −Θ(t), v21(t) = 2Θ(t), v22(t) = 7Θ3(t), v23(t) = 2Θ2(t), where
Θ(t) is the solution of Equation (7) with the step of length h = 3π. Below, we shall need the degree
of periodicity, κ = ω/h, which in the present case is equal to 1/3.

Since the elements of the convergence sequence ti, i ∈ Z are multiples of h and the period
ω is equal to the Poisson number π, κω is equal to zero. Furthermore, supt∈R |bij(t)| = mb

ij,

supt∈R |vij(t)| = mv
ij, where mb

11 = 0.17, mb
12 = 0.1, mb

13 = 0.07, mb
21 = 0.24, mb

22 = 0.27,

mb
23 = 0.1, mv

11 = 1.67, mv
12 = 0.45, mv

13 = 0.34, mv
21 = 0.67, mv

22 = 0.26, mv
23 = 0.34. The

conditions (C1)–(C7) of Theorem 1 hold for the network (8) with Kij = 1, for all i = 1, 2,
j = 1, 2, 3, L = 0.5, λ11 = 3π, λ12 = 2π, λ13 = 4π, λ21 = 5π, λ22 = 3π, λ23 = 2π. As
is the case for Theorem 1, Equation (8) admits a unique asymptotically Poisson stable
solution z(t) = (zij(t)), i = 1, 2, j = 1, 2, 3. In Figure 1, the solution x(t) = (xij(t)), i = 1, 2,
j = 1, 2, 3, of SICNNs (8) is shown, which asymptotically converges to z(t).

Figure 2 depicts the coordinates x11 − x12 − x13 of the solution of (8).
To emphasize the role of the variable passive rates for the behavior of the outputs,

in the next simulations, we consider the constant and Poisson stable components of the
passive rates. In Figure 3, the outputs of the neural network (8) with a11(t) + b11(t) = 3,
a12(t) + b12(t) = 2, a13(t) + b13(t) = 4, a21(t) + b21(t) = 5, a22(t) + b22(t) = 3,
a23(t) + b23(t) = 6 are demonstrated. One can observe that the constancy is combined with
the irregular contribution of the inputs.
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Figure 1. The solution x(t) = (xij(t)), i = 1, 2, j = 1, 2, 3, of the neural network (8) with the degree
of periodicity κ = 1/3 and the initial values x11(0) = 0.8, x12(0) = 0.5, x13(0) = 0.1, x21(0) = 0.2,
x22(0) = 0.1, x23(0) = 0.1.
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Figure 2. The coordinates x11 − x12 − x13 of the solution x(t) = (xij(t)), i = 1, 2, j = 1, 2, 3, of
the neural network (8) with the degree of periodicity κ = 1/3 and the initial values x11(0) = 0.8,
x12(0) = 0.5, x13(0) = 0.1, x21(0) = 0.2, x22(0) = 0.1, x23(0) = 0.1.

Example 2. Now, we consider SICNNs (8) where i = 1, 2, j = 1, 2, 3, activation function
f (s) = 0.5arctan(s), the coupling strength C11

ij = 0.04, C12
ij = 0.03, C13

ij = 0.05, C21
ij = 0.01,

C22
ij = 0.06, C23

ij = 0.02. For each fixed k = 1, 2, and l = 1, 2, 3, the coefficients Ckl
ij are the

same for all i, j, such that the cell Ckl belongs to N1(i, j). Functions aij(t) are π-periodic such
that a11(t) = 3 + cos(4t), a12(t) = 2 + sin(2t), a13(t) = 4 + sin(4t), a21(t) = 5 + cos(2t),
a22(t) = 3+ sin(6t), a23(t) = 6+ sin(4t). The functions bij(t) and vij(t) are Poisson stable such
that b11(t) = 0.5Θ(t), b12(t) = 0.3Θ(t), b13(t) = 0.2Θ(t), b21(t) = 0.7Θ(t), b22(t) = 0.8Θ(t),
b23(t) = 0.3Θ(t), v11(t) = sin(0.2t) + 0.5Θ(t), v12(t) = sin(0.4t) + 0.4Θ2(t), v13(t) =
cos(0.1t)− 0.1Θ(t), v21(t) = sin(0.2t) + 0.2Θ(t), v22(t) = cos(0.2t) + 0.7Θ3(t), v23(t) =
cos(0.1t) + 0.2Θ2(t), where Θ(t) is the solution of Equation (7) with the step of length h = π/10.
The common period of the functions aij(t) and vij(t) equals to 20π, and the degree of periodicity is
equal to κ = 200. Figure 4 depicts simulation results of SICNNs (8) with initial values x11(0) = 0.8,
x12(0) = 0.5, x13(0) = 0.1, x21(0) = 0.2, x22(0) = 0.1, x23(0) = 0.1. The coordinates
x11 − x12 − x13 of the trajectory with the same initial data are shown in Figure 5.
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Figure 3. The solution x(t) = (xij(t)), i = 1, 2, j = 1, 2, 3, of the neural network (8) with constant pas-
sive decay rates and initial values x11(0) = 0.8, x12(0) = 0.5, x13(0) = 0.1, x21(0) = 0.2, x22(0) = 0.1,
x23(0) = 0.1. The degree of periodicity κ = 1/3.

Comparing Figures 1 and 4, one can understand the importance of the periodicity
degree for the models. That is, the periodicity characteristic is seen to be better if the degree
is larger than one, and the Poisson stability is better visualized for κ smaller than one. This
is why κ = 1 is the center of antisymmetry for degree of periodicity.
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Figure 4. The solution x(t) = (xij(t)), i = 1, 2, j = 1, 2, 3, of the neural network (8) with the degree
of periodicity κ = 200 and the initial values x11(0) = 0.8, x12(0) = 0.5, x13(0) = 0.1, x21(0) = 0.2,
x22(0) = 0.1, x23(0) = 0.1.

Example 3. Let us consider the following neural network

dyij

dt
= −(aij(t) + bij(t))yij − ∑

Ckl∈N1(i,j)
Ckl

ij f (ykl)yij + vij(t), (9)

where i = 1, 2, j = 1, 2, 3, activation function f (s) = 0.25tanh(s), the coupling strength
C11

ij = 0.003, C12
ij = 0.002, C13

ij = 0, C21
ij = 0.005, C22

ij = 0.004, C23
ij = 0.001. For each

fixed k = 1, 2 and l = 1, 2, 3, the coefficients Ckl
ij are the same for all i, j such that the cell

Ckl belongs to N1(i, j). The functions aij(t) are 2-periodic such that a11(t) = 4 + cos(2πt),
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a12(t) = 4 + sin(5πt), a13(t) = 3 + sin(4πt), a21(t) = 5 + cos(4πt), a22(t) = 5 + sin(2πt),
a23(t) = 3 + sin(πt). Functions bij(t) and vij(t) are Poisson stable, b11(t) = 0.1x11(t), b12(t) =
0.4x21(t), b13(t) = 0.3x13(t), b21(t) = 0.6x22(t), b22(t) = 0.4x12(t), b23(t) = 0.5x23(t),
v11(t) = 0.2x12(t), v12(t) = 0.4x22(t), v13(t) = 0.6x21(t), v21(t) = 0.2x13(t), v22(t) =
0.5x11(t), v23(t) = 0.3x22(t). The function x(t) = (xij(t)), i = 1, 2, j = 1, 2, 3 is the solution
of SICNNs (8) obtained for Θ(t) with h = 2. In Figure 6, the solution y(t) = (yij(t)), i = 1, 2,
j = 1, 2, 3, of (9) with y11(0) = 0.05, y12(0) = 0.01, y13(0) = 0.04, y21(0) = 0, y22(0) = 0.07,
y23(0) = 0.03, is depicted. In the model, the periodicity degree is equal to 1 and the periodicity is
clearly not observable.

Figure 5. The coordinates x11 − x12 − x13 of the trajectory x(t) = (xij(t)), i = 1, 2, j = 1, 2, 3, of the
neural network (8). The degree of periodicity is equal to 200.
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Figure 6. The solution y(t) = (yij(t)), i = 1, 2, j = 1, 2, 3, of the SICNNs (9), with a degree of
periodicity κ = 1 and initial data y11(0) = 0.05, y12(0) = 0.01, y13(0) = 0.04, y21(0) = 0, y22(0) =
0.07, y23(0) = 0.03.

4. Discussion

In this part of the paper, we provide the ideas behind the theoretical research of the
dynamics of neural networks which are useful for applications in engineering. We found
that the simulations of our study are similar to those modeled by neural networks in in-
dustrial problems. For example, consider tracking of periodical or square waves dynamics.
We are confident that one should better learn what can happen in the dynamics of neural
networks with a sophisticated environment and structure. Furthermore, the information of
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the paper is useful in that sense. One can assume that in addition to the tracking periods,
amplitudes of the periodical and square wave dynamics, the neural networks’ motions can
also be considered for the Poisson sequences. Thus, the instruments for synchronization
and control can be significantly improved, if one consider our proposals.

To shed more light for the suggestions and provide several issues for the next obser-
vations, let us look not only at the simulations results for the networks in the examples
above but simulations for Poisson stable functions, especially driven to compare with the
industrial simulations in papers [50–54]. For this reason, let us consider the two-component
function F(t, κ) = a cos( 2πt

ω ) + bΘ(t), where a and b are real coefficients, Θ(t) is the Pois-
son stable function with step h described in the last section, and the first component is
an ω-periodic function. The parameter κ is the periodicity degree, which was introduced
above in Example 1. It can be very useful for the analysis of time series obtained in dif-
ferent areas—both theoretical and engineering. In Figures 7–9, we have the graphs of
functions F(t, 80), F(t, 1/5) and F(t, 1), respectively. The graph of function F(t, 80) with
the periodicity degree κ > 1 is shown in Figure 7. We obtain the function that admits a
clear periodic shape which is enveloped by irregular Poisson stability—which can be said
about the dominance of periodicity in this case.

0 20 40 60 80 100 120 140 160 180 200
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−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t
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Figure 7. The graph of function F(t, 80) with a = 0.6, b = 1, ω = 40, κ = 80.
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Figure 8. The graph of function F(t, 1/5) with a = 0.4, b = 5, ω = 2, κ = 1/5.

For the function F(t, 1/5), where κ < 1, and observing its graph in Figure 8, we
have the opposite effect, when the irregular stability dominates and the periodicity, which
appears locally on separated intervals, envelopes the Poisson stability.

If κ = 1, then the graph of function F(t, 1) in Figure 9 demonstrates that both
phenomena—periodicity and Poisson stability—are equally present in the dynamics.
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Figure 9. The graph of function F(t, 1) with a = 0.5, b = −2, ω = π, κ = 1.

To estimate the future prospects of our suggestions, the simulations of the paper were
compared with some industrial applications of neural networks. First of all, it was found
that examples from an historical hourly weather dataset, Figure 9 in [50], had the same
shape as the solution x(t) = (xij(t)), i = 1, 2, j = 1, 2, 3, of neural network (8) with the
periodicity degree κ = 200 and the initial values x11(0) = 0.8, x12(0) = 0.5, x13(0) = 0.1,
x21(0) = 0.2, x22(0) = 0.1, x23(0) = 0.1 in Figure 4. Moreover, it is very similar to the
graph of function F(t, 80) in Figure 7. It is remarkable that both mathematical objects are
with κ > 1. It is important that the dominance is numerically indicated for the value of the
periodicity degree larger than one.

Our observations then relate to the values of the degree less than one. In Figure 8 of
the paper [51] (track control of 1 Hz square wave (no load)), one can see oscillations similar
to Poisson stable motions with κ < 1 in Figures 1 and 8, which are obtained on the basis
of our theoretical issues. Analyzing simulations with a periodicity degree smaller than
one, one can say that there is a loss of periodicity and dominance of irregularity, which is
specified as Poisson stability, while the result in [51] might be accepted as coexistence of
the square wave periodicity and the Poisson stability in our comprehension. Nevertheless,
we believe that one can use the present theoretical results for qualitative characteristics of
the square wave tracking with SICNNs [52,53].

Figure 36(a) in [54] is very similar to our simulations in Figures 6 and 9 with the unit
degree of periodicity. This confirms that specific Poisson stable motions can be useful to
represent the dynamics of linear and nonlinear single-degree-of-freedom systems, as well
as full-scale three-story multi-degree of freedom steel frame [54].

5. Conclusions

In this paper, we considered SICNNs with variable two-component rates and Poisson
stable inputs. Sufficient conditions were established to provide the existence of Poisson
stable solutions for the SICNNs. The line of periodic, almost periodic and recurrent
oscillations in neural networks is continued. Introducing the concept of the degree of
periodicity, we showed by examples how it affects the dynamics of neural networks. The
suggestions are constructive and suitable for simulations.
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Appendix A

In what follows, the basic constructive properties of the operator Π are provided,
which are needed to prove Theorem 1.

Lemma A1. Suppose that assumptions (C1)–(C7) are true. Then, operator Π is invariant in the
set B.

Proof. Let a function φ(t) belong to B, then we obtain

|Πijφ(t)| ≤ |
∫ t

−∞
e−
∫ t

s αij(u)du
(

bij(s)φij(s) + ∑
Ckl∈Nr(i,j)

Ckl
ij f (φkl)(s)φij(s)− vij(s)

)
ds| ≤

∫ t

−∞
Kije

−λij(t−s)
(
|bij(s)||φij(s)|+ ∑

Ckl∈Nr(i,j)
Ckl

ij | f (φkl)(s)||φij(s)|+ |vij(s)|
)

ds ≤ (A1)

Kij

λij
(mb

ijH + m f H ∑
Ckl∈Nr(i,j)

Ckl
ij + mv

ij),

for all i = 1, 2, . . . , m, j = 1, 2, . . . , n. By conditions (C6) and (C7), we obtain that |Πijφ(t)| <
H, i = 1, 2, . . . , m, j = 1, 2, . . . , n.

We then show that Πijφ(t), i = 1, 2, . . . , m, j = 1, 2, . . . , n, are Poisson stable functions.
Consider a fixed number ε > 0 and bounded interval [α, β] ⊂ R. One can choose numbers
γ, ξ such that α > γ and ξ > 0 which obey the following relations,

2Kij

λij
e−λij(α−γ)(m f H ∑

Ckl∈Nr(i,j)
Ckl

ij + mb
ijH + mv

ij) <
ε

4
, (A2)

Kij

λij
((2LH2 + 2Hm f ) ∑

Ckl∈Nr(i,j)
Ckl

ij + 2mb
ijH + 2mv

ij)e
−λij(α−γ) <

ε

4
, (A3)

Kij

λij
(eξ(β−γ) − 1)(m f H ∑

Ckl∈Nr(i,j)
Ckl

ij + mb
ijH + mv

ij) <
ε

4
, (A4)

Kijξ

λij
((LH + m f ) ∑

Ckl∈Nr(i,j)
Ckl

ij + H + mb
ij + 1) <

ε

4
, (A5)

for all i = 1, 2, . . . , m, j = 1, 2, . . . , n. Since the interval [α, β] ⊂ [γ, β], the present technique
of discussion is called the method of included intervals.

Because the functions bij(t) and vij(t), i = 1, 2, . . . , m, j = 1, 2, . . . , n, are Poisson
stable, the function φ(t) = (φij(t)), i = 1, 2, . . . , m, j = 1, 2, . . . , n, belongs to B, whilst the
convergence sequence, tp, is common for all of them, and the Poisson number κω is equal to
zero, by Lemma A2 in [32], it is true that |bij(t + tp)− bij(t)| < ξ, |vij(t + tp)− vij(t)| < ξ,
|φij(t + tp)− φij(t)| < ξ for t ∈ [γ, β], and |aij(t + tp)− aij(t)| < ξ for t ∈ R, sufficiently
large p and i = 1, 2, . . . , m, j = 1, 2, . . . , n. We have that
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|Πijφ(t + tp)−Πijφ(t)| ≤ |
∫ t

−∞
e−
∫ t

s aij(u+tp)du
(

bij(s + tp)φij(s + tp) +

∑
Ckl∈Nr(i,j)

Ckl
ij f (φkl(s + tp))φij(s + tp)− vij(s + tp)

)
ds +

∫ t

−∞
e−
∫ t

s aij(u)du
(

bij(s)φij(s) + ∑
Ckl∈Nr(i,j)

Ckl
ij f (φkl(s))φij(s)− vij(s)

)
ds| ≤

∫ t

−∞
|e−

∫ t
s aij(u+tp)du − e−

∫ t
s aij(u)du|

(
|bij(s + tp)φij(s + tp) +

∑
Ckl∈Nr(i,j)

Ckl
ij f (φkl(s + tp))φij(s + tp)− vij(s + tp)|

)
ds +

∫ t

−∞
e−
∫ t

s aij(u)du
(
|bij(s + tp)φij(s + tp)− bij(s)φij(s) +

∑
Ckl∈Nr(i,j)

Ckl
ij ( f (φkl(s + tp))φij(s + tp)− f (φkl(s))φij(s))− vij(s + tp) + vij(s)|

)
ds.

Let us present the sum of integrals in the last inequality as I1 + I2, such that

I1 =
∫ γ

−∞
|e−

∫ t
s aij(u+tp)du − e−

∫ t
s aij(u)du|

(
|bij(s + tp)φij(s + tp) +

∑
Ckl∈Nr(i,j)

Ckl
ij f (φkl(s + tp))φij(s + tp)− vij(s + tp)|

)
ds +

∫ γ

−∞
e−
∫ t

s aij(u)du
(
|bij(s + tp)φij(s + tp)− bij(s)φij(s) +

∑
Ckl∈Nr(i,j)

Ckl
ij ( f (φkl(s + tp))φij(s + tp)− f (φkl(s))φij(s))− vij(s + tp) + vij(s)|

)
ds,

and

I2 =
∫ t

γ
|e−

∫ t
s aij(u+tp)du − e−

∫ t
s aij(u)du|

(
|bij(s + tp)φij(s + tp) +

∑
Ckl∈Nr(i,j)

Ckl
ij f (φkl(s + tp))φij(s + tp)− vij(s + tp)|

)
ds +

∫ t

γ
e−
∫ t

s aij(u)du
(
|bij(s + tp)φij(s + tp)− bij(s)φij(s) +

∑
Ckl∈Nr(i,j)

Ckl
ij ( f (φkl(s + tp))φij(s + tp)− f (φkl(s))φij(s))− vij(s + tp) + vij(s)|

)
ds.

One can find that

I1 ≤
∫ γ

−∞
2Kije

−λij(t−s)
(

mb
ijH + ∑

Ckl∈Nr(i,j)
Ckl

ij m f H + mv
ij

)
ds +

∫ γ

−∞
Kije

−λij(t−s)
(

2mb
ijH + ∑

Ckl∈Nr(i,j)
Ckl

ij (2LH2 + 2Hm f ) + 2mv
ij

)
ds,

and

I2 ≤
∫ t

γ
Kije

−λij(t−s)(eξ(β−γ) − 1)
(

mb
ijH + ∑

Ckl∈Nr(i,j)
Ckl

ij m f H + mv
ij

)
ds +

∫ t

γ
Kije−λ(t−s)

(
mb

ijξ + Hξ + ∑
Ckl∈Nr(i,j)

Ckl
ij (LHξ + m f ξ) + ξ

)
ds.



Symmetry 2022, 14, 1162 13 of 15

Now, applying inequalities (A2)–(A5), we obtain that the following estimates are
correct for each i = 1, 2, . . . , m, j = 1, 2, . . . , n :

I1 ≤
2Kij

λij
e−λij(α−γ)(mb

ijH + m f H ∑
Ckl∈Nr(i,j)

Ckl
ij + mv

ij) +

Kij

λij
((2LH2 + 2Hm f ) ∑

Ckl∈Nr(i,j)
Ckl

ij + 2mb
ijH + 2mv

ij)e
−λij(α−γ) <

ε

4
+

ε

4
=

ε

2
, (A6)

and

I2 ≤
Kij

λij
(eξ(β−γ) − 1)(mb

ijH + m f H ∑
Ckl∈Nr(i,j)

Ckl
ij + mv

ij) +

Kij

λij
((LHξ + m f ξ) ∑

Ckl∈Nr(i,j)
Ckl

ij + mb
ijξ + Hξ + ξ) <

ε

4
+

ε

4
=

ε

2
. (A7)

From inequalities (A6) and (A7) it follows that |Πijφ(t + tp)−Πijφ(t)| ≤ I1 + I2 < ε
for t ∈ [α, β], and all i = 1, 2, . . . , m, j = 1, 2, . . . , n. Therefore, ΠB ⊆ B.

Lemma A2. Assumptions (C1) and (C4)–(C6) imply that Π is a contraction operator in B.

Proof. Let us take two functions ϕ and ψ that belong to B. It is true that for fixed i and j
that the inequality

|Πij ϕ(t)−Πijψ(t)| ≤
∫ t

−∞
e−
∫ t

s aij(u)du
(
|bij(s)||ϕij(s)− ψij(s)|+

∑
Ckl∈Nr(i,j)

Ckl
ij (| f (ϕkl(s))ϕij(s)− f (ϕkl(s))ψij(s)|+ | f (ϕkl(s))ψij(s)− f (ψkl(s))ψij(s))|

)
ds ≤

Kij

λij

(
mb

ij + (m f + LH) ∑
Ckl∈Nr(i,j)

Ckl
ij

)
‖ϕ− ψ‖0

is valid. This is why ‖Πϕ − Πψ‖0 ≤
Kij(mb

ij + (m f + LH)∑Ckl∈Nr(i,j) Ckl
ij )

λij
‖ϕ− ψ‖0. By

condition (C6), the operator Π is a contraction in B.
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