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Cellular behavior has traditionally been investigated by
utilizing bulk-scale methods that measure average values
for a population of cells. Such population-wide studies
mask the behavior of individual cells and are often
insufficient for characterizing biological processes in
which cellular heterogeneity plays a key role. A unifying
theme of many recent studies has been a focus on the
development and utilization of single-cell experimental
techniques that are capable of probing key biological
phenomena in individual living cells. Recently, novel
information about gene expression dynamics has been
obtained from single-cell experiments that draw upon the
unique capabilities of fluorescent reporter proteins.
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Introduction

Cellular heterogeneity has been observed in a wide variety
of cell types ranging from simple bacterial cells (Ozbudak
et al, 2002; Swain et al, 2002) to more complex mammalian
cells (Ramsey et al, 2006). Any population of cells will exhibit
some degree of variability, and genetic differences are one
of the main factors responsible for cellular heterogeneity.
However, variation is also present in genetically identical cell
populations, even when the cells have been exposed to the
same environment and have the same history (Elowitz et al,
2002; Rao et al, 2002; Blake et al, 2003; Raser and O’Shea,
2005). Noise, or random fluctuations, in the process of gene
expression is thought to contribute to this phenotypic
variation.

Analyzing gene expression at the single-cell level has
provided insight into oscillatory or nonlinear behavior in
asynchronous cells and has revealed the cell-to-cell variability
that arises owing to the stochastic nature of gene expression.
Although researchers have been interested in the stochastic

nature of gene expression and its implications for many years
(Benzer, 1953; Novick and Weiner, 1957; Maloney and
Rotman, 1973; Spudich and Koshland, 1976; Rigney and
Schieve, 1977), the techniques available for quantifying gene
expression were quite limited when some of the earliest single-
cell experiments were performed. For example, in 1953, cell-
to-cell variability in b-galactosidase (b-gal) concentrations
in Escherichia coli was investigated by using a phage
whose replication depended on b-gal activity as a method for
measuring the level of b-gal in each cell, because tools for
directly measuring the amount of enzyme in each cell were
nonexistent at that time (Benzer, 1953). The recent develop-
ment of a collection of fluorescent proteins, each possessing
unique biochemical characteristics, has enabled single-cell
experiments in which fluorescent reporters are used to
quantify protein production, examine protein localization,
and monitor production of individual mRNA molecules.

Cell-to-cell variability and stochastic gene
expression

Single-cell measurements are necessary for investigating the
stochastic nature of gene expression because cell-to-cell
variation cannot be quantified using population level mea-
surements. Noise in gene expression arises not only from the
inherent randomness of biochemical processes such as
transcription and translation, but also from the fluctuations
in cellular components that lead indirectly to variation in the
expression of a particular gene (Swain et al, 2002). The total
noise in the level of expression of a given gene can be divided
into intrinsic and extrinsic components. Extrinsic noise arises
from fluctuations in cellular components such as regulatory
proteins and polymerases, and has a global effect (Elowitz
et al, 2002). Intrinsic noise arises from the stochastic nature
of the biochemical process of gene expression and causes
identical copies of a gene to express at different levels (Elowitz
et al, 2002).

Single-cell studies have been key in gaining insight into the
stochastic nature of gene expression. Such studies often
involve monitoring the level of a protein expressed from an
engineered gene circuit in individual live prokaryotic or simple
eukaryotic cells. For example, Ozbudak et al (2002) used point
mutations to independently vary the transcriptional and
translational rates of a single-gene network in Bacillus subtilis,
and found that fluctuations in the level of a fluorescent
reporter gene increased linearly with translational efficiency.
The results were consistent with a stochastic model that
predicted that noise for a single gene is determined at the
translational level (Thattai and van Oudenaarden, 2001).
Elowitz et al (2002) developed a method utilizing two different
fluorescent proteins expressed from identical promoters to
study noise in gene expression in E. coli. This study demon-
strated that noise in gene expression results in fluctuations in
protein levels in a clonal population and that both intrinsic and
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extrinsic noise contribute to total noise in gene expression.
Raser and O’Shea (2004) modified the dual-reporter method to
measure gene expression in the yeast Saccharomyces cerevisiae
and found that gene expression variability is dominated by
extrinsic noise. More recently, Bar-Even et al (2006) used 43
strains from the yeast green fluorescent protein (GFP) clone
collection to analyze cell-to-cell variation in gene expression in
S. cerevisiae. The study measured protein noise and mean
protein abundance for each of the fusion proteins subjected to
11 different environmental conditions and discovered a strong
correlation between cell-to-cell variability and mean expres-
sion level. Theoretical analysis of these results suggests that
sources intrinsic to the biochemical process of gene expression
make a substantial contribution to gene expression noise (Bar-
Even et al, 2006). Another large-scale study of gene expression
noise was recently performed by utilizing high-throughput
flow cytometry to measure protein abundances in a collection
of GFP-tagged yeast strains (Newman et al, 2006). This study
also observed a global relationship between noise and protein
abundance, suggesting that intrinsic noise dominates gene
expression noise (Newman et al, 2006). The global trend
observed between protein noise and mean abundance does not
extend to regions of high protein abundance (Bar-Even et al,
2006; Newman et al, 2006), thus explaining the apparent
discrepancy between the recent large-scale results (Bar-Even
et al, 2006; Newman et al, 2006) and the results of the Raser
and O’Shea study, which uses a highly abundant reporter gene.

Recent single-cell experiments have provided further insight
into cell-to-cell variability by examining how noise in gene
expression propagates from one gene to the next (Pedraza and
van Oudenaarden, 2005), measuring the relative amplitude
and timescales of intrinsic and extrinsic noise (Rosenfeld et al,
2005), analyzing the relative contribution of global noise and
pathway-specific noise to cell-to-cell variation in a cell-fate
decision (Colman-Lerner et al, 2005), investigating the
relationship between gene circuit structure and noise fre-
quency range (Austin et al, 2006), examining the effects of cell-
cycle position on cell-to-cell variation (Colman-Lerner et al,
2005) and on nuclear protein levels and localization (Sigal
et al, 2006), and investigating the source of extrinsic noise in
eukaryotic gene expression (Volfson et al, 2005) (for a review
of the origins and consequences of noise in gene expression,
see McAdams and Arkin, 1999; Kaern et al, 2005; Raser and
O’Shea, 2005).

Feedback loops play an important role in modulating gene
expression noise. Single-cell studies have been useful in
examining how stochastic gene expression affects the behavior
of natural networks, which possess feedback loops. For
example, the competence induction network in B. subtilus
contains a positive feedback loop and a negative feedback
loop. Because differentiation into a competent state occurs
in only a small fraction of cells in an asynchronous fashion,
population-level experiments are inappropriate for monitoring
the differentiation process. Recently, the dynamics of this
network were analyzed by using time-lapse fluorescence
microscopy to monitor expression levels of two fluorescent
reporter proteins, yellow fluorescent protein (YFP) and cyan
fluorescent protein (CFP), in individual cells (Suel et al, 2006).
The study demonstrated that the positive feedback loop
and negative feedback loop can explain both the transient

differentiation into a competent state and the return to
vegetative growth.

Feedback loops also modulate the behavior of mammalian
systems. For example, the HIV-1 life cycle in mammalian cells
depends on a Tat transactivation feedback loop. A recent study
examined the behavior of the Tat-positive feedback loop in
Jurkat cells by utilizing a GFP reporter to observe stochastic
switching between high and low expression states (Weinberger
et al, 2005). Because cells with low basal expression of Tat
protein can randomly produce bursts of Tat that are amplified
by the positive feedback loop, bifurcating phenotypes can be
generated. The study demonstrated that stochastic fluctuations
in Tat expression result in two distinct expression states
corresponding to latent and productive HIV-1 infection.

Quantitative dynamics of gene expression

Because the gene regulatory networks found in cells are often
quite complex, designing simpler synthetic systems that are
easier to model and manipulate can provide insight into the
mechanisms underlying the behavior of natural gene networks
(Hasty et al, 2002; Sprinzak and Elowitz, 2005). However,
owing to stochastic fluctuations in network components and
the cellular environment, the behavior of even simple artificial
gene networks often cannot be accurately predicted using
deterministic models. A better understanding of gene expres-
sion noise is essential for improving the performance of
synthetic circuits and working towards the ultimate goal
of programmable cells.

Simple gene modules, such as autoregulatory feedback
loops (Becskei and Serrano, 2000; Becskei et al, 2001;
Rosenfeld et al, 2002), toggle switches (Gardner et al, 2000;
Atkinson et al, 2003), and oscillators (Elowitz and Leibler,
2000; Atkinson et al, 2003), have been engineered in model
microorganisms such as E. coli and S. cerevisiae. The behavior
of these simple genetic circuits has been observed in vivo by
using flow cytometry or fluorescence microscopy to measure
reporter protein levels in individual live cells.

Synthetic gene networks have been constructed to demon-
strate the ability of negative feedback to reduce cell-to-cell
fluctuations in protein concentrations, thus increasing the
stability of the network (Becskei and Serrano, 2000). Positive
feedback loops amplify cellular fluctuations and allow for the
generation of bistability (Savageau, 1974). Bistability, or the
existence of two stable states, has been observed in a synthetic
positive feedback system (Becskei et al, 2001). Two distinct
populations of cells were observed by fluorescence micro-
scopy: cells that expressed low levels of GFP and cells that
expressed high levels of GFP. Stochastic fluctuations in the
network enabled spontaneous transitions from one expression
state to the other.

Simple, well-characterized gene modules can be linked to
form more complex networks. A recent study constructed a
repressor-only system, an activator-only system, and a system
that combines the activator and repressor modules and (Guido
et al, 2006). A stochastic model accurately predicted the
behavior of the modular system. The study demonstrated that
the properties of individual regulatory modules can be used
to predict the behavior of more complex gene regulatory
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networks, setting the stage for the systematic construction of
synthetic gene networks of increasing complexity, which
mimic the behavior of naturally occurring systems.

For some synthetic gene network studies, the circuit can be
characterized by obtaining distributions of cellular reporter
protein levels at various time points. For instance, Gardner
et al (2000) used this approach to analyze a synthetic genetic
toggle switch. The bistability of the synthetic network was
demonstrated by showing that transient chemical or thermal
induction could switch E. coli cells from one stable state
corresponding to high expression of a GFP reporter to a second
stable state corresponding to low GFP expression levels. Flow
cytometry was used to measure GFP expression levels from
individual cells and GFP distributions were obtained to show
the existence of a stable low GFP expressing state and a stable
high GFP expressing state. A bimodal distribution appears as
switching begins, and the return to a unimodal distribution
occurs when switching is complete.

Although obtaining distributions of reporter protein levels
may be sufficient for understanding the behavior of synthetic
networks such as the genetic toggle switch, monitoring
the dynamics of gene expression in individual live cells is
needed for fully characterizing many gene circuits. For
example, Elowitz and Leibler (2000) used three repressors to
build a synthetic oscillatory network called ‘the repressilator’,
and they characterized the oscillations by quantifying expres-
sion levels of a GFP reporter protein in individual E. coli cells.
Individual repressilator-containing cells are not synchronized.
Thus, observing oscillations in gene expression required
tracking expression levels from single cells at multiple time
points. This was accomplished by using fluorescence micro-
scopy to monitor temporal oscillations in GFP expression in
individual cells.

The networks responsible for generating oscillations
in natural systems tend to be quite complicated, and many
of the mechanisms governing the behavior of natural
oscillators are still unknown. Synthetic clocks such as ‘the
repressilator’ have been developed with the objective of
understanding the molecular design principles responsible
for generating oscillations in natural systems (Elowitz and
Leibler, 2000; Atkinson et al, 2003; Fung et al, 2005). The
synthetic biology approach, coupled with recent advances
in single-cell imaging, will help to advance our understanding
of cellular rhythms.

Naturally occurring oscillations in single
cells

Cellular rhythms occur at all levels of biological organization
from gene networks to animal populations (Goldbeter, 2002).
Because oscillations in individual cells are often asynchro-
nous, the dynamics of many biological rhythms must be
observed at the single-cell level. Single-cell studies have
advanced our current understanding of natural oscillators by
revealing information about cellular behavior that could not
be obtained using traditional population-based methods.

The p53–Mdm2 negative feedback loop is an example of
a system that has been studied extensively primarily using
population-based methods (Michael and Oren, 2003). Experi-

ments performed at the population level have found that
damped oscillations in p53 and Mdm2 occur following strong
DNA damage (Lev Bar-Or et al, 2000). Recent studies have
observed p53 and Mdm2 oscillations in individual cells in
response to DNA damage caused by gamma irradiation (Lahav
et al, 2004; Geva-Zatorsky et al, 2006). Two fusion proteins,
p53-CFP and Mdm2-YFP, were used to follow the dynamics of
p53 and Mdm2 in individual cells using time-lapse fluores-
cence microscopy. Using this system to monitor cells for
approximately 16 h, Lahav et al (2004) demonstrated that
individual cells can show repeated pulses of p53 and Mdm2
(see Figure 1). This study reported a distinct correlation
between irradiation dose and the average number of p53
pulses. More recently, Geva-Zatorsky et al used this system to
monitor p53 and Mdm2 dynamics in individual cells for longer
time frames (several days) and they observed sustained
undamped oscillations in a large fraction of cells. The results
of the longer experimental runs showed that the irradiation
dose determines the probability that an irradiated cell will
oscillate permanently or not, rather than the number of pulses
(see Figure 1). Another key finding of this study was that the
behavior of isogenic cells showed significant cell–cell differ-
ences: some cells showed either no response or a slowly
fluctuating signal, whereas other cells showed sustained
oscillations with highly variable amplitudes. Mathematical
models of the system suggest that low-frequency fluctuations
in protein production rates are a source of the noise in the
oscillations (Geva-Zatorsky et al, 2006).

The NF-kB signaling system is another example of a natural
network that has been widely analyzed, usually using
experiments performed at the population level. The NF-kB
signaling pathway contains a negative feedback loop that
drives oscillations in NF-kB nuclear–cytoplasmic localization.
Population-level experiments have been used to monitor
average NF-kB activity, and have found that damped oscilla-
tions in NF-kB localization occur following stimulation
(Hoffmann et al, 2002). A more recent study has used time-
lapse fluorescence microscopy to observe NF-kB oscillations in
individual cells (Nelson et al, 2004). With single-cell resolu-
tion, cell-to-cell variation in frequency and amplitude was
observed, and this study revealed that asynchronous NF-kB
oscillations occur following stimulation.

Tracking the dynamic levels of fluorescent reporter proteins
in individual cells can also help to elucidate some of the
changes in gene expression that occur during the complex
events associated with cell division. For instance, Bean et al
(2006) recently investigated the issue of variability in cell-cycle
Start by using time-lapse fluorescence microscopy to monitor
the expression of a GFP reporter under the control of the G1
cyclin CLN2 promoter in budding yeast. This study found that
peaks in fluorescence occur at the time of budding, and
monitoring cell-to-cell variability in peak height and peak
timing in both wild-type and mutant cells revealed that Start
regulators affect variability in intra-Start coherence and
variability in Start timing. For instance, deletion of the G1
transcription factor SWI4 resulted in an increase in peak height
variability and a decrease in the coherence between bud
emergence and CLN2pr-GFP peak levels, suggesting that SWI4
is not essential for Start but necessary for maintaining Start
coherence.
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Circadian rhythms are one of the most widely studied
periodic biological processes. The circadian clock, which
consists of a molecular feedback loop, governs the oscillatory
expression of clock genes. The oscillatory feedback mechan-
ism, which generates circadian rhythms, resides in individual
cells. Recently, several studies have tried to gain insight into
how biological clocks control gene expression by monitoring
rhythmic behavior in individual cells. Real-time analysis of
circadian gene expression has been performed at the single-
cell level for cell types ranging from bacterial cells (Mihalcescu
et al, 2004) to individual neurons within the mammalian
suprachiasmatic nucleus (the circadian center) (Yamaguchi
et al, 2003). For instance, a recent study monitored circadian
oscillations in fibroblasts and found that individual fibroblasts
contain self-sustained circadian oscillations, thus revealing
that the damped oscillations observed at the population level
result from a loss of synchrony among cells (Welsh et al, 2004;
Carr and Whitmore, 2005).

Techniques for single-cell gene
expression experiments

A wide variety of new tools have allowed investigators to
monitor gene expression with single-cell resolution. Owing
to differences in characteristics such as cellular throughput,
number of gene products analyzed, sensitivity, and temporal
resolution, the gene expression analysis method utilized

depends on the objective of the study. For example, flow
cytometry is a technique that monitors gene expression at the
protein level and is very high throughput in terms of the
number of cells analyzed. A flow cytometer can simulta-
neously measure several parameters at a rate of up to 10 000
cells per second with high precision. Flow cytometry has
proven to be useful for monitoring a large number of gene
products. A recent study used flow cytometry to monitor the
expression of over 2500 proteins in S. cerevisiae, in response
to environmental perturbations (Newman et al, 2006). This
study demonstrated that there are substantial protein-specific
differences in noise, and that protein noise levels are highly
correlated with their function and their mode of transcriptional
regulation.

‘Static’ single-cell measurements, such as those obtained
using flow cytometry, are useful for obtaining snapshots
of gene expression patterns in individual cells. However,
techniques with high temporal resolution are necessary for
monitoring the dynamics of gene expression. For example,
temporal phenomena such as oscillations in gene expression
in individual cells can be observed by using fluorescence-
based imaging assays to quantify protein production
in individual cells at several time points. Because a flow
cytometer can only measure protein levels in each cell at a
single time point, flow cytometry cannot be used to observe
dynamic gene expression behavior such as oscillations in
individual cells. Below, we discuss the tools that not only
enable the quantification of protein levels in individual live
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Figure 1 p53–Mdm2 pulses in individual cells. (A) p53-CFP expression levels in two individual cells in response to DNA damage (Lahav et al, 2004). (B) At the
population level, the response (p53-CFP levels) appears to increase with increasing DNA damage (Lahav et al, 2004). (C) Observations of p53-CFP levels at the single-
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cells, but also allow for repeated measurements from the same
cell over extended time periods and provide information about
protein localizations.

Technological advances in fluorescent reporter
technology

The GFP from the jelly fish Aequorea victoria has become
a well-established reporter protein for studying the dynamics
of gene expression. Unlike several other commonly used
reporters, GFP does not depend on additional cofactors or
substrates. The GFP protein has been modified to produce
fluorescent proteins with a variety of colors (including blue,
cyan, yellow, and red fluorescent proteins), making it possible
to study the expression of multiple genes in the same cell.
Engineering GFP mutants with specific properties has led to
the availability of a wide variety of fluorescent reporter
proteins. Several protein properties such as maturation speed
and efficiency, extinction coefficient, quantum yield, and
photostability need to be taken into consideration when
selecting the best fluorescent protein for a particular experi-
ment (Shaner et al, 2005).

Because GFP is very stable, it is not optimal for monitoring
dynamic changes in gene expression. GFP variants with half-
lives as short as 30 min in bacteria and yeast (Andersen et al,
1998; Mateus and Avery, 2000) and CFP proteins with half-
lives as short as 5 min in yeast (Hackett et al, 2006) have been
developed to enable gene expression studies with greater
temporal resolution. Fast-degrading fluorescent proteins help
to rapidly extinguish the fluorescent signal when the promoter
becomes inactive. However, when the promoter is active,
fluorescent protein levels must be high enough to produce a
fluorescent signal sufficiently higher than background fluores-
cence (see Figure 2). Thus, the ideal system for monitoring
gene expression changes with fast dynamics will utilize a
rapidly degrading fluorescent reporter in conjunction with a
promoter that yields maximal reporter protein levels when
active. The fluorescent reporters employed by the studies
mentioned in the first section of this review are listed in Table I.

Fluorescence-based gene expression assays often involve
monitoring the expression of a fluorescent reporter gene from
a particular promoter. An alternative method for measuring
expression levels involves the use of fluorescent fusion
proteins. Fluorescent fusion proteins are created by fusing
the coding sequence of a protein of interest to the coding
sequence of a fluorescent protein. For the fluorescent protein
to be functional, both the fluorescent protein and the host
protein must fold correctly (Miyawaki et al, 2003). Fluorescent
reporter genes and fluorescent fusion proteins can be
expressed in the same cell simultaneously. For example,
Rosenfeld et al (2005) recently developed cell strains in which
a yellow fluorescent repressor fusion protein represses the
expression of a cyan fluorescent reporter gene. This system
enabled the simultaneous measurement of transcription factor
concentrations (by quantifying YFP levels) and the rate of
protein production from a downstream gene (by quantifying
CFP levels) (Rosenfeld et al, 2005).

Multiple fluorescent reporter genes can also be expressed
in the same cell. For example, Elowitz et al (2002) engineered
cell strains in which two fluorescent reporter genes, cyan

fluorescent protein (cfp) and yellow fluorescent protein (yfp),
were controlled by identical promoters. Correlations between
CFP and YFP levels in individual cells were measured to
determine the contribution of intrinsic and extrinsic noise to
total cell-to-cell variability in gene expression (Elowitz et al,
2002). A more recent study utilized three fluorescent reporter
genes (cfp, yfp, and rfp) to investigate how noise is transmitted
in a gene network (Pedraza and van Oudenaarden, 2005). In
the engineered gene network, the tetracycline repressor (tetR),
which is bicistronically transcribed with cfp, downregulates
the transcription of yfp. CFP and YFP levels in individual cells
were compared to measure how fluctuations in the upstream
gene (tetR, cfp) were transmitted to the downstream gene
(yfp). A third fluorescent reporter gene, rfp, was expressed
from a strong constitutive promoter to determine the
contribution of global fluctuations to overall gene expression
noise.

Gene expression studies measure fluorescence levels pro-
duced by reporter proteins, and these data are used to report
expression levels that are roughly proportional to the actual
number of fluorescent protein molecules. Recently, a techni-
que has been developed for converting observed fluorescent
intensities into numbers of molecules (Rosenfeld et al, 2006).
The conversion method follows the dilution of a transiently
expressed fluorescent protein as cells grow and divide. At each
cell division, asymmetric partitioning of fluorescence is
observed. The calibration algorithm uses observed partition-
ing errors to infer the apparent number of fluorescent proteins
per cell. The predicted number of proteins per cell ranged from
around 840 molecules in the initial cell to around 10 molecules
in the eighth generation of cells.
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Figure 2 Tracking oscillations in gene expression with GFP reporter proteins.
(A) Oscillations in promoter activity. (B) Simulated GFP levels for three different
systems: The blue curve represents GFP levels for a system that utilizes a
destabilized GFP variant using the following parameter values (Elowitz and
Leibler, 2000): transcription rate of 0.5 transcripts per second, translation rate of
20 proteins per transcript, mRNA half-life of 2 min, GFP half-life of 90 min
(destabilized GFP variant). The orange curve represents GFP levels for a system
that utilizes a stable GFP protein with a half-life of several hours (480 min). This
system will quickly approach fluorescent saturation levels. The green curve
represents GFP levels for a system that utilizes a destabilized GFP variant and
has a lower translation rate (5 proteins per transcript). This system will produce
a fluorescent signal that is harder to distinguish from background fluorescence.
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Typically, fluorescent reporters are used to monitor gene
expression dynamics at the translational level. However, a
recent study has shown that fluorescent labeling of mRNA
molecules can be used to analyze gene expression dynamics
at the transcriptional level (Golding et al, 2005). In this
study, single mRNA molecules were detected and tracked in
individual live E. coli cells by using MS2-GFP fluorescent
fusion proteins to tag transcripts containing a tandem array
of 96 MS2 binding sites. In addition, the target transcript
contained the coding region for a red fluorescent protein,
mRFP1, thus allowing the level of mRNA transcript and the
level of the encoded protein to be measured simultaneously.
The technique for fluorescently labeling mRNA molecules
has recently been utilized in eukaryotic cells: transcrip-
tional bursts of a developmental gene were observed in
individual cells of the slime mold Dictyostelium discoideum
(Chubb et al, 2006).

Single-cell assays

Fluorescent reporter levels in individual cells can be mon-
itored by using fluorescence microscopy to visualize cells
grown on a glass slide or dish, and images can be captured
using digital cameras. Although this approach requires more

time and has a much lower throughput than methods such
as flow cytometry, in vivo imaging enables the real-time
quantification of gene expression in single live cells. Fluores-
cence-based imaging assays can also be used to observe
protein localizations (Nelson et al, 2004; Sigal et al, 2006),
whereas methods such as flow cytometry cannot provide
spatial resolution.

Recent technical advances in live-cell imaging, such as
the development of extremely sensitive cameras, high-preci-
sion automated stages, and faster computers with greater
storage capacity, have enabled the rapid acquisition and
storage of large-format microscopic images (Shav-Tal et al,
2004). Such improvements allow the tracking of gene
expression dynamics with increased precision and higher
temporal resolution. Typical time-lapse microscopy experi-
ments provide useful and very detailed information on
the dynamic behavior of a small number of cells, but
typically run only for a short time period and often do not
lead to good statistics over a population. The duration of
a typical time-lapse experiment is often limited by cell
stacking effects: the experimental run is either ended when
cells begin to grow out of the focal plane, or if the run is
continued the cells that are out of focus must be discarded
from the analysis.

Table I Fluorescent reporters employed by single-cell gene expression studies

Reference Fluorescent reporters used Analytical method Organism

Atkinson et al (2003) CFP Fluorescence microscopy E. coli
Austin et al (2006) GFPasv-destabilized GFP variant with half-life around 110 min,

GFPaav-destabilized GFP variant (Andersen 98) with half-life
around 60 min

Time-lapse microscopy E. coli

Bar-Even et al (2006) GFP fusion proteins (from Invitrogen’s yeast GFP clone collection)
containing the coding sequence of Aequorea victoria GFP (S65T).
CFP and YFP fusions used for dual-reporter assay

Flow cytometry,
fluorescence microscopy

S. cerevisiae

Bean et al (2006) Yeast- and FACS-optimized, destabilized GFP variant with half-life
around 30 min (Mateus and Avery, 2000)

Time-lapse microscopy S. cerevisiae

Becskei and Serrano (2000) EGFP Fluorescence microscopy E. coli
Becskei et al (2001) yEGFP (yeast-enhanced green fluorescent protein) Fluorescence microscopy S. cerevisiae
Colman-Lerner et al (2005) CFP, YFP Time-lapse microscopy S. cerevisiae
Elowitz and Leibler (2000) GFPaav-destabilized GFP variant (Andersen 98) with half-life

around 90 min
Time-lapse microscopy E. coli

Elowitz et al (2002) CFP, YFP (wild-type codons developed by the University of
Washington Yeast Resource Center)

Time-lapse microscopy E. coli

Fung et al (2005) gfpmut3.1AAV-destabilized GFP variant Time-lapse microscopy E. coli
Gardner et al (2000) gfpmut3 (FACS-optimized GFP mutant; see Cormack et al, 1996) Flow cytometry E. coli
Geva-Zatorsky et al (2006) ECFP from pECFP-C1 (Clontech), EYFP from pEYFP-1 (Clontech) Time-lapse microscopy MCF-7 (human

breast cancer)
Guido et al (2006) gfpmut3 (FACS-optimized GFP mutant; see Cormack et al, 1996)) Flow cytometry E. coli
Lahav et al (2004) ECFP from pECFP-C1 (Clontech), EYFP from pEYFP-1 (Clontech) Time-lapse microscopy H1299 & MCF-7

(human lung and
breast cancer)

Nelson et al (2004) DsRed and EGFP from pEGFP-N1 and pdsRed-N1 (Clontech) Time-lapse microscopy HeLa and SK-N-AS
Ozbudak et al (2002) gfpmut2 (FACS-optimized GFP mutant; see Cormack et al, 1996)) Flow cytometry B. subtilis
Pedraza and van
Oudenaarden (2005)

CFP, YFP, RFP from pECFP, pEYFP, and pDsRed-Express (Clontech) Fluorescence microscopy E. coli

Raser and O’Shea (2004) yECFP (yeast-optimized enhanced cyan fluorescent protein) and
yVYFP (yeast-optimized Venus yellow fluorescent protein)

Fluorescence microscopy S. cerevisiae

Rosenfeld et al (2002) gfpmut3 (FACS-optimized GFP mutant; Cormack et al, 1996)) Fluorimeter E. coli
Rosenfeld et al (2005) CFP, YFP (yfp gene from pDH5 plasmid, University of Washington

Yeast Resource Center)
Time-lapse microscopy E. coli

Sigal et al (2006) YFP Time-lapse microscopy H1299 (human
lung cancer)

Suel et al (2006) CFP, YFP Time-lapse microscopy B. subtilis
Volfson et al (2005) yEGFP (yeast-enhanced green fluorescent protein) Flow cytometry S. cerevisiae
Weinberger et al (2005) Enhanced GFP (Clontech, Palo Alto, CA) Flow cytometry Jurkat cells
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Image processing software allows gene expression data to be
extracted from fluorescence images. The extraction of single-
cell expression levels from a fluorescence image requires
segmenting the images into individual cells and quantifying
the fluorescence within the segment boundaries. Software
packages such as Metamorph software (Universal Imaging,
Westchester, PA), Openlab software (Improvision, Lexington,
MA), and AQM Advance 6.0 software (Kinetic Imaging, UK)
are available for image analysis. However, many studies utilize
custom-written software that is often developed using
MATLAB (The Mathworks Inc.) or IDL (The Interactive Data
Language, Research Systems Inc., Boulder, CO). Gene expres-
sion dynamics can be tracked at the single-cell level by
assembling cellular fluorescence levels for a set of time-lapse
images. Extracting time-series gene expression data from a
sequence of fluorescence images involves segmenting each
image into individual cells and then matching cells in a

sequence of images (see Figure 3). Image segmentation can be
achieved with the following main steps: flat-field correcting
and removing high-frequency noise, determining approximate
cell locations using a seeding technique, producing a set of
dams that separate cell seeds, and expanding the cellular area
from the seed to a specified intensity level. Matching cells in a
sequence of images can be accomplished using cluster analysis
with the center of mass coordinates and total fluorescence
integrated over the cellular area used as cluster variables
(Cookson et al, 2005).

Image analysis tools can also be used to detect cell division
events based on the abrupt decrease in cellular fluorescence
values that occurs after cell division. Recently, Sigal et al
investigated cell-cycle-dependent changes in protein dynamics
by synchronizing cells a posteriori based on the detection
of cell division events in individual cells in time-lapse images.
An alternative method for examining the effects of cell-cycle

Form seeds at approximate cell locations

Separate the cell seeds with dams

Expand cellular areas from the seeds

Remove high-frequency noise and 
subtract background values

Use a cell tracking algorithm to match cells in a 
time series of segmented images

Analyze fluorescence values for each cell as a
function of time

Figure 3 Steps involved in processing time-lapse images (Cookson et al, 2005). The first step in the image analysis process involves filtering high-frequency noise
and subtracting background and cellular autofluorescence values. Next, each image is segmented into individual cells by using a seeding technique to determine
approximate cell locations, producing a set of dams that separate the cell seeds, and expanding the cellular area from the seed to a specified intensity level. A cell
tracking algorithm is applied to a time series of segmented images to obtain a time course for each cell.
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position involves arresting cells at certain stages in the cell
cycle (Colman-Lerner et al, 2005). Retroactive in silico
synchronization allows cell-cycle effects to be examined
without perturbing cellular behavior. Using the in silico
synchronization method, cell-cycle dependence of nuclear
protein levels was observed in a subset of the nuclear proteins
that were examined. This study also utilized custom software
to generate displays (termed ‘synchrograms’) to visualize
protein localization dynamics which are easier to discern by
eye than changes in protein amounts. Using synchrograms,
diverse cell-cycle-dependent localization patterns were obser-
ved in a subset of the examined proteins (Sigal et al, 2006).

Microfluidic ‘lab on a chip’ technologies

Owing to the stochastic nature of gene expression, the optimal
experimental setup for analyzing gene expression dynamics
will be capable of both monitoring the behavior of a large
population of cells and of tracking individual cells. Flow
cytometry can be used to obtain gene expression data for
thousands of cells, but only provides a snapshot of gene
expression at single time points. Traditional microscopy
experiments can track gene expression dynamics in individual
cells, but can only monitor a relatively small population of
cells. Microfluidic ‘lab on a chip’ technologies can be used to
track gene expression changes in individual cells, enable large
populations of cells to be monitored, and allow the precise
control of the cellular microenvironment.

Microfluidics involves the manipulation of very small
fluid volumes, enabling the creation and control of nanoliter
volume reactors. Microfluidic devices can be fabricated using
soft lithography and rapid prototyping techniques (McDonald
et al, 2000). In rapid prototyping, a computer-aided design
program is used to create a design for channels, which are
printed at high resolution onto transparency film. The
transparency film then serves as the photomask. Master molds
are generated by using the photomask in contact lithography
to produce a positive relief of photoresist on a silicon wafer.
The master mold is durable and can be used indefinitely.
In replica molding, poly(dimethylsiloxane) (PDMS) is poured
over the master and heat cured to generate a negative replica
of the master. The PDMS is then removed from the mold and
sealed against a glass coverslip to form the device features
and channels (see Figure 4). The advantages of using soft
lithography to fabricate microfluidic devices include the low
cost of production, the ease and speed of fabrication, and the
reduction in the amount of reagents consumed.

Microfluidic systems can accurately control the biochemical
composition of the cellular microenvironment. Precise control
of temperature, nutrient supply, waste removal, and fluidic
stress are important for recreating the in vivo cellular
microenvironment. In addition, microfluidic devices can
generate arbitrarily defined stable or dynamic concentration
gradients (Dertinger et al, 2001). Temperature gradients can
also be established using microfluidic devices, allowing the
acquisition of data as a function of temperature (Mao et al,
2002). Furthermore, microfluidic devices can be used to
introduce specific perturbations of the cellular microenviron-
ment. For instance, Takayama et al (2001) demonstrated that
a microfluidic device with multiple laminar inlet flows can

be used to deliver small molecules to selected domains
inside single mammalian cells.

Recently, Balaban et al (2004) employed microfluidic
devices to observe phenotypic switching of growth rates in
individual E. coli cells. Microfluidic devices containing narrow
PDMS grooves were developed to force the formation of linear
microcolonies during cell growth, thus allowing growth rates
of the progeny of individual cells to be determined from the
lengths of the linear microcolonies. The study found that
persister cells, cells that survive ampicillin treatment, had
slower growth rates than normal cells before exposure to
antibiotics. The authors conclude that phenotypic switching
between fast growth states and slow growth states enables
a fraction of a genetically homogenous population to survive
exposure to antibiotic treatment.

Microfluidic devices have also been used to extend the
duration of gene expression experiments. The duration of a
typical time-lapse experiment is limited by cell stacking
effects. This limitation can be overcome by utilizing a
microfluidic device in which the geometry of the device
confines cells to a monolayer, thus preventing cells from
growing out of the focal plane and allowing longer experi-
mental runs. Recently, Cookson et al (2005) designed such a
microfluidic device to acquire long-term single-cell dynamical
measurements over a large population. This device was used
to acquire single-cell fluorescence data from S. cerevesiae over
many cellular generations.

Microfluidic systems combine the advantages of flow
cytometry and conventional microscopy by providing a
method that is capable of tracking gene expression dynamics
in individual cells without sacrificing the ability to generate
good statistics over a population. Furthermore, microfluidic

Photoresist
Photomask

Silicon support

Silicon support

Silicon support

PDMS

PDMS

PDMS

Glass coverslip

(1) Design photomask 

(2) Expose to UV light

(4) Pour and cure PDMS

(5) Peel PDMS off master

(6) Bind PDMS to coverslip 

(3) Dissolve unexposed photoresist

Rapid
prototyping

Replica
 molding

Figure 4 Diagram of the main steps involved in fabricating a microfluidic
device. The first step in the fabrication process is to develop a photomask design
using a computer drawing package and to print the design onto transparency film
at high resolution. The second step is to coat a silicon support with photoresist
and expose the photoresist to ultraviolet light through the photomask. The third
step is to dissolve the unexposed photoresist to obtain a reusable master. The
master consists of cured photoresist on the silicon support with a pattern defined
by the photomask. The fourth step is to pour PDMS over the master and cure the
PDMS by baking at 801C for 1 h. The fifth step is to release the hardened PDMS
from the master. The sixth step is to bind the PDMS to the glass coverslip.
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technology allows for highly specific control of the cellular
microenvironment. Microfluidic devices can be scaled, allow-
ing high-throughput experiments to be performed. For
example, microfluidic networks containing arrays of indivi-
dual cell culture chambers have been developed to enable
monitoring of gene expression dynamics for multiple experi-
mental conditions. Thompson et al (2004) used this approach
to monitor changes in activation of a transcription factor in
response to eight different concentrations of a cytokine.

Future expectations

Single-cell time-lapse gene expression studies are necessary
for observing gene expression dynamics in heterogeneous cell
populations. Further advances in single-cell time-lapse experi-
mental techniques will likely lead to novel insights relating to
our understanding of gene regulation. Future gene expression
studies are apt to be capable of monitoring reporter levels with
increased sensitivity. For instance, two recent studies have
reported the development of single-protein molecule detection
techniques, which have been used to examine low-level gene
expression in individual cells (Cai et al, 2006; Yu et al, 2006).
The method developed by Yu et al utilizes a membrane-
targeting fluorescent fusion protein that can be detected with
single-molecule sensitivity as a result of the slower diffusion
times for membrane-bound protein molecules. The ultrasen-
sitive protein detection technique developed by Cai et al is
based on the b-gal reporter enzyme that hydrolyzes a synthetic
substrate to produce a fluorescent product. Cai et al modified
the classic b-gal assay to achieve high sensitivity by using
a microfluidic chamber to contain fluorescent product
molecules that are actively pumped out of the cell.

Future studies are likely to extend the length of time-lapse
experiments, and to monitor gene expression in a tightly
controlled environment, by drawing upon the capabilities
of microfluidic technology. Furthermore, the development
of parallelized microfluidic systems containing hundreds of
chambers will enable a large number of cellular populations to
be analyzed simultaneously (Martin et al, 2003).
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