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Introduction

This survey presents an exposition of homogeneous dynamics, that is, dynamical and
ergodic properties of actions on homogeneous spaces of Lie groups. Interest in this area
rose significantly during late eighties and early nineties, after the seminal work of Margulis
(the proof of the Oppenheim conjecture) and Ratner (conjectures of Raghunathan,Dani and
Margulis) involving unipotent flows on homogeneous spaces. Later developments were
considerably stimulated by newly found applications to number theory. By the end of
the 1990s this rather special class of smooth dynamical systems has attracted widespread
attention of both dynamicists and number theorists, and became a battleground for applying
ideas and techniques from diverse areas of mathematics.
The classical set-up is as follows. Given a Lie group G and a closed subgroup Γ ⊂ G,

one considers the left action of any subgroup F ⊂ G on G/Γ :

x "→ f x, x ∈ G/Γ, f ∈ F.

Usually F is a one-parameter subgroup; the action obtained is then called a homogeneous
(one-parameter) flow.
One may recall that many concepts of the modern theory of dynamical systems appeared

in connection with the study of the geodesic flow on a compact surface of constant negative
curvature. While establishing ergodicity and mixing properties of the geodesic flow, Hopf,
Hedlund et al., initiated the modern theory of smooth dynamical systems. Essentially, they
used the existence of what is now called strong stable and unstable foliations; later this
transformed into the theory of Anosov and Axiom A flows. On the other hand, while
studying orbits of the geodesic flow, Artin and Morse developed methods that later gave
rise to symbolic dynamics.
The methods used in the 1920–1940s were of geometric or arithmetic nature. The fact

that the geodesic flow comes from transitive G-action on G/Γ , Γ being a lattice in
G = SL(2,R), was noticed and explored by Gelfand and Fomin in the early 1950s. This
distinguished the class of homogeneous flows into a subject of independent interest; first
results of general nature appeared in the early 1960s in the book [9] by Auslander, Green,
and Hahn.
Since then, ergodic properties of homogeneous one-parameter flows with respect to Haar

measure have been very well studied using the theory of unitary representations, more
specifically, the so called Mautner phenomenon developed in papers of Auslander, Dani,
and Moore. Applying the structure of finite volume homogeneous spaces, one can now
give effective criteria for ergodicity and mixing properties, reduce the study to the ergodic
case, calculate the spectrum, etc.; see Sections 1 and 2 for the exposition.
The algebraic nature of the phase space and the action itself allows one to obtain

much more advanced results as compared to the general theory of smooth dynamical
systems. This can be seen on the example of smooth flows with polynomial divergence
of trajectories. Not much is known about these in the general case apart from the fact that
they have zero entropy. The counterpart in the class of homogeneous flows is the class of
the so called unipotent flows. Motivated by certain number theoretic applications (namely,
by the Oppenheim conjecture on indefinite quadratic forms), in the late 1970s Raghunathan
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conjectured that any orbit closure of a unipotent flow onG/Γ must be itself homogeneous,
i.e., must admit a transitive action of a subgroup ofG. This and a related measure-theoretic
conjecture by Dani, giving a classification of ergodic measures, was proved in the early
1990s by Ratner thus really providing a breakthrough in the theory. This was preceded
by highly nontrivial results of Margulis–Dani on nondivergence of unipotent trajectories.
Dynamics of unipotent action is exposed in Sections 3 of our survey.
On the other hand, a lot can be also said about partially hyperbolic homogeneous flows.

What makes the study easier, is that the Lyapunov exponents are constant. This (and, of
course, the algebraic origin of the flow) makes it possible to prove some useful results: to
calculate the Hausdorff dimension of nondense orbits, to classify minimal sets, to prove
the exponential and multiple mixing properties, etc. Needless to say that such results are
impossible or very difficult to prove for smooth partially hyperbolic flows of general nature.
The substantial progress achieved due to Ratner’s results for unipotent actions made

it possible to study individual orbits and ergodic measures for certain multi-dimensional
subgroupsF ⊂ G. These and aforementioned results for non-unipotent actions are exposed
in Section 4.
As was mentioned above, the interest in dynamical systems of algebraic origin in

the last 20 years rose considerably due to remarkable applications to number theory. It
was Margulis who proved the long standing Oppenheim conjecture in the mid 1980s
settling a special case of Raghunathan’s conjecture. Recently Eskin, Margulis and Mozes
(preceded by earlier results of Dani and Margulis) obtained a quantitative version of
the Oppenheim conjecture. Kleinbock and Margulis proved Sprindžuk’s conjectures
for Diophantine approximations on manifolds. Eskin, Mozes, and Shah obtained new
asymptotics for counting lattice points on homogeneous manifolds. Skriganov established
a typical asymptotics for counting lattice points in polyhedra. These and related results are
discussed in Section 5.
The theory of homogeneous flows has so many diverse applications that it is impossible

to describe all the related results, even in such an extensive survey. Thus for various reasons
we do not touch upon certain subjects. In particular, all Lie groups throughout the survey
are real; hence we are not concerned with dynamical systems on homogeneous spaces
over other local fields; we only note that the Raghunathan–Dani conjectures are settled
in this setup as well (see [147,148,190,191]). We also do not touch upon the analogy
between actions on homogeneous spaces of Lie groups and the action of SL(2,R) on the
moduli space of quadratic differentials, with newly found applications to interval exchange
transformations and polygonal billiards. See [152] for an extensive account of the subject.
The reader interested in a more detailed exposition of dynamical systems on homogeneous
spaces may consult recent books [237] by Starkov and [13] by Bekka and Mayer, or
surveys [57,59] by Dani. For a list of open problems we address the reader to a paper
of Margulis [144].

1. Lie groups and homogeneous spaces

In this section we give an introduction into the theory of homogeneous actions. We start
with basic results from Lie groups and algebraic groups (Sections 1.1 and 1.2). Then in
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Section 1.3 we expose briefly the structure of homogeneous spaces of finite volume. For
more details one can refer to books by Raghunathan [174], Margulis [141], Zimmer [264],
and survey by Vinberg, Gorbatsevich and Shvartzman [249].
Homogeneous actions come into stage in Section 1.4. Basic examples include:

rectilinear flow on a torus; solvable flows on a three-dimensional locally Euclidean
manifold; suspensions of toral automorphisms; nilflows on homogeneous spaces of the
three-dimensional Heisenberg group; the geodesic and horocycle flows on (the unit tangent
bundle of) a constant negative curvature surface; geodesic flows on locally symmetric
Riemannian spaces. Incidentally, in §1.3d we present the main link between homogeneous
actions with number theory (Mahler’s criterion and its consequences).

1.1. Basics on Lie groups

1a. Notations and conventions. Unless otherwise stated, all our Lie groups are assumed
to be real (i.e., over R). We use the following

NOTATION 1.1.1.
G̃ – the universal cover of Lie groupG;
g or Lie(G) – the Lie algebra of Lie group G;
exp :g "→ G – the exponential map;
e ∈ G – the identity element of G;
Ad :G "→Aut(g) – the adjoint representation defined as

Adg(x) =
d

dt

(
g exp(tx)g−1)|t=0, ∀g ∈ G, ∀x ∈ g;

ad :g "→ Der(g) – the adjoint representation of g, i.e., the differential of Ad, defined as
adx(y) = [x, y], x, y ∈ g;

H 0 ⊂ G – the connected component of the identity of a closed subgroup H ⊂ G;
ZG(H) ⊂ G – the centralizer of a subgroupH ⊂ G;
NG(H) ⊂ G – the normalizer of a subgroupH ⊂ G;
[H1,H2] – the commutant of subgroupsH1,H2 ⊂ G, i.e., the subgroup generated by all

commutators {h1, h2} = h1h2h
−1
1 h−1

2 , h1 ∈ H1, h2 ∈ H2.
gZ ⊂ G – the cyclic group generated by an element g ∈ G;
gR ⊂ G – a one-parameter subgroup of G;
〈S〉 – the subgroup generated by a subset S of G.
The notation G = A ! B stands for semidirect product of subgroups A,B ⊂ G. This

means that B is normal in G, A and B generate G, and A ∩ B = {e}.

It is well known that every Lie group admits a right-invariant measure m called Haar
measure, defined uniquely up to a multiplicative constant. It arises as the volume measure
for a right-invariant Riemannian metric dG. A Lie group G is said to be unimodular if its
Haar measure is bi-invariant. This is equivalent to saying that every operator Adg, g ∈ G,
is unimodular, i.e., |det(Adg)| = 1.
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DEFINITION 1.1.2. An element g ∈ G is said to be:
unipotent if (Adg − Id)k = 0 for some k ∈ N (this is equivalent to saying that all

eigenvalues of Adg are equal to 1);
quasi-unipotent if all eigenvalues of Adg are of absolute value 1;
partially hyperbolic if it is not quasi-unipotent;
semisimple if the operator Adg is diagonalizable over C;
R-diagonalizable if the operator Adg is diagonalizable over R;
A subgroup H ⊂ G is said to be unipotent (resp. quasi-unipotent) if all its elements are

such.
Let g be an element of G. Then the subgroups

G+ =
{
h ∈ G | g−nhgn → e, n → +∞

}
,

G− =
{
h ∈ G | gnhg−n → e, n → +∞

}

are called the expanding and contracting horospherical subgroups of G relative to g,
respectively. Any horospherical subgroup is connected and unipotent.

1b. Nilpotent and solvable Lie groups. Define G1 = G and Gk+1 = [G,Gk]. G is said
to be nilpotent if there exists n ∈ N such thatGn = {e}. For Lie groups this is equivalent to
all elements of G being unipotent.
If a subspace V of a nilpotent Lie algebra g is such that g = V + [g,g], then V

generates g. In particular, if subgroupH ⊂ G is such that G = H [G,G], then H = G.
A natural example of a nilpotent Lie group is the group N(n) ⊂ SL(n,R) of strictly

upper-triangular matrices. Every connected simply connected nilpotent Lie group G is
isomorphic to a subgroup of N(n) for some n ∈ N.
Define G1 = G and Gk+1 = [Gk,Gk]. A Lie group G is said to be solvable if there

exists n ∈ N such that Gn = {e}. Every nilpotent group is solvable.
Let G be a Lie group. The maximal connected nilpotent (resp. solvable) normal

subgroupN ⊂ G (resp. R ⊂ G) is said to be the nilradical (resp. the radical) of G.
If G is connected and solvable, then [G,G] ⊂ N , and hence the groupG/N is Abelian.
LetG be a connected simply connected solvable Lie group. ThenG is diffeomorphic to a

vector space, and every connected subgroup ofG is simply connected and closed. The map
exp :g "→ G need not be a diffeomorphism, but if it is so thenG is said to be an exponential
Lie group. G is exponential iff for every eigenvalue λ of any operator Adg, g ∈ G, either
λ = 1 or |λ| += 1. In particular, any connected simply connected nilpotent Lie group is
exponential.
If all eigenvalues of any operator Adg, g ∈ G, are of absolute value 1, then G is said

to be of type (I) (from ‘imaginary’). Hence G is of type (I) iff all its elements are quasi-
unipotent. If all eigenvalues of any operator Adg, g ∈ G, are purely real, then G is said to
be a triangular group. Any connected simply connected triangular group is isomorphic to
a subgroup of the group T (n) ⊂ SL(n,R) of upper-triangular matrices (for some n ∈ N).
Any triangular solvable group is exponential. A solvable group is nilpotent iff it is both
exponential and of type (I).
Within the class of solvable Lie groups of type (I) one distinguishes the subclass of

Euclidean Lie groups. A Lie group G is said to be Euclidean if G splits into a semidirect
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productG = A ! Rn, where Rn is the nilradical ofG, A is Abelian, and the representation
Ad :G "→Aut(Rn) =GL(n,R) sends A to a compact subgroup of GL(n,R).
A natural example of simply connected Euclidean group is the following. Let G =

gR ! R2, where the action of gt on the plane R2 by conjugation is given by the matrix( cos t sin t

− sin t cos t

)
. Then G is easily seen to be Euclidean; in fact, it is the universal cover of the

groupG/Z(G) = SO(2) ! R2 of Euclidean motions of the plane.

1c. Semisimple Lie groups. A connected Lie group G is said to be semisimple if its
radical is trivial. G is said to be simple if it has no nontrivial proper normal connected
subgroups. Every connected semisimple Lie groupG can be uniquely decomposed into an
almost direct product G = G1G2 · · ·Gn of its normal simple subgroups, called the simple
factors ofG. That is,Gi andGj commute and the intersectionGi ∩Gj is discrete if i += j .
If in addition G is simply connected or center-free, then G = G1 × G2 × · · · × Gn.
If G is semisimple then its center Z(G) is discrete (and coincides with the kernel of the

adjoint representation if G is connected).
The universal cover of a compact semisimple Lie group is compact (Weyl). Compact

semisimple Lie groups (e.g., SO(n), n ! 3) have no unipotent one-parameter subgroups.
On the contrary, noncompact simple connected Lie groups (e.g., SL(n,R), n ! 2) are
generated by unipotent one-parameter subgroups.
Let G be a connected semisimple Lie group. Then G is almost direct product G = KS

of its compact and totally noncompact parts, where K ⊂ G is the product of all compact
simple components of G, and S the product of all noncompact simple components. G is
called totally noncompact if K is trivial.
For any unipotent subgroup uR ⊂ G there exists a connected subgroupH ⊂ G such that

uR ⊂ H and H is locally isomorphic to SL(2,R) (Jacobson–Morozov Lemma).
Let G be a connected semisimple Lie group. A subgroup H ⊂ G is said to be Cartan

if H is a maximal connected Abelian subgroup consisting of semisimple elements. Any
Cartan subgroup has a unique decompositionH = T ×A into a direct product of a compact
torus T and an R-diagonalizable subgroup A.
All maximal connected R-diagonalizable subgroups in G are conjugate and their

common dimension is called the R-rank of G. For instance, rankR SL(n,R) = n − 1;
rankR G = 0 iff G is compact. If maximal R-diagonalizable subgroups are Cartan
subgroups then G is said to be an R-split group.
Of special importance for us will be the group SO(1, n) of all elements g ∈ SL(n+1,R)

keeping the quadratic form x21 − x22 − · · · − x2n+1 invariant. One knows that SO(1, n) is a
simple Lie group of R-rank one for any n ! 2. Also SO(1,2) is locally isomorphic to
SL(2,R).
Now assume that G has finite center. Let C ⊂ G be a maximal connected compact

subgroup, and B ⊂ G a maximal connected triangular subgroup. Then C ∩ B = {e}, and
any element g ∈ G can be uniquely decomposed as g = cb, c ∈ C, b ∈ B . Besides,
B = A ! U , where U is the nilradical of B called a maximal horospherical subgroup
of G, and A is a maximal R-diagonalizable subgroup. Decomposition G = CB = CAU

is called the Iwasawa decomposition of G. All maximal compact connected subgroups in
G are conjugate. The same holds for maximal connected triangular subgroups; hence all
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maximal horospherical subgroups are conjugate. The normalizer of U is called minimal
parabolic subgroup of G (clearly it contains B).
Any horospherical subgroup (see §1.1a for the definition) is contained in a maximal

horospherical subgroup. The normalizer of a horospherical subgroup is called a parabolic
subgroup of G. Any parabolic subgroup contains a minimal parabolic subgroup.
Any element g ∈ G can be (non-uniquely) decomposed in the form g = cac′, c, c′ ∈ C,

a ∈ A. The formulaG = CAC is referred to as the Cartan decomposition.

1d. Levi decomposition. Let G be a connected Lie group, R the radical of G, and
L ⊂ G a maximal connected semisimple subgroup (called a Levi subgroup of G). Then
the intersection L ∩ R is discrete and G is generated by L and R. The decomposition
G = LR is called the Levi decomposition of G. If G is simply connected then G = L ! R.
Let N ⊂ R be the nilradical of G. All Levi subgroups in G are conjugate by elements

of N (Malcev).

1e. Group actions and unitary representations. If X is a topological space, we denote
by P(X) the space of all Borel probability measures on X, with the weak-∗ topology, that
is, the topology induced by the pairing with the space Cc(X) of continuous compactly
supported functions on X. Any continuous action of a groupG on X induces a continuous
action of G on P(X) given by

gµ(A) = µ
(
g−1A

)
, where g ∈ G and A is a Borel subset of X. (1.1)

For a measure µ on X, we will denote by Stab(µ) the set of elements g ∈ G such that
gµ = µ. The action of G on the measure space (X,µ) is called measure-preserving if
Stab(µ) coincides with G. In general, due to the continuity of the G-action on P(X), one
has

LEMMA 1.1.3. Stab(µ) is a closed subgroup of G for any µ ∈P(X).

A very important tool for studying homogeneous actions is the theory of unitary
representations. By a unitary representation of a locally compact group G on a separable
Hilbert space H we mean a continuous homomorphism of G into the group U(H) of
unitary transformations ofH (supplied with the weak operator topology).
Clearly any measure-preserving G-action on a measure space (X,µ) leads to a unitary

representation ρ of G on the space L2(X,µ) of square-integrable functions on X, defined

by (ρ(g)f )(x)
def
= f (g−1x), and called the regular representation of G associated with the

action. As is well known, many ergodic properties of theG-action on (X,µ) are expressed
in terms of ρ: e.g., the action is ergodic iff any ρ(G)-invariant element of L2(X,µ) is
a constant function; the action of a one-parameter group gR is weakly mixing iff any
f ∈ L2(X,µ) such that ρ(gt )f = eiλtf for some λ ∈ R and all t ∈ R is a constant function.
Similarly to Lemma 1.1.3, one derives the following useful result from the continuity of

the regular representation:
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LEMMA 1.1.4. Given any f ∈ L2(X,µ), the stabilizer Stab(f )
def
= {g ∈ G | ρ(g)f = f }

is a closed subgroup of G.

Let π be a unitary representation of G on H. If a closed subspace H′ of H is
invariant under π(G), then the restriction of π to H′ is called a sub-representation of π .
A representation is called irreducible if it has no nontrivial sub-representations. Two
representations π :G "→ U(H) and π ′ :G "→ U(H′) are called equivalent if there exists
an invertible operator A :H "→ H′ such that π ′(g) = Aπ(g)A−1 for each g ∈ G. The Fell
topology on the set of all equivalence classes [(π,H)] of unitary representations π of G

on H is defined as follows: the sets

{
[(

π ′,H′)]
∣∣∣∣∣
there exist η1, . . . ,ηn ∈ H′ such that
∣∣〈π(g)ξi , ξj

〉
−

〈
π ′(g)ηi ,ηj

〉∣∣ < ε, ∀g ∈ K, 1" i, j " n

}
,

whereK is a compact subset ofG, ε > 0 and ξ1, . . . , ξn ∈H, form a basis of neighborhoods
of the class [(π,H)]. This topology is not Hausdorff; of special interest is the question of
whether a certain representation1 (or a family of representations) is isolated from the trivial
(one-dimensional) representation IG of G.

G is said to have property-(T ) if the set of all its unitary representationswithout invariant
vectors (that is, not having a trivial sub-representation) is isolated from IG. Any compact
group has property-(T), and an amenable group (see [3]) has property-(T) iff it is compact.
If G is a connected semisimple Lie group with finite center, then G has property-(T) iff it
has no factors locally isomorphic to SO(1, n) or SU(1, n), n ! 2. See [1] for more details
and the proof of the aforementioned result.

1.2. Algebraic groups

We will give the definitions in the generality needed for our purposes. A subset X ⊂
SL(n,R) will be called real algebraic if it is the zero set for a family of real polynomials
of matrix entries. This defines the Zariski topology on SL(n,R). In contrast, the topology
on SL(n,R) as a Lie group will be called the Hausdorff topology.
To save words, real algebraic subgroups of SL(n,R) will be referred to as R-algebraic

groups. Any R-algebraic group has a finite number of connected components relative to
the Hausdorff topology. The intersection of R-algebraic groups is an R-algebraic group.
If G ⊂ SL(n,R) is an R-algebraic group and H ⊂ G its subgroup, then the centralizer
ZG(H) and the normalizer NG(H) are R-algebraic. The product AB ⊂ SL(n,R) of two
R-algebraic groups is locally closed (in both topologies).
The smallest R-algebraic group Zcl(H) containing a subgroup H ⊂ SL(n,R) is called

the Zariski closure of H (and one says that H is Zariski dense in Zcl(H)). If H is
Abelian (resp. nilpotent, solvable) then Zcl(H) is Abelian (resp. nilpotent, solvable). If
H normalizes a connected Lie subgroup F ⊂ SL(n,R) then so does Zcl(H).

1For brevity we will from now on write ‘representation’ meaning ‘equivalence class of representations’.
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2a. Classification of elements and subgroups. An element g ∈ SL(n,R) is called
unipotent if (g − In)

k = 0 for some k ∈ N (here and hereafter In stands for the n × n

identity matrix). An element g ∈ SL(n,R) is called semisimple (resp. R-diagonalizable)
if it is diagonalizable over C (resp. over R).2 If G is R-algebraic then any element g ∈ G

admits the decomposition g = gs ×gu, where gs ∈ G is semisimple and gu ∈ G is unipotent
(Jordan decomposition).
Clearly, the group D(n) ⊂ SL(n,R) of all diagonal matrices consists of R-diagonaliz-

able elements. It contains (at most) countable number of R-algebraic subgroups. An
R-algebraic subgroup H ⊂ SL(n,R) is called R-diagonalizable if it is conjugate to a
subgroup of D(n).
An R-algebraic subgroup H ⊂ SL(n,R) is called unipotent if all its elements are such

(and then H is conjugate to a subgroup of N(n)). H ⊂ N(n) is algebraic iff it is connected
in the Hausdorff topology.
The maximal normal unipotent subgroup of an R-algebraic group G is called the

unipotent radical of G. If the unipotent radical is trivial then G is called reductive. Any
Abelian reductive group is the direct product of a compact torus and an R-diagonalizable
group (and hence consists of semisimple elements). Any reductive group is an almost direct
product of its Levi subgroup and an Abelian reductive group. Any compact subgroup
of SL(n,R) is a reductive R-algebraic group. Any semisimple subgroup of SL(n,R) is
“almost R-algebraic” (it is of finite index in its Zariski closure).
Any R-algebraic group is a semidirect product of a maximal reductive subgroup and

the unipotent radical. In particular, any solvable R-algebraic group splits into a semidirect
product of its maximal Abelian reductive subgroup and the unipotent radical.

2b. Algebraic groups over Q. If a subgroup G of SL(n,R) is the zero set of a family
of polynomials of matrix entries with coefficients in Q, then it is called a Q-algebraic

group, or a Q-group. If G is a Q-algebraic group then the set G(Q)
def
= G ∩ SL(n,Q) of its

rational points is Zariski dense in H . If H ⊂ SL(n,Q), then Zcl(H) is Q-algebraic. The
centralizer and the normalizer of a Q-algebraic group are Q-algebraic. The radical, the
unipotent radical, and the center of Q-algebraic group are Q-algebraic. Any Q-algebraic
group admits a maximal reductive subgroup which is Q-algebraic.
If g ∈ SL(n,Q) then its semisimple and unipotent parts in the Jordan decomposition are

elements of SL(n,Q).
A Q-character of a Q-group G ⊂ SL(n,R) is a homomorphism χ from G to the

multiplicative group R∗ which can be written as a polynomial of matrix entries with
coefficients in Q. Unipotent Q-groups admit no nontrivial Q-characters. An Abelian
reductive Q-group is said to be Q-anisotropic if it admits no nontrivial Q-characters, and
Q-split if it has no nontrivial Q-anisotropic subgroups. Clearly, any Abelian reductive
Q-group is the direct product of its Q-anisotropic and Q-split parts. Any Q-split group
is R-diagonalizable.
MaximalQ-split subgroups of a semisimpleQ-groupG are conjugate and their common

dimension is called the Q-rank of G (clearly, 0 " rankQ G " rankR G). Moreover,
rankQ G = 0 iff G(Q) consists of semisimple elements.

2These properties are analogous to those for elements of Lie groups (cf. Definition 1.1.2). As a rule, it follows
from the context which ones are used.
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Let G ⊂ SL(n,R) be an R-algebraic group. A homomorphism ρ :G "→ SL(N,R) is
called an algebraic linear representation if its coordinate functions are polynomials of
matrix entries. If all the polynomials have coefficients in Q, then ρ is said to be a
Q-algebraic linear representation.
By Chevalley’s theorem, for any R-algebraic group G ⊂ SL(n,R) there exist an

algebraic linear representation ρ : SL(n,R) "→ SL(N,R) and a vector v ∈ RN such that

G =
{
g ∈ SL(n,R) | ρ(g)(Rv) = Rv

}
.

Moreover, by [26, Proposition 7.7], if G is either unipotent or reductive then there exist ρ
and v such that

G =
{
g ∈ SL(n,R) | ρ(g)(v) = v

}
.

If in addition G is a Q-group then ρ can be chosen to be Q-algebraic and v to be an
element ofQN . In this case ρ(SL(n,Z)) has a finite index subgroup contained in SL(N,Z).
Therefore ρ(SL(n,Z))(v) is a discrete subset of RN . We derive the following (cf. [174,
Proposition 10.15]):

PROPOSITION 1.2.1. Let G ⊂ SL(n,R) be a connected real algebraic Q-subgroup.
Assume that either (i) G has no nontrivial Q-characters, or (ii) G is a reductive subgroup.
Then the G-orbit of the identity coset in SL(n,R)/SL(n,Z) is closed.

1.3. Homogeneous spaces

Let G be a connected Lie group and D ⊂ G its closed subgroup. In the survey we work
mainly with right homogeneous spacesG/D, but occasionally (see §1.3c, §1.3e and §1.4e–
§1.4f) we turn to left homogeneous spaces D\G.
Any right-invariant Haar measure on G induces a smooth volume measure ν on G/D

which will be also called a Haar measure. The space G/D is said to be of finite volume
(we denote it by vol(G/D) < ∞) if Haar measure ν on G/D is G-invariant and finite.
If D ⊂ F ⊂ G then vol(G/D) < ∞ ⇔ vol(G/F) < ∞ and vol(F/D) < ∞. In

particular, if H ⊂ G is a normal subgroup, vol(G/D) < ∞ and the product HD is closed
then vol(H/D ∩ H) < ∞.
A closed subgroupD ⊂ G is said to be uniform if the space G/D is compact.
A discrete subgroup Γ ⊂ G is said to be a lattice in G if vol(G/Γ ) < ∞. Any uniform

discrete subgroup is a lattice.
IfG is aQ-algebraic group, one has the following criterion of Borel and Harish-Chandra

for its group of integer points GZ
def
= G ∩ SL(n,Z) being a lattice in G:

THEOREM 1.3.1. Let G ⊂ SL(n,R) be a Q-algebraic group. Then G(Z) is a lattice in G

iff G admits no nontrivial Q-characters.
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A closed subgroup D ⊂ G is said to be a quasi-lattice in G if vol(G/D) < ∞ and D

contains no nontrivial normal connected subgroups of G.
Subgroups Γ,Γ ′ ⊂ G are called commensurable if the intersection Γ ∩ Γ ′ is of finite

index both in Γ and Γ ′. For Γ ⊂ G one defines the commensurator of Γ in G to be the
subgroup

CommG(Γ )
def
=

{
g ∈ G | Γ and gΓ g−1 are commensurable

}
.

For example, the commensurator of SL(n,Z) in SL(n,R) is equal to SL(n,Q). A closed
subset X ⊂ G/D is said to be homogeneous if there exist a point x ∈ X and a subgroup
H ⊂ G such that X = Hx .

3a. Homogeneous spaces of nilpotent and solvable Lie groups. Let ρ :G "→ SL(n,R) be
a finite-dimensional representation. Subgroup H ⊂ G is said to be Zariski dense in ρ if
ρ(H) and ρ(G) have the same Zariski closures. ρ is said to be a unipotent representation
if ρ(G) ⊂ SL(n,R) is a unipotent subgroup.
Homogeneous spaces of nilpotent (resp. solvable) Lie group are called nilmanifolds

(resp. solvmanifolds).
In this subsection G is assumed to be a connected simply connected Lie group.
Let G be a nilpotent Lie group, and D ⊂ G its closed subgroup. Then vol(G/D) <

∞ ⇔ G/D is compact ⇔ D is Zariski dense in any unipotent representation of G

(Malcev [129]). In particular, any quasi-lattice in G is a lattice (the Lie subalgebra of D0

is invariant under Ad(D) and hence under Ad(G)). It is known that G contains a lattice iff
it admits a structure of a Q-algebraic group (Malcev), and not every nilpotent group with
dimG > 6 contains a lattice. If Γ is a lattice in G, then Γ ∩ [G,G] is a lattice in [G,G].
Now let G be a solvable Lie group and N ⊂ G its nilradical. Then vol(G/D) < ∞ ⇔

G/D is compact; if D is a quasi-lattice in G, then vol(N/N ∩ D) < ∞ and D0 ⊂ N

(Mostow [157]). In particular, any compact solvmanifold G/D bundles over a nontrivial
torus (overG/ND if G is not nilpotent or over G/[G,G]D if it is). The criterion for G to
have at least one quasi-lattice is quite intricate (see [5] for details).
Homogeneous spaces of Euclidean Lie group are called Euclidean (see §1.4b for

examples). A compact solvmanifold is Euclidean iff it is finitely covered by a torus
(Brezin andMoore [30]). Every compact solvmanifold admits a uniquemaximal Euclidean
quotient space.

3b. Homogeneous spaces of semisimple Lie groups. Let G be a semisimple Lie group.
Then it has both uniform and non-uniform lattices (Borel). Let G = K × S be the
decomposition into compact and totally noncompact parts. Assume that vol(G/D) < ∞
and G = SD. Then D is Zariski dense in any finite-dimensional representation of G

(Borel Density Theorem). In particular, any quasi-latticeD ⊂ G is a lattice, and the product
DZ(G) is closed (both statements do not hold if G += SD).
Let Γ be a lattice inG andH ⊂ G a Cartan subgroup. Then the set {g ∈ G | gΓ g−1∩H

is a lattice in H } is dense in G (Mostow [158], Prasad and Raghunathan [173]).
It follows from Theorem 1.3.1 that G(Z) is a lattice in G whenever G is a semisimple

Q-group. Moreover, it can be shown that G(Z) is a uniform lattice in G iff G(Q) consists
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of semisimple elements (Borel–Harish-Chandra). Note that the latter, as was mentioned in
§1.2b, is equivalent to vanishing of rankQ G.
The lattice G(Z) presents an example of so called arithmetic lattices. More generally:

a lattice Γ in a semisimple Lie groupG is said to be arithmetic if there exist a Q-algebraic
group H ⊂ SL(n,R) and an epimorphism ρ :H "→Ad(G) with compact kernel such that
subgroups ρ(H(Z)) and Ad(Γ ) are commensurable.
Let G be a semisimple Lie group, and Γ ⊂ G a Zariski dense lattice. Then Γ is said to

be irreducible if given any noncompact connected normal subgroup G′ ⊂ G one has G =

G′Γ . For every lattice Γ ⊂ G there exist a finite index subgroup Γ ′ ⊂ Γ and an almost
direct decompositionG = G1G2 · · ·Gn such that Γ ′ = (Γ ′ ∩ G1)(Γ

′ ∩ G2) · · · (Γ ′ ∩ Gn)

and Γ ′ ∩ Gi is an irreducible lattice in Gi for every i = 1, . . . , n (decomposition into
irreducible components).
The central result in the theory of discrete subgroups of semisimple Lie groups is the

followingMargulis Arithmeticity Theorem:

THEOREM 1.3.2. Let G be a totally noncompact semisimple Lie group with rankR G ! 2.
Then any irreducible lattice in G is arithmetic.

3c. Hyperbolic surfaces as homogeneous spaces. LetH2 = {z = x + iy ∈ C | Im(z) > 0}
stand for the hyperbolic plane, which, as is well-known, is of constant curvature−1 relative
to the metric dl2 = (dx2+dy2)/y2. The group SL(2,R) acts isometrically and transitively
on H2 by linear-fractional transformations

fg(z) =
az + b

cz + d
, z ∈ H2, g =

(
a b

c d

)
∈ SL(2,R)

with the kernel Z2 = {± Id} ⊂ SL(2,R). The quotient group G = PSL(2,R) = SL(2,R)/

Z2 0 SO(1,2)0 acts effectively on H2, and the isotropy subgroup of the point z0 = i ∈ H2

is C = PSO(2) = SO(2)/Z2; hence H2 can be identified with G/C.
Let SH2 be the unit tangent bundle over H2. The differential of the action of PSL(2,R)

on H2 defines a transitive and free action on SH2, so the latter can be naturally identified
with G. Furthermore, any smooth surface M of constant curvature −1 is of the form
M = Γ \H2 = Γ \G/C for some discrete subgroup Γ of G (such groups are called
Fuchsian) having no torsion. The unit tangent bundle SM is therefore the left homogeneous
space Γ \SH2 = Γ \G. The volume form for the Riemannian metric on M induces a
G-invariant measure on SM , which is called the Liouville measure, and clearly coincides
with the appropriately normalized Haar measure on Γ \G. In particular, a surface M =

Γ \H2 is of finite area iff Γ is a lattice in G (i.e., SM = Γ \G is of finite volume). The
most important example is the modular surface SL(2,Z)\H2, which is responsible for
many number-theoretic applications of dynamics (see, e.g., the beginning of §5.2c).

3d. The space of lattices. Let us now consider a generalization of the aforementioned
example, which also plays a very important role in applications to number theory. Namely
define Ωk to be the right homogeneous space G/Γ , where G = SL(k,R) and Γ =

SL(k,Z). The standard action of Γ on Rk keeps the lattice Zk ⊂ Rk invariant, and, given
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any g ∈ G, the lattice gZk is unimodular, i.e., its fundamental set is of unit volume. On
the other hand, any unimodular lattice Λ in Rk is of the form gZk for some g ∈ Γ . Hence
the space Ωk is identified with the space of all unimodular lattices in Rk , and clearly this
identification sends the left action of G on G/Γ to the linear action on lattices in Rk : for a
lattice Λ ⊂ Rk , one has gΛ = {gx | x ∈ Λ}.
The geometry of the space Ωk is described by the so called reduction theory for lattices

in Rk ; that is, following Minkowski and Siegel, one specifies an (almost) fundamental
domain Σ for the right Γ -action on G. This way one can show that Γ is a non-uniform
lattice in G; that is, Ωk is not compact for every k ! 2. See [174] or [26] for more details.
Bounded subsets of Ωk can be described using the following Mahler’s Compactness

Criterion, which incidentally serves as one of the main links between number theory and
the theory of homogeneous actions:

THEOREM 1.3.3. A sequence of lattices giSL(k,Z) goes to infinity in Ωk ⇔ there exists
a sequence {xi ∈ Zk \ {0}} such that gi(xi) → 0, i → ∞. Equivalently, fix a norm on Rk

and define the function δ on Ωk by

δ(Λ)
def
= max
x∈Λ\{0}

‖x‖. (1.2)

Then a subset K of Ωk is bounded iff the restriction of δ on K is bounded away from zero.

Denote by ν the probability Haar measure on Ωk . The interpretation of points of Ωk as
lattices in Rk gives rise to the following important connection between ν and the Lebesgue
measure on Rk . Let us introduce the following notation: if ϕ is a function on Rk , denote

by ϕ̃ the function on Ωk given by ϕ̃(Λ)
def
=

∑
x∈Λ\{0} ϕ(x). It follows from the reduction

theory that ϕ̃ is integrable whenever ϕ is integrable, and moreover, the Siegel summation
formula [208] holds: for any ϕ ∈ L1(Rk) one has ϕ̃(Λ) < ∞ for ν-almost all Λ ∈ Ωk , and

∫

Rk

ϕ(x)dx=

∫

Ωk

ϕ̃(Λ)dν(Λ). (1.3)

See [118, §7] for a modification and a generalization involving sums over d-tuples of
vectors. This formula is very useful for counting lattice points inside regions in Rk: indeed,
if ϕ is a characteristic function of a subset B of Rk , the integrand in the right-hand side of
the above equality gives the cardinality of the intersection of Λ \ {0} with B .

3e. Locally symmetric spaces as infra-homogeneous spaces. The examples considered
in §1.3c are representatives of a large class of homogeneous spaces arising from
considerations of locally symmetric spaces of noncompact type. Here we again switch to
left homogeneous spaces. Let G be a semisimple noncompact Lie group with finite center,
andC ⊂ G a maximal compact connected subgroup. The Lie algebra g is equippedwith the
nondegenerate bilinear Ad(C)-invariant form B(x, y) = Tr(adx ◦ ady), x, y ∈ g, called the
Killing form. Let c ⊂ g be the Lie subalgebra of C, and p ⊂ g the orthogonal complement
to c in g, i.e., B(c,p) ≡ 0. Then g = c + p and c ∩ p = 0. The decomposition g = c + p is
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called the Cartan or polar decomposition of g. For G = SL(n,R) and C = SO(n) this is
simply the decomposition into subspaces of skew-symmetric and symmetric matrices.
One knows that p is an Ad(C)-invariant subspace of g consisting of R-diagonalizable

elements. The restriction of B onto p is a positively defined bilinear form which induces

a C-invariant Riemannian metric on X
def
= G/C with nonpositive sectional curvature.

The space X is a symmetric Riemannian space (i.e., Riemannian space with geodesic
involution); moreover, it is known that any symmetric Riemannian space X of nonpositive
sectional curvature is isometric to G/C, where G is a totally noncompact semisimple Lie
group and the connected component C0 of C is a maximal compact connected subgroup
of G. The space X is of (strictly) negative curvature iff rankR G = 1, and in this case
the metric can be normalized so that the curvature takes values in the interval [−4,−1].
Moreover, the curvature is constant iff X = Hn = SO(1, n)0/SO(n) (see §1.3c for the case
n = 2).
Similarly, any locally symmetric Riemannian space M of nonpositive curvature can be

realized as M ∼= Γ \G/C, where Γ is a discrete torsion-free subgroup of G. Again, the
volume form on M comes from the appropriately normalized Haar measure on Γ \G.
Further, due to the compactness of C, the geometry of M , up to a bounded distortion,
corresponds to that of Γ \G. For example, if M is noncompact, of finite volume and
irreducible,3 one can apply reduction theory for arithmetic4 groups [26] to study the
asymptotic geometry of Γ \G andM . In particular, this way one can describe the behavior
of the volumemeasure at infinity; more precisely, similarly to Theorem 1.3.5, the following
can be proved (see [118] for details):

THEOREM 1.3.4. For M as above, there exist k,C1,C2 > 0 such that for any y0 ∈ M and
any R > 0,

C1 e
−kR " vol

({
y ∈ M | dist(y0, y) ! R

})
" C2 e

−kR.

A more precise result for the case G = SL(k,R) and Γ = SL(k,Z) is obtained in [118]
using (1.3): one describes the asymptotic behavior of the normalized Haar measure ν on
Ωk at infinity similarly to what was done in Theorem 1.3.4, but with the function

∆(Λ)
def
= log

(
1/δ(Λ)

)
(1.4)

in place of the distance function:

THEOREM 1.3.5. There exist positive Ck, C′
k such that

Ck e
−kR ! ν

({
Λ ∈ Ωk | ∆(Λ) ! R

})
! Ck e

−kR − C′
k e

−2kR for all R ! 0.

3That is, it cannot be compactly covered by a direct product of locally symmetric spaces; in this case Γ is an
irreducible lattice in G.
4One can use Theorem 1.3.2 whenever rankR G > 1; otherwise one uses the structure theory of lattices in

rank-one Lie groups developed in [86].
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3f. Homogeneous spaces of general Lie groups. Now let G be a connected simply
connected Lie group. We will use a Levi decomposition G = L ! R together with the
decomposition L = K ×S of Levi subgroup L into compact and totally noncompact parts.
Assume that vol(G/D) < ∞ and D0 is solvable. Then there exists a torus T ⊂ L such

that T R = (RD)0 and the space T R/D ∩ T R is compact (Auslander). Together with the
Borel density theorem this easily implies that Γ ∩ KR is a lattice in KR for any lattice
Γ ⊂ G.
In particular, if the Levi subgroup L ⊂ G is totally noncompact, then any lattice in G

intersects the radical R in a lattice (Wang [251]). More generally, let D ⊂ G be a quasi-
lattice and G = SRD. Then D ∩ R is a quasi-lattice in R (Witte [255] and Starkov [223]).
Mostow’s theorem for lattices in solvable Lie groups (see §1.3a) can be generalized as

follows. Let N be the nilradical inG. Then any lattice in G intersects the normal subgroup
LN ⊂ G in a lattice (see [229]).
The Malcev and Borel density theorems were generalized by Dani [46] in the following

way:

THEOREM 1.3.6. Let ρ :G "→ SL(n,R) be a finite-dimensional representation of a
connected Lie group G and vol(G/D) < ∞. Then the Zariski closure Zcl(ρ(D)) contains
all unipotent and R-diagonalizable one-parameter subgroups of the Zariski closure
Zcl(ρ(G)). In particular, Zcl(ρ(G))/Zcl(ρ(D)) is compact.

This result can be deduced from the following more powerful result due to Dani [48,
Corollary 2.6] (see also [257, Proof of Corollary 4.3]):

THEOREM 1.3.7. Let H ⊂ G ⊂ GL(n,R) be real algebraic groups. Let µ be a finite
measure on G/H . Then Stab(µ) ⊂ G is a real algebraic subgroup of G containing

Jµ
def
=

{
g ∈ G | gx = x ∀x ∈ suppµ

}

as a normal subgroup, and Stab(µ)/Jµ is compact.

1.4. Homogeneous actions

Let G be a Lie group and D ⊂ G its closed subgroup. Then G acts transitively by left
translations x "→ gx on the right homogeneous space G/D with D being the isotropy
subgroup. Given a subgroup F ⊂ G one studies the left action of F on G/D which is
called homogeneous action and is denoted by (G/D,F). The main assumptions we make
in our exposition are as follows: G is a connected Lie group and vol(G/D) < ∞. The
classical case is that F is a one-parameter or a cyclic group. If F is a connected subgroup
of G one calls the action a homogeneous flow.
Let (G/D,F) be a homogeneous action on a finite volume space G/D, where G is a

connected Lie group. Before giving examples, let us make some immediate observations.
First, with no harm G can be assumed to be simply connected. Otherwise one takes the

universal covering α : G̃ "→ G and replaces the action (G/D,F) by the action (G̃/D̃, F̃ ),
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where D = α−1(D), F̃ = α−1(F ). If the acting group has to be connected, one takes
F̃ = (α−1(F ))0.
Second, one can assume that D is a quasi-lattice in G. Otherwise take the maximal

connected normal in G subgroup H ⊂ D and replace the action (G/D,F) by the action
(G′/D′,F ′), where G′ = G/H, D′ = D/H, F ′ = FH/H . If G is simply connected then
so is G′. Thus it is natural in many cases to assume that D is a quasi-lattice in a connected
simply connected Lie groupG.
Third, sometimes (as we have seen in §1.3c and §1.3e) it is more natural to consider

right actions on left homogeneous spaces. One easily checks that the map gD "→
Dg−1 establishes isomorphism (both topological and measure-theoretic) between the left
F -action on G/D and the right F -action on D\G.
Finally, conjugate subgroupsF and gFg−1 act isomorphically onG/D, and the isomor-

phism is given by the map βg(hD) = ghD (since βg(f hD) = gf hD = gfg−1βg(hD) for
all h ∈ G, f ∈ F ).
Let us now turn to various examples of homogeneous actions.

4a. Flows on tori. The simplest example of a homogeneous action is, of course, the
rectilinear flow (Tn,Rv) on the n-torus Tn = Rn/Zn, where v ∈ Rn. Here G = Rn, D =

Zn and F = Rv is a one-parameter subgroup of G. Kronecker’s criterion for the flow to
be ergodic is that the coordinates of v are linearly independent over Q. The proof easily
follows from considering the Fourier series on Tn. We prefer somewhat more general way
of proving ergodicity.
Let f ∈ L2(Tn) be an F -invariant function. Then Stab(f ) contains both F and Zn,

and by Lemma 1.1.4 it should contain the closure A = FZn. But one knows that A = Rn

provided the coordinates of v are independent over Q.
Moreover, letµ ∈P(Tn) be anyF -invariant probabilitymeasure. Then by Lemma 1.1.3,

Stab(µ) ⊃ A = FZn. It follows that the rectilinear flow is uniquely ergodic whenever it is
ergodic.
If it is not ergodic then one easily checks that the smooth partition of Tn into closed

A-orbits defines the ergodic decomposition. All the ergodic components are homogeneous
subspaces (subtori of Tn) of the same dimension.

4b. Flows on Euclidean manifolds. Now let G = gR ! R2 be the Euclidean 3-dimen-
sional group from §1.1b with the center Z(G) = g2πZ. Then G is diffeomorphic to the
3-space G∗ = R × R2 via the bijection

ϕ(gtx) = t × x, t ∈ R, x = (x1, x2) ∈ R2.

One easily checks that D = g2πZ × Z2 is a lattice in G. The bijection ϕ establishes
diffeomorphism betweenG/D and the 3-torusG∗/D∗, where D∗ = ϕ(D) = (2πZ) × Z2.
Moreover, it induces an isomorphism (both smooth and measure-theoretic) between
(G/D,gR) and (G∗/D∗,R). All the orbits of the latter are periodic and hence the flows
are not ergodic.
Any one-parameter subgroup of G either lies in the nilradical R2 ⊂ G or is conjugate

to gR. Hence G/D admits no ergodic homogeneous flows.
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Clearly, the same holds if one replaces D with D1 = gπZ ! Z2. Then D is of index
2 in D1 and G/D1 is two-fold covered by the 3-torus G∗/D∗. Again, all orbits of the
flow (G/D1, gR) are periodic and the partition of G/D1 into orbits forms the ergodic
decomposition. One can check that (unlike the previous case) the partition is not a smooth
bundle of G/D1 (see [222] or [237]).
Now takeD2 = aZ × Z2, where a = g2π × (

√
2,0). Then ϕ establishes an isomorphism

between (G/D2, gR) and the rectilinear flow (G∗/ϕ(D2),R). The latter is not ergodic
and its ergodic components are 2-dimensional subtori. Hence ergodic components for
(G/D2, gR) are smooth 2-dimensional submanifolds in G/D2. The manifolds are not
homogeneous subspaces of G/D2 (the reason is that ϕ is not a group isomorphism).
One can get an impression that no homogeneous space of G admits an ergodic

homogeneous flow. However, givenD3 = bZ ×Z2, where b = g2π × (
√
2,

√
3), one easily

checks that the flow (G/D3, gR) is ergodic.

4c. Suspensions of toral automorphisms. Our next few examples come from the
following construction. Let G/D be a homogeneous space of a connected simply
connected Lie group G. Denote by Aut(G,D) the group of all automorphisms of G

keeping the isotropy subgroup D ⊂ G invariant. Then any σ ∈ Aut(G,D) defines an
automorphism σ̃ of G/D via σ̃ (gD) = σ (g)D.
Since Aut(G) is an algebraic group, some power of σ (say, σ n) embeds into a one-

parameter subgroup gR ⊂ Aut(G). Now take G′ = gR ! G and D′ = σ nZ
! D. Then the

flow (G′/D′, gR) is the suspension of the automorphism σ̃ n.
Hence the dynamics of σ̃ can be studied via the flow (G′/D′, gR) and vice versa. One

may note that gR and G′ are not defined uniquely (there may exist countably many one-
parameter subgroups gR containing σ n and one can get a countable number of pairwise
nonisomorphic groupsG′).

EXAMPLE 1.4.1. Take σ =
( 2 1
1 1

)
∈ Aut(R2,Z2). Then σ is diagonalizable and hence

there exists a one-parameter subgroup gR ⊂ SL(2,R) such that σ = g1. NowG′ = gR !R2

is a solvable triangular Lie group with a latticeD′ = σZ
! Z2. The flow (G′/D′, gR) is the

suspension of the Anosov automorphism σ̃ of the 2-torusR2/Z2 (hence (G′/D′, gR) is an
Anosov nonmixing flow). In particular, apart from everywhere dense and periodic orbits,
the flow has orbits whose closures are not locally connected (and may have fractional
Hausdorff dimension). Apart from the Haar measure and ergodic measures supported on
periodic orbits, the flow has a lot of other ergodic measures (singular to the Haar measure).

More generally, take σ ∈ SL(n,Z). Then σ̃ is an automorphism of the n-torus Tn. Using
Fourier series one can prove the that σ̃ is ergodic iff it is weakly mixing, and the ergodicity
criterion is that σ ∈ SL(n,Z) has no roots of 1 as eigenvalues (but may have eigenvalues of
absolute value 1). Rokhlin proved that any ergodic σ̃ is a K-automorphism; the strongest
result is that then σ̃ is isomorphic to a Bernoulli shift (Katznelson [110]). The conclusion
is as follows:

THEOREM 1.4.2. For σ ∈ SL(n,Z), the following conditions are equivalent:
(1) the automorphism σ̃ is ergodic;
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(2) σ̃ is Bernoullian;
(3) σ has no roots of 1 as eigenvalues.

4d. Examples of nilflows. Let H = N(3) be the 3-dimensional Heisenberg group of
strictly upper-triangular matrices with the lattice Γ = H(Z). Let F ⊂ H be the normal
subgroup of matrices

(1 a b

0 1 0
0 0 1

)
.

Any one-parameter subgroup of H is of the form

gt =

(1 α1t α2t + α1α3
2 t2

0 1 α3t

0 0 1

)
for some α1,α2,α3 ∈ R.

Assume that gR +⊂ F , i.e., α3 += 0. Then the flow (H/Γ, gR) is the suspension of the skew
shift5 A on the 2-torus T2 = F/Γ ∩ F , where

A(a,b) = (a + β1, b − a + β2 − β1/2), β1 = α1/α3, β2 = α2/α3.

One can use the following number-theoretic result to prove that all orbits of A are
uniformly distributed in T2 and hence A is uniquely ergodic provided β1 is irrational.

THEOREM 1.4.3 (Weyl). Let p(t) = a0t
n + · · · + an−1t + an be a polynomial, where at

least one of the coefficients a0, . . . , an−1 is irrational. Then the sequence {p(n)mod1 |

n ∈ Z} is uniformly distributed in [0,1].

One derives from here that the nilflow (H/Γ, gR) is ergodic and uniquely ergodic
provided gR is in general position (i.e., α1 and α3 are independent over Q); clearly, this is
equivalent to the ergodicity on the maximal toral quotient H/Γ [H,H ].

4e. Geodesic and horocycle flows. Consider now flows on the left homogeneous space
Γ \G, where G = PSL(2,R) and Γ is a discrete subgroup of G (see §1.3c). First let us
look at the geodesic flow {γt } on SH2, which arises if one moves with unit speed along the
geodesic line in H2 defined by a pair (z, v) ∈ SH2 (i.e., through z ∈ H2 in the direction of
v ∈ SzH

2). Fix the unit vertical vectorw = (0,1) at the point i ∈ H2. It is easy to check that
the curve {γt(i) = i et | t ∈ R} is the geodesic line in H2 issued from i in the direction of w.
Since any isometry sends geodesic line to a geodesic line and PSL(2,R) acts transitively
on SH2, all the geodesics are of the form {fg(i et )}.
Let

At =

(
et/2 0
0 e−t/2

)
, Ht =

(
1 0
t 1

)
, Ut =

(
1 t

0 1

)
.

5An affine automorphism of T2 , i.e., a composition of an automorphism and a translation.
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Then i et = fAt (i) and hence any geodesic line is of the form fgAt (i). It follows that
γt (z, v) = dfgAt (i,w), where dfg(i,w) = (z, v), and the geodesic flow corresponds to the
right action of AR on G.
Note that subgroups AR,UR,HR ⊂ G are related as follows:

A−tUsAt = Ue−t s , A−tHsAt = Het s

and hence right UR-orbits on G form the contracting foliation for the right AR-action
relative to the left-invariant metric on G (while HR-orbits form the expanding foliation).
The curves {dfgUt (i,w)} ⊂ SH2 are called the contracting horocycles. The flow {ut } on

SH2 along the horocycles corresponds to the right UR-action on G. Similarly, the curves
{dfgHt (i,w)} ⊂ SH2 are orbits of the expanding horocycle flow {ht } on SH2.
Now recall that Γ \SH2 = Γ \G, where Γ is a discrete torsion-free subgroup of G, can

be realized as the unit tangent bundle SM to the surface M = Γ \H2 = Γ \G/PSO(2).
The flows {γt}, {ut }, {ht } on SH2 generate flows on SM called the geodesic, contracting
horocycle and expanding horocycle flows respectively. They are nothing else but the
homogeneous flows (Γ \G,AR), (Γ \G,UR) and (Γ \G,HR).
It is a fact that two surfaces M1 = Γ1\H2 and M2 = Γ2\H2 of constant curvature

−1 are isometric iff Γ1 and Γ2 are conjugate in G. On the other hand, M1 and M2 are
diffeomorphic iff Γ1 and Γ2 are isomorphic.
Suppose thatM = Γ \H2 is of finite area. Then the geodesic flow on SM is well known

to be ergodic (Hopf [99]) and mixing (Hedlund [96]). Moreover, it has Lebesgue spectrum
of infinite multiplicity (Gelfand and Fomin [87]) and is a K-flow (Sinai [210]). All these
results follow from a general theory of Anosov flows [4]. The strongest result from the
ergodic point of view is that it is a Bernoullian flow (Ornstein and Weiss [169]).
Like any Anosov action (see Example 1.4.1)), the geodesic flow possesses many types of

orbits and ergodic measures. Apart from everywhere dense and periodic orbits, it has orbit
closures which are not locally connected (this concerns, for instance, Morse minimal sets
obtained by means of symbolic dynamics [89]) and have fractional Hausdorff dimension.
According to Sinai [212] and Bowen [32], it has uncountably many ergodic probability
measures; both positive on open sets but singular to the Haar measure and those supported
on nonsmooth invariant subsets.
The horocycle flow (both ut and ht ) is also ergodic (Hedlund [96]) and has Lebesgue

spectrum of infinite multiplicity (Parasyuk [170]). According to Marcus [130], it is mixing
of all degrees. Unlike the geodesic flow, it has zero entropy (Gurevich [92] for compact
case and Dani [42] for general case). If M is compact then the horocycle flow is minimal
(Hedlund [95]) and uniquely ergodic (Furstenberg [84]). In the noncompact case every
orbit is either dense or periodic (Hedlund [95]); apart from the Haar measure, all ergodic
invariant measures are the length measures on periodic orbits (Dani and Smillie [68]).

4f. Geodesic flows on locally symmetric spaces. The geodesic flow on a surface of
constant negative curvature is a special case of those on locally symmetric Riemannian
spaces (see §1.3e). To present the general construction we need to generalize somehow
the concept of a homogeneous flow. Let gR be a subgroup of G and C ⊂ G a compact
subgroup which commutes with gR. Then the left action of gR on a double coset space
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C\G/D is well defined and called an infra-homogeneous flow. Similarly one can talk
about right infra-homogeneous actions, such as the right action of gR on a double coset
space D\G/C.
Now let G, Γ and C be as in §1.3e. The left action of G on X = G/C induces an

action on the unit tangent bundle SX overX. Observe that the tangent space to the identity
coset eC of X = G/C is isomorphic to the orthogonal complement p ⊂ g to c = Lie(C).
Fix a Cartan subalgebra a of p, and let C be a positive Weyl chamber relative to a fixed
ordering of the root system of the pair (g,a). Denote by C1 the set of vectors in C with
norm one; it can be identified with a subset of TeC(G/C), and one can prove its closure
7C to be a fundamental set for the G-action on SX; that is, every G-orbit intersects the
set {(eC,a) | a ∈ 7C} exactly once. In particular, the action of G on SX is transitive iff
rankR G = 1 (then 7C consists of just one vector). In the latter case, SX = G/C1, where
C1 ⊂ C is the isotropy subgroup of a unit tangent vector at the point C ∈ G/C.
Now let M = Γ \G/C be a locally symmetric Riemannian manifold of nonpositive

curvature and of finite volume, and {γt } the geodesic flow on the unit tangent bundle
SM over M . Then SM breaks into closed invariant manifolds and the restriction of the
geodesic flow onto each of them is isomorphic to an infra-homogeneous flow of the form
(Γ \G/Ca, exp(Ra)), where a ∈ 7C and Ca ⊂ C is the centralizer of a in C. If rankR G = 1
then the geodesic flow is Anosov and hence ergodic. If rankR G > 1 then the partition
is nontrivial and hence the flow is not ergodic; however, one can show that the flow is
ergodic being restricted to any of the components providedG is totally noncompact and Γ

irreducible (in essence this was shown by Mautner [153]).

4g. Actions on the space of lattices. Finally let us mention the (important for number-
theoretic applications) action of SL(k,R) and its subgroups on the space Ωk of lattices
in Rk considered in §1.3d. As a sneak preview of Section 5, consider a model number-
theoretic situation when these actions arise. Let Q(x) be a homogeneous polynomial in k

variables (for example a quadratic form), and suppose that one wants to study nonzero
integer vectors x such that the value Q(x) is small. Let HQ be the stabilizer of Q in
SL(k,R), that is,

HQ =
{
g ∈ SL(k,R) | Q(gx) = Q(x) for all x ∈ Rk

}
.

Then one can state the following elementary

LEMMA 1.4.4. There exists a sequence of nonzero integer vectors xn such thatQ(xn) → 0
iff there exists a sequence hn ∈ HQ such that δ(hnZk) → 0.

The latter condition, in view of Mahler’s criterion, amounts to the orbit HQZk being
unbounded inΩk . This gives a special number-theoretic importance to studying long-term
behavior of various trajectories on Ωk . See §§5.2c, 5.1a and Section 5.3 for details and
specific examples.
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2. Ergodic properties of flows on homogeneous spaces

Here we expose ergodic properties of a homogeneous flow (G/D,gR) with respect to
a finite Haar measure on G/D. The subject is very well understood by now, and most
problems have been solved already by the end of 1980s. This includes, for instance, criteria
for ergodicity, mixing and K-property, calculating of spectrum, construction of ergodic
decomposition, etc. We refer the reader to [3] for basic notions and constructions of ergodic
theory.
To formulate the results, we need to introduce certain subgroups of G associated to gR.

First in Section 2.1, in addition to horospherical subgroups G+ and G−, we define the
neutral subgroupQ ofG. Orbits of these groups onG/D form, respectively, the expanding,
contracting, and neutral foliation for the flow (G/D,gR). Next we define normal subgroups
A ⊂ J ⊂ M associated with gR: those of Auslander, Dani, and Moore, respectively. They
are related to important features of the flow such as partial hyperbolicity, distality and
uniform continuity.
In Section 2.2 we discuss ergodicity and mixing criteria studying nilpotent, solvable,

and semisimple cases separately. The general situation reduces to solvable and semisimple
ones.
Spectrum calculation, multiple mixing, and K-property are discussed in Section 2.3.

Such phenomenon as exponential mixing proved to be highly helpful in many applications;
here the results are also almost definitive.
In Section 2.4 we construct explicitly the ergodic decomposition and reduce the study

of homogeneous flows to ergodic case.
Related subjects such as topological rigidity, first cohomology group, and time changes

are discussed in Section 2.5. Unlike the ergodic properties, cohomological questions are
much less studied and here many interesting problems remain open.
To conclude, in Section 2.6 we show that in the case vol(G/D) = ∞ the situation gets

much more complicated. Whereas the case of solvable Lie groupG presents no problems,
ergodic properties in the semisimple case are related to delicate problems in the theory of
Fuchsian and Kleinian groups.

2.1. The Mautner phenomenon, entropy and K-property

Let (G/D,F) be a homogeneous action, where D is a quasi-lattice in a connected simply
connected Lie group G. First we consider the simplest case: the acting subgroup F is
normal in G. Then orbit closures of the action (G/D,F) define a smooth G/D-bundle
over the space G/FD. It turns out that this bundle defines the ergodic decomposition for
the action relative to the Haar probability measure on G/D [43,155]:

LEMMA 2.1.1. Let F be a normal subgroup of G and vol(G/D) < ∞. Then the
measurable hull of partition of G/D into F -orbits coincides (mod 0) with the smooth
partition of G/D into closed homogeneous subspaces gFD, g ∈ G. The space

Fix(F ) =
{
f ∈ L2(G/D) | f (hx) = f (x), h ∈ F, x ∈ G/D

}
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is isomorphic to the space L2(G/FD).

1a. Subgroups associated to an element g ∈ G. Let us consider the linear operator Adg
on the space gC = g

⊗
R C and decompose the latter into generalized root spaces

gλ
C

def
=

{
x ∈ gC | ∃n such that (Adg −λ Id)nx = 0

}
.

If gλ
C

+= 0 then λ is said to be an eigenvalue of the operator Adg ; the number dimC gλ
C
is

called the multiplicity of λ.
Let Σ be the collection of eigenvalues. Note that λ ∈ Σ ⇔ λ ∈ Σ . Since Adg[x, y] =

[Adg x,Adg y], it follows that [gλ
C
,gθ

C
] ⊂ gλθ

C
. If λ ∈ R define gλ = gλ

C
∩ g, otherwise put

gλ = gλ = (gλ
C

+ gλ
C
) ∩ g. One gets the decomposition g =

∑
λ∈Σ gλ into the sum of Adg-

invariant subspaces. Now define three subalgebras

g+ =
∑

|λ|>1

gλ, g0 =
∑

|λ|=1

gλ, g− =
∑

|λ|<1

gλ.

It is easily seen that g+ and g− are nilpotent and g0 normalizes both g+ and g−.
Let G+, Q, G− be the connected subgroups of G corresponding to the subalgebras

g+, g0, g−. One can check that G+ and G− are none other than the expanding and
contracting horospherical subgroups of G defined in §1.1a. The subgroup Q is called
neutral.
We also consider the subgroup A ⊂ G generated by G+ and G−. It is easily seen to be

normal in G. We call it the Auslander subgroup6 associated with g ∈ G.
Clearly, A is nontrivial iff g is a partially hyperbolic element of G. In other words, A is

the smallest normal subgroup of G such that the element gA ∈ G/A is quasi-unipotent
in G/A.
Now let G = L ! R be the Levi decomposition of G. The Dani subgroup associated

with g ∈ G is the smallest normal subgroup J ⊂ G such that gJ ∈ G/J is quasi-unipotent
in G/J and gJR is semisimple in G/JR.
Finally, the Moore subgroup7 associated with g ∈ G is the smallest normal subgroup

M ⊂ G such that gM is both quasi-unipotent and semisimple in G/M .
Clearly, A ⊂ J ⊂ M . If G is nilpotent then A = J = {e} and M is the smallest normal

subgroup in G such that g projects to a central element in G/M . If G is solvable then
A = J ⊂ M ⊂ N , the latter being the nilradical of G. If G is semisimple then J = M . If
G is simple and has a finite center then M is trivial iff g belongs to a compact subgroup
of G; otherwiseM = G.

1b. Auslander normal subgroup, K-property and entropy. The Auslander, Dani and
Moore subgroups for a one-parameter subgroup gR are defined relative to any nontrivial

6It was introduced in [8] under the name of the unstable normal subgroup.
7Originally in [156] it was called the Ad-compact normal subgroup. Sometimes it is also called the Mautner

subgroup.
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element gt , t += 0. They prove to be helpful in understanding the dynamics of the flow
(G/D,gR).
Let dG be a right-invariant metric onG which induces Riemannian metric on G/D. For

any u ∈ G− one has

dG(gt , gtu) = dG(1, gtug−t ) → 0, t → +∞,

and hence the orbits G−hD ⊂ G/D, h ∈ G, form the contracting foliation8 of G/D for
the flow (G/D,gR); the expanding one is given by G+-orbits on G/D.
For example, given the diagonal subgroup AR in the Lie group G = SL(2,R), one has

G+ = UR and G− = HR (see §1.4e for the notations).9

If the subgroup g ∈ G is partially hyperbolic then both foliations are nontrivial (since
Haar measure on G/D is finite and G-invariant), and hence the entropy of the flow
(G/D,gR) is positive. What is important to keep in mind is that homogeneous partially
hyperbolic flows (G/D,gR) are uniformly partially hyperbolic (moreover, Lyapunov
exponents are constant on all the space G/D).
If gR ∈ G is quasi-unipotent then the rate of divergence of close orbits for the flow

(G/D,gR) is clearly at most polynomial. A general result of Kushnirenko [123] implies
that the entropy of the action is trivial.10 It follows from Lemma 2.1.1 that the Pinsker
partition (see [3]) for the flow (G/D,gR) is given by homogeneous subspaces hAD,
h ∈ G. Hence the following criterion holds ([41,42]):

THEOREM 2.1.2. Let D be a quasi-lattice in G. Then the entropy of a flow (G/D,gR)

is positive iff gR is a partially hyperbolic subgroup. The flow has K-property iff G = AD,
where A is the Auslander normal subgroup for gR.

Now we state the entropy formula for homogeneous flows.

THEOREM 2.1.3. Let D be a quasi-lattice in G. Then the entropy h(g1) of the flow
(G/D,gR) relative to the Haar probability measure is estimated as

h(g1) "
∑

|λi |>1

mi log |λi |,

where λ1, . . . ,λn are the eigenvalues of the operator Adg1 on g with corresponding
multiplicities m1, . . . ,mn. Moreover, if D is a uniform lattice in G then the equality holds.

The entropy formula for D being a uniform lattice was proved by Bowen [31] and
follows from a general Pesin formula relating entropy of a smooth dynamical system with

8No doubt that the foliation of G/D into G−-orbits is smooth provided D is a discrete subgroup. A priori in
the general case the dimension of the orbits may vary. But it is constant if vol(G/D) < ∞; see [228].
9Notice that the left UR-orbits on G/D form the expanding foliation relative to the left AR-action, unlike the

situation in §1.4e where the subgroups involved act on D\G on the right.
10The entropy estimate of [123] was proved for diffeomorphisms of compact manifolds. In the case of G/D

being noncompact but of finite volume the necessary details are given in [42].
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Lyapunov exponents. Most probably the same formula holds for any lattice D ⊂ G; for
instance, it was proved in [147] for R-diagonalizable subgroups gR ⊂ G. The estimate
from above for D being a quasi-lattice may be obtained using Theorem 2.4.1 below.
The connection between homogeneous flows and automorphisms of homogeneous

spaces described in §1.4c provides an entropy formula for the latter. Namely, if σ ∈
Aut(G,D) where D is a uniform lattice in G, then the entropy h(σ̃ ) of the automorphism
σ̃ of G/D is given by the same formula: h(σ̃ ) =

∑
|λi |>1mi log |λi |, where λ1, . . . ,λn are

the eigenvalues of the differential dσ on g with corresponding multiplicities m1, . . . ,mn.
For toral automorphisms it was first proved by Sinai [209] and for those of nilmanifolds by
Parry [171].

1c. Dani normal subgroup and the distal property. We have seen that taking the quotient
flow (G/AD,gR) kills both (partial) hyperbolicity and entropy of the flow (G/D,gR).
Now we turn to the Dani normal subgroup J ⊂ G.
It is well known (see [9]) that any homogeneous flow on G/D is distal11 wheneverG is

nilpotent. On the other hand, if G is semisimple and the unipotent part of a subgroup gR

of G is nontrivial then the flow (G/D,gR) is not distal. From here one can deduce that the
flow (G/D,gR) is distal iff the Dani normal subgroup for gR is trivial. In other words, the
quotient flow (G/JD,gR) is the maximal distal (homogeneous) quotient of the original
flow.
Later in §2.1f we will see that the Dani normal subgroup plays an important role in

constructing the ergodic decomposition for homogeneous actions.

1d. Moore normal subgroup and the Mautner phenomenon. Let ρ be the regular unitary
representation of G on the space L2(G/D). If the flow (G/D,gR) is ergodic then every
gR-fixed function f ∈ L2(G/D) should be constant, i.e.,G-fixed. Clearly, it is important to
know which subgroup of G keeps fixed every gR-fixed element of L2(G/D). The answer
is given by the following result called theMautner phenomenon for unitary representations
due to Moore [156]:

THEOREM 2.1.4. Let π be a continuous unitary representation of Lie group G on a
Hilbert space H. Let M ⊂ G be the Moore normal subgroup for a subgroup gR ⊂ G.
Then π(M)v = v whenever π(gR)v = v, v ∈ H.

The same result clearly holds if one replaces gR with any subgroup F ⊂ G and takes the
Moore normal subgroup M = M(F) generated by Moore normal subgroups for elements
g ∈ F .
An elementary proof (not involving representation theory) of the theorem was sketched

by Margulis in [142]; for details see [13,237].
It is very easy to demonstrate that π(A)v = v whenever π(gR)v = v (this was observed

by Mautner [153]). In fact, take h ∈ G−. Then

(
π(h)v, v

)
=

(
π(gthg−t )π(gt )v,π(gt )v

)

11Recall that a continuous flow (X,ϕt ) on a metric space is called distal if for each x,y ∈ X, x += y, there exists
ε > 0 such that d(ϕtx,ϕty) > ε for all t ∈ R.
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=
(
π(gthg−t )v, v

)
→ (v, v), t → +∞,

and hence (π(h)v, v) = (v, v). Since π is unitary it follows that π(h)v = v. Then
π(G−)v = v and similarly π(G+)v = v; hence π(A)v = v.

1e. Ergodicity and weak mixing. Now we can give a criterion for the flow (G/D,gR)

to be ergodic. Suppose that ρ(gR)f ≡ f for some f ∈ L2(G/D). Then ρ(M)f ≡ f and
hence f is constant on almost all leaves gMD ⊂ G/D. Lemma 2.1.1 implies that f defines
an element f̄ ∈ L2(G/MD). We derived the following ([30]):

THEOREM 2.1.5. The flow (G/D,gR) is ergodic if and only if the quotient flow
(G/MD,gR) is ergodic.

Suppose that the Moore normal subgroup for gR is trivial. This means that the subgroup
AdgR

⊂ Aut(g) is relatively compact. Hence there exists a G-right-invariant metric on G

which is gR-left-invariant. Relative to the induced metric on G/D the flow (G/D,gR) is
isometric (and uniformly continuous relative to the metric induced by any other G-right-
invariant metric on G). But an isometric flow is ergodic iff it is minimal.
It follows that given an arbitrary subgroup gR ⊂ G, the quotient flow (G/MD,gR) is

ergodic iff it is minimal.

COROLLARY 2.1.6. The flow (G/D,gR) is ergodic iff it is topologically transitive.

On the contrary, if the flow (G/D,gR) is uniformly continuous and D ⊂ G is a quasi-
lattice then the Moore subgroup of gR is trivial. It follows that in the general case the
quotient flow (G/MD,gR) is the maximal uniformly continuous (homogeneous) quotient
of the original flow.
Analogously to Theorem 2.1.5 one proves the following criterion ([30]):

THEOREM 2.1.7. The flow (G/D,gR) is weakly mixing iff G = MD.

1f. Ergodic decomposition into invariant submanifolds. Since the quotient flow (G/MD,

gR) is uniformly continuous, it follows that its orbit closures are compact minimal sets (in
fact, they are diffeomorphic to tori). The partition ofG/MD into these minimal sets forms
the ergodic decomposition for the quotient action. Now using Theorem 2.1.4 one easily
derives that the partition Ẽ of G/D into closed submanifolds Ẽh(gR) = gRMhD ⊂ G/D

forms the ergodic decomposition Ẽ of the original flow (G/D,gR) with respect to the
Haar probability measure ν. One can prove (see [226]) that every submanifold Ẽh(gR) is
equipped with a smooth gRM-invariant measure ν̃h such that dν =

∫
Ẽ dν̃h.

On the other hand, the quotient flow (G/JD,gR) is distal. By Ellis’ theorem (cf. [9])
any distal topologically transitive flow on a compact manifold is minimal. Hence orbit
closures of the flow (G/JD,gR) are also minimal sets (in fact, they are diffeomorphic to
nilmanifolds) which form the ergodic decomposition for the quotient flow. It follows that
the partition E of G/D into closed submanifolds Eh(gR) = gRJhD ⊂ G/D also forms
the ergodic decomposition E of the original flow (G/D,gR).
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Moreover, unlike Ẽh(gR), the flow onEh(gR) is always ergodicwith respect to a smooth
gRJ -invariant measure νh (this is so because the Dani normal subgroup of gR in the Lie
group gRJ is again J ) such that dν =

∫
E
dνh.

Clearly, partition E is a refinement of Ẽ and since the ergodic decomposition is
defined uniquely (mod 0), it follows that the components of E and Ẽ coincide almost
everywhere. In §2.4a we will see that the components are covered (together with flows) by
homogeneous spaces of finite volume.

2.2. Ergodicity and mixing criteria

2a. Nilpotent case. Let Γ be a lattice in a nilpotent Lie group G. Clearly, given any
subgroup gR ⊂ G its Moore normal subgroup M lies in [G,G] and gRM is normal
in G. If G = gR[G,G]Γ , then G contains no proper subgroup H ⊂ G such that gR ⊂ H

and the product HΓ is closed (otherwise the product H [G,G]Γ is closed and hence
G = H [G,G] = H ). It follows that G = gRMΓ and we have proved Green’s ergodicity
criterion [9] for nilflows:

THEOREM 2.2.1. A nilflow (G/Γ, gR) is ergodic iff the quotient flow on the maximal toral
quotient (G/[G,G]Γ, gR) is ergodic.

Note that the image of gR in G′ = G/(MΓ )0 is a central subgroup of G′ and hence it
can act ergodically on G/MΓ only if G′ is Abelian; hence (MΓ )0 = [G,G].
Since all nilflows are distal, it follows from Ellis’ theorem (see [9]) that any ergodic

nilflow is minimal (Auslander [9]). A stronger result due to Furstenberg [82] is as follows.

THEOREM 2.2.2. An ergodic nilflow (G/Γ, gR) is uniquely ergodic (hence all its orbits
are uniformly distributed).

Applying this result to a special nilpotent group one can derive Weyl’s Theorem 1.4.3
on uniform distribution (see [9,82,237]).
By an induction argument and Theorems 2.2.1, 2.2.2 one easily derives (cf. [222]) the

following:12

THEOREM 2.2.3. H1 = (gRΓ )0 is a subgroup of G and the action (H1/Γ ∩ H1, gR) is
minimal and uniquely ergodic.

Hence the ergodic decomposition for the nilflow (G/Γ, gR) is the partition into closed
orbits Es(gR) = sHsΓ , whereHs = (s−1gRsΓ )0. One can show that the components may
be of different dimension and hence the ergodic decomposition may not form a smooth
bundle (even for the Heisenberg group).

12This incidentally proves topological and measure conjectures of Raghunathan and Dani (to be discussed in
Section 3) for the class of nilflows.
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On the other hand, the group H = (gRMΓ )0 is normal in N and hence Ẽs(gR) =

gRMsΓ = sHΓ for all s ∈ N . It follows that Ẽ is the homogeneous bundle of G/Γ over
G/HΓ .

2b. Solvable case. Let (G/D,gR) be a flow on a solvmanifold. Recall that any compact
solvmanifold admits a unique maximal Euclidean quotientG/P , where P ⊂ G is a closed
subgroup containingD (actually P = HD, where H ⊂ G is the smallest normal subgroup
such that G/H is a Euclidean Lie group). The following result of Brezin and Moore [30]
reduces the ergodicity criterion for homogeneous flows on solvmanifolds to those on
Euclidean manifolds.

THEOREM 2.2.4. A homogeneous flow (G/D,gR) on a compact solvmanifold is ergodic
iff its maximal Euclidean quotient flow (G/P,gR) is such.

Clearly, if G is nilpotent then the maximal toral quotient G/D[G,G] is the maxi-
mal Euclidean one. Hence this theorem generalizes Green’s ergodicity criterion (Theo-
rem 2.2.1).
Now let D be a quasi-lattice in a simply connected Euclidean Lie group G = A ! Rn,

where the Abelian group A acts with discrete kernel on the nilradical Rn in such a way
that Ad(A) = T ⊂ GL(n,R) = Aut(Rn) is a torus. Actions of T and A on Rn commute
and hence one can define the group G∗ = (T × A) ! Rn. Note that G∗ = T ! W , where
W = ∆ × Rn is the nilradical of G∗ and ∆ = {(Ad(a), a−1) ∈ T × A, a ∈ A} is a central
subgroup of G∗.
If gR is a one-parameter subgroup of G then one can assume (replacing gR with its

conjugate if necessary) that its Jordan decomposition in G∗ is such that gt = ct × ut ,
where cR ⊂ T and uR ⊂ W . Let

p :G∗ = T ! W "→ T , π :G∗ = T ! W "→ W

be the corresponding projections. Note that the restriction p :G "→ T is a group
epimorphism while π :G "→ W is only a diffeomorphism.
Using Mostow’s theorem (see §1.3a) one can prove that the image p(D) is a finite

subgroup of the torus T . If the flow (G/D,gR) is ergodic then clearly T = cR. Hence
T commutes with uR and one can easily prove that π induces smooth isomorphism of
flows

Π : (G/D ∩ W,gR) "→ (W/D ∩ W,uR).

Besides, one can prove that if the second flow is ergodic, thenD ⊂ W and T = cR. Hence
the following holds ([30]):

THEOREM 2.2.5. A flow (G/D,gR) on a compact Euclidean manifold is ergodic iff the
rectilinear flow (W/D ∩ W,uR) is ergodic. Moreover, in the case of ergodicity the flows
are smoothly isomorphic. In particular, the flow (G/D,gR) is uniquely ergodic whenever
it is ergodic.
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Note that this result is a particular case of Auslander’s theorem [7] for type-(I)
solvmanifolds. Combining Theorems 2.2.4 and 2.2.5 one gets a criterion for homogeneous
flows on solvmanifolds to be ergodic. Clearly, such a flow is never mixing (since any
solvmanifold admits a torus as a quotient space).

2c. Semisimple case. Now one can use theMautner phenomenon (Theorem 2.1.4) to find
an ergodicity criterion for a (simply connected) semisimple Lie group G. Let G = K × S

be the decomposition of G into compact and totally noncompact parts, and p :G "→
K, q :G "→ S the corresponding projections. DefineH = p(D), T = p(gR) ⊂ K . Clearly
if the flow (G/D,gR) is ergodic, then the action of the torus T on K/H is ergodic. But
K/H has finite fundamental group and hence cannot be an orbit of a T -action. Hence
G = SD and by the Borel density theorem we derive thatD is a Zariski-dense lattice inG,
providedD is a quasi-lattice in G and G/D admits an ergodic homogeneous flow.
Suppose that the flow (G/D,gR) is ergodic, andM ⊂ G is the Moore normal subgroup

for gR. The group P = (MD)0 is normal in G, and one can consider the projection
α :G "→ G′ = G/P and the quotient flow (G′/D′, g′

R
), whereD′ = α(MD), g′

R
= α(gR).

Note that g′
R
has a trivial Moore subgroup and hence is relatively compact modulo the

center Z(G′). But the product Z(G′)D′ is closed and hence all orbit closures of the flow
(G′/D′, g′

R
) are tori. It follows that the flow cannot be ergodic unless G′ = 1. We have

proved the following result due to Moore [155]:

THEOREM 2.2.6. Let (G/D,gR) be a flow on a finite volume semisimple homogeneous
space, and M ⊂ G the Moore normal subgroup for gR. Then the following conditions are
equivalent:
(1) the flow is ergodic;
(2) the flow is weakly mixing;
(3) G = MD.

The ergodicity criterion in the semisimple case may be made more effective in the
following way. Suppose that the flow (G/D,gR) is ergodic. Then D is a Zariski-dense
lattice in G and one can decompose it into irreducible components: G =

∏
i Gi , where

Gi ∩ D is irreducible Gi for each i and
∏

i(D ∩ Gi) is of finite index in D. Let qi :G "→
Gi be the corresponding projection. Clearly, every quotient flow (Gi/qi(D), qi(gR)) is
ergodic. Since qi(D) is irreducible inGi , this is so iff theMoore subgroup qi(M) of qi(gR)

is nontrivial. On the contrary, if every quotient flow is ergodic thenM projects nontrivially
to any irreducible componentGi . Thus one gets the following ([155]):

COROLLARY 2.2.7. Let D be a quasi-lattice in a semisimple Lie group G. Then the
flow (G/D,gR) is ergodic iff D is a Zariski-dense lattice in G and Ad(qi(gR)) is an
unbounded subgroup of Ad(Gi) for every i , where qi :G "→ Gi is the projection onto the
i-th irreducible component relative to D.

2d. General case. Now let G = L ! R be an arbitrary (connected simply connected)
Lie group. Let q :G "→ L be the projection of G onto its Levi subgroup L = K × S. The
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following makes finding an ergodicity criterion for homogeneous flows on G/D much
easier (see [223,255]):

LEMMA 2.2.8. If G/D admits an ergodic one-parameter homogeneous flow, then G =

SRD, and hence (see §1.3f) the product RD is closed.

Clearly, G/RD is the maximal semisimple quotient space of G/D. The maximal
solvable quotient space has the form G/G∞D, where G∞ is defined to be the minimal
normal subgroup of G containing the Levi subgroup L.
With the help of Lemma 2.2.8 one gets the following criteria first proved by Dani [43]

for D being a lattice in G (see [223,232] in the general case):

THEOREM 2.2.9.
(1) The flow (G/D,gR) is ergodic iff so are the flows (G/RD,gR) and (G/G∞D,gR)

on the maximal semisimple and solvable quotient spaces.
(2) The flow (G/D,gR) is weakly mixing iff G = JD = MD, where J and M are the

Dani and Moore normal subgroups for gR respectively.
(3) If G = G∞D, then any ergodic homogeneous flow on G/D is weakly mixing;

otherwise G/D admits no weakly mixing homogeneous flows.

Similarly to Lemma 2.2.8, one can prove the following [255]:

THEOREM 2.2.10. If G/D admits a weakly mixing one-parameter homogeneous flow,
then the radical R of G is nilpotent and D is Zariski-dense in the Ad-representation. In
particular, D is a lattice in G if it is a quasi-lattice.

The following criterion of Brezin and Moore [30] is a consequence of Theorem 2.2.4
and Theorem 2.2.9:

THEOREM 2.2.11. The flow (G/D,gR) is ergodic iff so are the flows (G/RD,gR) and
(G/P,gR) on the maximal semisimple and Euclidean quotient spaces.

Originally, this theorem was proved for so called admissible spaces of finite volume.
Since then it was independently proved by many authors (cf. [259]) that any finite volume
homogeneous space is admissible.

2.3. Spectrum, Bernoullicity, multiple and exponential mixing

3a. Spectrum. The following stronger formulation of the Mautner phenomenon (Theo-
rem 2.1.4) plays a central role in calculation of spectra of homogeneous flows [156]:

THEOREM 2.3.1. Let π be a unitary representation of a Lie group G on a Hilbert
space H, and let M ⊂ G be the Moore normal subgroup for gR ⊂ G. Let Fix(M) ⊂ H

be the closed subspace of M-fixed vectors. Then the spectrum of π(gR) is absolutely
continuous on the orthogonal complement Fix(M)⊥ of Fix(M).
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Using Theorem 2.3.1 one can derive the following general result due to Brezin and
Moore [30]:

THEOREM 2.3.2. The spectrum of a homogeneous flow (G/D,gR) is the sum of a discrete
component and a Lebesgue component of infinite multiplicity.

Since any subgroup gR ⊂ G with trivial Moore subgroup induces a uniformly
continuous flow on G/D, the latter can be ergodic only if G/D is diffeomorphic to a
torus, i.e., G/D is a Euclidean manifold. Now mixing criterion (Theorem 2.2.9) implies
the following ([30]):

THEOREM 2.3.3. The spectrum of an ergodic homogeneous flow (G/D,gR) is discrete iff
G/D is a Euclidean manifold. It is Lebesgue of infinite multiplicity iff the flow is weakly
mixing (in which case G/D has no nontrivial Euclidean quotients).

Let us consider several special cases of Theorem 2.3.3. If G is a non-Abelian nilpotent
Lie group andD a lattice inG, then the spectrum of any ergodic flow onG/D is discrete on
the space L2(G/D[G,G]) viewed as a subspace of L2(G/D) and is of infinite multiplicity
on its orthogonal complement (cf. §1.2a). The spectrum in this case was found by Green in
[9] using the representation theory for nilpotent Lie groups (see [237] for corrections and
[171] for an alternative proof); the multiplicity of the Lebesgue component was calculated
by Stepin [238].
In the solvable case the spectrum was found by Safonov [194]. Basically, this case

reduces to the nilpotent one via the following general result due to Sinai [211] and
Parry [171]:

THEOREM 2.3.4. Let π be the Pinsker partition for a measure-preserving flow on
a Lebesgue space (X,µ) and Fix(π) ⊂ L2(X,µ) the subspace of functions constant
along π . Then the spectrum is Lebesgue of infinite multiplicity on Fix(π)⊥.

From here one deduces that the spectrum of a homogeneous flow (G/D,gR) is
Lebesgue of infinite multiplicity on the orthogonal complement to the subspace Fix(A) 0
L2(G/AD).
Since any compact solvmanifold bundles over a torus, the discrete component of a

homogeneous flow thereon is always nontrivial.
For a semisimple G the spectrum of ergodic flows on G/D was calculated by

Moore [155] and Stepin [239]. As follows from Theorem 2.2.6 and Theorem 2.3.2, it is
also Lebesgue of infinite multiplicity.

3b. Bernoulli property. No criterion for a homogeneous flow (G/D,gR) to be Bernoul-
lian is known in the general case. Surely, such a flow should have the K-property and
the criterion for the latter is known (see Theorem 2.1.2). The following theorem due to
Dani [40] gives a sufficient condition.
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THEOREM 2.3.5. Let gR ⊂ G be a subgroup such that the operator Adgt is semisimple
when restricted to the neutral subalgebra g0 (see §2.1a). Then the flow (G/D,gR) is
Bernoullian whenever it is a K-flow.

It is not knownwhether the K-property for homogeneousflows implies the Bernoullicity.
Note that for toral automorphisms the answer is affirmative (see Theorem 1.4.2).

3c. Decay of matrix coefficients. Let L20(G/D) stand for the space of square-integrable
functions on G/D with zero average, and ρ stand for the regular representation of G on
L20(G/D). Let F be a closed subgroup of G. Recall that the action (G/D,F) is mixing iff
given any u,v ∈ L20(G/D), the matrix coefficient (ρ(g)u, v) vanishes as g → ∞ in F . If
F is one-parameter then F -action on G/D is mixing whenever it is weakly mixing (since
it has Lebesgue spectrum of infinite multiplicity).
Now assume that G and Γ satisfy the following conditions:

G is a connected semisimple totally noncompact Lie group with

finite center, (2.1)

and

Γ is an irreducible lattice in G. (2.2)

One knows (see Theorem 2.2.6) that any unbounded subgroup gR ⊂ G induces a weakly
mixing flow on G/Γ . In fact, there is a stronger result due to Howe and Moore [101] (see
[264]):

THEOREM 2.3.6. Let π be an irreducible unitary representation of a semisimple Lie
group G with finite center on a Hilbert space H. Then given any u,v ∈ H, one has
(π(g)u, v) → 0 as g → ∞ in G.

In particular, one can deduce that the F -action on G/Γ is mixing if G and Γ are as in
(2.1), (2.2) and F is not relatively compact.

3d. Exponential mixing. It turns out that in many cases one can have a good control of
the rate of decay of the matrix coefficients (π(g)u, v). Namely, fix a maximal compact
subgroup C ofG, and denote by c its Lie algebra. Take an orthonormal basis {Yj } of c, and
set Υ = 1−

∑
Y 2j . Then Υ belongs to the center of the universal enveloping algebra of c

and acts on smooth vectors of any representation space of G. We also fix a right-invariant
and C-bi-invariant Riemannian metric dG on G.
The following theorem was deduced by Katok and Spatzier [107] from earlier results of

Howe and Cowling (see [100] and [39]):

THEOREM 2.3.7. Let G be as in (2.1), and let Π be a family of unitary representations of
G such that the restriction of Π to any simple factor of G is isolated (in the Fell topology)
from the trivial representation IG. Then there exist constantsE > 0, l ∈ N (dependent only
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on G) and α > 0 (dependent only on G and Π ) such that for any π ∈ Π , any C∞-vectors
v, w in a representation space of π , and any g ∈ G one has

∣∣(π(g)v,w
)∣∣ " E e−αdG(e,g)

∥∥Υ l(v)
∥∥∥∥Υ l(w)

∥∥.

One can apply the above result to the action of G on G/Γ as follows:

COROLLARY 2.3.8. Let G be as in (2.1), Γ as in (2.2), ρ as in §2.3c. Assume that

The restriction of ρ to any simple factor of G is isolated from IG. (2.3)

Then there exist E,β > 0 and l ∈ N such that for any two compactly supported functions
ϕ,ψ ∈ C∞(G/Γ ) and any g ∈ G one has

∣∣∣∣(gϕ,ψ) −
∫

ϕ

∫
ψ

∣∣∣∣ " E e−β dist(e,g)
∥∥Υ l(ϕ)

∥∥∥∥Υ l(ψ)
∥∥.

Condition (2.3) can be checked in the following (overlapping) cases: all simple factors
of G has property-(T) (by definition), or G is simple (see [12]), or Γ is non-uniform (the
proof in [118] is based on the results of Burger and Sarnak [35] and Vigneras [248]), and
widely believed to be true for any G and Γ satisfying (2.1) and (2.2).

3e. Multiple mixing. Let F be a locally compact group which acts on a Lebesgue
probability space (X,µ) by measure-preserving transformations. Then the action is said
to be k-mixing if given any k + 1 measurable subsets A1, . . . ,Ak+1 ⊂ X and any k + 1
sequences {gi(1)}, . . . , {gi(k + 1)} of elements in F such that gi(l)gi(m)−1 → ∞, i →
∞, for all l += m, one has

lim
i→∞

µ

(
k+1⋂

l=1

gi(l)Al

)
=

k+1∏

l=1

µ(Al).

One can check that 1-mixing for a one-parameter F is equivalent to the usual definition
of mixing.
Clearly, k-mixing implies l-mixing for all l " k. Also, if H ⊂ F is a closed subgroup

then the H -action is k-mixing whenever so is the F -action.
An old problem of Rokhlin is whether 1-mixing implies k-mixing for all k. In the

classical case (F 0 R or Z) this problem is only solved under rather restrictive conditions
on the action. For instance, the answer to the Rokhlin problem is affirmative for one-
parametermeasurable actions with finite rank of approximation (Ryzhikov [193]). Also, the
K-property implies mixing of all degrees. On the other hand, Ledrappier [125] constructed
a Z2-action which is 1-mixing but not 2-mixing.
For a non-Abelian F one has the following result of Mozes [159,161]. A Lie group F

is said to be Ad-proper if the center Z(F) is finite and Ad(F ) = F/Z(F) is closed in
Aut(Lie(F )).
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THEOREM 2.3.9. If F is an Ad-proper Lie group then any mixing measure-preserving
F -action on a Lebesgue probability space is mixing of all degrees.

One immediately gets the following:

COROLLARY 2.3.10. If G and Γ are as in (2.1), (2.2) then the G-action on G/Γ is
mixing of all degrees.

One can derive from here the following result of Marcus [130]: if G is a semisimple Lie
group then any ergodic flow (G/D,gR) is mixing of all degrees.
Marcus conjectured in [130] that Rokhlin problem has the affirmative answer for any

one-parameter homogeneous flow (G/D,gR). This was proved by Starkov [229] reducing
the problem to the case of gR being unipotent and then combining Ratner’s measure
theorem (Theorem 3.3.2) with joinings technique.

THEOREM 2.3.11. Any mixing homogeneous flow (G/D,gR) is mixing of all degrees.

The same result was conjectured in [229] for any action (G/D,F), where F is a closed
connected subgroup of G.

2.4. Ergodic decomposition

4a. Reduction to the ergodic case. As was said in §2.1f, there are two versions of an
ergodic decomposition for a homogeneous flow (G/D,gR) relative to the Haar probability
measure. The first one, Ẽ, is the partition into closed submanifolds Ẽh(gR) = gRMhD ⊂
G/D; the second one, E, is a refinement of Ẽ and consists of closed submanifolds
Eh(gR) = gRJhD. Here as always J is the Dani normal subgroup for gR, and M the
Moore subgroup.Note that components of Ẽ are defined everywhere onG/D (not a.e. as in
the abstract ergodic decomposition for measure-preserving flows, cf. [3, Theorem 4.2.4]),
and they either coincide or do not intersect. The same is true for E.
If G is nilpotent then Ẽ forms a homogeneous bundle of G/D (see §2.2a). The

components ofE are also homogeneous subsets ofG/D but their dimension is not constant
everywhere (it may drop on a dense subset of zero measure). This can be generalized as
follows: if gR is a subgroup of G such that all eigenvalues of Adgt , t > 0, are real, then
there exists a subgroup F ⊂ G such that Ẽh(gR) = hFD for all h ∈ G (this is so because
gR projects to a central subgroup in G/M). If the homogeneous flow (hFD,gR) is not
ergodic, one can repeat the procedure and finally find an invariant homogeneous subspace
of G/D containing the point hD ∈ G/D and such that the flow thereon is ergodic relative
to the Haar measure; one can show that this subspace is nothing else but Eh(gR). Hence
all ergodic components are homogeneous subspaces of G/D provided gR has only real
eigenvalues with respect to the Ad-representation (in particular, if gR is R-diagonalizable
or unipotent).
The existence of nonreal eigenvalues of Adgt complicates the matters in the sense that

ergodic components need not be homogeneous. For instance, if G is Euclidean then E and
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Ẽ coincide and their components may not be homogeneous subsets of G/D. However,
the restriction of the flow onto each component is smoothly isomorphic to an ergodic
rectilinear flow on a torus (see §1.4b for examples).
This is a particular case of the following general phenomenon: the restriction of the flow

onto each ergodic component is compactly covered by a homogeneous flow (see [226]).

THEOREM 2.4.1. Let G be a connected simply connected Lie group and (G/D,gR)

a homogeneous flow on a finite volume space. Then G can be embedded as a normal
subgroup into a connected Lie group G∗ such that G∗/G is a torus and G∗ contains a
connected subgroup F and a one-parameter subgroup fR such that
(1) for every h ∈ G one has a smooth equivariant covering with compact leaves

(
F/D ∩ F,h−1fRh

)
"→

(
Ẽh(gR), gR

)

where the covering is finitely sheeted for almost all h ∈ G;
(2) for every h ∈ G there exists a finitely sheeted equivariant covering

(
Fh/D ∩ Fh, fR(h)

)
"→

(
Eh(gR), gR

)
,

where Fh is a connected subgroup of F , and one has Fh = F and fR(h) = h−1fRh

for almost all h ∈ G;
(3) the subgroupD0 is normal in F .

This theorem implicitly states that fR and gR have the sameMoore normal subgroupM;
hence F = (hfRh−1MD)0 ⊂ G∗ for all h ∈ G.
The above theorem reduces the study of non-ergodic homogeneous flow to that of

a family of ergodic homogeneous flows on homogeneous spaces with discrete isotropy
subgroups. In particular, one has the following ([226]):

COROLLARY 2.4.2. An ergodic homogeneous flow (G/D,gR) is finitely covered by a
homogeneous flow (H/Γ, fR), where Γ is a lattice in H .

For the proof one takesH = F/D0 and Γ = D∩F/D0 , where F is as in Theorem 2.4.1.
Corollary 2.4.2 generalizes a similar result of Auslander [6] for homogeneous flows on
solvmanifolds.

4b. Typical orbit closures. We have seen that flows on Ẽh(gR) are covered by
homogeneousflows on the same space F/D∩F , and for almost all h ∈ G the coveringmap
is finitely sheeted. One can show that the finite fibers are the same almost everywhere and
hence almost all manifolds Ẽh(gR) are diffeomorphic to each other. Moreover, a stronger
result holds ([226]).

THEOREM 2.4.3. There exists a closed invariant subset Q ⊂ G/D of zero measure such
that outside Q the partition Ẽ forms a smooth bundle.
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As an example in §1.4b shows, one cannot claim that Ẽ is a smooth bundle of G/D.
Another example comes from homogeneous flows of the form (K/T ,gR), where K is a
compact semisimple Lie group and T a maximal torus in K .
The above theorem sharpens an earlier result of Brezin and Moore [30] that a non-

ergodic homogeneous flow admits a nonconstant C∞-smooth invariant function.
One knows that the smooth flow (Ẽh(gR), gR) is ergodic for almost all h ∈ G. On

the other hand, almost all orbits of an ergodic flow on manifold with a smooth invariant
measure are dense (Hedlund’s lemma). This allows one to deduce the following [226]:

THEOREM 2.4.4. Almost all orbit closures of a homogeneous flow (G/D,gR) on a finite
volume space are smooth manifolds. Moreover, almost all of them are diffeomorphic to the
same manifold (the typical ergodic submanifold given by Theorem 2.4.3).

2.5. Topological equivalence and time change

5a. Topological equivalence. Let Γ (resp. Γ ′) be a lattice in a Lie group G (resp. G′).
Let us say that a homeomorphism σ :G/Γ "→ G′/Γ ′ is an affine isomorphism if there
exist an epimorphism α :G "→ G′ and an element h ∈ G′ such that α(Γ ) = Γ ′ and
σ (gΓ ) = hα(g)Γ ′ for all g ∈ G.
Recall that given subgroups gR ⊂ G and g′

R
⊂ G′, a homeomorphismσ :G/Γ "→ G′/Γ ′

is a topological equivalence of corresponding flows if σ sends gR-orbits to g′
R
-orbits. If

in addition σ is an affine isomorphism then σ is said to be an affine equivalence of the
corresponding flows (one can check that then there exists c += 0 such that σ (gtx) = g′

ctσ (x)

for all x ∈ G/Γ, t ∈ R).
Clearly, topological equivalence not always implies the existence of an affine equiva-

lence (even if the flows are ergodic). For example, any ergodic flow on a Euclidean mani-
foldG/Γ is smoothly isomorphic (and hence topologically equivalent) to a rectilinear flow
on a torus and the spaces involved are not affinely isomorphic unless G is Abelian. On the
other hand, geodesic flows on homeomorphic compact surfaces of constant negative cur-
vature are always topologically equivalent, though the surfaces may not be isometric [4].
However, in a broad class of Lie groups topological equivalence does imply the existence

of an affine one. Following Benardete [14], let us demonstrate the idea on the classical case
G/Γ = G′/Γ ′ = Rn/Zn. Taking a composition of homeomorphism σ with a translation
if necessary, one may assume that σ induces a homeomorphism σ̃ of Rn/Zn such that
σ̃ (x + Zn) = σ̃ (x) + Zn, x ∈ Rn. Since σ̃ |Zn = s ∈ SL(n,Z), it follows that s−1σ̃ is a
homeomorphism of Rn which is identical on Zn and sends gR-orbits into s−1(g′

R
)-orbits.

Since Rn/Zn is compact, there exists a c > 0 such that d(x, s−1σ̃ (x)) " c, x ∈ Rn. On
the other hand, any two distinct one-parameter subgroups of Rn diverge from each other.
Hence gR = s−1(g′

R
) and the flows are affinely equivalent.

This way one can prove the same result provided: (a) Γ and Γ ′ are uniform lattices in
G and G′ respectively, (b) any isomorphism between Γ and Γ ′ can be extended to the Lie
groups involved (rigidity of lattices), (c) any two distinct one-parameter subgroups in G

diverge from each other. In fact, the uniformness of lattices is not necessary. The condition
(b) stands for rigidity of lattices and it is satisfied if both G and G′ are triangular Lie
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groups (Saito), or both G and G′ are semisimple and satisfy the conditions of Mostow–
Margulis–Prasad rigidity theorem (see [141]). As for the last condition, one can replace it
with ergodicity. One obtains the following result due to Benardete [14]:

THEOREM 2.5.1. Let σ : (G/Γ, gR) "→ (G′/Γ ′, g′
R
) be a topological equivalence of

ergodic flows. Assume that any one of the following conditions holds:
(1) G and G′ are simply connected triangular Lie groups.
(2) G andG′ are totally noncompact semisimple center-free Lie groups, andG contains

no normal subgroup S locally isomorphic to SL(2,R) such that the product SΓ is
closed.

Then σ is a composition of an affine equivalence and a homeomorphism of G′/Γ ′

preserving g′
R
-orbits.

Witte [256] extended this result to homogeneous actions of multi-parameter subgroups:

THEOREM 2.5.2. Let σ : (G/Γ,F ) "→ (G′/Γ ′,F ′) be a topological equivalence of
homogeneous flows, where F and F ′ are connected unimodular subgroups. Assume thatG
andG′ are the same as in Theorem 2.5.1. Then σ is a composition of an affine equivalence
and a homeomorphism of G′/Γ ′ preserving F ′-orbits.

Clearly, Theorem 2.5.2 is not true for G = G′ = SL(2,R) if, for instance, F = F ′ =

D(2): if Γ and Γ ′ are uniform and isomorphic then the geodesic flows are topologically
equivalent. As it was shown in [256], the same holds for F = F ′ = SO(2) and F = F ′ =

T (2).
On the other hand, in [131] Marcus proved that horocycle flows are topologically rigid:

THEOREM 2.5.3. Let σ : (G/Γ,UR) "→ (G/Γ ′,UR) be a topological equivalence of
horocycle flows, where both Γ and Γ ′ are uniform. Then σ is a composition of an affine
equivalence and a homeomorphism of G/Γ ′ preserving UR-orbits.

Having in mind Theorems 2.5.1 and 2.5.3 one can conjecture that the topological
equivalence (G/Γ, uR) "→ (G′/Γ ′, u′

R
) of two ergodic unipotent flows is always a

composition of affine equivalence and homeomorphism of G′/Γ ′ preserving u′
R
-orbits.

5b. The first cohomology group. We have seen that under favorable conditions the
topological equivalence of flows is a composition of an affine equivalence and time change
of the second flow.
Let us consider time changes for homogeneous actions (G/Γ,F ), where F is

isomorphic to Rk for some k ! 1. The simplest case is the linear time change arising
from an automorphism of F . Clearly, any time change for (G/Γ,F ) gives one a cocycle
v :F × (G/Γ ) "→ F 0 Rk and the description of time changes reduces to the study of the
first cohomology group over the flow (G/Γ,F ) with values in R. Here the smoothness
class of time change defines the smoothness of the cocycle; hence one can study the first
cohomology group in the category of continuous, Hölder, C∞-smooth functions etc. For
instance, if the first cohomology group trivializes, i.e., every cocycle is cohomological to
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a homomorphism α :F "→ R, then any time change is equivalent (in the corresponding
category) to a linear one.
Not much is known about the first cohomology group over homogeneous flows. Let us

first consider the question for one-parameter flows. It is well known that the first continuous
(or smooth) cohomology group over a smooth flow does not trivialize if the flow has at
least two distinct periodic orbits. In other words, the family of periodic orbits presents
an obstruction to the trivialization of the first cohomology group. It is important that for
Anosov flows on compact Riemannian manifolds there are no other obstructions in the
categories of Hölder and C∞-functions (theorem of Livsiĉ, see [107]).
Surprisingly, the situation is quite different for multi-parameter Anosov flows. All

known nontrivial examples of such actions (except those arising from operations with one-
parameter Anosov flows) come from the following construction. Let C ⊂ G be a compact
subgroup which commutes with F 0 Rk . Then an infra-homogeneousflow (C\G/Γ,F ) is
said to be Anosov if F contains a partially hyperbolic element a ∈ F for which F -orbits on
C\G/Γ form the neutral foliation (i.e., C × F is the neutral subgroup for a ∈ G). Katok
and Spatzier studied different classes of Anosov actions (called the standard actions) and
discovered that their first (Hölder and C∞) cohomology groups do trivialize. The common
in all the standard actions is the absence of quotient actions which degenerate to one-
parameter Anosov actions (see [107] for more details), and this is probably the criterion
for the first cohomology groups to trivialize (see [233,235] for a progress in proving this
conjecture). The most important class (of so called Weyl chamber flows) is obtained by
taking G to be a totally noncompact semisimple Lie group with rankR G ! 2, Γ ⊂ G an
irreducible lattice, F ⊂ G a maximal R-diagonalizable subgroup, and C ⊂ G the compact
part of the centralizer of F in G. Note that the key role in establishing the trivialization of
the first cohomology group is played by the exponential mixing property (see §2.3d).

5c. Time changes. Now let us again consider one-parameter homogeneous flows.
Assume that the flow has no periodic orbits and, moreover, is minimal. Then the study
of time changes becomes very complicated. Partial results are known only for rectilinear
flows on T2 and for the horocycle flow on SL(2,R)/Γ .
First we describe shortly some results for the rectilinear flow (T2,Rvα) given by a vector

vα = (1,α) ∈ R2 (see [38,213,237] for more information). It turns out that the possibility
to linearize time changes depends on Diophantine properties of the rotation number α. We
have the following result due to Kolmogorov [120]:

THEOREM 2.5.4. For almost all irrational numbers α, any positive function τ ∈ C∞(T2)

determines a time change for the rectilinear flow (T2,Rvα) which is C∞-equivalent to a
linear scaling of time. On the other hand, there exist uncountably many irrational numbers
α for which not every C∞-smooth time change can be linearized.

In fact, the numbers α with nontrivial time changes are those with very fast rate of
approximation by rational numbers (see §5.2a). Moreover, as was indicated in [120], there
exist irrational number α and an analytical time change for the flow (T2,Rvα) which
determines a flow on T2 with continuous spectrum (hence the flows are not conjugate
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even via a measure-preserving transformation of T2); earlier a similar example with a
continuous time change was constructed by von Neumann.
Finally, we mention some results related to the horocycle flow

(
G/Γ,UR

)
, where Γ is a

uniform lattice inG = SL(2,R). Such a flow is Kakutani equivalent to a rectilinear ergodic
flow on T2 (Ratner [175]).13 On the other hand, any two ergodic rectilinear flows on T2

are Kakutani equivalent (Katok [106]). Hence given any two uniform lattices Γ1 and Γ2,
there exists a measurable time change of the horocycle flow onG/Γ1 which leads to a flow
isomorphic to the horocycle flow on G/Γ2.
On the other hand, even a mild smoothness condition preserves rigidity properties of the

horocycle flow (cf. Section 3.8). Namely, let K(G/Γ ) ⊂ L2(G/Γ ) be the class of positive
functions τ such that τ and 1/τ are bounded and τ is Hölder along the SO(2)-orbits. The
following was proved by Ratner [181]:

THEOREM 2.5.5. Let the flows (G/Γ1,U
τ1
t ) and (G/Γ2,U

τ2
t ) be obtained from horocycle

flows via time changes τi ∈ K(G/Γi), i = 1,2, where
∫

τ1 =
∫

τ2. Then any measure-
theoretic isomorphism of the flows implies conjugacy of Γ1 and Γ2 in G (hence the
horocycle flows are also isomorphic).

It is not known whether any C∞-smooth time change of the horocycle flow is equivalent
to a linear one. On the other hand, there are no results similar to Theorem 2.5.5 for
other unipotent ergodic flows. For instance (see [189]), is it true that isomorphism of
two flows obtained via C∞-smooth time changes of two ergodic unipotent flows implies
isomorphism of the latter?

2.6. Flows on arbitrary homogeneous spaces

6a. Reduction to the case of discrete isotropy subgroup. Homogeneous actions on spaces
of general nature (possibly not of finite volume) are not well studied. Still, one can mention
a few results in this setting.
First, while studying one-parameter flows (G/D,gR) one can assume with no loss of

generality that the isotropy subgroup D is discrete. This is better for several reasons:
(a) considering local structure ofG/D in this case presents no difficulties; (b) the flow itself
has no fixed points and orbits of contracting/expanding subgroups form smooth foliations;
(c) a right Haar measure onG induces a G-semi-invariant smooth measure ν onG/D (i.e.,
there exists a multiplicative character χ :G → R∗ such that ν(gX) = χ(g)ν(X), g ∈ G,
X ⊂ G/D) which may be helpful (note that in the general case ν is onlyG-quasi-invariant,
i.e., left translations onG/D preserve the subalgebra of sets of zero measure). One has the
following ([225]):

THEOREM 2.6.1. Given a one-parameter flow (G/D,gR), the space G/D is a disjoint
union of two invariant subsets O and P such that
(1) O is open and all orbits inside O are locally closed,

13Surprisingly enough, this is not the case for the Cartesian square of the horocycle flow [176].
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(2) the closed subset P is a disjoint union of closed invariant submanifolds Ph(gR)

such that every flow (Ph(gR), gR) is finitely covered by a homogeneous flow
(Fh/Γh, fR(h)), where Γh is a discrete subgroup of Fh.

Clearly, the above theorem reduces the study of orbit closures and finite ergodic
measures on G/D to the case of discrete isotropy subgroup. In particular, one has the
following ([225]:

COROLLARY 2.6.2. Any topologically transitive homogeneous flow on a space of
dimension greater than 1 is finitely covered by a homogeneous flow on a space with discrete
isotropy subgroup.

Here the dimension condition is put to avoid the degenerate case when the flow is both
topologically transitive and dissipative. (Example:G = SL(2,R), D = T (2), gR = D(2).)

6b. Flows on arbitrary solvmanifolds. One may note an analogy between Theorem 2.6.1
and the ergodic decomposition Theorem 2.4.1. In fact, in the case vol(G/D) < ∞ the
set O is empty and ergodic submanifolds Eh(gR) play the role of Ph(gR). Clearly,
Corollary 2.6.2 generalizes Corollary 2.4.2.
Another situation when all Ph(gR) are ergodicmanifolds is given by the solvable case. In

this case Theorem 2.6.1 may be significantly refined and the study of homogeneous flows
on G/D may be completely reduced to the case when D is a lattice (not just a discrete
subgroup) in G. One has the following ([224]):

THEOREM 2.6.3. Assume that G is a solvable Lie group. Then, in the notation of
Theorem 2.6.1, all submanifolds Ph(gR) are compact and the covering homogeneous
flows (Fh/Γh, fR(h)) are ergodic flows on compact solvmanifolds with discrete isotropy
subgroups.

One can also prove that any orbit inside O goes to infinity at least in one direction.
Besides, solvable flows are either dissipative (when P is of zero Haar measure) or
conservative (when O is empty).

6c. Geodesic and horocycle flows. As we have seen in Theorem 2.6.1, it suffices to
consider homogeneous flows of the form (G/Γ, gR), where Γ is a discrete subgroup
of G. Unlike the solvable case, for a semisimple Lie group G the study of one-parameter
homogeneous flows gets much more complicated and there is no hope to reduce it to the
finite volume case. This can be seen on the simplest case G = SL(2,R).
We describe briefly some known results for the geodesic and horocycle flows on G/Γ

(where Γ is an arbitrary discrete subgroup ofG) with respect to the Haar measure onG/Γ .
The results below come from the theory of Fuchsian groups and for more details one can
consult survey [230].
First, the geodesic flow is either dissipative or ergodic. Unlike the solvable case (where

dissipative flow possesses an open conull subset consisting entirely of locally closed
orbits), the geodesic flow may be both dissipative (in particular, almost all its orbits go
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to infinity in both directions) and topologically transitive (hence the set of dense orbits is
of the second category).
The behavior of the horocycle flow is much more sensitive to the structure of the

Fuchsian group Γ . We assume that Γ is non-elementary (i.e., Γ is not almost cyclic).
Let Ω ⊂ G/Γ be the nonwandering closed set for the horocycle flow. Note that Ω is
invariant under the geodesic flow. One knows that either Ω = G/Γ or Ω is a nowhere
locally connected closed noncompact set whose Hausdorff dimension is equal to 2 + δ

(where δ is the Hausdorff dimension of the limit set of Γ ).
Almost all orbits inside Ω are dense therein. In particular, the horocycle flow may have

orbit closures which are not submanifolds. Moreover, the set Ω can be minimal (and
noncompact). Apart from dense orbits the set Ω can contain horocycle orbits of other
types: periodic, going to infinity in both directions, locally closed but nonclosed, recurrent
but nondense in Ω , etc.
BothΩ and its complement can be of infinite measure; hence the horocycle flow can be

neither dissipative nor conservative (clearly, in this case the geodesic flow is dissipative).
On the other hand, the horocycle flow can be conservative and non-ergodic. Recently
Kaimanovich [105] proved that the horocycle flow on G/Γ is ergodic if and only if the
Borel subgroup T (2) ⊂ G acts ergodically.
Note that all the pathologies do not happen if the Fuchsian group Γ ⊂ SL(2,R) is

finitely generated. However, if one proceeds to G = SO(1, n), n > 2, the situation is not
well understood even for finitely generated discrete subgroups Γ ⊂ G (cf. [166]).
This brief exposition shows how complicated can be the situation for arbitrary

homogeneous flows. Apparently, in the general case one cannot hope to find, for instance,
the ergodicity criterion or to describe even typical orbit closures. Still, some results of
general nature can be proved for any discrete subgroup Γ of Lie groupG (cf. §§3.3b, 3.3d,
4.1a, 4.3b, 4.3c).

3. Unipotent flows and applications

From the developments in last 15 years it is apparent that many questions in number theory,
more specifically those related to Diophantine analysis, can be reformulated in terms
of ergodic properties of individual orbits of certain flows on Ωk = SL(k,R)/SL(k,Z),
the space of unimodular lattices in Rk . In most of the interesting cases one encounters
a situation where the collection of trajectories, whose dynamical behavior yields useful
information for the problem at hand, has total measure zero. Therefore one is unable
to effectively use the results which are true for almost all trajectories. This is the main
reason one is interested in the study of individual trajectories. The ergodic properties
to be considered for this purpose are closures and limiting distributions of trajectories.
One also needs to understand how much ‘percentage of time’ a given trajectory spends
in a sequence of chosen neighborhoods of either the point at infinity, or a fixed lower
dimensional submanifold in the homogeneous space. To illustrate this view point we
consider the following

EXAMPLE 3.0.1. Based on an idea of Mostow the following result was proved in [67],
where the condition of ergodicity and the additional algebraic structure lead to a statement
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about density of individual orbits: Let G be a Lie group and Γ be a lattice in G. Let g ∈ G

be such that Adg is semisimple and the action of g on G/Γ is ergodic. Let G+ be the
expanding horospherical subgroup associated to g. Let H be the subgroup generated by
G+ and g. Then every H -orbit on G/Γ is dense.
Using this observation the following number theoretic statement was obtained by Dani

and Raghavan [67]: Let v= (v1, . . . ,vp) be a p-frame over Rk with 1" p " k − 1. Then
its orbit under SL(k,Z) is dense in the space of p-frames over Rk if and only if v is
‘irrational’ (that is, the real span of {v1, . . . ,vp} contains no nonzero rational vector).

It is well known that individual trajectories of actions of a partially hyperbolic one-
parameter subgroup on a homogeneous space can have strange behavior, see §1.4e and
§4.1a. On the other hand, by the contributions of Dani, Margulis, and Ratner, to name
a few, the behavior of individual orbits of actions of unipotent subgroups is now very
well understood. Here the two most important results are: (1) the nondivergence of a
unipotent trajectory on a finite volume homogeneous space (exposed in Section 3.1 and
Section 3.2), and (2) the homogeneity of finite ergodic invariant measures and orbit
closures of a unipotent flow (see Section 3.3, and also Section 3.5 for actions of subgroups
generated by unipotent elements). Putting together these basic results provides a powerful
tool to investigate ergodic properties of individual trajectories. For example, it can be
shown that every unipotent trajectory on a finite volume homogeneous space is uniformly
distributed with respect to a unique invariant (Haar) probability measure on a closed orbit
of a (possibly larger) subgroup (see Section 3.3 for the main result, and Section 3.6 for
refinements and generalizations). One of the aims of this section is to describe a variety
of ergodic theoretic results which were motivated by number theoretic questions and
which can be addressed using the two basic results. Those include limiting distributions
of sequences of measures (Section 3.7) and equivariant maps, joinings and factors of
unipotent flows (Section 3.8). We will also give some idea of the techniques involved in
applying the basic results, see Section 3.4. Other applications and generalizations can be
found in Section 4, see Sections 4.2, 4.3 and 4.4.

3.1. Recurrence property

The most crucial property of a one-parameter group of unipotent linear transformations,
say ρ :R "→ SL(k,R), is that its matrix coefficients, that is, the (i, j)-th entries of ρ, are
polynomials of degree at most k − 1.
One of the first striking applications of this property was made by Margulis in 1970, see

[132], to prove the following nondivergence result:

THEOREM 3.1.1. Let G = SL(k,R), Γ = SL(k,Z), and let u be a unipotent element
of G. Then for any Λ ∈ G/Γ , there exists a compact set K ⊂ G/Γ such that the set
{n ∈ N | unΛ ∈ K} is infinite.

This result was used in Margulis’ proof [133] of the arithmeticity of non-uniform
irreducible lattices in semisimple groups of R-rank ! 2. Its proof is based on a



hass v.2002/01/24 Prn:31/01/2002; 15:11 F:HASS11.tex; VTEX/ELE p. 43

Dynamics of subgroup actions 43

combinatorial inductive procedure, utilizing some observations about covolumes of
sublattices of unZk , and also growth properties of positive valued real polynomials. Later
a quantitative version of it was obtained by Dani [45,51,55]; the statement given below
appears in [62, Proposition 1.8].

THEOREM 3.1.2. Let G be a Lie group and Γ a lattice in G. Then given a compact set
C ⊂ G/Γ and an ε > 0, there exists a compact set K ⊂ G/Γ such that the following
holds: For any one-parameter unipotent subgroup uR of G, any x ∈ C and any T > 0,

1

T

∣∣{t ∈ [0, T ] | utx ∈ K
}∣∣ > 1− ε,

where | · | denotes the Lebesgue measure on R.

The result was proved first for G = SL(n,R) and Γ = SL(n,Z). It was extended
for semisimple groups G of R-rank ! 2 and irreducible lattices Γ using the Margulis
Arithmeticity Theorem (Theorem 1.3.2). It was proved for semisimple groups G of R-
rank one in [51], using the cusp structure of fundamental domains for lattices in these
groups [86]. The two results were combined to obtain the theorem for all semisimple Lie
groups. The general case follows from the fact that any finite volume homogeneous space
has a semisimple homogeneous space as an equivariant factor with compact fibers [51,55]
(see also §1.3f).

1a. Property-(D) and the Mautner phenomenon.

DEFINITION 3.1.3. A subgroup H of a Lie group G is said to have property-(D) on a
homogeneous space X of G if for any locally finite H -invariant measure σ on X there
exists a countable partition of X into H -invariant measurable subsets {Xi}i∈N such that
σ (Xi) < ∞ for all i ∈ N.

In particular, if H has property-(D) on X, then every locally finite H -invariant H -
ergodic measure on X is finite. The validity of the converse can be deduced by using the
technique of ergodic decomposition, see, e.g., [3, Theorem 4.2.4].
Combining Theorem 3.1.2 and Birkhoff’s ergodicity theorem, Dani [45] showed the

following:

COROLLARY 3.1.4. Any unipotent subgroup of a connected Lie groupG has property-(D)

on any finite volume homogeneous space of G.

In view of the Mautner phenomenon [156] (see Theorem 2.1.4), one can show the
following [136,201]:

PROPOSITION 3.1.5. Let G be a Lie group and W be a subgroup generated by one-
parameter unipotent subgroups. Then there exists a connected unipotent subgroup U ⊂ W

such that the triple (G,W,U) has the following property: for any (continuous) unitary



hass v.2002/01/24 Prn:31/01/2002; 15:11 F:HASS11.tex; VTEX/ELE p. 44

44 D. Kleinbock et al.

representation G on a Hilbert space H, if a vector v ∈ H is fixed by U then v is fixed
by W .
In particular, if µ is a finite G-invariant Borel measure on a G-space X, and if µ is

W -ergodic then µ is U -ergodic.

It was observed by Margulis [136] that from Corollary 3.1.4 and Proposition 3.1.5 one
can deduce the following:

THEOREM 3.1.6. Let G be a Lie group, and H a subgroup of G such that H/H1 is
compact, where H1 is the closed normal subgroup of H generated by all one-parameter
unipotent subgroups contained in H . Then H has property-(D) on any finite volume
homogeneous space of G.
In particular, if X is a finite volume homogeneous space of G, and x ∈ X is such that

Hx is closed, then Hx ∼= H/Hx admits a finite H -invariant measure, where Hx denotes
the stabilizer of x in H (cf. [174, Theorem 1.3]).

From the above result, Margulis [136] derived an alternative proof of Theorem 1.3.1. By
similar techniques one obtains the following [201, §2]:

THEOREM 3.1.7. Let G be a Lie group, Γ a lattice in G, and W a subgroup of G which
is generated by one-parameter unipotent subgroups. Given any x ∈ G/Γ , let H be the
smallest closed subgroup of G containing W such that the orbit Hx is closed (such a
subgroup exists). Then:
(1) H/Hx has finite volume;
(2) W acts ergodically on Hx ∼= H/Hx with respect to the H -invariant measure;
(3) AdG(H) ⊂ Zcl(AdG(Hx)).

The Zariski density statement in the above corollary is a consequence of Theorem 1.3.6.

1b. Compactness of minimal closed sets. The following result due to Margulis [140] can
be seen as a topological analogue of the property-(D) of unipotent flows:

THEOREM 3.1.8. Let G be a Lie group, Γ a lattice in G, and U a unipotent subgroup
of G. Then any minimal closed U -invariant subset of G/Γ is compact.

This result was proved by Dani and Margulis [61] for the case of one-parameter
unipotent subgroups. The proof of the general case is based on Theorem 3.1.2 and
the following compactness criterion, which was proved using some new interesting
observations about nilpotent Lie groups.

THEOREM 3.1.9. Let G be a nilpotent Lie group of finite type; that is, G/G0 is finitely
generated. Let a continuous action of G on a locally compact space X be given. Suppose
that there exists a relatively compact open subset V ⊂ X with the following properties:
(a) ∀x ∈ X and ∀g ∈ G the trajectory gNx does not tend to infinity, and (b)GV = X. Then
X is compact.
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3.2. Sharper nondivergence results

Now we will state some results which sharpen and generalize the nondivergence results of
Dani and Margulis in different directions.

2a. Quantitative sharpening. In [117] Kleinbock and Margulis affirmatively resolved
the conjectures of Baker and Sprindžuk (see §5.2e and §5.3b) by applying the following
sharpened version of Theorem 3.1.2; in order to state the results in greater generality, we
need some definitions. The results stated in this subsection appeared in [117].

DEFINITION 3.2.1. Let V ⊂ Rd be open, and f ∈ C(V ). For C > 0 and α > 0, say that f
is (C,α)-good on V if for any open ball B ⊂ V and any ε > 0, one has

1

|B|

∣∣∣
{
x ∈ B

∣∣ ∣∣f (x)
∣∣ " ε · sup

x∈B

∣∣f (x)
∣∣
}∣∣∣ " Cεα,

where | · | denotes the Lebesgue measure on Rd .

One can show that

PROPOSITION 3.2.2. For any k ∈ N, any real polynomial f of degree not greater than k

is (C,α)-good for C = 2k(k + 1)1/k and α = 1/k.

A version of this result was also noted earlier in [66]. The following can be thought of
as a generalization. Let U be an open subset of Rd . Say that an n-tuple f= (f1, . . . , fn) of
Cl functions, where fi :U → R, is nondegenerate at x ∈ U if the space Rn is spanned by
partial derivatives of f at x of order up to l.

PROPOSITION 3.2.3. Let f= (f1, . . . , fn) be a Cl map from an open subset U of Rd to
Rn, and let x0 ∈ U be such that f is nondegenerate at x0. Then there exists a neighborhood
V ⊂ U of x0 andC > 0 such that any linear combination of 1, f1, . . . , fn is (C,1/dl)-good
on V .

Let us say that map h :V "→ GL(k,R) is (C,α)-good if for any linearly independent
vectors {v1, . . . ,vj } ⊂ Rk and w= v1 ∧ · · · ∧ vj , the map x "→ ‖h(x)w‖14 is (C,α)-good.

THEOREM 3.2.4. Let d, k ∈ N, C,α > 0, 0< ρ " 1, and let a ball B = B(x0, r0) ⊂ Rd ,
and a (C,α)-good map h :B(x0,3kr0) "→ GL(k,R) be given. Then one of the following
conditions is satisfied:
(1) There exists x ∈ B and w = v1 ∧ · · · ∧ vj , where {vi}

j

i=1 ⊂ Zk are linearly
independent and 1" j " k, such that

∥∥h(x)w
∥∥ < ρ.

14Here one fixes a norm on Rk and extends it to ∧j Rk , 1" j " k.
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(2) For any ε < ρ,

∣∣{x ∈ B: δ
(
h(x)Zk) < ε

}∣∣ " kCNk
d (ε/ρ

)α
|B|,

where δ is as in (1.2), and Nd is a constant depending only on d .

In view of Mahler’s Compactness Criterion (Theorem 1.3.3) the following special case
of the above result sharpens Theorem 3.1.2 for G = SL(k,R) and Γ = SL(k,Z):

THEOREM 3.2.5. For any lattice Λ in Rk there exists 0< ρ = δ(Λ) " 1 such that for any
one-parameter unipotent subgroup uR of SL(k,R), for any ε " ρ and any T > 0, one has

1

T

∣∣{0< t < T | δ(utΛ) < ε
}∣∣ " Ck(ε/ρ)1/k2,

where Ck = 2k32k(k2 + 1)1/k2 .

2b. Qualitative strengthening. In this section we will consider polynomial trajectories
on finite volume homogeneous spaces. We will choose a large compact set in the
homogeneous space depending only on the degree and the number of variables of
polynomial trajectories and a positive ε > 0, so that if the projection of a ‘long piece’
of a polynomial trajectory on the homogeneous space does not visit the chosen compact
set with relative probability at least 1− ε, then it satisfies an algebraic condition, which is
analogous to possibility (1) of Theorem 3.2.4.
Let G be a real algebraic semisimple group defined over Q, and let Γ be a lattice in

G commensurable with G(Z). Let r denote the Q-rank of G (as was mentioned in §1.2b,
G/Γ is noncompact if and only if r > 0). Fix a minimal parabolic subgroup P of G

defined over Q. There are exactly r distinct proper maximal parabolic Q-subgroups of G

containing P , say P1, . . . ,Pr .
Take any 1 " i " r . Let Ui denote the unipotent radical of Pi . Let g = Lie(G),

Ui = Lie(Ui), and di = dimUi . Now g has a Q-structure, so that g(Q) is Ad(G(Q))-
invariant, and the Lie subalgebra associated to any Q-subgroup of G is a Q-subspace.
Since Ui is defined overQ, one can choose a nonzero qi ∈ (∧diUi) ∩ (∧dig(Q)). Consider
the action ofG on ∧dig given by the ∧di AdG-representation. Then for any a ∈ Pi , one has
a · qi = det(a|Ui

)qi .
Let K be a maximal compact subgroup of G such that G = KP . Fix a K-invariant

norm ‖ · ‖ on ∧dig. Now for any g ∈ G, write g = ka, where k ∈ K and a ∈ P . Then
‖g · qi‖ = |det(a|Ui

)| · ‖qi‖.
By [26, Theorem 15.6], there exists a finite set F ⊂ G(Q) such that

G(Q) = Γ · F · P(Q).

DEFINITION 3.2.6. For d,m ∈ N, let Pd,m(G) denote the set of continuous maps
Θ :Rm "→ G with the following property: for all c, a ∈ Rm and X ∈ g, the map

R ; t "→Ad
(
Θ(tc + a)

)
(X) ∈ g

is a polynomial of degree at most d in each coordinate, with respect to any basis of g.
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THEOREM 3.2.7. For any d,m ∈ N, ν > 0 and ε > 0 there exists a compact set C ⊂ G/Γ

such that for any bounded open convex set B ⊂ Rm and any Θ ∈ Pd,m(G), one of the
following conditions is satisfied:

(1)
1

|B|

∣∣{x ∈ B: π
(
Θ(x)

)
∈ C

}∣∣ < 1− ε.

(2) There exists i ∈ {1, . . . , r} and g ∈ Γ F such that

∥∥Θ(x)g · qi

∥∥ < ν, ∀x ∈ B.

Note that a similar conclusion can be obtained for any Lie groupG and a lattice Γ inG,
see [203, Theorem 2.2]. Note also that in Theorem 3.2.7, we have not related ε and the
compact set C as in Theorem 3.2.4. The methods in [117] are general enough to provide
sharp relations between ε and C and for (C,α)-good maps in place of polynomial maps as
above. For this purpose one can use the algebraic description of compact subsets of G/Γ

as given by [64, Proposition 1.8].
Finally, one can observe that the Γ -orbit of any element of ∧dig(Q) is contained in

1
k
∧di g(Z) for some k ∈ N. Therefore the set {g ·qi | g ∈ Γ F } is discrete. As a consequence

of this remark one deduces the following:

COROLLARY 3.2.8. Given any d,m ∈ N and ε > 0 there exists a compact set C ⊂ G/Γ

such that the following holds: for any Θ ∈ P(d,m) there exists a T0 > 0 such that one of
the following conditions is satisfied:
(1) For any open convex set B containing B(0, T0) in Rm,

1

|B|

∣∣{x ∈ B: π
(
Θ(x)

)
∈ C

}∣∣ < 1− ε;

(2) There exists i ∈ {1, . . . , r} and g ∈ Γ F such that

Θ(0)−1Θ
(
Rm

)
⊂ g−1( 0Pi

)
g,

where 0Pi = {a ∈ Pi | det(Ada|Ui
) = 1}.

3.3. Orbit closures, invariant measures and equidistribution

In this section we will describe the fundamental results on unipotent flows on homogeneous
spaces of Lie groups.

3a. Horospherical flows and conjectures of Raghunathan, Dani and Margulis. The
most naturally occurring unipotent subgroup associated to geometric constructions is the
horospherical subgroup. For a (contracting or expanding) horospherical subgroup U of a
Lie groupG, the action of U on a homogeneous space of G is called a horospherical flow.
In fact, orbits of a horospherical flow on a homogeneous space of a Lie group are precisely
the leaves of the strongly stable foliation of a partially hyperbolic action of an element of
this group.
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We recall Hedlund’s theorem [95] that any nonperiodic orbit of a horocycle flow on a
finite volume homogeneous space of SL(2,R) is dense. In [84], Furstenberg showed that
the horocycle flow on a compact homogeneous space of SL(2,R) is uniquely ergodic, and
hence every orbit is equidistributed with respect to the SL(2,R)-invariant measure. The
result was generalized by Veech [247] and Bowen [33] for ergodic actions of horospherical
subgroups of semisimple groupsG acting on G/Γ , where Γ is a uniform lattice in G.
The first results in this direction for the non-uniform lattice case were obtained by Dani,

who classified the ergodic invariant measures for actions of horospherical subgroups on
noncompact finite volume homogeneous spaces of semisimple Lie groups [44,47].
As a very general approach to resolve the Oppenheim conjecture on values of quadratic

forms at integral points (see §5.1a), in the late 1970’s Raghunathan formulated the
following conjecture (in oral communication), which was also motivated by the earlier
works of Margulis and Dani:

CONJECTURE 3.3.1. The closure of any orbit of a unipotent flow on a finite volume
quotient space of a Lie group is homogeneous, that is, it is itself an orbit of a (possibly
larger) Lie subgroup.

In [56], Dani showed the validity of Raghunathan’s conjecture for horospherical flows
in the semisimple case. Using methods of [56] Starkov [228] gave an explicit formula for
orbit closures of a horospherical flow on compact homogeneous space of arbitrary Lie
group. It may be noted that Raghunathan’s conjecture was generalized by Margulis [136],
with ‘unipotent flow’ replaced by an action of a subgroupW generated by one-parameter
unipotent subgroups. Namely, it was conjectured that for any x ∈ G/Γ there exists a closed
subgroup F of G (containingW ) such that Wx = Fx , and the closed orbit Fx supports a
finite F -invariant measure.
Using the results of Auslander and Green (see [9] or §2.2a) about nilflows, in [222] the

latter statement was proved for solvable Lie groups. But as far as homogeneous spaces
of semisimple Lie groups are concerned, until 1986 Conjecture 3.3.1 was proved only
for actions of horospherical subgroups. Since these are geometrically defined subgroups,
various techniques from the theory of unitary representations, geometry, and Markov
partitions could be used to study their properties.
A major breakthrough came fromMargulis’ work on Oppenheim conjecture. In [138] he

proved the orbit closure conjecture in the case whenG = SL(3,R),W = SO(2,1), and the
closure of the given orbit ofW is compact; the case of a noncompact orbit closure for this
action, as well as for the action of a unipotent subgroup of SO(2,1), was resolved by Dani
and Margulis in [61,62]. Note that SO(2,1) does not contain any horospherical subgroup
of SL(3,R).
The methods of Dani andMargulis were exploited to prove the generalized Raghunathan

conjecture for the case of G = SO(n,1), see [201, Remark 7.4].

3b. Ergodic invariant measures for unipotent flows. The aesthetically most pleasing,
deep and fundamental result about dynamics of subgroup actions on homogeneous spaces
of Lie groups is the algebraic classification of finite ergodic invariant measures of unipotent
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flows due to Ratner [182]; this result also provides the crucial ingredient for the proof of
the aforementioned conjectures on orbit closures.
Unless changed later, we fix a Lie groupG, a discrete subgroup Γ of G, and the natural

quotient map π :G "→ G/Γ .
Now we state the description of finite ergodic invariant measures for unipotent flows on

homogeneous spaces due to Ratner [186]:

THEOREM 3.3.2 (Ratner). Let U be a one-parameter unipotent subgroup of G. Then any
finite U -invariant U -ergodic Borel measure, say µ, on G/Γ is a homogeneous measure;
that is, if one defines

F = {g ∈ G | the left action of g on G/Γ preserves µ}, (3.1)

then F acts transitively on supp(µ).

We note that the subgroup F of G defined by (3.1) is closed, and hence it is a Lie
subgroup of G.
This theorem was proved through a series of papers: [184] contains the proof in the

case when G is solvable, [183] contains the proof when G is semisimple and G/Γ is
compact, and [186] completes the proof in the general case. It may be noted that the
measure classification for unipotent flows on solvmanifolds can also be deduced from the
results of Starkov [224].
Ratner’s proof of this theorem does not use any major results apart from the Birkhoff’s

ergodic theorem, but it is a very long and involved proof. One of the basic observations
about polynomial divergence of unipotent orbits, known as R-property, plays an important
role in Ratner’s proof.

R-property. Consider a right G-invariant Riemannian metric dG on G. Given ε > 0,
there exists η > 0, such that if S is a large rectangular box (cf. Corollary 3.6.8) in
a closed connected simply connected unipotent subgroup U of G with e ∈ S and
supu∈S dG(u, gU) = θ for some small θ > 0 and some g /∈ U , dG(e, g) " θ , then there
exists another rectangular box A ⊂ S such that (1 − ε)θ " dG(u, gU) " θ , ∀u ∈ A,
and λ(A) ! ηλ(S), where λ denotes the Haar measure on U . Moreover, if u ∈ S and
dG(u, gU) = dG(u,ur(u)) for some r(u) ∈ G with ur(u) ∈ gU and dG(e, r(u)) " θ then
r(u) is close to the normalizer of U in G, and this closeness tends to zero as the sides of
the rectangular box S tend to infinity. (If U = uR, then S = u[0,T ] for a large T > 0.)
Some versions of R-property for the horocycle flows, like the H-property, were observed

and used in the earlier works of Ratner on rigidity of equivariant maps of horocycle
flows [178] and ergodic joinings [179,180] for the diagonal embedding of a horocycle
subgroup of SL(2,R) acting on SL(2,R)/Γ1 × · · · × SL(2,R)/Γm, where Γ1, . . . ,Γm are
lattices in SL(2,R). The H-property was generalized and used byWitte [254] for extending
Ratner’s result on equivariant maps to actions of unipotent elements on homogeneous
spaces of Lie groups.
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REMARK 3.3.3. Let N be a connected nilpotent group, and µ a finite N -invariant and
N -ergodic measure on an N -space. Then there exists a one-parameter subgroup V of N

such that V acts ergodically with respect to µ.

REMARK 3.3.4. Note that if Γ is a lattice in G, and U is a connected unipotent subgroup
of G, then by Corollary 3.1.4 any locally finite U -invariant U -ergodic measure on G/Γ is
finite. Hence by Theorem 3.3.2 it is a homogeneous measure.

From Proposition 3.1.5 and Remark 3.3.3 one concludes the following:

COROLLARY 3.3.5. Let W be a subgroup of G generated by one-parameter unipotent
subgroups. Then any finite W -invariant W -ergodic measure on G/Γ is ergodic with
respect to a one-parameter unipotent subgroup contained in W , and hence it is a
homogeneous measure. In particular, if Γ is a lattice in G, then any locally finite
W -ergodic measure on G/Γ is finite, and hence is a homogeneous measure.

We would like to note that motivated by a question of A. Borel, in [147] Margulis and
Tomanov gave another (shorter and simpler) proof of the analog of Theorem 3.3.2 for the
case when G is a finite product of linear Lie groups; see also [148] for the general case.
The p-adic and S-arithmetic analogues of Theorem 3.3.2 have also been obtained; see
[190,191] and [146–148,244].

3c. Closures of unipotent trajectories. For orbit closures of unipotent flows on finite
volume homogeneous spaces, Ratner [187] proved the following, which in particular
settled the conjectures of Raghunathan and Margulis (see §3.3a) in affirmation:

THEOREM 3.3.6. Let G be a Lie group and Γ a lattice in G. Let W be a subgroup of
G generated by one-parameter unipotent subgroups. Then for any x ∈ G/Γ there exists
a closed subgroup F of G (containing W ) such that Wx = Fx , and the closed orbit Fx

supports a finite F -invariant measure.

The approach to the proof of this result using Ratner’s measure classification is discussed
in the next section.
In the arithmetic situation one has the following more concrete description of orbit

closures (see [201, Proposition 3.2]):

PROPOSITION 3.3.7. Let G be a real algebraic group defined over Q and with no
nontrivial Q-characters, and let x0 denote the coset of identity in G/G(Z). Let W be a
subgroup of G generated by one-parameter unipotent subgroups. For any g ∈ G, let H

be the smallest real algebraic Q-subgroup of G containing g−1Wg. Then WgΓ = gHΓ .
Moreover the radical of H is unipotent.

In view of Theorem 1.3.2, the closures of orbits of subgroups generated by unipotent
one-parameter subgroups acting on G/Γ , where G is a semisimple group and Γ is an
irreducible lattice in G, can be described more precisely using the above proposition and
the following observation (see [204, Lemma 7.3]).
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LEMMA 3.3.8. Let G be a Lie group, and Γi be a closed subgroup such that G/Γi has a
finite G-invariant measure, where i = 1,2. Suppose that Γ1 ∩ Γ2 contains a subgroup of
finite index which is cocompact and normal in Γi for i = 1,2. Let xi be the coset of the
identity in G/Γi for i = 1,2. Then for any closed subgroup H of G and any g ∈ G:

Hgx1 is closed ⇔ Hgx2 is closed.

In particular, the above applies to any two commensurable lattices Γ1 and Γ2 in G.

Closures of totally geodesic immersions of symmetric spaces. A weaker form of
Ratner’s orbit closure theorem has an interesting formulation in the Riemannian geometric
set-up (see Payne [172]):

THEOREM 3.3.9. Let ϕ :M1 "→ M2 be a totally geodesic immersion, where Mi is a
connected locally symmetric space of noncompact type for i = 1,2. Suppose that M2 has
finite Riemannian volume. Then ϕ(M1) is an immersed submanifold of M2. Further, if
rank(M1) = rank(M2), then ϕ(M1) is a totally geodesic immersed submanifold of M2.

Such a geometric reformulation of Ratner’s theorem in the case of rankM1 = rankM2 =

1 was suggested by Ghys in oral communication (see [200] or [88]).

3d. Limiting distributions of unipotent trajectories. The orbit closure theorem was
proved by Ratner [187] by obtaining the following stronger result, which in turn uses her
classification of ergodic invariant measures:

THEOREM 3.3.10. Let G be a Lie group and Γ a lattice in G. Let U = uR be a one-
parameter unipotent subgroup of G. Then for any x ∈ G/Γ there exists a closed subgroup
of F of G (containing U ) such that the orbit Fx is closed and the trajectory uR+x is
uniformly distributed with respect to a (unique) F -invariant probability measure, say µ,
supported on Fx . In other words, for any bounded continuous function f on G/Γ ,

lim
T →∞

1

T

∫ T

0
f (utx)dt =

∫

Fx

f dµ.

The result for G = SL(2,R) and Γ a uniform lattice is an immediate consequence of
the unique ergodicity of the horocycle flow due to Furstenberg [84]. For G = SL(2,R)

and Γ = SL(2,Z) the result was proved by Dani [49], and for any non-uniform lattice
it was proved by Dani and Smillie [68]. The statement of Theorem 3.3.10 was roughly
conjectured in [68,136].
Using Ratner’s classification of ergodic invariant measures, in [201] the above

equidistribution result was obtained in the case when G is a semisimple group of real
rank one; and also in the case when G is a reductive group, U is a generic one-parameter
unipotent subgroup of G, and Γ is a uniform lattice in G.
Later Theorem 3.3.10 was extended to the infinite volume case by Dani and Mar-

gulis [66] as follows:
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THEOREM 3.3.11. Let G be a Lie group and Γ a discrete subgroup of G. Let U = uR

be a one-parameter unipotent subgroup of G and x ∈ G/Γ . Suppose that the following
condition is satisfied: given any ε > 0 there exists a compact set K ⊂ G/Γ such that

1

T

∣∣{t ∈ [0, T ] | utx ∈ K
}∣∣ ! 1− ε ∀T > 0. (3.2)

Then there exists a closed subgroup F of G such that the orbit Fx is closed and the
trajectory uR+x is uniformly distributed with respect to a (unique) F -invariant probability
measure on Fx .

Note that condition (3.2) is satisfied if one knows that the orbit Ux is relatively compact.

3e. An approach to proofs of the equidistribution results. Let µT denote the push-
forward of the normalized Lebesgue measure of [0, T ] onto the trajectory u[0,T ]x . In the
case of Theorem 3.3.10, the condition (3.2) is satisfied due to Theorem 3.1.2. Therefore,
in the setting of Theorems 3.3.10 and 3.3.11, there exists a subsequence Ti → ∞ such that
µTi converges to a probability measure, say λ, with respect to the weak-∗ topology on the
space of probability measures onG/Γ . It is straightforward to verify that λ is uR-invariant.
By Theorem 3.3.2, one can have a description of the ergodic components of λ. Further

analysis of this information, which is carried out in the next section, will show that λ is
either G-invariant, or it is strictly positive on the image of a ‘strictly lower dimensional
algebraic or analytic subvariety of G’ in G/Γ . If λ is G-invariant the proof is completed.
Otherwise, from the polynomial behavior of the unipotent trajectories, one concludes
that the entire trajectory must lie on one of those lower dimensional subvarieties. From
this fact and Theorem 3.1.7, one can reduce the problem to a strictly lower dimensional
homogeneous space, and use the induction argument to complete the proof (see §3.4e).

3.4. Techniques for using Ratner’s measure theorem

In this section we shall describe some concepts and techniques that can be applied to study
a large class of problems, like Theorem 3.3.10, where one needs to analyze the limiting
distributions that are invariant under unipotent subgroups.

4a. Finite invariant measures for unipotent flows. The main consequence of Ratner’s
classification of ergodic invariant measures is that the non-G-invariant ergodic components
of a uR-invariant measure on G/Γ are concentrated on the image of a countable union of
lower dimensional ‘algebraic subvarieties’ of G; this is explained below.
Let G be a Lie group, Γ a discrete subgroup of G, and let π :G "→ G/Γ be the natural

quotient map. Let HΓ denote the collection of all closed connected subgroups H of G

such that H ∩ Γ is a lattice in H , and the subgroup generated by the one-parameter
unipotent subgroups ofG contained in H acts ergodically onH/H ∩Γ with respect to the
H -invariant probability measure. In view of Theorem 3.1.7, AdG(H) is contained in the
Zariski closure of AdG(H ∩ Γ ) for each H ∈ HΓ .
The following fact was observed by Ratner [186, Theorem 1.1] (cf. [201, Lemma 5.2]):
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THEOREM 3.4.1. The collectionHΓ is countable.

For a simpler proof of this result see [66, Proposition 2.1]. In the arithmetic situation,
the proof follows easily:

REMARK 3.4.2. Suppose thatG be a real algebraic group defined overQ and Γ = G(Z).
Then any H ∈ HΓ is a real algebraic group defined over Q (cf. [201, Proposition 3.2]).
ThereforeHΓ is countable in this case.

LetW be a subgroup of G which is generated by one-parameter unipotent subgroups.
For any H ∈H, one defines:

N(W,H)
def
=

{
g ∈ G | W ⊂ gHg−1};

S(W,H)
def
=

⋃

F∈HΓ , F⊂H, dimF<dimH

N(W,F);

N∗(W,H)
def
= N(W,H) \ S(W,H).

REMARK 3.4.3. Let g, H and W denote the Lie algebras of G, H and W , respectively.
Let d = dimH, and consider the ∧d Ad-action of G on ∧dg. Let pH ∈ ∧dH " {0}. Then

N(W,H) =
{
g ∈ G | X ∧ (g · pH ) = 0 ∈ ∧d+1g ∀X ∈ W

}
.

In particular, if G is a real algebraic group, then N(W,H) is an algebraic subvariety of G.

LEMMA 3.4.4 [162, Lemma 2.4]. For any g ∈ N∗(W,H), if F is any closed subgroup of
G such that W ⊂ F and Fπ(g) is closed, then gHg−1 ⊂ F . In particular,

π
(
N∗(W,H)

)
= π

(
N(W,H)

)
\ π

(
S(W,H)

)
. (3.3)

Using Ratner’s description (Corollary 3.3.5) of finite W -invariant W -ergodic Borel
measures on G/Γ , Theorem 3.4.1, and the ergodic decomposition of invariant measures
([136, Section 1.2] or [3, Theorem 4.2.4]) one can reformulate Ratner’s theorem to describe
finiteW -invariant measures as follows:

THEOREM 3.4.5. Letµ be a finiteW -invariant measure onG/Γ . Then there existsH ∈ H

such that

µ
(
π

(
N(W,H)

))
> 0, and µ

(
π

(
S(W,H)

))
= 0. (3.4)

Moreover, almost every W -ergodic component of the restriction of the measure µ to
π(N(W,H)) is concentrated on gπ(H) for some g ∈ N∗(W,H), and it is invariant under
gHg−1 .
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See [162, Theorem 2.2] or [57, Corollary 5.6] for its deduction.

COROLLARY 3.4.6. If µ is a finiteW -invariant measure on G/Γ ,H ∈H is normal inG,
and µ(π(S(W,H))) = 0, then µ is H -invariant. In particular, if µ(π(S(W,G))) = 0 then
µ is G-invariant.

4b. Self-intersections of N(W,H) under π :G "→ G/Γ . The theme of this subsection
is that the self-intersection of N(W,H) under π occurs only along S(W,H). Since µ

vanishes on this set in view of (3.4), one can, in some sense, lift the restriction of µ on
π(N(W,H)) back to N(W,H) and analyze it there.
Since in the applications one obtains W -invariant measures as limiting distributions of

sequences of algebraically defined measures, one would like to understand the geometry of
thin neighborhoods of compact subsets of π(N∗(W,H)) and the behavior of these limiting
sequence of measures in those neighborhoods. As we remarked in the above paragraph, the
lifting procedure helps in this regard. This is done in the next subsection.
The geometry of thin neighborhoods of π(N∗(S(W,H)) is understood via the the

following facts:

PROPOSITION 3.4.7. For H1,H2 ∈ H and γ ∈ CommG(Γ ), suppose that

N∗(W,H1)γ ∩ N(W,H2) += ∅.

Then H1 ⊂ γH2γ
−1. In particular, if H1 = H2 then γ ∈ NG(H1).

We note that:

N(W,H) = NG(W)N(W,H)NG(H), (3.5)

N(W,H)γ = N(γ −1Hγ ,W) ∀γ ∈ CommG(Γ ), (3.6)

N∗(W,H) = NG(W)N∗(W,H)
(
NG(H) ∩ Γ

)
. (3.7)

The injectivity property in the following fact is a useful technical observation.

COROLLARY 3.4.8. The natural map

N∗(W,H)/NG(H) ∩ Γ "→ G/Γ

is injective.

4c. A method of analyzing W -invariant measures. The combination of Theorem 3.4.5,
Corollary 3.4.8 and Theorem 1.3.7 provides a very useful method for studying a finite
measure on a homogeneous space of a Lie group which is invariant and ergodic for
the action of a connected subgroup containing a ‘nontrivial’ unipotent one-parameter
subgroup. The technique can be illustrated as follows:
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We are given: (a) A real algebraic subgroup G of GL(n,R) and a discrete subgroup
Γ of G, (b) a closed connected subgroup F of G, and (c) an F -invariant F -ergodic Borel
probability measure µ on G/Γ .
Let W be the subgroup generated by all algebraic unipotent one-parameter subgroups

contained in F . Let H ⊃ W be as in Theorem 3.4.5. Let µ∗ denote the restriction of µ

to π(N(W,H)). Since µ is F -invariant, λF ({g ∈ F | gx ∈ π(N(H,W))}) > 0 for µ∗-a.e.
x , where λF denotes a Haar measure on F . Since F is an analytic subgroup of G, Γ is
discrete, and N(H,W) is an analytic subvariety of G, we have that Fx ⊂ π(N(H,W))

for µ∗-a.e. x (see [204, Lemma 5.3]). Thus µ∗ is F -invariant, and hence by the ergodicity
of µ, µ = µ∗.
Replacing Γ by a suitable conjugate subgroup, we may assume that

e ∈ N∗(W,H) and π(e) ∈ supp(µ).

By Corollary 3.4.8, we can lift µ to N∗(W,H)/NG(H) ∩ Γ , and call it µ̃. Let L =

Zcl(NG(H) ∩ Γ ). We project the measure µ̃ onto N∗(H,W)/L ⊂ G/L, and call it ν.
In the notation of Theorem 1.3.7,Gν and Jν are algebraic subgroups of G, Jν is normal in
Gν , and Gν/Jν is compact. Since π(e) ∈ supp(µ), Jν ⊂ L. Clearly F ⊂ Gν , and since F

acts ergodically with respect to ν, we have that Gν = FJν . Also W ⊂ Jν .

Suppose we are also given: (d) Zcl(F ) is generated by R-diagonalizable and algebraic
unipotent subgroups.
Then F ⊂ Jν ⊂ L. Therefore µ(π(L)) = 1. By our choice of H , we have that

µ(π(S(W,H))) = 0. Therefore by Corollary 3.4.6 applied to L in place of G, we have
that µ is H -invariant.

We conclude: (1) µ is concentrated on L/L ∩ Γ , (2) F ⊂ L, (3) there exists a closed
connected normal subgroup H of L containing all algebraic unipotent subgroups of F ,
such that µ is H -invariant, and (4) H ∩ Γ is a lattice in H . Note that all W -ergodic
components of µ are H -invariant and their supports are closed H -orbits.
The above method provides group theoretic restrictions on µ if we know that W += {e}.

In other words, by imposing various algebraic conditions on the subgroup F one can
obtain more information about µ. See [206, Proof of Theorem 7.2] for a refined version of
the above argument. The results in [148] providing algebraic information about invariant
measures for actions of connected subgroups also employ this method. Again the same
method is applied in [243]. This question is further discussed in §4.4b.

4d. Linear presentations. As mentioned in previous subsections, the dynamics of
unipotent or polynomial trajectories in thin neighborhood of π(N∗(W,H)) are studied
via lifting them to G and then studying them via suitable linear representations of G on
vector spaces.
Let V =

⊕dimg
k=1 ∧kG be the direct sum of exterior powers of g, and consider the linear

action of G on V via the direct sum of the exterior powers of the adjoint representation.
Fix any norm on V .
For any nontrivial connected Lie subgroup H of G, and its Lie algebra H, let us choose

a nonzero vector pH in the one-dimensional subspace ∧dimHH ⊂ V .
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For H ∈ HΓ , let V (W,H) denote the linear span of the set N(W,H) · pH in V . We
note that (cf. Remark 3.4.3, see [162])

N(W,H) =
{
g ∈ G | g · pH ∈ V (W,H)

}
, and (3.8)

N1
G(H)

def
=

{
g ∈ NG(H) | det(Adg|H) = 1

}

= {g ∈ G | g · pH = pH }. (3.9)

REMARK 3.4.9. Due to Corollary 3.4.8, for any g ∈ N∗(W,H) and γi ∈ Γ (i = 1,2), if
gγi · pH ∈ V (W,H), then gγ1 · pH = ±gγ2 · pH .

One of very important facts, due to which the methods work, is the following
generalization of Theorem 3.4.1 due to Dani and Margulis [66, Theorem 3.4]:

THEOREM 3.4.10. For H ∈ HΓ , the orbit Γ · pH is discrete. In particular, N1
G(H)Γ is

closed in G/Γ .

Note that, as in Remark 3.4.2 for the case of an arithmetic lattice, this result is a
consequence of the fact that for an algebraic linear representation of the ambient group
defined overQ, the orbit any rational point under the lattice consists of rational points with
bounded denominators, and hence it is a discrete subset.
Combining Remark 3.4.9 and Theorem 3.4.10 one obtains the following useful fact:

COROLLARY 3.4.11. Given a compact subset K of G/Γ and a compact set D ⊂
V (W,H), there exists a neighborhood Φ of D in V such that for any gΓ ∈ K , and
γ1,γ2 ∈ Γ , if gγi · pH ∈ Φ (i = 1,2) then γ1 · pH = ±γ2 · pH .

Combining Corollary 3.4.11 and the growth properties of polynomial trajectories (cf.
Proposition 3.2.2), one obtains the next result. It is one of the basic technical tools
used for applying Ratner’s measure classification to the study of limiting distributions of
algebraically defined sequences of measures (see [57,66,162,201,202]).

PROPOSITION 3.4.12. Let H ∈ H, d,m ∈ N and ε > 0 be given. Then for any compact
set C ⊂ π(N∗(W,H)) there exists a compact set D ⊂ V (W,H) with the following
property: for any neighborhood Φ of D in V , there exists a neighborhood Ψ of C in
G/Γ , such that for anyΘ ∈Pd,m(G) (see Definition 3.2.6), and any bounded open convex
set B ⊂ Rm, one of the following holds:
(1) Θ(B)γ · pH ⊂ Φ for some γ ∈ Γ ;
(2) 1

|B| |{t ∈ B | π(Θ(t)) ∈ Ψ }| < ε.

This proposition is an analogue of Theorem 3.2.7, where the point at infinity plays the
role of the singular set π(S(W,H)).
Using Proposition 3.4.12 one obtains the following:
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THEOREM 3.4.13. LetG be a connected Lie group and let Γ be a discrete subgroup ofG.
Let W be any closed connected subgroup of G which is generated by unipotent elements
contained in it. Let F be a compact subset of G/Γ " π(S(W,G)). Then for any ε > 0 and
natural numbersm and d , there exists a neighborhoodΩ of π(S(W,G)) such that for any
Θ ∈ Pm,d (G), any x ∈ F , and a ball B in Rm centered at 0, one has

∣∣{t ∈ B | Θ(t)x ∈ Ω
}∣∣ " ε · |B|.

It may be noted that proofs of both the above results do not involve Ratner’s measure
classification.

4e. Proof of Theorems 3.3.10 and 3.3.11. If Ux ⊂ Fx for a closed subgroup F of G

with Fx having a finite F -invariant measure and dimF < dimG, then one can appeal to
the induction argument. Therefore one can assume that x /∈ π(S(U,G)).
Consider the measure λ as in §3.3e. By Theorem 3.4.13, λ(π(S(U,G))) = 0. Therefore,

since λ is U -invariant, by Corollary 3.4.6, λ is G-invariant. This completes the proof. #

The above method can be applied in the proofs of many of the results stated below.15 In
most applications, the main part is to show that the first alternative in Proposition 3.4.12
corresponds to a certain algebraic group theoretic or rationality condition on the group
actions under consideration.

3.5. Actions of subgroups generated by unipotent elements

The descriptions of invariant measures and orbit closures for actions of (possibly discrete)
subgroups generated by unipotent elements on homogeneous spaces of Lie groups are
very similar to those for the actions of subgroups generated by unipotent one-parameter
subgroups [204].

THEOREM 3.5.1. Let G be a Lie group and Γ a closed subgroup of G. Let W be a
subgroup of G with the following property: there exists a subset S ⊂ W such that S

consists of unipotent elements andAdG(W) ⊂ Zcl(AdG(〈S〉)). Then any finiteW -invariant
W -ergodic measure on G/Γ is a homogeneous measure.

Note that if W is a subgroup of G such that W is generated by unipotent elements
contained in it, thenW satisfies the condition of Theorem 3.5.1.

THEOREM 3.5.2. Let the notation be as in Theorem 3.5.1. Suppose that G/Γ admits a
finite G-invariant measure. Then for any x ∈ G/Γ there exists a closed subgroup F of G
containingW such thatWx = Fx , and F 0x admits a finite F 0-invariant measure (see also
Corollary 3.5.4 below).

15See also [244] for applications in the S-arithmetic case.
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It may be noted that Theorem 3.5.1 and Theorem 3.5.2 were proved by Ratner [186,187]
in the following special case: G is connected, W is of the form W =

⋃∞
i=1wiW

0 , where
wi is unipotent, i = 1,2, . . . , W/W0 is finitely generated, and W 0 is generated by one-
parameter unipotent subgroups. In the case when G is not connected and W is a nilpotent
unipotent subgroup of G, Theorem 3.5.1 was proved by Witte [257, Theorem 1.2].
The proofs of the above theorems use Ratner’s classification of finite ergodic measures

and orbit closures for actions of unipotent one-parameter subgroups, and some additional
results like Proposition 3.4.7 and Theorem 1.3.6. The proof of Theorem 3.5.2 also involves
a version of Theorem 3.7.1 given in Remark 3.7.3.
The following result generalizes Corollary 3.1.6 and leads to an improved conclusion of

Theorem 3.5.2.

THEOREM 3.5.3. Let G, Γ , and W be as in Theorem 3.5.1. Suppose that G/Γ admits
a finite G-invariant measure. Then any locally finite W -invariant W -ergodic measure on
G/Γ is a finite homogeneous measure. In particular,W has property-(D) on G/Γ .

For the proof one starts with a locally finiteW -ergodic invariant measureµ onG/Γ . By
the method of the proof of Theorem 3.5.1, one can show that there exists a closed subgroup
H of G and x ∈ G/Γ such that µ is H -invariant, supp(µ) = Hx , and the restriction of µ

toH 0x is finite. Now it remains to prove thatHx has finitely many connected components.
By certain arguments using the Margulis Arithmeticity Theorem and handling the case of
real rank one semisimple groups separately, the question can be reduced to the case of
G = G(R)0 and Γ = G(Z), where G is an algebraic semisimple group defined over Q,W
is Zariski dense discrete subgroup of G, and W ⊂ G(Q). In this situation one can apply
an interesting recent result due to Eskin and Margulis [74] on nondivergence property of
random walks on finite volume homogeneous spaces to show thatW/W ∩ Γ is finite.
Combining Theorems 3.5.2 and 3.5.3 one obtains the following:

COROLLARY 3.5.4. Let the notation be as in Theorem 3.5.2. Then Fx admits a finite
F -invariant measure, and hence it has finitely many connected components.

Using the suspension argument, one obtains the following interesting extension of all
the above results:

THEOREM 3.5.5. Let the notations and conditions be as in any one of the three
Theorems 3.5.1–3.5.3 or Corollary 3.5.4, and let Λ be a lattice in W . Then the
corresponding conclusions of the aforementioned theorems or the corollary hold for Λ

in place of W .

In particular, the above result applies to the subgroup action of an irreducible lattice in
a noncompact semisimple group, which is acting on a homogeneous space of a larger Lie
group containing it.
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3.6. Variations of Ratner’s equidistribution theorem

In applications one needs to have more robust versions of the equidistribution results,
where one has the flexibility of suitably perturbing the base point and the acting one-
parameter subgroup involved in the limiting process.

6a. Uniformity in speed of convergence with respect to the starting point. The following
result was proved by Dani and Margulis [66] (see also Ratner [189, Theorem 8]):

THEOREM 3.6.1. Let G be a Lie group, Γ a lattice in G, and µ the G-invariant

probability measure onG/Γ . Let u(i)
R
be a sequence of one-parameter unipotent subgroups

converging to a unipotent subgroup uR; that is, u
(i)
t → ut for all t . Then for any sequence

xi → x inG/Γ with x /∈ π(S(uR,G)), any sequence Ti → ∞, and any ϕ ∈ Cc(G/Γ ), one
has

1

Ti

∫ Ti

0
ϕ
(
u

(i)
t xi

)
dt →

∫

G/Γ

ϕ dµ.

In the next result, also due to Dani and Margulis [66], one has a uniform rate of
convergence with greater flexibility in choosing the base point.

THEOREM 3.6.2. Let G be a connected Lie group, Γ a lattice in G, and µ the G-
invariant probability measure on G/Γ . Let uR be a one-parameter unipotent subgroup
of G and let ϕ ∈ Cc(G/Γ ). Then given a relatively compact subset K ⊂ G/Γ and an
ε > 0, there exist finitely many proper subgroups Hi ∈ HΓ (i = 1, . . . , k) and a compact
set C ⊂

⋃k
i=1N(uR,Hi) such that the following holds: for any compact set F ⊂ K \π(C)

there exists a T0 ! 0 such that

∣∣∣∣
1

T

∫ T

0
ϕ(utx)dt −

∫

G/Γ

ϕ dµ

∣∣∣∣ < ε ∀x ∈ F, ∀T > T0.

6b. Limit distributions of polynomial trajectories. For polynomial trajectories on finite
volume homogeneous spaces of linear Lie groups, we have the following results about their
closures and limit distributions [202]:

THEOREM 3.6.3. Let G and Γ ⊂ G be closed subgroups of SL(n,R) such that G/Γ

has a finite G-invariant measure. Let π :G "→ G/Γ denote the natural quotient map.
Let Θ :Rk "→ G be a polynomial map; that is, each coordinate function is a polynomial
in k variables. Suppose that Θ(0) = e. Let F be the minimal closed subgroup of G

containing Θ(Rk) such that π(F ) is closed and supports a finite F -invariant measure.

Then π(Θ(Rk)) = π(F ), and the following holds: for any f ∈ Cc(G/Γ ) and any sequence
Tn → ∞,

lim
n→∞

1

|Bn|

∫

t∈Bn

f
(
π

(
Θ(t)

))
dt=

∫

π(F )

f dµF , (3.10)
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where dt denotes the integral corresponding to the Lebesgue measure | · | on Rk and Bn

denotes the ball of radius Tn > 0 in Rk around 0.

One can also choose to integrate over large boxes in Rk :

THEOREM 3.6.4. Let the notation be as in Theorem 3.6.3. Suppose further there exist
polynomial maps θ1, . . . , θk from R to G such that

Θ(t1, . . . , tk) = θ(t1) · · ·θ(tk), ∀ti ∈ R. (3.11)

Then for any sequences T
(1)
n → ∞, . . . , T

(k)
n → ∞, the limit (3.10) holds for Bn =

[0, T (1)
n ] × · · · × [0, T (k)

n ], ∀n ∈ N.

This result is a generalization of Ratner’s equidistribution theorem for actions of
algebraic unipotent one-parameter subgroups on finite volume homogeneous spaces of
real algebraic groups, because one-parameter unipotent subgroups are polynomial maps.
Conversely, if a polynomial map θ :R "→ SL(n,R) is a group homomorphism, then its
image consists of unipotent elements.
The proof of Theorem 3.6.4 begins with the following observation motivated by [62,

Proposition 2.4]:

LEMMA 3.6.5. Let θ :R "→ SL(n,R) be a nonconstant polynomial map. Then there exists
a q ! 0 and a nontrivial unipotent one-parameter subgroup uR ⊂ SL(n,R) such that

lim
t→∞

θ
(
t + stq

)
θ(t)−1 = us , ∀s ∈ R.

Next consider a sequence of probability measures µT as in §3.3e. Then Theorem 3.2.7
is applicable, and there exists a sequence Ti → ∞ such that µTi → λ in the space of
probability measures on G/Γ . Then, by the above lemma, one can easily show that λ is
uR-invariant. Now the arguments as in §3.4e are also applicable. This will provide a proof
in the case k = 1. The proof of Theorem 3.6.3 can be obtained by radially fibering Bn and
applying the one-dimensional case for each fiber. Certain Baire’s category type arguments
yield the result. Although the fibering argument is not applicable for Theorem 3.6.4, the
method used for the one-dimensional case can be generalized.

REMARK 3.6.6. In the above theorems, if G is a real algebraic group defined over Q

and Γ ⊂ G(Q) is an arithmetic lattice with respect to the Q-structure on G, then F is the
smallest real algebraic subgroup ofG containingΘ(Rk) and defined over Q.

REMARK 3.6.7. The uniform convergence result for Θ in place of U as in Theorem 3.6.2
is valid, if one replaces N(U,H) by

N(Θ,H)
def
=

{
g ∈ G | Θ(Rk) ⊂ gHg−1},

and the integration can be carried out over the balls BT with T > T0 for arbitrary Θ , or
over the boxes Bn with each T

(i)
n > T0 in the case when Θ is as in (3.11).
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Using Theorem 3.6.4 one obtains the equidistribution theorem for higher dimensional
unipotent flows on homogeneous spaces of Lie group [202]. In order to describe the sets
on which we intend to average, we need the following definition:
Let N be a simply connected nilpotent group with Lie algebra N. Let B = {b1, . . . , bk}

be a basis in N. Say that the basis B is triangular if [bi, bj ] ∈ Span{bl | l >max{i, j }} for
all i, j = 1, . . . , k. Any permutation of a triangular basis is called a regular basis.

COROLLARY 3.6.8. Let G be a Lie group, Γ a closed subgroup of G such that G/Γ

admits a finite G-invariant measure, and let N be a simply connected unipotent subgroup
of G. Let {b1, . . . , bk} be a regular basis in N. For s1, . . . , sk > 0 define

B(s1, . . . , sk) =
{
(exp tkbk) · · · (exp t1b1) ∈ N | 0" tj " sj , j = 1, . . . , k

}
.

Given x ∈ G/Γ , let F be the minimal closed subgroup of G containing N such that the
orbit Fx is closed and admits a unique F -invariant probability measure, say µF . Then for
any f ∈ Cc(G/Γ ),

lim
s1→∞,...,sk→∞

1

λ(B(s1, . . . , sk))

∫

h∈B(s1,...,sk)

f (hx)dλ(h) =

∫

Fx

f dµF ,

where λ denotes a Haar measure on N .

3.7. Limiting distributions of sequences of measures

Now we will note some results on limiting distributions of sequences of homogeneous
measures. The common theme of the results is that, under somewhat more general condi-
tions, the limits of sequences of homogeneous measures are also homogeneous measures,
and under appropriate algebraic conditions such sequences become equidistributed in the
ambient homogeneous space.

7a. Closure of the set of ergodic invariant measures. Let G be a Lie group and Γ be a

discrete subgroup ofG. LetQ
def
= {µ ∈P(G/Γ ) | µ is U -invariant and U -ergodic for some

unipotent one-parameter subgroup U of G}.
The following was proved by Mozes and Shah [162]:

THEOREM 3.7.1. Q is a closed subset of P(G/Γ ). Further, if {µi} ⊂ Q is a sequence
converging to µ, then it converges algebraically in the following sense: there exists a
sequence gi → e in G such that for some i0 ∈ N,

gi supp(µi) ⊂ supp(µ), ∀i ! i0. (3.12)

COROLLARY 3.7.2. Suppose that Γ is lattice in G. For any x0 ∈ G/Γ , define

Qx0

def
=

{
µ ∈ Q | x0 ∈ supp(µ)

}
.

Then Qx0 is compact.
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This follows from Theorem 3.7.1, because using Theorem 3.1.2 it is straightforward to
verify that Qx0 is relatively compact in P(G/Γ ).

REMARK 3.7.3. Suppose that G/Γ is connected. Take any unipotent element u ∈ G. If
µi is a u-invariant and u-ergodic probability measure onG/Γ for all i ∈ N and µi → µ in
P(G/Γ ) as i → ∞, then µ is a homogeneousmeasure, and there exists a sequence gi → e

such that gi supp(µi) ⊂ supp(µ). See [204, Theorem 7.16] for more details.

7b. Limits of translates of algebraic measures. In the case of arithmetic lattices, one has
the following analogue of Theorem 3.7.1 due to Eskin, Mozes and Shah [78].

THEOREM 3.7.4. Let G be a connected real algebraic group defined over Q, let Γ be a
subgroup of G(Z), and let π :G "→ G/Γ be the natural quotient map. Let H ⊂ G be a
connected real algebraic Q-subgroup such that π(H) admits an H -invariant probability
measure, say µH . Let {gi} be a sequence such that the giµH → µ in P(G/Γ ) as i → ∞.
Then there exists a connected real algebraicQ-subgroup L of G such that L ⊃ H and the
following holds:
(1) There exists c ∈ G such that µ is cLc−1-invariant and supp(µ) = cπ(L). In

particular, µ is a homogeneous measure.
(2) There exists a sequence ci → c in G such that giπ(H) ⊂ ciπ(L) and c−1

i gi ∈ Γ H

for all but finitely many i ∈ N.

In the above situation, it can be shown that if all but finitely many elements of the
sequence {gi} are not contained in any set of the form CZG(H), where C is a compact set,
then there exists a sequence Xi → 0 in Lie(H) such that Adgi(Xi) → X for some X += 0.
Now it is straightforward to deduce that U = exp(RX) is a unipotent subgroup of G and
µ is U -invariant. Then one applies Ratner’s measure classification and Proposition 3.4.12
for further analysis.
Theorem 3.7.4 is better applicable if one has a criterion to decide when a sequence

{giµH } has a convergent subsequence in the space of probability measures on G/Γ .
Suppose that π(ZG(H)) is not compact. Since ZG(H) is a reductive Q-subgroup,
π(ZG(H)) is closed, and hence there exists a sequence zi ∈ ZG(H) such that π(zi) has
no convergent subsequence. It is easily verified that the sequence ziµH is divergent; that
is, for any compact set K ⊂ G/Γ , ziµH (K) → 0 as i → ∞. The next result due to Eskin,
Mozes and Shah [79] says that if π(ZG(H)) is compact, then the orbit GµH of µH is
relatively compact in the space of probability measures on G/Γ .

THEOREM 3.7.5. Let G be a connected reductive algebraic group defined over Q, and H

a connected real reductive Q-subgroup of G, both admitting no nontrivial Q-characters.
Suppose thatH is not contained in any proper parabolicQ-subgroup ofG defined overQ.
Let Γ ⊂ G(Q) be an arithmetic lattice in G and π :G "→ G/Γ the natural quotient map.
Let µH denote the H -invariant probability measure on π(H). Then given any ε > 0 there
exists a compact set K ⊂ G/Γ such that gµH (K) > 1− ε for all g ∈ G.

We note that the condition of H not being contained in a proper parabolic Q-subgroup
is equivalent to the condition that π(ZG(H)) is compact (see [79, Lemma 5.1]).
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The proof of Theorem 3.7.5 is based on a version of Theorem 3.2.7.

7c. Limits of expanding translations of horospheres. The result in Example 3.0.1 can be
extended using Ratner’s measure theorem as follows [203]:

THEOREM 3.7.6. Let G be a connected semisimple totally noncompact Lie group. Let
g ∈ G be such that

Adg is semisimple and the projection of
gZ on any simple factor of G is unbounded.

(3.13)

Let G+ be the expanding horospherical subgroup of G corresponding to g, and let H be
the subgroup of G generated by g and G+. Now suppose that G is realized as a closed
subgroup of a Lie group L and let Λ be a lattice in L. Then any closed H -invariant subset
of L/Λ, as well as any (locally finite) H -invariant Borel measure on L/Λ, is G-invariant.
In particular, (locally finite) H -invariant H -ergodic measures on L/Λ are finite and

homogeneous, and the closures of orbits of H on L/Λ are homogeneous. Thus H has
property-(D) on L/Λ.

One of the motivations for the above result was the following very general result due to
Furstenberg (oral communication, 1990):

THEOREM 3.7.7. Let notation be as in Theorem 3.7.6. Let X be a locally compact
Hausdorff space with a continuousG-action. Suppose that there exists a finiteG-invariant
Borel measure on X which is strictly positive on every non-empty open subset of X. Then
for any x ∈ X, if Gx = X then Px = X, where P = NG(G+).
In particular, if the action of G on X is minimal, then P acts minimally on X.

Note that, in view of Ratner’s orbit closure theorem, if L is a Lie group containing G,
Λ is a lattice in L, then closure of every G-orbit on L/Λ has a finite G-invariant measure
which is positive on every open subset. Hence by Theorem 3.7.7, the closure of every
P -orbit on L/Λ is G-invariant (cf. Theorem 4.4.5).
Theorem 3.7.6 was proved by Ratner [188] in the case when each simple factor of G is

locally isomorphic to SL(2,R) (see Theorem 4.4.2).
Theorem 3.7.6 is a direct consequence of the following limiting distribution result [203]:

THEOREM 3.7.8. Let the notation be as in Theorem 3.7.6. Take any x ∈ L/Λ, and let F be
a closed subgroup of L containingG such thatGx = Fx (see Theorem 3.3.6). Let λ be the
F -invariant probability measure supported on Fx , and let ν be any probability measure
on G+ which is absolutely continuous with respect to a Haar measure on G+. Then for
x ∈ L/Λ and any f ∈ Cc(L/Λ),

lim
n→∞

∫

G+
f

(
gnux

)
dν(u) =

∫

Fx

f dλ.
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The proof of this result involves Ratner’s measure theorem, Proposition 3.4.12 and the
following observation ([203, Lemma 5.2]), which allows one to contradict possibility (1)
of the proposition:

LEMMA 3.7.9. For any continuous linear representation of G on a finite dimensional
vector space V and anyG+-fixed vector v ∈ V , either v isG-fixed or gnv→ ∞ as n → ∞.

REMARK 3.7.10. Note that a result similar to Theorem 3.7.8 (with L = G and Λ = Γ

a lattice in G) was proved in [116] without using the classification of ergodic invariant
measure or orbit closures for unipotent flows, and with assumption (3.13) replaced by the
partial hyperbolicity of g. It was derived from mixing properties of the g-action on G/Γ ,
see §2.3c, and the conjugation u "→ gnug−n being an expanding automorphism of G+.
Further, the result is valid for Hölder square-integrable functions f , and the convergence
becomes exponentially fast if one knows that the g-action is exponentially mixing, in the
sense of (4.3) below. For example, (2.3) would be a sufficient condition.

Using a slightly stronger version of Theorem 3.7.8 the following can be deduced [203]:

COROLLARY 3.7.11. Let G be a totally noncompact semisimple Lie group, and let K

be a maximal compact subgroup of G. Let L be a Lie group which contains G as a Lie
subgroup, and let Λ be a lattice in L. Let ν be any probability measure on K which is
absolutely continuous with respect to a Haar measure on K . Let {gn} be a sequence of
elements of G without accumulation points. Then for any x ∈ L/Λ and any f ∈ Cc(L/Λ),

lim
n→∞

∫

K

f (gnkx)ν(k) =

∫

Fx

f dλ,

where F is a closed subgroup of L such that Gx = Fx , and λ is a (unique) F -invariant
probability measure on Fx .

In the case of L = G, the result was first proved by Duke, Rudnick and Sarnak [73]
using methods of unitary representation theory. Soon afterwards a much simpler proof was
obtained by Eskin and McMullen [75] using the mixing property of geodesic flows (cf.
Remark 3.7.10). As in [73,75] an appropriate analogue of the above theorem is also valid
for any affine symmetric subgroup of G in place of the maximal compact subgroup K

of G.

3.8. Equivariant maps, ergodic joinings and factors

It turns out that equivariant maps and ergodic joinings of unipotent flows are algebraically
rigid. The first two results are direct consequences of Ratner’s description of ergodic
invariant measures for unipotent flows (see [186,189]).

THEOREM 3.8.1. LetGi be a connected Lie group and Γi be a lattice inGi containing no
nontrivial normal subgroups ofGi , where i = 1,2. Let ui be a unipotent element ofGi, i =
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1,2. Assume that the action of u1 on G1/Γ1 is ergodic with respect to the G1-invariant
probability measure. Suppose that there is a measure-preserving mapψ :G1/Γ1 "→ G2/Γ2
such that ψ(u1x) = u2ψ(x) for a.e. x ∈ G1/Γ1. Then there is c ∈ G2 and a surjective
homomorphism α :G1 "→ G2 such that α(Γ1) ⊂ cΓ2c

−1 and ψ(hΓ1) = α(h)cΓ2 for a.e.
hΓ1 ∈ G/Γ1.
Also α is a local isomorphism whenever ψ is finite-to-one or G1 is simple. Further it is

an isomorphism whenever ψ is one-to-one or G1 is simple with trivial center.

THEOREM 3.8.2. Let Gi be a connected Lie group, Γi be a lattice in G, νi be the Gi -
invariant probability measure on Gi/Γi , and ui be a unipotent element of Gi , where
i = 1,2. Let xi = eΓi ∈ Gi/Γi for i = 1,2. Suppose that µ is a joining of {(Gi/Γi,νi , ui) |

i = 1,2} which is ergodic with respect to u1 × u2 (see [3, §3.3.h]), and that (x1, x2) ∈
supp(µ). Then there exist a closed normal subgroup Ni of Gi , where i = 1,2, and a group
isomorphism α : 7G1 "→ 7G2, where 7Gi = Gi/Ni for i = 1,2, such that the following holds:
(1) 7Γi = ΓiNi/Ni is a lattice in 7Gi for i = 1,2;
(2) If one writes G = {(g,α(g)) | g ∈ 7G1} then G ∩ 7Γ1 × 7Γ2 is a lattice in G;
(3) If ϕ :G1/Γ1 × G2/Γ2 "→ 7G1/7Γ1 × 7G2/7Γ2 is the standard quotient map, and if µ̄

denotes theG-invariant probability measure onGϕ(x1, x2), then µ is the canonical
lift of µ̄ with respect to ϕ;

(4) supp(µ̄) is a finite covering of 7G2/7Γ2 of index equal to [7Γ2 :α(7Γ1) ∩ 7Γ2].
In particular, if Gi is a semisimple totally noncompact Lie group, Γi is an irreducible

lattice in Gi , where i = 1,2, and the joining µ as above is nontrivial, then G1 andG2 are
locally isomorphic, and supp(µ) is a finite covering of Gi/Γi for i = 1,2.

ForG1 = G2 = SL(2,R) both the above results were proved earlier by Ratner [178,179].
Using Ratner’s method, Theorem 3.8.1 was proved in the general case by Witte [254].
It turns out that the measure theoretic factors for actions of subgroups generated by

unipotent elements on homogeneous spaces can be described algebraically.

DEFINITION 3.8.3. (1) SupposeG is a connected Lie group and Γ is a discrete subgroup
of G. A homeomorphism τ :G/Γ "→ G/Γ is called an affine automorphism of G/Γ if
there exists σ ∈Aut(G) such that τ (gx) = σ (g)τ (x) for all x ∈ G/Γ .
Put Aut(G)Γ = {σ ∈ Aut(G) | σ (Γ ) = Γ }. Define a map π :G # Aut(G)Γ "→

Aff(G/Γ ) by π(h,σ )(gΓ ) = hσ (g)Γ for all g ∈ G. Observe that π is a surjective map.
Hence Aff(G/Γ ) has the structure of a Lie group acting differentiably on G/Γ .
(2) Suppose G is a connected Lie group and Γ is a closed subgroup of G such

that Γ 0 is normal in G. Put 7G = G/Γ 0 and 7Γ the image of Γ in 7G. One defines
Aff(G/Γ )

def
= Aff(7G/7Γ ).

(3) Suppose G is a Lie group and Γ is a closed subgroup of G such that G = G0Γ and

Γ 0 is normal in G0. One defines Aff(G/Γ )
def
= Aff(G0/G0 ∩ Γ ).

The next result is obtained by combining Theorem 3.5.1 and [257].

THEOREM 3.8.4. Let G be a Lie group and Γ a closed subgroup of G such that G/Γ is
connected and has a finite G-invariant measure. Let W be a subgroup of G and a subset
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S ⊂ W be such that S consists of unipotent elements and AdG(W) ⊂ Zcl(AdG(〈S〉)).
Suppose W acts ergodically on G/Γ . Then any W -equivariant measurable quotient of
G/Γ is of the form K\G/Λ, where Λ is a closed subgroup of G containing Γ , and K is a
compact subgroup of the centralizer of the image of W in Aff(G/Λ).

REMARK 3.8.5. Let G be a connected semisimple totally noncompact Lie group and Γ

be an irreducible lattice in G. Then [Λ : Γ ] < ∞. Further suppose that ZG(W) is finite.
Then K is a finite group.

It may be noted that the above result was proved by Ratner [177] in the case of
G = SL(2,R).
The description of topological factors for unipotent flow is very similar to the measurable

factors, but it is somewhat more involved (see Shah [203]).

THEOREM 3.8.6. Let G and Γ be as in Theorem 3.8.4. Let W be a subgroup of G

generated by unipotent one-parameter subgroups contained in it. Suppose that W acts
ergodically on G/Γ . Let X be a Hausdorff locally compact space with a continuous
W -action and ϕ :G/Γ "→ X a continuous surjectiveW -equivariant map. Then there exists
a closed subgroupΛ containing Γ , a compact group K contained in the centralizer of the
image of W in Aff(G/Λ), and a W -equivariant continuous surjective map ψ :K\G/Λ "→
X such that the following statements hold:

(1) Define the W -equivariant map ρ :G/Γ "→ K\G/Λ by ρ(gΓ )
def
= KgΛ for all

g ∈ G. Then ϕ = ψ ◦ ρ.
(2) Given a neighborhood Ω of e in ZG(W), there exists an open dense W -invariant

subsetX0 ofG/Λ such that for any x ∈ X0 and y ∈ G/Λ one has removing brackets
y ∈ KΩx whenever ψ(Kx) = ψ(Ky). In this situation, if KWx = K\G/Λ, then
Ky = Kx .

REMARK 3.8.7. Let the notation be as in Theorem 3.8.6. Further suppose that G and Γ

are as in Remark 3.8.5, and the subgroupW is a proper maximal connected subgroup of G
with discrete center. Then [Λ : Γ ] < ∞, K is finite, Ω = {e}, and C " X0 is contained in
a union of finitely many closed orbits of W for any compact subset C of G/Λ.

Apart from Theorem 3.3.6, a new ingredient in the proof of Theorem 3.8.6 is the use of
the conclusion (3.12) of Theorem 3.7.1.

8a. Disjointness of actions on boundaries and homogeneous spaces. Consider a con-
nected Lie group L and its Lie subgroup G which is a simple Lie group of R-rank > 1.
Let P be a proper parabolic subgroup of G and Λ a lattice in L. Then the actions of G on
G/P and on L/Λ are ‘topologically disjoint’ in the following sense (see [203]):

THEOREM 3.8.8. LetG be a real algebraic semisimple Lie group whose all simple factors
have R-rank > 1. Let L be a Lie group and Λ be a lattice in L. Suppose that G is realized
as a Lie subgroup of L and it acts ergodically on L/Λ. Let P be a parabolic subgroup ofG
and consider the diagonal action of G on L/Λ × G/P . Let Y be locally compact second
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countable space with a continuous G-action and ϕ :L/Λ × G/P "→ Y be a continuous
surjective G-equivariant map. Then there exist a parabolic subgroup Q ⊃ P of G, a
locally compact Hausdorff space X with a continuous G-action, a continuous surjective
G-equivariant map ϕ1 :L/Λ "→ X (see Theorem 3.8.6), and a continuous G-equivariant
map ψ :X × G/Q "→ Y such that the following holds:
(1) If one defines ρ :L/Λ × G/P "→ X × G/Q as ρ(x, gP ) = (ϕ1(x), gQ) for all

x ∈ L/Λ and g ∈ G, then ϕ = ψ ◦ ρ.
(2) There exists an open dense G-invariant set X0 ⊂ L/Λ such that if one puts Z0 =

ϕ1(X0) × G/Q and Y0 = ψ(Z0), then
(a) Y0 is open and dense in Y ,
(b) Z0 = ψ−1(Y0), and
(c) ψ|Z0 is a homeomorphism onto Y0.

In particular, if the action of G on L/Λ is minimal then ψ is a homeomorphism.

In the case when L = G, the result was proved by Dani [50] in order to obtain a
topological analogue of a result of Margulis [134] on Γ -equivariant measurable factors
of G/P . The above result was formulated to answer a question of Stuck [241] for actions
on homogeneous spaces.
The proof of the result is based on the ideas from [50] combined with Ratner’s orbit

closure theorem, and Theorem 3.7.6.

4. Dynamics of non-unipotent actions

As we saw in Section 3, unipotent orbits on homogeneous spaces exhibit somewhat
‘regular’ behavior. On the other hand, in the complementary partially hyperbolic case
there always exist orbits with complicated behavior. After describing several examples
of partially hyperbolic one-parameter flows, we prove that any such flow has an orbit with
nonsmooth closure. Further, one can find orbits avoiding any pre-selected point, or even
a small enough subset, of the space. Results of this type are reviewed in §4.1a and §4.1b.
Then in §4.1c we specialize to noncompact homogeneous spaces and look at excursions of
trajectories to infinity, obtaining a generalization and strengthening of Sullivan’s logarithm
law for geodesics. Finally, in §4.1d we consider trajectories exiting to infinity.
On the other hand, the results of Section 3 simplify considerably the study of arbitrary

(not necessarily unipotent) actions. For example, one can extend a lot of results to the class
of quasi-unipotent actions. It turns out that the algebraicity of orbit closures and ergodic
measures is to be replaced by ‘quasi-algebraicity’. This implies, in particular, that all orbit
closures of a one-parameter flow are smooth iff the flow is quasi-unipotent. We discuss
this dichotomy and related results in Section 4.2. Although measure rigidity does not take
place for ergodic quasi-unipotent flows, it does so for mixing quasi-unipotent flows. As for
the ergodic case, one can establish ‘fiber-wise’ rigidity.
After proving a stronger form of Ratner’s topological theorem in Section 4.3 we give a

‘classification’ of minimal sets of homogeneous one-parameter flows. Then we comment
on the structure of rectifiable invariant sets.
In Section 4.4 we consider the structure of ergodic measures and orbit closures for

actions of multi-dimensional connected subgroups F ⊂ G. Here the results are far from
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being definitive. Nevertheless, some classes of connected subgroups F ⊂ G not generated
by unipotent elements, whose ergodic measures and orbit closures are of algebraic origin,
have been found. Incidentally, we show how the study of F -ergodic invariant measures
for a connected subgroup F can be reduced to the case when F is Abelian and consists
of partially hyperbolic elements. For such a subgroup F with dimF > 1, many important
problems are open; we only list some of them. Finally, we discuss the relation between
minimality and unique ergodicity of homogeneous actions.

4.1. Partially hyperbolic one-parameter flows

Throughout Section 4.1, Γ is a lattice in a Lie groupG (perhaps sometimes just a discrete
subgroup), and gR is a partially hyperbolic one-parameter subgroup of G. The basic
examples are those listed in §1.4e and §1.4f: that is, geodesic flows on locally symmetric
spaces of noncompact type. In this setting, G will be as in (2.1); as we saw in Sections 1
and 2, many problems involving homogeneous flows can be reduced to this case. Moreover,
the situation when the space essentially splits into a product of smaller spaces can be
reduced to studying the factors; therefore it will be often natural to assume (2.2).
While studying ergodic properties of partially hyperbolic one-parameter actions, one

easily notices similarities to those of Anosov flows. Informally speaking, both classes of
dynamical systems grew out of the examples considered in §1.4e, that is, geodesic flows on
surfaces of constant negative curvature, and then two different ways of generalization are
chosen. Indeed, the local decomposition ofG as the product of the neutral subgroupQ and
the expanding/contracting horospherical subgroupsG+ andG− is a direct analogue of the
local product structure induced by an Anosov flow. However, the methods of studying these
classes are strikingly different. Most important results in Anosov flows are achieved by
means of symbolic dynamics of Markov partitions of the phase space (see [2] for details).
The absence of symbolic representation in the higher rank partially hyperbolic case calls
for other methods, making heavy use of the underlying rich algebraic structure and the
uniformity of the geometry of G/Γ .
Let us briefly describe a particular important example of a partially hyperbolic

homogeneous flow.

EXAMPLE 4.1.1. TakeG = SL(k,R) and a subgroup gR ofG, where gt = diag(ew1t , . . . ,
ewk t ) and w1, . . . ,wk are real numbers with

∑k
i=1wi = 0. The flow is partially hyperbolic

iff at least one (and hence at least two) of the numbers wi are nonzero. Arrange them
so that wi ! wj if i " j ; then the expanding horospherical subgroup G+ corresponding
to g1 is a subgroup of the group of unipotent upper-triangular matrices, and is exactly
equal to the latter iff all the values of wi are different. In the latter case, G− is the
group of lower-triangular matrices, and the neutral subgroup Q (the centralizer of gR)
consists of diagonal matrices. Another extreme case is when g1 has only two (multiple)
real eigenvalues, i.e., k = m + n and

gt = diag(et/m, . . . , et/m

︸ ︷︷ ︸
m times

, e−t/n, . . . , e−t/n

︸ ︷︷ ︸
n times

). (4.1)
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Then all elements of G+ are of the form

LA
def
=

(
Im A

0 In

)
, A ∈ Mm,n, (4.2)

and similarly

G− =

{(
Im 0
B In

) ∣∣∣∣ B ∈ Mn,m

}
,

while Q is the group of block-diagonal matrices

Q =

{(
C 0
0 D

) ∣∣∣∣ C ∈ Mm,m, D ∈ Mn,n, det(C) · det(D) = 1

}
.

As was mentioned in Section 2, partially hyperbolic homogeneous flows are precisely
those of positive entropy. Also, a partially hyperbolic one-parameter subgroup gR is clearly
unbounded.Assume that the conditions (2.1) and (2.2) hold. Then the flow is mixing (hence
ergodic) byMoore’s Theorem 2.3.6.Moreover, one can show that it follows from the partial
hyperbolicity of gR that dist(e, gt ) is bounded from below by const · t . Therefore from
Corollary 2.3.8 one can deduce the following

THEOREM 4.1.2. Assume that conditions (2.1), (2.2) and (2.3) hold. Then there exist
constants γ > 0, E > 0, l ∈ N such that for any two functions ϕ, ψ ∈ C∞(G/Γ ) with
zero mean and compact support and for any t ! 0 one has

∣∣(gtϕ,ψ)
∣∣ " E e−γ t‖ϕ‖l‖ψ‖l , (4.3)

where ‖ · ‖l means the norm in the Sobolev space W 2
l (G/Γ ).

It is worthwhile to compare the above result with the recent work of Dolgopyat on
exponential decay of correlations for special classes of Anosov flows [72].

1a. Nondense orbits. Our goal here is to look at orbit closures of a partially hyperbolic
homogeneous flow (G/Γ, gR). We will see in later that the results of this section differ
drastically from the case when the subgroup gR is quasiunipotent. Roughly speaking, the
dynamics in the partially hyperbolic case has many chaotic features (whatever this means),
while quasi-unipotent flows have somewhat regular behavior.
As was known for a long time (see §1.4e), orbits of the geodesic flow can be ‘very bad’.

Namely, an orbit can be nonrecurrent and not exiting to infinity or, on the contrary, it can
be recurrent and have nowhere locally connected closure (as the Morse minimal set). The
following observation of Margulis generalizes this fact (see [227]):

LEMMA 4.1.3. Any uniformly partially hyperbolic flow on a manifold with a finite smooth
invariant measure always has a nonrecurrent orbit which does not exit to infinity (and
hence its closure is not a submanifold).
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This is certainly in contrast with homogeneity of all orbit closures of unipotent flows, as
explained in Section 3. Further, if a unipotent flow is ergodic, one can use Theorem 3.4.1 to
conclude that the exceptional set of points with nondense orbits of a unipotent flow belongs
to a countable union of proper algebraic subvarieties.
We now look more closely at that exceptional set in the partially hyperbolic case.

Motivated by similar results in nonhomogeneous hyperbolic dynamics [246], one should
expect it to be quite big. Moreover, in many particular cases the set of points with orbits
escaping a fixed set Z of the phase space is rather big. More precisely, if F is a set of
self-maps of a metric space X, and Z a subset of X, let us denote by E(F,Z) the set
{x ∈ X | F(x) ∩ Z = ∅} of points with F -orbits escaping Z, and say that Z is escapable
relative to F (or, briefly, F -escapable) if E(F,Z) is thick in X, that is, has full Hausdorff
dimension at any point of X.
Here are some results to compare with: X is a Riemannian manifold, F = fR+ where

ft :X "→ X is a C2 Anosov flow. Urbanski [246] (essentially) proved that any one-element
set is F -escapable, while Dolgopyat [71], under some additional assumptions (e.g., if X

has a smooth F -invariant measure), showed that any countable subset ofX is F -escapable.
The following theorem is proved in [114]:

THEOREM 4.1.4. Let G be a unimodular Lie group, Γ a discrete subgroup of G, F = gR

a partially hyperbolic one-parameter subgroup of G. Then any compact C1 submanifold
Z of G/Γ of dimension less than min(dim(G+),dim(G−)), which is transversal to the
F -orbit foliation, is F -escapable.

In particular, this shows that if the flow is partially hyperbolic, points with nondense
orbits form a thick set. Note that analogous results in the setting of Anosov flows and
diffeomorphisms, see [71,246], are proved via symbolic dynamics of Markov partitions
of the manifold. This tool is not available in the higher rank case, when the dimension of
the neutral leaf is bigger than one. As a replacement, one considers natural ‘rectangular’
partitions of the expanding horospherical subgroupG+ of G (called tessellations in [116]
and [114]) and studies their behavior under the automorphism h "→ gthg−t of G+. Then
the Hausdorff dimension of the set of points escaping Z is estimated using the fact that
the F -translates of small neighborhoods of Z are ‘topologically small’, that is, they can
be covered by relatively small number of rectangles from the aforementioned partitions.
Those rectangles can be used to create a Cantor set consisting of points with orbits avoiding
a neighborhood of Z. In fact this argument yields a more precise description of the set
E(F+,Z) of points with positive semi-orbits escaping Z (here F+ = gR+ ) as follows:

THEOREM 4.1.5. Let G, Γ , F = gR and Z be as in the above theorem. Then for any
x ∈ G/Γ , the set {h ∈ G+ | hx ∈ E(F+,Z)} is thick in G+.

In other words, the intersections of E(F+,Z) with open subsets of any unstable leaf
have full Hausdorff dimension. The previous theorem follows from this one by a standard
slicing argument. See [114] for details and other results, including similar statement for
actions of cyclic partially hyperbolic subgroups gZ of G.
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1b. Bounded orbits. A special class of nondense orbits of homogeneous flows happened
to be very important in view of a connection with Diophantine approximation, and, in
fact, served as a motivation for this circle of problems. Namely, consider G = SL(2,R),
Γ = SL(2,Z), and let gt =

( e−t 0
0 et

)
(this is clearly a special case of Example 4.1.1). Using

the fact that badly approximable real numbers form a thick subset ofR [102], one can show
(see §5.2a for more details on the connection with number theory) that the set of points of
the noncompact space G/Γ with bounded (i.e., relatively compact) gR-orbits is thick. Let
us modify the definition from the previous section: if F is a set of self-maps of a metric

space X, and Z a subset of the one-point compactificationX∗ def= X ∪ {∞} of X, denote by
E(F,Z) the set {x ∈ X | F(x)∩Z = ∅} (with the closure taken in the topology of X∗) and
say that Z is F -escapable if E(F,Z) is thick in X. With this terminology, the abundance
of bounded orbits reads as ‘{∞} is gR-escapable’.
One might ask whether a similar statement holds for more generalG and Γ . In the 1980s

Dani used the results and methods of Schmidt in simultaneous Diophantine approximation
(see §5.2c) to prove the escapability of {∞} ⊂ (G/Γ )∗ in the following two cases:
[52] G = SL(k,R), Γ = SL(k,Z), and gR is of the form (4.1);
[54] G is a connected semisimple Lie group of R-rank 1, Γ a lattice in G, and gR is

partially hyperbolic.
These results were substantially refined in [116], where essentially the following result

was established:

THEOREM 4.1.6. Let G be a Lie group, Γ a lattice in G, F = gR a partially hyperbolic
one-parameter subgroup of G. Assume that either
(1) F consists of semisimple elements and the F -action on G/Γ is mixing, or
(2) the F -action on G/Γ is exponentially mixing, in the sense of (4.3).

Denote by F+ the semigroup gR+ , and let Z be a closed null subset of G/Γ . Then:
(a) if Z is F+-invariant, then for any x ∈ G/Γ the set {h ∈ G+ | hx ∈ E(F+,Z)} is

thick in G+;
(b) if Z is F -invariant, then Z ∪ {∞} is F -escapable. That is, points x ∈ E(F,Z) for

which Fx is bounded form a thick set.

As was mentioned in §2.3d, the above condition (2) is satisfied for any partially
hyperbolic one-parameter subgroup F = gR whenever G satisfies (2.1) and Γ ⊂ G is an
irreducible non-uniform lattice. This proves the abundance of bounded F -orbits under the
assumptions (2.1), (2.2). More generally, by reducing to the case (2.1), (2.2) it is essentially
shown in [116] that the set of bounded orbits for an ergodic homogeneous flow is thick iff
the maximal quotient space G/AΓ of zero entropy (here A is the Auslander subgroup
associated to g1, see §2.1a) is compact.
Since all orbit closures of a unipotent flow are homogeneous, it follows by dimensional

considerations that minimal sets for such a flow exist, and by Theorem 3.1.8, they are
compact. Now, if hR is a one-parameter subgroup with purely real eigenvalues of the
operators Adht , it follows that the quotient flow (G/AΓ , hR) is unipotent. Given a compact
minimal subset X ⊂ G/AΓ , let Y ⊂ G/Γ be its full inverse. Then Y is a homogeneous
space of finite volume and by above statement, the set of bounded orbits inside Y is thick
therein. In particular, the flow (G/Γ, hR) has a bounded orbit.
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By Lemma 4.3.2 below, one can reduce the general case to the case of purely real
eigenvalues and derive the following

COROLLARY 4.1.7. If vol(G/Γ ) < ∞, then every flow (G/Γ, gR) has a bounded orbit.

The methods of proof of Theorem 4.1.6 are similar to those of Theorem 4.1.4; the only
difference is that the F -translates of small neighborhoodsofZ∪{∞} are not ‘topologically
small’ anymore (here small neighborhoods of∞ are complements to large compact subsets
of G/Γ ). However, they are ‘measure-theoretically small’, and one can, as before, use a
tessellation of G+ to create a Cantor set which will have big enough Hausdorff dimension
by virtue of mixing properties (1) and (2). See [116] or [114] for details.
Other results worth mentioning for comparison: the paper [71] of Dolgopyat on Anosov

flows (by symbolic dynamics of Markov partitions) and work of Bishop and Jones [25],
Stratmann [240] and Fernández and Melián [81] on bounded geodesics on rank-1 locally
symmetric spaces (hyperbolic geometry being the main ingredient). Note that in all these
cases the Hausdorff dimension of the set of points with bounded orbits is calculated in the
infinite volume case as well. In particular, for geodesics on a rank-1 locally symmetric
space C\G/Γ , this dimension is equal to the critical exponent of Γ . The analogous
question in the higher rank case remains untouched.

1c. Excursions to infinity. This subsection is, in some sense, complementary to §4.1b,
since we are going to consider unbounded orbits; more precisely, unboundedwith a certain
‘rate of unboundedness’. This class of problems is motivated by the paper of Sullivan [242]
about geodesic excursions to infinity on hyperbolic manifolds. We state the next theorem
in the setting of the geodesic flow on the unit tangent bundle SM to a locally symmetric
spaceM ∼= C\G/Γ . For y ∈ M , we denote by SyM the set of unit vectors tangent toM at
y , and, for ξ ∈ SyM , we let γt (y, ξ) be the geodesic onM through y in the direction of ξ .
We have the following result [116]:

THEOREM 4.1.8. Let M be a noncompact locally symmetric space of noncompact type
and finite volume. Fix y0 ∈ M and let {rt | t ∈ N} be an arbitrary sequence of real numbers.
Then for any y ∈ M and almost every (resp. almost no) ξ ∈ SyM there are infinitely many
t ∈ N such that

dist
(
y0,γt (y, ξ)

)
! rt , (4.4)

provided the series
∑∞

t=1 e
−krt , with k = k(M) as in Theorem 1.3.4, diverges (resp.

converges).

It follows from (4.4) that the above series is, up to a constant, the sum of volumes of the

sets A(rt )
def
= {y ∈ M | dist(y0, y) ! rt }; the latter sets can be viewed as a ‘target shrinking

to ∞’ (cf. [98]), and Theorem 4.1.8 says that if the shrinking is slow enough (read: the
sum of the volumes is infinite), then almost all geodesics approach infinity faster than the
sets A(rt ). Here it is convenient to introduce the following
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DEFINITION 4.1.9. Let (X,µ) be a probability space. Say that a family B of measurable
subsets of X is Borel–Cantelli for a sequence gN of self-maps of X if for every sequence
{At | t ∈ N} of sets from B one has

µ
({

x ∈ X | gt (x) ∈ At for infinitely many t ∈ N
})

=

{
0 if

∑∞
t=1µ(At) < ∞,

1 if
∑∞

t=1µ(At) = ∞.

(Note that the statement on top is always true in view of the classical Borel–Cantelli
Lemma.)

One can see that Theorem 4.1.8 essentially amounts to the family of sets {(y, ξ) ∈ SM |

dist(y0, y)) ! r}, r > 0, being Borel–Cantelli for γN. A choice rt = 1
̹
log t, where ̹ is

arbitrarily close to k, yields the following special case, which has been referred to (by
Sullivan [242] in the setting of hyperbolic manifolds) as the logarithm law for geodesics:

COROLLARY 4.1.10. For M as above, any y ∈ M and almost all ξ ∈ SyM ,

lim sup
t→∞

dist(y,γt (y, ξ))

log t
= 1/k.

In other words, almost all geodesics have a logarithmic rate or growth.
As was mentioned in §1.3e, the geodesic flow on SM can be seen as a special case

of a partially hyperbolic infra-homogeneous flow (more precisely, SM is foliated by
infra-homogeneous manifolds on which the geodesic flow is realized via action of one-
parameter diagonalizable subgroups ofG). It is therefore natural to expect a generalization
of Theorem 4.1.8 written in the language of homogeneous flows on G/Γ . Throughout the
end of the section we let G and Γ be as in (2.1), (2.2) (although some of the results below
hold for reducible lattices as well), and denoteG/Γ byX and the normalizedHaar measure
on X by ν. To describe sequences of sets ‘shrinking to infinity’ in X, we replace the
distance function dist(y0, ·) by a function∆ :X "→ R satisfying certain properties. Namely,
say that ∆ is DL (an abbreviation for ‘distance-like’) if it is uniformly continuous, and the
measure of sets {x | ∆(x) ! z} does not decrease very fast as z → +∞, more precisely, if

∃c, δ > 0 such that ν
(
{x | ∆(x) ! z + δ}

)
! c · ν

(
{x | ∆(x) ! z}

)
∀z ! 0.

(4.5)

For k > 0, we will also say that ∆ is k-DL if it is uniformly continuous and in addition

∃C1,C2 > 0 such that C1 e
−kz

" ν
({

x | ∆(x) ! z
})

" C2 e
−kz ∀z ∈ R. (4.6)

It is easy to show that (4.6) implies (4.5). The most important example is the distance
function onX; Theorem1.3.4 is exactly the k-DL property. Another example, important for
number-theoretical applications, is the function∆ onΩk = SL(k,R)/SL(k,Z) introduced
in §1.3d; the fact that it is k-DL immediately follows from Theorem 1.3.5.
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The next theorem [118], essentially a generalization of Theorem 4.1.8, gives a way,
using such a function∆, to measure growth rate of almost all orbits of partially hyperbolic
flows.

THEOREM 4.1.11. Let ∆ be a DL function on X and gR a one-parameter partially
hyperbolic subgroup of G. Then the family {{x ∈ X | ∆(x) ! r} | r > 0} is Borel–Cantelli
for gN.

As before, it follows from the above statement that the function ∆ evaluated on
gR-orbit points grows logarithmically for almost all trajectories. Besides the proof of
Theorem 4.1.8, it provides a new proof of the Khintchine–Groshev theorem in metric
Diophantine approximation (see §5.2b).
A few words about the proof of Theorem 4.1.11: the main tool is a ‘quasi-independent’

Borel–Cantelli lemma: if a sequence {At} of subsets of X satisfies a certain quasi-
independence assumption (see [117, Lemma 2.6]) and the sum of their measures is infinite,
then the ‘upper limit’

⋂
n

⋃
t!n At has full measure. One needs to show that the sequence

At = g−t ({x | ∆(x) ! rt }) satisfies this assumption. This is done in two steps: first, using
the DL property of ∆, one approximates the sets {x | ∆(x) ! rt } by smooth functions, and
then one applies the exponential decay estimates of Theorem 4.1.2 to those functions and
verifies the aforementioned assumption.

1d. Divergent trajectories. In the previous section we considered unbounded trajectories
and studied their excursions to neighborhoods of infinity. Now we turn to divergent
trajectories, i.e., eventually leaving every bounded subset of the space.
We start with the geodesic flow (Γ \G,gR), where G = SL(2,R), Γ = SL(2,Z), and

gt = diag(et , e−t ). Let U = UR be the subgroup of all strictly upper-triangular matrices
(cf. §1.4e). Since the orbit Γ U is closed in Γ \G, it follows that the positive trajectory
{Γ gt | t ! 0} is divergent (otherwise the contracting horocycle flow given by the U -action
would have a fixed point). For the same reason, the negative trajectory {Γ gt | t " 0} is
divergent as well. Hence the orbit Γ gR is closed and noncompact.
It is not hard to show that, more generally, given a matrix Hα =

( 1 0
α 1

)
, the trajectory

Γ HαgR+ is divergent iff the number α is rational. This implies that divergent positive
trajectories of the geodesic flow correspond precisely to periodic orbits of the contracting
horocycle flow; hence nondivergent geodesic trajectories correspond to dense horocycle
orbits.
This observation was generalized by Dani [56] as follows (here as before we switch to

left actions on right homogeneous spaces):

THEOREM 4.1.12. Let gR be a reductive subgroup of a semisimple Lie group G, and let
H be the contracting horospherical subgroup for gR. Assume that the horospherical flow
(G/Γ,H) is ergodic. Then given a point x ∈ G/Γ , the orbitHx is dense inG/Γ whenever
the positive trajectory gR+x is not divergent.

(It follows from the theorem that horospherical flow on a compact homogeneous space
is minimal whenever it is ergodic; see [247] and [33] for a stronger result.)
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Now one can deduce the following result of Dani [52].

THEOREM 4.1.13. Let gR be a reductive subgroup in a Lie group G, and let Γ be a non-
uniform lattice in G. Then the flow (G/Γ, gR) has divergent trajectories whenever it is
ergodic.

In fact, the proof can be easily reduced to the case when G and Γ are as in (2.1) and
(2.2). Since gR is reductive and acts ergodically on G/Γ , it follows that the horospherical
flow (G/Γ,H) is also ergodic. Note that according to Theorem 3.1.8 horospherical flow
on a noncompact space cannot be minimal. Hence by Theorem 4.1.12, the flow (G/Γ, gR)

has a divergent trajectory.
The existence of divergent trajectories for a nonreductive subgroup gR ⊂ G has not been

proved. However, the case G = SL(n,R), Γ = SL(n,Z) is well understood, see [52]:

THEOREM 4.1.14. A one-parameter subgroup gR ⊂ SL(n,R) has a divergent trajectory
on SL(n,R)/SL(n,Z) if and only if it is partially hyperbolic.

The proof of the ‘if’ part easily follows from Mahler’s compactness criterion; the ‘only
if’ direction is discussed in Section 3.1. Note that given gR as in (4.1) and LA as in
(4.2), it was proved by Dani that the trajectory gR+LASL(m + n,Z) is divergent iff the
matrix A is singular. A real number (= one-by-one matrix) is singular iff it is rational.
But a one-by-two matrix (a1, a2) can be singular even if the numbers 1, a1 and a2 are
linearly independent overQ. This produces examples of so called nondegenerate divergent
trajectories (see [52] or [237] for more details).

4.2. Quasi-unipotent one-parameter flows

2a. Smoothness of orbit closures. In what follows, Γ is a discrete subgroup of a
Lie group G. We recall that the dynamics of a homogeneous flow (G/Γ, gR) depends
drastically on whether or not the subgroup gR is quasi-unipotent. Relative to the metric
induced by a right-invariant metric on G, the rate of divergence of trajectories of a
quasi-unipotent flow (G/Γ, gR) is polynomial whereas a partially hyperbolic flow has the
exponential divergence of trajectories and is uniformly partially hyperbolic .
As was already said in Lemma 4.1.3, any partially hyperbolic one-parameter flow has an

orbit closure that is not a manifold. On the contrary, all orbit closures of a quasi-unipotent
flow are manifolds.
In fact, one can always treat orbits of a quasi-unipotent flow as ‘twisted’ orbits of a

unipotent flow. For example, if G is a semisimple group with finite center, then for any
quasi-unipotent subgroup gR ⊂ G there exist a torus T ⊂ G and a unipotent subgroup
uR ⊂ G such that gt = ct × ut , t ∈ R, where cR is a dense subgroup of the torus T (this is
a Jordan decomposition of the subgroup gR into reductive and unipotent parts). Thus, the
subgroup gR can be viewed as diagonal in the ‘cylinder’ T × uR with vertical axis uR.
In general,G can fail to admit such a decomposition. However, one can extend ‘slightly’

the group G to a groupG∗ which does admit the decomposition in question (see [227]).
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LEMMA 4.2.1. Let gR be a quasi-unipotent subgroup in a connected simply connected
Lie group G. Then there exist
(1) a torus T ⊂Aut(G) commuting with gR, and
(2) a unipotent subgroup hR ⊂ G∗ = T ! G

such that the projection π :G∗ → G along T induces a compact cover of the quasi-
unipotent flow (G/Γ, gR) by the unipotent flow (G∗/Γ, hR), Γ ⊂ G being an arbitrary
discrete subgroup. If M ′ = hRx ⊂ G∗/Γ is a homogeneous space of finite volume, then
M = gRx ⊂ G/Γ is an (infra-homogeneous) submanifold with finite smooth gR-ergodic
measure.

It is obvious that vol(G/Γ ) < ∞ ⇔ vol(G∗/Γ ) < ∞. Hence given a lattice Γ ⊂ G,
all orbits of the unipotent flow (G∗/Γ, hR) have homogeneous closures and are uniformly
distributed. This implies that any orbit gRx of quasi-unipotent flow on a finite volume
space is also uniformly distributed (relative to the smooth measure on the manifold
M = gRx ⊂ G/Γ obtained from H -invariant measure on the space Hx = hRx ⊂ G∗/Γ ).
We recall that the manifoldM can fail to be a homogeneous subspace (see §1.4b).
Now we can formulate a general criterion [227].

THEOREM 4.2.2. Let Γ be a lattice in G. Then all orbit closures of a flow (G/Γ, gR) are
smooth manifolds ⇔ the subgroup gR is quasi-unipotent. All orbits of a quasi-unipotent
flow are uniformly distributed in their closures.

2b. Smoothness of ergodic measures. Now let µ be a finite ergodic measure for a quasi-
unipotent flow (G/Γ, gR) and let M ⊂ G/Γ be its support. Then the flow (M,gR) is
ergodic with respect to a strictly positive measure and hence possesses a dense orbit. By
Lemma 4.2.1, the flow (M,gR) is compactly covered by a topologically transitive flow
(M ′, hR), where M ′ ⊂ G∗/Γ and hR is a unipotent subgroup of G∗. Weil’s construction
of the semidirect product of measures (cf. [174]) provides us with a finite hR-invariant
measure onM ′ that projects to the measure µ. Let µ′′ be the ergodic component of µ′ that
projects to µ. Then µ′′ is an H -invariant measure on a closed orbit Hx ⊂ M ′ ⊂ G∗/Γ .
Hence µ is a smooth measure on the manifold M ⊂ G/Γ . We have proved the following
statement:

COROLLARY 4.2.3. Let µ be a finite ergodic measure for a quasi-unipotent flow
(G/Γ, gR). Then there exists a smooth manifoldM ⊂ G/Γ such that µ is supported onM

and the restriction of µ onto M is a smooth measure.

We recall once more that according to Sinai [212] and Bowen [32], any Anosov flow has
uncountably many ergodic measures, those with their support not locally connected, and
those that are strictly positive (but singular to smooth volume measure).
One can formulate the following

CONJECTURE 4.2.4. Any partially hyperbolic flow on a finite volume homogeneous space
has a finite ergodic measure whose support is not a smooth manifold. If the flow is
ergodic with respect to Haar measure, then there exists an ergodic strictly positive singular
measure.
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2c. Measure rigidity. Here we consider the measure rigidity property of quasi-unipotent
flows. According to Theorem 3.8.1, ergodic unipotent flows are measure rigid: any
measure-theoretical isomorphism is (almost everywhere) an affine map of homogeneous
spaces. On the contrary, partially hyperbolic flows do not possess this property. In
fact, given any two lattices Γ1,Γ2 ⊂ SL(2,R), the geodesic flows on the corresponding
homogeneous spaces, being Bernoullian flows with equal entropies, are always measure-
theoretically isomorphic [168]. But Γ1 and Γ2 need not be conjugate in SL(2,R).
On the other hand, by Theorem 2.2.5, an ergodic quasi-unipotent flow on a compact

Euclidean manifold is smoothly and measure-theoretically isomorphic to a rectilinear flow
on a torus. Hence measure rigidity does not take place in the quasi-unipotent case either.
However, as Witte [255] proved, measure rigidity holds if the quasi-unipotent flows

involved are mixing:

THEOREM 4.2.5. Any measure-theoretic isomorphism of mixing quasi-unipotent flows is
affine almost everywhere.

It turns out that although an isomorphism of quasi-unipotent flows need not be an affine
map globally, it is ‘fiber-wise’ affine [232]. In what follows, G∞ is the minimal normal
subgroup of G such that the factor-groupG/G∞ is solvable.

THEOREM 4.2.6. Let f : (G/Γ, gR) → (G′/Γ ′, g′
R
) be a measure-theoretic isomorphism

of ergodic quasi-unipotent flows. Then for almost all gΓ ∈ G/Γ one has f (G∞gΓ ) =

G′
∞f (gΓ ), and the restriction of f onto almost every homogeneous subspace G∞gΓ is

affine. In particular, f induces an isomorphism of ergodic quotient flows

f̂ :
(
G/G∞Γ , gR

)
→

(
G′/G′

∞Γ ′, g′
R

)

on solvable homogeneous spaces.

Note that Witte’s Theorem (Theorem 4.2.5) follows immediately because solvable
homogeneous spaces admit no mixing homogeneous flows.

4.3. Invariant sets of one-parameter flows

3a. Nondivergence inside the neutral leaf. Sometimes one can ensure that an individual
orbit of a partially hyperbolic flow (G/Γ, gR) has smooth (or even algebraic) closure. For
instance, this applies to orbits that ‘do not exit to infinity inside the neutral leaf’ (this
generalizes Ratner’s topological theorem). The result proves to be helpful for classification
of minimal sets of homogeneous flows.
More precisely, let Q be the neutral subgroup for gR (see §2.1a). Note that gR ⊂ Q

and gR is always quasi-unipotent in Q. We say that an orbit gRx ⊂ G/Γ does not exit
to infinity inside the neutral leaf Qx ⊂ G/Γ if there exist a sequence {tn} → ∞ and a
compact subsetK ⊂ Q such that gtnx ∈ Kx for all n. One can prove the following ([231]):
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THEOREM 4.3.1. Let vol(G/Γ ) < ∞ and let an orbit gRx ⊂ G/Γ do not exit to infinity
inside the neutral leaf Qx ⊂ G/Γ . Then the closure gRx ⊂ G/Γ is a smooth manifold
with finite smooth ergodic measure.

The proof involves a statement similar to Lemma 4.2.1.

LEMMA 4.3.2. Let gR be a one-parameter subgroup in a simply connected Lie group G.
Then there exist a torus T ⊂ Aut(G) and a subgroup hR ⊂ G∗ = T ! G such that all
eigenvalues of the operators Adht on g∗ are purely real, and each closure gRx ⊂ G/Γ is
compactly covered by the closure hRx ⊂ G∗/Γ . If the second closure is homogeneous and
has finite volume, then the first closure is a manifold and carries a finite smooth ergodic
measure.

Now Theorem 4.3.1 is a corollary of the following [231]:

THEOREM 4.3.3. Let vol(G/Γ ) < ∞ and let a subgroup gR be such that all eigenvalues
of the operators Adgt on g are purely real. Then if an orbit gRx ⊂ G/Γ does not exit to
infinity inside the neutral leafQx ⊂ G/Γ , then the closure gRx ⊂ G/Γ is a homogeneous
space of finite volume.

Note that this result generalizes Ratner’s topological Theorem 3.3.6 for one-parameter
unipotent flows. In fact, if vol(G/Γ ) < ∞, then by Theorem 3.1.1, no trajectory of a
unipotent flow exits to infinity. Theorem 4.3.3 is not an immediate corollary of Ratner’s
theorem because the neutral leaf Qx ⊂ G/Γ can be nonclosed and as a homogeneous
Q-space it may have infinite Q-invariant measure.
Theorem 4.3.3 is proved via multiple application of Ratner’s theorem and reducing the

semisimple, solvable and general cases to the arithmetic case. Note that an orbit of the
horocycle flow on a surface of constant curvature −1 and of infinite area may not exit to
infinity and at the same time not come back to a compact set with positive density of times
(this concerns, for example, recurrent nonperiodic orbits of the horocycle flow on a surface
of the second kind, see [230]). Hence Theorem 4.3.3 does not follow from Theorem 3.3.11.

3b. Minimal sets. Now we are ready to give a classification of minimal sets of
homogeneous flows. First we introduce a new class of invariant sets.
Let (X,gR) be a continuous flow on a locally compact space X. Then a closed invariant

set M ⊂ X is called birecurrent if each orbit insideM is recurrent (comes back arbitrarily
close to the original point) in both directions.
It is clear that a compact minimal set is birecurrent. On the other hand, a compact

birecurrent set need not be minimal even if it is topologically transitive. In fact, a compact
homogeneous space of finite volume is birecurrent relative to any unipotent flow, but
an ergodic unipotent flow can fail to be minimal. (An example: take a uniform lattice
Γ ⊂ SL(4,R) that intersects SL(2,R) in a lattice, and let gR ⊂ SL(2,R) be a unipotent
subgroup. Then the flow (SL(4,R)/Γ, gR) is ergodic and not minimal.)
The proof of the result to follow is modelled over Lemma 4.1.3, see [231].
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LEMMA 4.3.4. Let (X,gR) be a uniformly partially hyperbolic flow on a manifold X with
birecurrent set M ⊂ X. Let O(x) ⊂ X be a small enough neighborhood of a point x ∈ M .
Then the connected component of the point x in the intersection M ∩ O(x) belongs to the
neutral leaf of x ∈ X.

Theorem 4.3.3 and Lemma 4.3.4 immediately imply the following [231]:

THEOREM 4.3.5. LetM be a topologically transitive birecurrent set for a flow (G/Γ, gR)

on a homogeneous space of finite volume. Then either M is nowhere locally connected, or
M is a smooth submanifold in G/Γ .

Now assume that M is a minimal set of a continuous flow (X,gR). Then either all
semiorbits insideM do not exit to infinity, or one of them does. Theorem 3.1.9 asserts that
in the first case M is a compact set. Now we can give a classification of minimal sets of
homogeneous flows [231].

THEOREM 4.3.6. Let M be a minimal set of a homogeneous flow (G/Γ, gR). Then one of
the following statements holds:
(1) M = gRx is an orbit exiting to infinity in both directions;
(2) there exists a point x ∈ M such that one of its semiorbits exits to infinity, and the

other semiorbit is recurrent;
(3) M is a compact nowhere locally connected set;
(4) M is a compact smooth submanifold inG/Γ such that the flow (M,gR) is compactly

covered by a uniquely ergodic unipotent flow.

Note that the theorem holds true for arbitrary discrete subgroups Γ ⊂ G. If G/Γ fails
to have finite volume, then instead of Ratner’s theorem one can apply Theorem 3.3.11
of Dani and Margulis which ensures that compact closure of a unipotent orbit is always
homogeneous.
Orbits of the geodesic flow exiting to infinity in both directions demonstrate the first

type of minimal sets in our classification. Morse minimal sets illustrate the third type, and
periodic orbits the last type. It has been recently proved in [69] that, assuming the surface
has finite area and is noncompact, the geodesic flow has minimal sets of the second type as
well.
Now let (G/Γ, gR) be an ergodic flow on a homogeneous space of finite volume. The

existence of compact minimal sets for any homogeneousflow follows fromCorollary 4.1.7.
The question arises: does an ergodic partially hyperbolic flow have minimal sets of all
possible types? Namely, does it have minimal sets of the third and forth types in the
compact case and of all four types in the noncompact case (provided that the flow has
the K-property)?
Note that the closure of a horocycle orbit on a surface of infinite area need not be

homogeneous even if it is minimal. In fact, following Hedlund it is easy to prove (see
[230]) that the nonwandering set Ω for the horocycle flow (SL(2,R)/Γ, uR) is minimal if
the Fuchsian group Γ is finitely generated and has no parabolic elements (the same follows
from [34]). If Γ is not a uniform lattice then the minimal set Ω is of the second type in
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our classification: otherwise it would be compact and hence consist of one periodic orbit
(which is impossible because Γ contains no unipotent elements). We note also that in this
case Ω is nowhere locally connected.
Combining Corollary 4.1.7 and Theorem 4.3.6 one derives the following statement

[231]:

THEOREM 4.3.7. A one-parameter homogeneous flow on a space of finite volume is
minimal if and only if it is uniquely ergodic.

We emphasize a contrast between the class of homogeneous flows and the more general
class of smooth flows. As was mentioned, a homogeneous flow on a compact space
can be minimal only if it has zero entropy (i.e., is quasi-unipotent). On the other hand,
Herman [97] has constructed a minimal diffeomorphism of a compact manifold with
positive entropy. Further, according to Theorem 4.3.6, any compact minimal set of a
homogeneous flow is locally connected either everywhere or nowhere. The first example of
a homeomorphismof the plane with a minimal set that is locally connected on a proper non-
empty subset was given in [192]. A smooth flow with a similar minimal set was constructed
by Johnson [104] by making use of quasi-periodic systems of Millionshchikov [154] and
Vinograd [250].

3c. Rectifiable sets. Now we describe results of Zeghib on ‘rectifiable’ invariant subsets
for the action of an R-diagonalizable subgroup gR ⊂ G. Ergodic components of Hausdorff
measure (of the corresponding dimension) on such a subset turn out to be algebraic.
Sometimes this enables one to establish the algebraicity of closed invariant sets under
rather weak smoothness conditions.
First, several definitions from geometric measure theory [80] are in order. Let (X,d) be

a measure space and n ∈ N. One says that a subset Y ⊂ X is n-rectifiable if Y = f (A),
where A ⊂ Rn is a bounded subset and f :A "→ X is a Lipschitz map.16 A countable union
of n-rectifiable subsets of X is called σ -n-rectifiable.
As an illustration, we consider the case n = 1. It is easily seen that a 1-rectifiable curve in

R2 has finite length. At the same time, one can construct a homeomorphism of the segment
[0,1] to the image in R2 which is of infinite length (such a curve can be σ -1-rectifiable).
The square [0,1] × [0,1] is not a σ -1-rectifiable set but it is a continuous image of the
segment [0,1] (the Peano curve).
Let Hn be the n-dimensional Hausdorff measure on X. A subset Y ⊂ X is called Hn-

rectifiable, if Hn(Y ) < ∞ and there exists a σ -n-rectifiable subset Y ′ ⊂ X such that
Hn(Y − Y ′) = 0. If in addition Hn(Y ) > 0, then the Hausdorff dimension of Y is n (but
not every subset Y ⊂ X of Hausdorff dimension n is n-rectifiable).
A nontrivial example of an H1-rectifiable subset Y of the square [0,1]2 is given by a

countable union
⋃

i{ai}×Bi , where ai ∈ [0,1] and Bi ⊂ [0,1] is a measurable subset with∑
i l(Bi) < ∞.

16A map f : (A,dA) "→ (X,dX) of two metric spaces is said to be Lipschitz if there exists a constant C > 0 such
that dX(f (a),f (b)) " CdA(a, b) for all a,b ∈ A.
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Now let X be a Riemannian manifold. There holds [80] the following criterion: a subset
Y ⊂ X is Hn-rectifiable⇔ it belongs modulo a set of Hn-measure 0 to a countable union
of n-dimensional C1-submanifolds in X.
Now we are in a position to formulate results of [262] on the structure of invariant

rectifiable subsets for a flow (K\G/Γ, aR), where aR is an R-diagonalizable subgroup
that commutes with a compact subgroup K ⊂ G. Here Γ is an arbitrary discrete subgroup
of G.

THEOREM 4.3.8. Let (K\G/Γ, aR) be an R-diagonalizable flow and let Y ⊂ K\G/Γ be
an Hn-rectifiable invariant subset for some n " dim(K\G). Then the flow (Y,Hn, aR) is
measure-preserving and all its ergodic components are algebraic.

Having in mind Ratner’s measure theorem and Corollary 4.2.3, it is natural to formulate
the following.

CONJECTURE 4.3.9. Let (K\G/Γ, gR) be an infra-homogeneous flow and let Y ⊂
K\G/Γ be an Hn-rectifiable invariant subset. Then the flow (Y,Hn, gR) is measure-
preserving and all its ergodic components are smooth manifolds.

Theorem 4.3.8 can be made more precise. More specifically, one can describe the subset
Y modulo a zero measure set. Let R(aR,Γ ) be the collection of closed subgroupsH ⊂ G

such that Γ ∩ H is a lattice in H , and g−1aRg ⊂ H for some g ∈ G. The following was
proved by Zeghib [262,263]:

THEOREM 4.3.10. Under the assumptions of Theorem 4.3.8 there exist countable
collections of elements gi ∈ G, subgroups Hi ∈ R(aR,Γ ) and subsets Si ⊂ G such that
each Si commutes with aR and isH

k-rectifiable for some k = k(i), and Y =
⋃

i KSigiHiΓ

modulo a set of zero Hn-measure.

It is clear that ergodic components in the theorem are (locally homogeneous) subspaces
of finite volume KygiHiΓ, y ∈ Si .
Here is an example illustrating the theorem. Let aR ⊂ H ⊂ G, where Γ ∩ H is a lattice

in H , and aR+Γ = HΓ ⊂ G/Γ . Suppose that dimH = n > 1 and that outside H there
exists an element u ∈ G for which atua−t → 1, t → +∞ (such example can be easily
constructed). Then the limit set for the semiorbit aR+uΓ is the homogeneous subspace
HΓ . The closure Y = aR+uΓ is an Hn-rectifiable set invariant under the semigroup
aR+ . The restriction of Hn onto Y is an ergodic measure supported on the homogeneous
subspace HΓ . But the set Y is not homogeneous. In a similar fashion one can construct
a full orbit aRx having two distinct limit sets which are homogeneous subspaces of finite
volume of dimension n > 1. Then the closure Y = aRx is an Hn-rectifiable set with two
ergodic homogeneous components.
In the case when (K\G/Γ, aR) is an Anosov flow, the results obtained have especially

simple formulation. For instance, let G be a simple group of R-rank 1 and let K ⊂ G

be a maximal compact subgroup that commutes with aR (the flow is none other than
the geodesic flow on the unit tangent bundle T 1M of locally symmetric manifold M of
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negative curvature). Since in this case the centralizer of aR in G is KaR, it follows that an
Hn-invariant subset Y is a countable union of closed subspaces of finite volume:

Y =
⋃

i

Yi (mod 0), where Yi = KgiHiΓ .

Moreover, it is proved in [262] that the decomposition has finitely many members (this
follows from the conditionHn(Y ) < ∞), and each component is the unit tangent bundle of
some totally geodesic submanifold of finite volume Wi ⊂ M . Hence Y = T 1W (mod 0),
where W =

⋃
i Wi is a closed (not necessarily connected) totally geodesic submanifold

inM .

4.4. On ergodic properties of actions of connected subgroups

We know that given a connected subgroup H ⊂ G generated by unipotent elements, all
finite ergodic measures and orbit closures on G/Γ (if vol(G/Γ ) < ∞) have an algebraic
origin. If H is generated by quasi-unipotent elements, then it is not difficult to construct
a compact extension G∗ of the group G such that our subgroup H belongs to a compact
extension of a connected subgroup U ⊂ G∗ generated by unipotent elements. This easily
implies the following:

THEOREM 4.4.1. Let H be a connected subgroup of G generated by quasi-unipotent
elements. Then any finite H -invariant ergodic measure on G/Γ is a smooth measure
supported on a submanifold in G/Γ . If Γ is a lattice in G then any orbit closure of the
H -action on G/Γ is a smooth manifold.

Nowwe consider the ‘mixed’ case whereH is generated by unipotent andR-diagonaliz-
able elements.
Let U ⊂ G be a unipotent one-parameter subgroup, and A ⊂ G an R-diagonalizable

one-parameter subgroup that normalizes U . One says that A is diagonal for U if there
exists a connected subgroup S = S(U,A) ⊂ G locally isomorphic to SL(2,R) that contains
F = AU . In the course of the proof of Theorem 3.3.2 Ratner discovered that any finite
F -invariant ergodic measure µ on G/Γ is S-invariant. Since S is generated by unipotent
one-parameter subgroups, it follows thatµ is an algebraicmeasure. This can be generalized
as follows [188].

THEOREM 4.4.2. Assume that a connected subgroup U ⊂ G is generated by unipotent
elements and that subgroups A1, . . . ,An ⊂ G are diagonal for unipotent subgroups
U1, . . . ,Un ⊂ U respectively. Let F ⊂ G be generated by U and all A1, . . . ,An. Then
each finite F -ergodic invariant measure on G/Γ is algebraic.
If vol(G/Γ ) < ∞, then all closures of the F -orbits onG/Γ are homogeneous subspaces

of finite volume in G/Γ .

Clearly, here ergodic measures and orbit closures for F are those for the subgroup
H ⊂ G generated by U and all S(Ui ,Ai).
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Note that the assumptions of the theorem are verified if F ⊂ G is a parabolic subgroup
of a totally noncompact semisimple group H ⊂ G; see Theorem 3.7.6 for an extension of
this result.

4a. Epimorphic subgroups. Ratner’s Theorem 4.4.2 can be generalized to a larger class
of subgroups. We start with a definition.

DEFINITION 4.4.3. Let H ⊂ SL(n,R) be a real algebraic group. A subgroup F of H is
called epimorphic in H if any F -fixed vector is also H -fixed for any finite-dimensional
algebraic linear representation of H .

Epimorphic subgroups were introduced by Bergman [18], and their in-depth study was
made by Bien and Borel [23,24]. We note some examples of epimorphic subgroups: (i) a
parabolic subgroup of totally noncompact semisimple group; (ii) a Zariski dense subgroup
of a real algebraic group; (iii) the subgroup H = gZG+ of G as in the statement of
Theorem 3.7.6 (see Lemma 3.7.9). It may be noted that any R-split simple real algebraic
group contains an algebraic epimorphic subgroupF = A!U , whereA isR-diagonalizable
and U is the unipotent radical of F with dimA = 1 and dimU " 2 (see [23, 5(b)]).
It was observed by Mozes [160] that the above definition of epimorphic subgroups

reflects very well in the ergodic properties of the subgroup actions on homogeneous spaces:

THEOREM 4.4.4. Let G be real algebraic group. Let H be a real algebraic subgroup
of G which is generated by algebraic unipotent one-parameter subgroups. Let F be
a connected epimorphic subgroup of H which is generated by R-diagonalizable and
algebraic unipotent subgroups. Then any finite F -invariant Borel measure on G/Γ is
H -invariant, Γ being a discrete subgroup of G.

The above theorem is proved using Ratner’s measure theorem and the Poincaré
recurrence theorem. Clearly, the invariant measure part of Theorem 4.4.2 is contained in it
as a particular case.
The topological counterpart of Theorem 4.4.4 was proved by Shah and Weiss [206] (cf.

Theorem 3.7.6).

THEOREM 4.4.5. Let F ⊂ H ⊂ G be an inclusion of real algebraic groups such that F is
epimorphic in H . Let Γ be a lattice in G. Then any F -invariant closed subset of G/Γ is
also H -invariant. Further, if H is generated by unipotent one-parameter subgroups, then
F has property-(D) on G/Γ (see §3.1a).

Earlier this was proved by Weiss [252] in the case when G = H is defined over Q and
Γ = GZ (not necessarily a lattice). In this case the action of F on G/Γ was shown to be
minimal. From this Weiss derived the following (cf. Proposition 1.2.1):

THEOREM 4.4.6. Let F ⊂ G be an inclusion of real algebraic Q-groups. Then FGZ =

HGZ, where H is the largest algebraic subgroup of G such that F is epimorphic in H .
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Note that for non-algebraic epimorphic subgroups F ⊂ G, the action of F onG/Γ need
not be minimal.

EXAMPLE 4.4.7 (Raghunathan). LetG = SL(2,R)×SL(2,R), Γ = SL(2,Z)×SL(2,Z),
and F = gR ! (U1 × U2), where Ui is the unipotent subgroup of strictly upper-triangular
matrices in the corresponding copy of SL(2,R) and

gt = diag
(
et , e−t , e−αt , eαt

)
,

where α > 0 is an irrational number. Note that the conjugation x "→ g1xg−1 expands U1
and contracts U2, and the orbits U1Γ and U2Γ are compact. Hence the orbit FΓ ⊂ G/Γ

is closed (otherwise an orbit of some subgroup Ui would degenerate to a point). Therefore
the action (G/Γ,F ) is not minimal. On the other hand, since the number α is irrational,
the subgroupF is Zariski dense in the 4-dimensional parabolic subgroupB ⊂ G and hence
epimorphic inG. Hence by Theorem 4.4.4, the action is uniquely ergodic. Note that in this
example the homogeneous subspace FΓ is of infinite volume.

For a uniform lattice Γ ⊂ G, Weiss [253] obtained additional information:

THEOREM 4.4.8. Let F ⊂ H ⊂ G be as in Theorem 4.4.5. In addition, assume that
F = AU , where A is an R-diagonalizable Abelian group and U is the unipotent radical
of F , and that H is normal in G. Let Γ be a uniform lattice in G. Then any U -invariant
closed subset in G/Γ , as well as any finite U -invariant measure, is also H -invariant.
In particular, if the H -action on G/Γ is topologically transitive, then the U -action is

minimal and uniquely ergodic.

It follows that any R-split simple real algebraic group contains a unipotent subgroup U

of dimension at most 2 which acts uniquely ergodically on any space G/Γ , where Γ is a
uniform lattice. Note that G = SL(3,R) has no one-dimensional unipotent subgroups with
this property (see [253]).

4b. Reduction to the Abelian case. Let H ⊂ G be a connected subgroup, and Γ ⊂ G

a discrete subgroup. We will expose a reduction of the study of H -invariant probability
measures on G/Γ to the case when H is Abelian.
Let Hu ⊂ H be the normal subgroup of H generated by all its unipotent elements. Due

to Ratner’s theorem (Corollary 3.3.5), all Hu-invariant ergodic probability measures are
homogeneous.
Let us say that subgroup H ⊂ G is of Ad-triangular type if H is generated by elements

h ∈ H such that all eigenvalues of Adh are purely real. It is easily seen that H is
of Ad-triangular type ⇔ the Zariski closure Zcl(Ad(H)) ⊂ Aut(g) decomposes into a
semidirect product (S×A)!U , whereU is the unipotent radical, S is a totally noncompact
semisimple Lie group, and A is an R-diagonalizable Abelian group. Clearly, for such an
H one has Ad[H,H ] ⊂Ad(Hu) and hence the quotient group H/Hu is Abelian.
One also has the following [148,160,234]:
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THEOREM 4.4.9. Let Γ be a discrete subgroup of G, H ⊂ G a connected subgroup of
Ad-triangular type, and µ an H -invariant ergodic probability measure on G/Γ . Then
there exists a connected closed subgroup L ⊂ G such that µ-a.e. Hu-ergodic component
of µ is an L-invariant probability measure on a closed L-orbit in G/Γ . Now let

P =
{
p ∈ NG(L) | det(Adp|Lie(L)) = 1

}
.

Then H ⊂ P and there exists a point x ∈ G/Γ such that the orbit Px ⊂ G/Γ is closed
and µ(Px) = 1.

It follows that the homogeneous space Px is H -invariant and supports our measure µ.
Let α :P "→ P̂ = P/L and Ĥ = α(H). Note that all L-orbits inside Px are closed and
form a bundle over a homogeneous P̂ -space. Also µ is L-invariant and projects to an Ĥ -
invariant measure µ̂ on the P̂ -space. Therefore, the study of the H -invariant measure µ

reduces to that of the Ĥ -invariant measure µ̂, where Ĥ is Abelian because Hu ⊂ L.
Note that here Ĥ is Ad-triangular in P . If it contains unipotent elements in P , one can

repeat the procedure. As a result, one can always come to the situation when the subgroup
in question contains no unipotent elements (i.e., all its elements are partially hyperbolic
and have purely real eigenvalues).
Apparently, a similar reduction must exist for the study of the closures of H -orbits on

finite volume spaces.
Now let H ⊂ G be an arbitrary connected subgroup. Sometimes H splits into a

semidirect product H = C ! H ′ of a compact subgroup C and a normal subgroup H ′ of
Ad-triangular type. If so, this allows one to describeH -invariantmeasures viaH ′-invariant
ones.
In the general case one can play the following game. Assume with no loss of generality

that G is connected and simply connected. Suppose first that H is solvable. Consider the
algebraic hull Zcl(Ad(H)) ⊂ Aut(g). Then Zcl(Ad(H)) = T ! M , where T is a compact
torus and M is a normal triangular subgroup. Now take G̃ = T ! G and H̃ = T ! H .
It can be easily proved that H̃ = T ! H ′, where H ′ ⊂ H̃ is a normal subgroup of Ad-
triangular type. Note thatH -invariant measures onG/Γ are in one-to-one correspondence
with H̃ -invariant measures on G̃/Γ . The same concerns orbits.
For a generalH = LH RH one does the same with its radical RH and notes that the torus

T can be chosen to commute with LH = KH SH . Moreover, T ! RH = T ! R′
H , where

R′
H is a normal subgroup of H̃ = T ! H of Ad-triangular type. Then H̃ = CH ′, where

C = KH × T is compact and H ′ = SH R′
H ⊂ H̃ is a normal subgroup of Ad-triangular

type. Again, the study of invariant measures and orbit closures for the action (G/Γ,H) is
equivalent to that for the action (G̃/Γ, H̃ ).

4c. Actions of multi-dimensional Abelian subgroups. In the previous subsection we came
(from the measure-theoretic point of view) to the situation when the acting subgroup (call
it A) is Abelian and consists of partially hyperbolic elements.
If dimA ! 2, the A-action is called a higher rank Abelian action and very little is

known about it in the general case. We concentrate on the most interesting case. Take
G = SL(k,R), Γ = SL(k,Z) and let A be the group of all positive diagonal matrices inG.
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If k = 2 then dimA = 1 and the A-action on G/Γ is none other than the geodesic flow.
In particular, the A-action in this case has a lot of ‘bad’ orbits (and ergodic measures); see
§1.4e.
On the other hand, for k ! 3, only few types of A-orbits (including closed and dense)

are known, and all of them have homogeneous closures. It was conjectured by Margulis
that any relatively compact A-orbit is compact (see Conjecture 5.3.3). As was (implicitly)
observed in [37], this would prove an old number-theoretic conjecture of Littlewood, which
we state in the next chapter as Conjecture 5.3.1; see Section 5.3 for more details. The
following result due to Weiss and Lindenstrauss [127] provides interesting evidence in this
direction:

THEOREM 4.4.10. Let A denote the group of all positive diagonal matrices in SL(k,R),

k ! 3. Let x ∈ Ωk be such that for some point y ∈ Ax, the orbit Ay is compact. Then there
are integers l and d with k = ld and a permutation matrix σ such that Ax = Fy , where

F =
{
σ diag(B1, . . . ,Bd )σ−1 | Bi ∈GL(l,R)

}
∩ SL(k,R).

Moreover, if Ax is compact then Ax is compact.17

On the other hand, given an arbitrary lattice Γ ⊂ G = SL(k,R), sometimes one can find
other types ofA-orbits onG/Γ . For instance, as was observed by Rees (see [127] or [108]),
one can construct a uniform lattice Γ ⊂ SL(3,R) that intersects two commuting subgroups
L,A′ ⊂ G in lattices, where L 0 SL(2,R) and A′ is R-diagonalizable and 1-dimensional.
Now if A′′ ⊂ L isR-diagonalizable then the A′′-action on LΓ is the geodesic flow. Clearly,
if A = A′ × A′′ then any ‘bad’ A′′-orbit (or A′′-ergodic measure) inside LΓ ⊂ G/Γ gives
rise to a ‘bad’ A-orbit (or A-ergodic measure) inside (L × A′)Γ .
This led Margulis to the following conjecture18 (see [144]):

CONJECTURE 4.4.11. Given a Lie groupG with a lattice Γ ⊂ G and anR-diagonalizable
connected subgroup A ⊂ G, either
(1) the orbit closure Ax ⊂ G/Γ is homogeneous, or
(2) Ax is embedded into a closed subspace Fx ⊂ G/Γ admitting a quotient F -space

such that the A-action on this quotient space degenerates to a one-parameter
homogeneous flow.

Ifµ is anA-invariant ergodic probability measure onG/Γ such that for every x ∈ supp(µ)

the statement (2) does not hold, then µ is homogeneous.

Earlier, a related measure-theoretic conjecture was formulated by Katok and Spatzier
[108] who made some progress in this direction. In particular, they proved the following
(see [109] for corrections):

17This theorem has been recently generalized in [245] to the case when Γ is any inner type lattice in SL(k,R)

and the closure of Ax contains an orbit Ay whose closure is homogeneous with a finite invariant measure.
18Actually, the conjecture was formulated by Margulis for any connected Ad-triangular subgroup H in place
of A.
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THEOREM 4.4.12. Let G be as in (2.1), Γ be as in (2.2), and A be a maximal R-dia-
gonalizable subgroup of G, where dimA = rankR G ! 2. Let µ be a weakly mixing
measure for theA-action onG/Γ which is of positive entropy with respect to some element
of A. Then µ is homogeneous.

Apparently, Katok and Spatzier were the first to relate remarkable results of Furstenberg
on higher rank Zk

+-actions by circle endomorphisms with homogeneous Rk-actions.
In his landmark paper [83] Furstenberg proved that given a semigroup Z2+ of circle
endomorphisms generated by multiplications by integers p and q , where pn += qm unless
p = q = 0, any infinite semigroup orbit is dense.19 Later his results were extended by
Berend [15] for Zk

+-actions by toral endomorphisms. Most probably, using his approach
one can prove that all orbit closures of the action are smooth submanifolds of the torus if
and only if there is no quotient action (of algebraic origin) degenerating to a Z+-action.
Recently new results on non-Abelian toral automorphism groups were obtained. In

particular, Muchnik [165] and Starkov [236] proved that a Zariski dense subgroup of
SL(k,Z) has only closed and dense orbits on the k-torus. Moreover, Muchnik [164]
obtained a criterion for a subsemigroup of SL(k,Z) to possess this property. Similar result
was proved by Guivarch and Starkov [91] using methods of random walk theory.

4d. Minimality and unique ergodicity. First nontrivial results showing that minimal
homogeneous flows must be uniquely ergodic are due to Furstenberg. He established this
for nilflows and for the horocycle flow (see §2.2a and §3.3a). Theorem 4.3.7 claims that
for one-parameter homogeneous flows these two properties are in fact equivalent. This
answers positively Furstenberg’s question raised in [84].
As follows from Ratner’s results, minimality and unique ergodicity of the H -action on

G/Γ, H being any connected subgroup of G, are equivalent whenever H is generated by
unipotent elements. On the other hand, the following holds [234]:

LEMMA 4.4.13. If the group H is connected, then every H -invariant compact subset
M ⊂ G/Γ carries an H -invariant probability measure.

In fact, let H = (KH × SH ) ! RH be a Levi decomposition for H (here as usual
KH × SH is the decomposition of a Levi subgroup into compact and totally noncompact
parts, and RH is the radical of H ). Let P ⊂ SH be a parabolic subgroup of SH . Then the
group A = (KH × P) ! RH is amenable and hence M carries an A-invariant probability
measure µ. Note that the subgroup P is epimorphic in SH , and SH is generated by
unipotent elements. Now by Theorem 4.4.4, any P -invariant probability measure is SH -
invariant. Hence µ is H -invariant.
As a corollary, we deduce that the action (G/Γ,H) is minimal whenever it is uniquely

ergodic and the space G/Γ is compact. As Example 4.4.7 shows, this breaks down in the
noncompact case. However, apparently the converse statement holds. In this direction one
has the following result [234,243]:

19Notice that still it is not known whether any non-atomic Z2+-ergodic measure on the circle is Lebesgue.
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THEOREM 4.4.14. Let G be a connected Lie group with a connected subgroup H , and
let vol(G/Γ ) < ∞. Assume that Ad(H) ⊂ Aut(g) splits into the semidirect product of
a reductive subgroup and the unipotent radical. Then the action (G/Γ,H) is uniquely
ergodic whenever it is minimal.

Earlier, this result was proved by Mozes and Weiss [163] for real algebraic groups G

and H .

5. Applications to number theory

In this chapter we discuss applications of various results from earlier chapters to
Diophantine approximation. The discussion should not be thought of as a complete
reference guide to number-theoretical applications of homogeneous dynamics. Instead,
we are going to concentrate on several directions where significant progress has been
achieved during recent years, thanks to interactions between number theory and the theory
of homogeneous flows.
It is also important to keep in mind that these interactions go both ways – as was men-

tioned before, many problems involving homogeneous spaces (e.g., in the theory of unipo-
tent flows) came to light due to their connections with Diophantine approximation. The
most striking example is given by the Oppenheim conjecture on density of the set of values
Q(Zk) of an indefinite irrational quadratic form Q in k ! 3 variables. In §5.1a we discuss
the original conjecture and its reduction to a special case of Ratner’s topological theorem
(Theorem 3.3.6). Quantitative versions of the Oppenheim conjecture have also been stud-
ied using the methods of homogeneous dynamics; we review most of the results in §5.1b.
Then we switch from quadratic to linear forms, and define the circle of questions

in metric theory of Diophantine approximations that happen to correspond to orbit
properties of certain homogeneous flows. Results to be mentioned are: abundance of badly
approximable objects, a dynamical proof of the Khintchine–Groshev Theorem (§5.2c),
inhomogeneous approximation (§5.2d), approximation on manifolds (§5.2e). Here the
main role is played by actions of partially hyperbolic one-parameter subgroups of SL(k,R)

on the space Ωk of lattices in Rk .
A modification of the standard set-up in the theory of Diophantine approximations, the

so called multiplicative approximation, deserves a special treatment. Several results in the
standard theory have their multiplicative extensions, which are obtained by considering
multi-parameter partially hyperbolic actions. However, the non-existence of ‘badly mul-
tiplicatively approximable’ vectors is an open problem (Littlewood’s Conjecture), which
happens to be a special case of conjectures on higher rank actions mentioned in §4.4c.
Finally we review some applications of homogeneous dynamics to counting problems,

such as counting integer points on homogeneous affine varieties (§5.4a), and estimating
the error term in the asymptotics of the number of lattice points inside polyhedra (§5.4b).

5.1. Quadratic forms

Here the main objects will be real quadratic forms in k variables, and their values at integer
points. Naturally if such a form Q is positive or negative definite, the set Q(Zk \ {0})
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has empty intersection with some neighborhood of zero. Now take an indefinite form,
and call it rational if it is a multiple of a form with rational coefficients, and irrational
otherwise. For k = 2,3,4 it is easy to construct rational forms which do not attain small
values at nonzero integers;20 therefore a natural assumption to make is that the form is
irrational. Let us start from the case k = 2. Then one can easily find an irrational λ for
which inf(x1,x2)∈Z\{0} |x

2
1 − λx22 | > 0, i.e., the set of values of such a form also has a gap

at zero. We will see an explanation of this phenomenon in Section 5.2: the stabilizer of
the form |x21 − λx22 | consists of semisimple elements, and forms with nondense integer
values correspond to nondense orbits. The situation is however quite different in higher
dimensions.

1a. Oppenheim Conjecture. In 1986, Margulis [135,138] proved the following result,
which resolved then a 60 year old conjecture due to Oppenheim:

THEOREM 5.1.1. Let Q be a real indefinite nondegenerate irrational quadratic form in
k ! 3 variables.21 Then given any ε > 0 there exists an integer vector x ∈ Zk \ {0} such
that |Q(x)| < ε.

By analytic number theory methods this conjecture was proved in the 1950s for k ! 21;
the history of the problem is well described in [143]. In particular, it has been known that
the validity of the conjecture for some k0 implies its validity for all k ! k0; in other words,
Theorem 5.1.1 reduces to the case k = 3.
The turning point in the history was the observation (implicitly made in [37] and later

by Raghunathan) that Theorem 5.1.1 is equivalent to the following

THEOREM 5.1.2. Consider Q0(x) = 2x1x3 + x22 , and let H be the stabilizer of Q0 in

SL(3,R). Then any relatively compact orbit HΛ, Λ a lattice in R3, is compact.

The above result was proved by Margulis [135] in 1986, which later led to the first
instance of establishing Conjecture 3.3.1 for actions of nonhorospherical subgroups (in
the semisimple case). See §3.3a for related historical comments, and [13,237] for a good
account of the original proof.
To derive Theorem 5.1.2 from Theorem 3.3.6, one needs to observe that H as above

is generated by its unipotent one-parameter subgroups, and that there are no intermediate
subgroups between H and SL(3,R). As for the equivalence of Theorems 5.1.1 and 5.1.2,
first note that the latter theorem can be restated in the following way: if Q is as in
Theorem 5.1.1 and HQ is the stabilizer of Q in SL(3,R) defined as in §1.4g, then the
orbit HQZ3 is compact whenever it is relatively compact. (Indeed, by a linear change of
variables one can turnQ into a form proportional to Q0, which makes HQ conjugate to H

via an element g ∈ SL(3,R) and establishes a homeomorphism between the orbits HQZ3

and HΛ where Λ = gZ3.) The rest of the argument boils down to Lemma 1.4.4. Indeed,

20However, by Meyer’s Theorem [36] ifQ is nondegenerate indefinite rational quadratic form in k ! 5 variables,
then Q represents zero over Z nontrivially, i.e., there exists a nonzero integer vector x such that Q(x) = 0.
21The original conjecture of Oppenheim assumed k ! 5; later it was extended to k ! 3 by Davenport.
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suppose for some ε > 0 one has infx∈Z3\{0} |Q(x)| ! ε. Then by Lemma 1.4.4 the orbit

HQZ3 is bounded in the space Ω3 of unimodular lattices in R3, hence it is compact in
view of Theorem 5.1.2. But since this orbit can be identified with HQ/HQ ∩ SL(3,Z),
this shows that HQ ∩ SL(3,Z) is a lattice in HQ, hence is Zariski dense by the Borel
Density Theorem (see §1.3b). The latter is not hard to show to be equivalent to HQ being
defined overQ, which, in turn, is equivalent toQ being proportional to a form with rational
coefficients. The reverse implication is proved in a similar way. See [13,27,237] for more
detail.
In [137] Margulis has proved a stronger version of the conjecture: under the same

assumptions, for any ε > 0 there exists x ∈ Zk such that 0 < |Q(x)| < ε. It had been
known (see [126, §5]) by the work of Oppenheim [167] that if 0 is the right limit point
for the setQ(Zk), then it is the left one as well. Moreover,Q(Zk) is clearly invariant under
multiplication by any square integer. Hence the following holds:

THEOREM 5.1.3. Let Q be as in Theorem 5.1.1. Then the set Q(Zk) is dense in R.

Another extension is due to Dani and Margulis [61]. One says that an integer vector
x ∈ Zk is primitive if there is no vector y ∈ Zk such that x = my for some m ∈ Z,
m += 1,−1. We denote by P(Zk) the set of all primitive vectors. Note that the set P(Zk) is
invariant under the action of SL(k,Z). The following statement holds:

THEOREM 5.1.4. Let Q be as in Theorem 5.1.1. Then the set Q(P(Zk)) is dense in R.

The above two theorems can be deduced from the stronger version of Theorem 5.1.2,
namely that any orbitHQΛ is either closed or everywhere dense inΩ3 (as before, a simple
reduction to the case k = 3 is in order). For simplified proofs of Theorem 5.1.4, see [60,63,
139]
Using Ratner’s general results, Theorem 5.1.4 was sharpened in an elegant way by Borel

and Prasad [29]:

THEOREM 5.1.5. Let Q be as above. Then for any c1, . . . , ck−1 ∈ R and ε > 0 there exist
vectors x1, . . . ,xk−1 ∈ Zk extendable to a basis of Zk (and hence primitive) such that
|Q(xi) − ci | < ε, i = 1, . . . , k − 1.

See [244] for generalization of the result of Borel–Prasad to the case of Hermitian
forms over division algebras, [58] for simultaneous solution of linear and quadratic
inequalities, and [258,260,261] for ‘prehomogeneous’ analogues of Ratner’s theorems and
their number-theoretic applications.

1b. Quantitative versions of the Oppenheim Conjecture. By obtaining appropriate
uniform versions (see Theorem 3.6.2) of Ratner’s equidistribution result, Dani and
Margulis [65,66] proved the following quantitative analogue of Theorem 5.1.1.
For any real indefinite nondegenerate quadratic form Q on Rk , an open interval I ⊂ R

and T > 0, define

VQ(I, T ) =
{
x ∈ Rk: ‖x‖ < T, Q(x) ∈ I

}
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and

NQ(I, T )
def
= #

(
Zk ∩ VQ(I, T )

)
.

Write k = m + n with m ! n, and let F(m,n) denote the space of quadratic forms on Rk

with discriminant ±1 and signature (m,n).

THEOREM 5.1.6. Given a relatively compact set K of F(m,n), an open interval I in R,
and θ > 0, there exists a finite subset S of K such that each element of S is rational, and
for any compact subset C of K " S the following holds:

lim inf
T →∞

(
inf
Q∈C

NQ(I, T )

vol(VQ(I, T ))

)
! 1− θ . (5.1)

Obtaining the upper bound posed new kind of difficulties. The question was resolved by
Eskin, Margulis and Mozes [76] to obtain the following:

THEOREM 5.1.7. Let the notation be as in Theorem 5.1.6, and further suppose that
(m,n) += (2,1) or (2,2). Then given K, I , and θ as before, there exists a finite set S ⊂K

such that S consists of rational forms, and that for any compact set C ⊂K"S the following
holds:

lim sup
T →∞

(
sup
Q∈C

NQ(I, T )

vol(VQ(I, T ))

)
" 1+ θ . (5.2)

The proofs of both of the above results are based on Siegel’s formula (see §1.3d) and
Theorem 3.6.2. It may be noted that Theorem 3.6.2 is valid only for bounded continuous
functions ϕ; but to apply the theorem to count the number of integral points in VQ(I, T )

using Siegel’s formula one needs its analogue for unbounded continuous L1-functions
on Ωk . It may be noted that the lower bound in (5.1) can be obtained by truncating the
unbounded function, and applying Theorem 3.6.2 to the truncated one.
The upper bound in (5.2) was obtained as a consequence of the next theorem due

to Eskin, Margulis and Mozes [76], whose proof involves significantly new ideas and
techniques.

DEFINITION 5.1.8. For Λ ∈ Ωk , we define

α(Λ) = sup
{
1/vol(L/L ∩ Λ) | L is a subspace of Rk and

L/L ∩ Λ is compact
}
.

Now consider the quadratic form

Q0(x1, . . . , xk) = 2x1xk +

m∑

i=2

x2i −
k−1∑

i=m+1

x2i
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on Rk . Let H be the stabilizer of Q0, consider a one-parameter subgroup aR of H , where
at = diag(et ,1, . . . ,1, e−t ), and let K = SO(k) ∩ H . Denote by σ the normalized Haar
measure on K . (We note that, as in §5.1a, every form Q ∈ F(m,n) reduces to Q0 by
changing variables.)

THEOREM 5.1.9. Let integers m > 2 and k ! 4, and a real 0< s < 2 be given. Then for
any Λ ∈ Ωk ,

lim sup
t→∞

∫

K

α(atgΛ)s dσ (g) < ∞.

Using this theorem and Theorem 3.6.2 one obtains the following result, which leads to
the simultaneous proof of Theorems 5.1.6 and 5.1.7:

THEOREM 5.1.10. Let the notation be as in Theorem 5.1.9. Let f be any continuous
function on Ωk which is dominated by αs for some 0 < s < 2. Then given a relatively
compact set C ⊂ Ωk and an ε > 0, there exist finitely many lattices Λ1, . . . ,Λl ∈ C

such that the following holds: HΛi is closed for i = 1, . . . , l, and for any compact set
C1 ⊂ C \

⋃l
i=1HΛi , there exists t0 > 0 such that

∣∣∣∣
∫

K

f (atgΛ)dσ (g) −
∫

f dν

∣∣∣∣ < ε, ∀Λ ∈ C1, t > t0,

where ν denotes the SL(k,R)-invariant probability measure on Ωk .

Combining Theorems 5.1.6 and 5.1.7 one obtains the following result due to [76]:

COROLLARY 5.1.11. If (m,n) += (2,1) or (2,2) then as T → ∞,

lim
T →∞

NQ(I, T )

vol(VQ(I, T ))
= 1, (5.3)

for all irrational Q ∈ F(m,n) and any bounded open interval I ⊂ R.

1c. Upper bounds for the case of signature (2,2). The analysis of upper bounds in the
cases of quadratic forms with signatures (2,1) and (2,2) is very delicate. The case of
signature (2,2) is nowwell understood by recent works of Eskin,Margulis, andMozes [77,
145]:

DEFINITION 5.1.12. Fix a norm ‖ · ‖ on the space F(2,2). We say that a quadratic form
Q ∈ F(2,2) is extremely well approximable by split rational forms, to be abbreviated as
EWAS, if for any N > 0 there exist an integral form Q′ ∈ F(2,2) which is split over Q,
and a real number λ such that ‖λQ − Q′‖ " λ−N . (A rational (2,2)-form is split over Q

if and only if there is a 2-dimensional subspace of R4 defined over Q on which the form
vanishes.)
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It may be noted that if the ratio of two nonzero coefficients ofQ is badly approximable
(see §5.2a) then Q is not EWAS.

THEOREM 5.1.13. The formula (5.3) holds if Q ∈ F(2,2) is not EWAS and 0 /∈ I .

We note that forms of signature (2,2), i.e., differences of two positive definite quadratic
forms in 2 variables, naturally arise in studying pair correlations of eigenvalues of the
Laplacian on a flat torus. Thus the above theorem provides examples of flat metrics on
tori for which asymptotics of pair correlations agrees with conjectures made by Berry and
Tabor. Before [77] it was proved by Sarnak that (5.3) holds for almost all forms within the
family

(
x21 + 2bx1x2 + cx22

)
−

(
x23 + 2bx3x4 + cx24

)
.

One can also prove that (5.3) is valid for almost allQ ∈ F(2,1), and it is not valid for those
Q which are EWAS (correspondingly defined forQ ∈ F(2,1)).
See also the papers by Marklof [149–151] for further applications of the study of flows

on homogeneous spaces to results related to quantum chaos.

5.2. Linear forms

We start with a brief introduction to the metric theory of Diophantine approximations.

2a. Basics of metric number theory. The word ‘metric’ here does not refer to the metric
distance, but rather to the measure. The terminology originated with the Russian school
(Khintchine, Luzin) and now is quite customary. Roughly speaking, by ‘usual’ Diophantine
approximation one could mean looking at numbers of a very special kind (e.g., e or
algebraic numbers) and studying their approximation properties. On the other hand, metric
Diophantine approximation starts when one fixes a certain approximation property and
wants to characterize the set of numbers (vectors) which share this property. A big class of
problems arises when one has to decide whether a certain property is satisfied for almost all
or almost no numbers, with respect to Lebesgue measure. Hence the term “metric” in the
heading. A quote fromKhintchine’s ‘Continued fractions’ [113]: ‘metric theory . . . inquires
into the measure of the set of numbers which are characterized by a certain property’.
Here is a typical example of an approximation property one can begin with. Let ψ(x) be

a non-increasing function R+ "→ R+. Say that a real number α is ψ-approximable if there
are infinitely many integers q such that the distance between αq and the closest integer is
not greater than ψ(|q|); in other words, such that

|αq + p| " ψ
(
|q|

)
for some p ∈ Z.

The basic question is now as follows: given a function ψ as above, what can one say
about the set of all ψ-approximable numbers? The whole theory starts from a positive
result of Dirichlet (involving the pigeon-hole principle), where one considers the function

ψ0(x)
def
= 1/x:
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THEOREM 5.2.1. Every α ∈ R is ψ0-approximable.

It is natural to guess that the faster ψ(x) decays as x → +∞, the fewer there are
ψ-approximable numbers. In particular, one can replace ψ0 in the above theorem by
(1/

√
5)ψ0 (Hurwitz), but not by cψ0 with c < 1/

√
5. Numbers which are not cψ0-

approximable for some c > 0 are called badly approximable, and numbers which are not
badly approximable are calledwell approximable. It is a theorem of Jarnik [102] that the set
of badly approximable numbers has full (i.e., equal to 1) Hausdorff dimension; moreover,
this set is thick in R (that is, has full Hausdorff dimension at every point). However almost
all numbers are well approximable. This is a special case of the following theorem due to
Khintchine [112], which gives the precise condition on the function ψ under which the set
of ψ-approximable numbers has full measure:

THEOREM 5.2.2. Almost no (resp. almost every) α ∈ R is ψ-approximable, provided the
integral

∫ ∞
1 ψ(x)dx converges (resp. diverges).

Note that the first statement, usually referred to as the convergence part of the theorem,
immediately follows from the Borel–Cantelli Lemma, while the second one (the divergence
part) is nontrivial.

EXAMPLE 5.2.3. Consider ψε(x)
def
= x−(1+ε). It immediately follows from the above

theorem that almost no numbers are ψε-approximable if ε > 0. One says that α is very
well approximable (abbreviated as VWA) if it is ψε-approximable for some ε > 0; the set
of VWA numbers has measure zero. Note that the Hausdorff dimension of this set is equal
to one – this follows from a theorem by Jarnik and Besicovitch [22,103].

It is important that most of the results cited above have been obtained by the method of
continued fractions (thus implicitly – using dynamics of the Gauss map x "→ 1/xmod1 of
the unit interval). For more results from the theory of metric Diophantine approximation
on the real line, see [94,199]. Our goal now is to consider some higher-dimensional
phenomena which are generally much less understood.

2b. Simultaneous approximation. In order to build a multi-dimensional generalization
for the notions discussed above, one views α ∈ R as a linear operator from R to R, and
then changes it to a linear operator A from Rn to Rm. That is, the main object is now a
matrix A ∈ Mm,n(R) (interpreted as a system of m linear forms Ai on Rn).
Denote by ‖ · ‖ the norm on Rk given by ‖y‖ =max1"i"k |yi|. It turns out that in order

to mimic the one-dimensional theory in the best way one needs to raise norms to powers
equal to the dimension of the ambient space. In other words, fix m,n ∈ N and, for ψ as
above, say that A ∈ Mm,n(R) is ψ-approximable if there are infinitely many q ∈ Zn such
that

‖Aq+ p‖m " ψ
(
‖q‖n

)
for some p ∈ Zm.

Then one has
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THEOREM 5.2.4. Every A ∈ Mm,n(R) is ψ0-approximable.

(This was also proved by Dirichlet in 1842 and in fact served the occasion to introduce
the pigeon-hole principle.)
The function ψ0 in this theorem can be replaced by cψ0 for some c < 1, but the

infimum of numbers c such that every A ∈ Mm,n(R) is cψ0-approximable (the top of the
Markov spectrum for simultaneous approximation) is not knownwhen (m,n) += (1,1) (it is
estimated to be not greater thanmmnn(m + n)!/(m + n)mnm!n! by Minkowski, see [199]).
However this infimum is known to be positive; in other words for every m and n there
exist badly approximable systems of m linear forms Ai on Rn (where as before badly
approximable means not cψ0-approximable for some c > 0). This was shown by Perron in
1921, and in 1969 Schmidt [198] proved that the set of badly approximableA ∈ Mm,n(R) is
thick. The fact that this set has measure zero had been known before: Khintchine’s theorem
(Theorem 5.2.2) has been generalized to the setting of systems of linear forms by Groshev
[90] and is now usually referred to as the Khintchine–Groshev Theorem:

THEOREM 5.2.5. Almost no (resp. almost every) A ∈ Mm,n(R) is ψ-approximable,
provided the integral

∫ ∞
1 ψ(x)dx converges (resp. diverges).

Note that the above condition on ψ does not depend on m and n – this is an advantage
of the normalization that we are using (that is, employing ‖ ·‖n instead of ‖ ·‖). The reader
is referred to [70] or [220] for a good exposition of the proof, and to [195,196,220,242] for
a quantitative strengthening and further generalizations.

EXAMPLE 5.2.6. Again, almost no A ∈ Mm,n(R) are ψε-approximable if ε > 0. As in the
case m = n = 1, one says that A is VWA if it is ψε-approximable for some ε > 0, and
the set of VWA matrices has measure zero. It follows from a result of Dodson (see [70])
that this set also has full Hausdorff dimension (more precisely, Dodson, as well as Jarnik
in the case m = n = 1, computed the Hausdorff dimension of the set of ψε-approximable
matrices to be equal to mn(1− ε

m+n+nε
)).

2c. Dani’s correspondence. As far as one-dimensional theory of Diophantine approxi-
mation is concerned, it has been known for a long time (see [207] for a historical account)
that Diophantine properties of real numbers can be coded by the behavior of geodesics on
the quotient of the hyperbolic plane by SL(2,Z). In fact, the geodesic flow on SL(2,Z)\H2

can be viewed as the suspension flow of the Gauss map. There have been many attempts
to construct a higher-dimensional analogue of the Gauss map so that it captures all the fea-
tures of simultaneous approximation, see [121,124] and references therein. On the other
hand, it seems much more natural and efficient to generalize the suspension flow itself, and
this is where one needs higher rank homogeneous dynamics.
As we saw in the preceding section, in the theory of simultaneous Diophantine

approximation one takes a system ofm linear formsA1, . . . ,Am onRn and simultaneously
looks at the values of |Ai(q) +pi |, pi ∈ Z, when q= (q1, . . . , qn) ∈ Zn is far from 0. The
trick is to put together

A1(q) + p1, . . . ,Am(q) + pm and q1, . . . , qn,
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and consider the collection of vectors
{(

Aq+ p

q

) ∣∣∣∣ p ∈ Zm, q ∈ Zn

}
= LAZk,

where k = m + n, A is the matrix with rows A1, . . . ,Am and LA is as in (4.2).
This collection is a unimodular lattice in Rk , i.e., an element of Ωk . Our goal is to keep

track of vectors in such a lattice having very small projections onto the first m components
of Rk and very big projections onto the last n components. This is where dynamics comes
into the picture. Denote by gt the one-parameter subgroup of SL(k,R) given by (4.1).
One watches the vectors mentioned above as they are moved by the action of gt , t > 0,
and in particular looks at the moment t when the “small” and “big” projections equalize.
The following observation of Dani [52] illustrates this idea, and can be thought of as a
generalization of the aforementioned geodesic-flow approach to continued fractions.

THEOREM 5.2.7. A ∈ Mm,n(R) is badly approximable iff the trajectory

{
gtLAZk | t ∈ R+

}
, (5.4)

is bounded in the space Ωk .

Let us sketch a short proof, which is basically a rephrasing of the original proof of Dani.
From Mahler’s Compactness Criterion it follows that the orbit (5.4) is unbounded iff there
exist sequences ti → +∞ and (pi ,qi) ∈ Zk \ {0} such that

max
(
eti/m‖pi + Aqi‖, e−ti/n‖qi‖

)
→ 0 as k → ∞. (5.5)

On the other hand, A is well approximable iff there exist sequences pi ∈ Zm and qi ∈ Zn

such that ‖qi‖ → ∞ and

‖pi + Aqi‖m‖qi‖n → 0 as k → ∞. (5.6)

Therefore for well approximable A one can define eti
def
=

√
‖qi‖n/‖pi + Aqi‖m and check

that ti → +∞ and (5.5) is satisfied. Also (5.6) obviously follows from (5.5). To finish the
proof, first exclude the trivial case when Aq+ p = 0 for some nonzero (p,q) (such A is
clearly well approximable and the trajectory (5.4) diverges). Then it is clear that (5.6) can
only hold if ‖qi‖ → ∞, i.e., unboundedness of the trajectory (5.4) forces A to be well
approximable. #

From the results of [116] on abundance of bounded orbits one can then deduce the
aforementioned result of Schmidt [198]: the set of badly approximable A ∈ Mm,n(R)

is thick in Mm,n(R). Indeed, as was observed in Section 2, {LA | A ∈ Mm,n(R)} is
the expanding horospherical subgroup of SL(k,R) relative to g1, so an application of
Theorem 4.1.6(a) proves the claim.
The above correspondence has been made more general in [118], where the goal was to

treat ψ-approximable systems similarly to the way cψ0-approximable ones were treated
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in Theorem 5.2.7. Roughly speaking, the faster ψ decays, the ‘more unbounded’ is the
trajectory (5.4) with A being ψ-approximable. We will need to transform ψ to another
function which will measure the ‘degree of unboundedness’ of the orbit. The following
was proved in [118]:

LEMMA 5.2.8. Fix m,n ∈ N and x0 > 0, and let ψ : [x0,∞) "→ (0,∞) be a non-
increasing continuous function. Then there exists a unique continuous function r : [t0,∞)

"→ R, where t0 = m
m+n

logx0 − n
m+n

logψ(x0), such that

the function t − nr(t) is strictly increasing and tends to ∞ as t → +∞, (5.7)

the function t + mr(t) is nondecreasing, (5.8)

and

ψ
(
et−nr(t)

)
= e−(t+mr(t)), ∀t ! t0. (5.9)

Conversely, given t0 ∈ R and a continuous function r : [t0,∞) "→ R such that (5.7) and
(5.8) hold, there exists a unique continuous non-increasing function ψ : [x0,∞) "→ (0,∞),
with x0 = et0−nr(t0), satisfying (5.9). Furthermore,

∫ ∞

x0

ψ(x)dx < ∞ iff

∫ ∞

t0

e−(m+n)r(t) dt < ∞. (5.10)

A straightforward computation using (5.9) shows that the function cψ0 corresponds to
r(t) ≡ const. Now recall one of the forms of Mahler’s Compactness Criterion:K ⊂ Ωm+n

is bounded iff ∆(Λ) " const for all Λ ∈ K , where ∆ is the ‘distance-like’ function
introduced in §1.3d. Thus the following statement, due to [118], is a generalization of
Theorem 5.2.7:

THEOREM 5.2.9. Let ψ , m and n be as in Lemma 5.2.8, ∆ as in (1.4), gR as in (4.1).
Then A ∈ Mm,n(R) is ψ-approximable iff there exist arbitrarily large positive t such that

∆
(
gtLAZm+n

)
! r(t).

EXAMPLE 5.2.10. Take ψ(x) = ψε(x) = 1/x1+ε, ε > 0; then r(t) is a linear function,
namely

r(t) = γ t, where γ =
ε

(1+ ε)m + n
.

ThusA ∈ Mm,n(R) is VWA iff∆(LAZm+n) grows at least linearly; that is, for some γ > 0
there exist arbitrarily large positive t such that

∆
(
gtLAZm+n

)
! γ t .
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Recall that∆ is a (m + n)-DL function (see Theorem 1.3.5), and so by Theorem 4.1.11,
for any sequence {r(t) | t ∈ N} of real numbers the following holds: for almost every
(resp. almost no) Λ ∈ Ωm+n

there are infinitely many t ∈ N such that ∆(gtΛ) ! r(t),

provided the series
∞∑

t=1

e−(m+n)r(t) diverges (resp. converges).
(5.11)

Assuming in addition that r(t) is close to being monotone increasing (for example that
(5.7) holds), it is not hard to derive that (5.11) holds for almost every Λ in any expanding
(with respect to g1) leaf, e.g., for lattices of the form LAZm+n for a.e. A ∈ Mm,n(R). In
view of the above correspondence (Theorem 5.2.9) and (5.10), this proves the Khintchine–
Groshev Theorem 5.2.5.

2d. Inhomogeneous approximation. In this subsection, as well as in §5.2e, we mention
several new results that can be obtained by means of the aforementioned correspondence
or its modifications. First let us discuss inhomogeneous analogues of the above notions. By
an affine form we will mean a linear form plus a real number. A system of m affine forms
in n variables will be then given by a pair 〈A,b〉, where A ∈ Mm,n(R) and b ∈ Rm. We
will denote by M̃m,n(R) the direct product of Mm,n(R) and Rm. As before, let us say that
〈A,b〉 ∈ M̃m,n(R) is ψ-approximable if there are infinitely many q ∈ Zn such that

‖Aq+ b+ p‖m " ψ
(
‖q‖n

)
for some p ∈ Zm.

A ‘doubly metric’ inhomogeneous analogue of Theorem 5.2.5 can be found already in
Cassels’s monograph [36]. The singly metric strengthening is due to Schmidt [196]: for
any b ∈ Rm, the set of A ∈ Mm,n(R) such that 〈A,b〉 is ψ-approximable,

has

{
full measure if

∑∞
k=1ψ(k) = ∞,

zero measure if
∑∞

k=1ψ(k) < ∞.

Similarly one can say that a system of affine forms given by 〈A,b〉 ∈ M̃m,n(R) is badly
approximable if

lim inf
p∈Zm, q∈Zn, q→∞

‖Aq+ b+ p‖m‖q‖n > 0,

and well approximable otherwise. In other words, badly approximable means not cψ0-
approximable for some c > 0. It follows that the set of badly approximable 〈A,b〉 ∈
M̃m,n(R) has Lebesgue measure zero. Similarly to what was discussed in §§5.2a and 5.2b,
one can try to measure the magnitude of this set in terms of the Hausdorff dimension. All
examples of badly approximable systems known before happen to belong to a countable
union of proper submanifolds of M̃m,n(R) and, consequently, form a set of positive
Hausdorff codimension. Nevertheless one can prove
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THEOREM 5.2.11. The set of badly approximable 〈A,b〉 ∈ M̃m,n(R) is thick in M̃m,n(R).

This is done in [115] by a modification of the correspondence discussed in §5.2c.
Namely, one considers a collection of vectors

{(
Aq+ b+ p

q

) ∣∣∣∣ p ∈ Zm, q ∈ Zn

}
= LAZk +

(
b

0

)
,

which is an element of the space Ω̂k = Ĝ/Γ̂ of affine lattices in Rk , where

Ĝ
def
= Aff

(
Rk

)
= SL(k,R) ! Rk and Γ̂

def
= SL(k,Z) ! Zk

(as before, here we set k = m + n). In other words,

Ω̂k
∼=

{
Λ +w | Λ ∈ Ωk, w ∈ Rk

}
.

Note that the quotient topology on Ω̂k coincides with the natural topology on the space
of affine lattices: that is, Λ1 +w1 and Λ2 +w2 are close to each other if so are wi and the
generating elements of Λi . Note also that Ω̂k is noncompact and has finite Haar measure,
and that Ωk (the set of true lattices) can be identified with a subset of Ω̂k (affine lattices
containing the zero vector). Finally, gt as in (4.1) acts on Ω̂k , and it is not hard to show that
the expanding horospherical subgroup corresponding to g1 is exactly the set of all elements
of Ĝ with linear part LA and translation part

(
b

0

)
, A ∈ Mm,n(R) and b ∈ Rm.

The following is proved in [115]:

THEOREM 5.2.12. Let gR be as in (4.1). Then 〈A,b〉 is badly approximable whenever

gR+

(
LAZk +

(
b

0

))
is bounded and stays away from Ωk.

Even though Ĝ is not semisimple, it follows from Dani’s mixing criterion (Theo-
rem 2.2.9) that the gR-action on Ω̂ is mixing. SinceΩ ⊂ Ω̂ is closed, null and gt -invariant,
Theorem 4.1.6 applies and Theorem 5.2.11 follows.

2e. Diophantine approximation on manifolds. We start from the setting of §5.2b but
specialize to the case m = 1; that is, to Diophantine approximation of just one linear
form given by y ∈ Rn. Recall that (the trivial part of) Theorem 5.2.5 says that whenever∑∞

l=1ψ(l) is finite, almost every y is not ψ-approximable; that is, the inequality

|q · y+ p| " ψ
(
‖q‖n

)

has at most finitely many solutions. In particular, almost all y ∈ Rn are not VWA.
Now consider the following problem, raised by Mahler in [128]: is it true that for almost

all x ∈ R the inequality

∣∣p + q1x + q2x
2 + · · · + qnx

n
∣∣ " ‖q‖−n(1+β)
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has at most finitely many solutions? In other words, for a.e. x ∈ R, the n-tuple

y(x) =
(
x, x2, . . . , xn

)
(5.12)

is not VWA. This question cannot be answered by trivial Borel–Cantelli type considera-
tions. Its importance has several motivations: the original motivation of Mahler comes from
transcendental number theory; then, in the 1960s, interest in Mahler’s problemwas revived
due to connections with KAM theory. However, from the authors’ personal viewpoint, the
appeal of this branch of number theory lies in its existing and potential generalizations. In a
sense, the affirmative solution to Mahler’s problem shows that a certain property of y ∈ Rn

(being not VWA) which holds for generic y ∈ Rn in fact holds for generic points on the
curve (5.12). In other words, the curve inherits the above Diophantine property from the
ambient space, unlike, for example, a line y(x) = (x, . . . , x) – it is clear that every point
on this line is VWA. This gives rise to studying other subsets of Rn and other Diophantine
properties, and looking at whether this inheritance phenomenon takes place.
Mahler’s problem remained open for more than 30 years until it was solved in 1964

by Sprindžuk [218,219]; the solution to Mahler’s problem has eventually led to the
development of a new branch of metric number theory, usually referred to as ‘Diophantine
approximation with dependent quantities’ or ‘Diophantine approximation on manifolds’.
We invite the reader to look at Sprindžuk’s monographs [219,220] and a recent book [20]
for a systematic exposition of the field.
Note that the curve (5.12) is not contained in any affine subspace of Rn (in other words,

constitutes an essentially n-dimensional object). The latter property, or, more precisely,
its infinitesimal analogue, is formalized in the following way. Let V be an open subset
of Rd . Say that an n-tuple f = (f1, . . . , fn) of Cl functions V "→ R is nondegenerate
at x ∈ V if the space Rn is spanned by partial derivatives of f at x of order up to l. If
M ⊂ Rn is a d-dimensional smooth submanifold, one says that M is nondegenerate at
y ∈ M if any (equivalently, some) diffeomorphism f between an open subset V of Rd

and a neighborhood of y in M is nondegenerate at f−1(y). We will say that f :V → Rn

(resp.M ⊂ Rn) is nondegenerate if it is nondegenerate at almost every point of V (resp.M ,
in the sense of the natural measure class on M). If the functions fi are analytic, it is easy
to see that the linear independence of 1, f1, . . . , fn over R in V is equivalent to all points
ofM = f(V ) being nondegenerate.
It was conjectured in 1980 by Sprindžuk [221, Conjecture H1] that almost all points on

a nondegenerate analytic submanifold of Rn are not VWA. This conjecture was supported
before and after 1980 by a number of partial results, and the general case was settled
in 1996 by Kleinbock and Margulis [117] using the dynamical approach. Namely, the
following was proved:

THEOREM 5.2.13. Let M be a nondegenerate smooth submanifold of Rn. Then almost
all points of M are not VWA.

In another direction, Sprindžuk’s solution to Mahler’s problem was improved in 1966
by Baker [10] and later by Bernik [19,20]; the latter proved that whenever

∑∞
l=1ψ(l) is

finite, almost all points of the curve (5.12) are not ψ-approximable. And several years ago
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Beresnevich [16] proved the divergence counterpart, thus establishing a complete analogue
of the Khintchine–Groshev Theorem for the curve (5.12).
It turned out that a modification of the methods from [117] allows one to prove the

convergence part of the Khintchine–Groshev Theorem for any nondegenerate manifold. In
other words, the following is true:

THEOREM 5.2.14. Let M be a nondegenerate smooth submanifold of Rn and let ψ be
such that

∑∞
l=1ψ(l) is finite. Then almost all points of M are not ψ-approximable.

This is proved in [21] and also independently in [17].
Let us now sketch a proof of Theorem 5.2.13 by first restating it in the language of flows

on the space of lattices. For this we set k = n + 1 and look at the one-parameter group

gt = diag
(
et , e−t/n, . . . , e−t/n

)
(5.13)

acting on Ωk = SL(k,R)/SL(k,Z), and given y ∈ Rn, consider Ly
def
=

( 1 yT

0 In

)
(cf. (4.1)

and (4.2)). Having Example 5.2.10 in mind, let us turn to the setting of Theorem 5.2.13.
Namely, let V be an open subset of Rd and f= (f1, . . . , fn) be an n-tuple of Ck functions
V "→ R which is nondegenerate at almost every point of V . The theorem would be proved
if we show that for any γ > 0 the set

{
x ∈ V | ∆

(
gtLf(x)Z

k
)
! γ t for infinitely many t ∈ N

}

has measure zero. In other words, a submanifold f(V ) of Rn gives rise to a submanifold
Lf(V )Z

k of the space of lattices, and one needs to show that growth rate of generic orbits
originating from this submanifold is consistent with the growth rate of an orbit of a generic
point ofΩk (Theorem4.1.11 gives an explanation of why latticesΛ such that∆(gtΛ) ! γ t

for infinitely many t ∈ N form a null subset of Ωk .)
Now one can use the Borel–Cantelli Lemma to reduce Theorem 5.2.13 to the following

statement:

THEOREM 5.2.15. Let V be an open subset of Rd and f= (f1, . . . , fn) an n-tuple of Ck

functions V "→ R which is nondegenerate at x0 ⊂ V . Then there exists a neighborhood B

of x0 contained in V such that for any γ > 0 one has

∞∑

t=1

∣∣{x ∈ B | ∆
(
gtLf(x)Z

k
)
! γ t

}∣∣ < ∞.

The latter inequality is proved by applying generalized nondivergence estimates from
§3.2a, namely, Theorem 3.2.4. The key observation is that nondegeneracy of (f1, . . . , fn)

at x0 implies that all linear combinations of 1, f1, . . . , fn are (C,α)-good in some
neighborhood of x0 (see Proposition 3.2.3).
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5.3. Products of linear forms

Let us start by stating the following conjecture, made by Littlewood in 1930:

CONJECTURE 5.3.1. For every y ∈ Rn, n ! 2, one has

inf
q∈Zn\{0}, p∈Z

|y · q+ p| · Π+(q) = 0, (5.14)

where Π+(q) is defined to be equal to
∏n

i=1max(|qi|,1) or, equivalently,
∏

qi +=0 |qi |.

The main difference from the setting of the previous section is that here the magnitude
of the integer vector q is measured by taking the product of coordinates rather than the
maximal coordinate (that is the norm of the vector). Let us formalize it by saying, for
ψ as before, that A ∈ Mm,n(R) is ψ-multiplicatively approximable (ψ-MA) if there are
infinitely many q ∈ Zn such that

Π(Aq+ p) " ψ
(
Π+(q)

)
for some p ∈ Zm,

where for x= (x1, . . . , xk) ∈ Rk one defines

Π(x)
def
=

k∏

i=1

|xi| and Π+(x)
def
=

k∏

i=1

max
(
|xi |,1

)
.

Clearly any ψ-approximable system of linear forms is automaticallyψ-MA, but not neces-
sarily other way around. Similarly to the standard setting, one can define badly multiplica-
tively approximable (BMA) and very well multiplicatively approximable (VWMA) systems.
It can be easily shown that almost no A ∈ Mm,n(R) are ψ-MA if the sum

∞∑

l=1

(log l)k−2ψ(l)

converges (here we again set k = m + n); in particular, VWMA systems form a set of
measure zero. The converse (i.e., a multiplicative analogue of Theorem 5.2.5) follows from
the results of Schmidt [196] and Gallagher [85].
It turns out that the problems rooted in multiplicative Diophantine approximation bring

one to higher rank actions on the space of lattices. We illustrate this by two examples
below, where for the sake of simplicity of exposition we specialize to the case m = 1 (one
linear form q "→ y · q, y ∈ Rn), setting k = n + 1.

3a. Variations on the theme of Littlewood. It is easy to see that (5.14) is equivalent to
a vector y ∈ Rn (viewed as a linear form q "→ y · q) not being BMA; in other words,
Conjecture 5.3.1 states that no y ∈ Rn, n ! 2, is badly multiplicatively approximable.
Here one can clearly observe the similarity between the statements of the Oppenheim
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and Littlewood’s conjectures. Indeed, (5.14) amounts to saying that 0 is the infimum of
absolute values of a certain homogeneous polynomial at integer points (p,q) with qi += 0
for every i . Moreover, as it was the case with the Oppenheim conjecture, one can easily see
that it is enough to prove Conjecture 5.3.1 for n = 2. The similarity is further deepened by
an observationmade by Cassels and Swinnerton-Dyer in 1955 [37] concerning cubic forms
Q(x) in 3 variables which are products of three linear forms. As in Section 5.1, say that
Q is rational if it is a multiple of a polynomial with rational coefficients, and irrational
otherwise. It is shown in [37] that the ‘k = 3’-case of the following conjecture would imply
Conjecture 5.3.1:

CONJECTURE 5.3.2. Let Q be an irrational homogeneous polynomial in k variables
represented as a product of k linear forms, k ! 3. Then given any ε > 0 there exists an
integer vector x ∈ Zk \ {0} such that |Q(x)| < ε.

Because of the similarity with the quadratic form case, one can attempt to understand
the situation according to the scheme developed in the preceding sections. Indeed, in view
of Lemma 1.4.4, a dynamical system reflecting Diophantine properties ofQ as above must
come from the action of the group stabilizing Q on the space of lattices in Rk , and the
latter group is a subgroup of SL(k,R) conjugate to the full diagonal subgroupD. Arguing
as in §5.1a, one can show that Conjecture 5.3.2 is equivalent to the following conjecture,
already mentioned in §4.4c:

CONJECTURE 5.3.3. Let D be the subgroup of diagonal matrices in SL(k,R), k ! 3.
Then any relatively compact orbit DΛ, Λ ∈ Ωk , is compact.

As we saw in §4.1b, the above statement does not hold if k = 2. This once again
highlights the difference between rank-one and higher rank dynamics. Note also that one
can show the above conjecture to be a special case of Conjecture 4.4.11 of Margulis.

3b. Multiplicative approximation on manifolds. Since every VWA vector is VWMA
(that is, ψε-MA for some ε > 0) but not conversely, it is a more difficult problem to
prove that a generic point of a nondegenerate manifold is not very well multiplicatively
approximable. This has been known as Conjecture H2 of Sprindžuk [221]; the polynomial
special case (that is, a multiplicative strengthening of Mahler’s problem) was conjectured
by Baker in [11]. Both conjectures stood open, except for low-dimensional special cases,
until [117] where the following was proved:

THEOREM 5.3.4. Let M be a nondegenerate smooth submanifold of Rn. Then almost all
points of M are not VWMA.

The strategy of the proof of Theorem 5.2.13 applies with minor changes. For t =

(t1, . . . , tn) ∈ Rn let us define

gt = diag
(
exp

(∑
ti

)
, e−t1, . . . , e−tn

)
∈ SL(k,R). (5.15)
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One can show22 (see [117] for a partial result) that y ∈ Rn is VWMA iff for some γ > 0
there are infinitely many t ∈ Zn

+ such that ∆(gtLyZ
k) ! γ

∑
ti . Therefore it is enough to

use Theorem 3.2.4 to prove a modification of the measure estimate of Theorem 5.2.15 with
gt as in (4.1) replaced by gt as in (5.15).
Finally let us mention a multiplicative version of Theorem 5.2.14, proved in [21] by a

modification of the method described above:

THEOREM 5.3.5. LetM be a nondegenerate smooth submanifold of Rn and let ψ be such
that

∑∞
l=1(log l)n−1ψ(l) is finite. Then almost all points of M are not ψ-multiplicatively

approximable.

5.4. Counting problems

Let Λ ⊂ Rk be a unimodular lattice, P ⊂ Rk a compact region, and let N(P,Λ) be the
number of points of Λ inside P . By tP we denote the region obtained from P by the
uniform dilatation by a factor t > 0. It is a classical problem of geometry of numbers to
look at the asymptotics of N(tP,Λ) as t → ∞. It is well known that the main term of the
asymptotics is tk vol(P ) whenever P has piecewise-smooth boundary [122], and the next
question is to bound the error term

R(tP,Λ) = N(tP,Λ) − tk vol(P )

(for the unit disc in R2 this has been known as the circle problem). An ‘algebraic’ version
is to take only those integral points which lie on some algebraic subvariety V ⊂ Rk and
study the asymptotics of N(tP,Λ ∩ V ). Below we describe two examples that show how
the technique of homogeneous flows can be useful for this class of problems.

4a. Counting integral points on homogeneous affine varieties. Let V be a Zariski closed
real subvariety ofRk defined overQ. LetG be a reductive real algebraic group defined over
Q and with no nontrivial Q-characters. Suppose that G acts on Rk via a Q-representation
ρ :G → GL(k,R), and that the action of G on V is transitive. One is interested in the
asymptotics of N(tB,Λ ∩ V ) where B is the unit ball in Rk and Λ = Zk . In what follows,
we will simply denote N(tB, ·) by N(t, ·).
Let Γ be a subgroup of finite index inG(Z) such that Γ Zk ⊂ Zk . By a theorem of Borel

and Harish-Chandra [28], V (Z) is a union of finitely many Γ -orbits. Therefore to compute
the asymptotics of N

(
t, V (Z)

)
it is enough to consider the Γ -orbit of each point p ∈ V (Z)

separately, and compute the asymptotics of

N(t,Γp) = {the number of points in Γp with norm< t}

as t → ∞.
22More generally, one can state a multiplicative version of generalized Dani’s correspondence (Theorem 5.2.9),
relating multiplicative Diophantine properties of A ∈ Mm,n(R) to orbits of the form {gLAZm+n | g ∈ D+} where
D+ is a certain open chamber in D. For a version of such a correspondence see [118, Theorem 9.2].
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Let H denote the stabilizer of p in G. Then H is a real reductive group defined over Q.
For t > 0 we define

Rt =
{
gH ∈ G/H

∣∣ ∥∥ρ(g)p
∥∥ < t

}
.

Let ē denote the coset of identity in G/H . Then N(t,Γp) = cardinality of Γ ē ∩ Rt

in G/H .
Motivated by the approach of Duke, Rudnick and Sarnak [73], the following result was

proved by Eskin, Mozes and Shah [78].

THEOREM 5.4.1. In the counting problem, suppose further that
(1) H is not contained in any proper Q-parabolic subgroup of G; and
(2) any proper Q-subgroup L of G containing H and any compact set C ⊂ G satisfy

the following ‘nonfocusing’ condition:

lim sup
t→∞

λ(CL ∩ Rt )/λ(Rt ) = 0, (5.16)

here λ denotes a G-invariant measure on G/H .
Then

lim
t→∞

N(t,Γp)/λ(Rt ) = 1, (5.17)

where λ is determined by the normalizations of Haar measures on G and H such that
vol(G/Γ ) = vol(H/H ∩ Γ ) = 1.

The following approach to the counting problem was noted in [73]. Let χt denote the
characteristic function of the ball of radius t in Rk . For g ∈ G, define

Ft (g) =
∑

γ̄∈Γ/H∩Γ

χt (gγp).

Then Ft is a function on G/Γ , and Ft (e) = N(t,Γp). Put F̂t (g) = Ft (g)/λ(Rt ). As in
[73], one shows that in order to prove that F̂t (e) → 1 as t → ∞ (which is equivalent to
(5.17)), it is enough to show that

F̂t → 1 weakly in L2(G/Γ ). (5.18)

Using Fubini’s theorem, one shows that for any ψ ∈ Cc(G/Γ ),

〈
F̂t ,ψ

〉
=

1

λ(Rt )

∫

Rt

ψH dλ, (5.19)

where

ψH (g) =

∫

H/H∩Γ

ψ(ghΓ )dµH

(
h̄
)
=

∫

G/Γ

ψ d(gµH ) (5.20)
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is a function on G/H (here µH denotes the H -invariant probability measure on HΓ /Γ ∼=
H/H ∩ Γ ).
Using Theorem 3.7.4, Theorem 3.7.5 and the definition of unfocused sequences, we get

the following: given any sequence tn → ∞ and an ε > 0, there exists an open setA⊂ G/H

such that

lim inf
n→∞

λ(A ∩ Rtn)

λ(Rtn)
> 1− ε; (5.21)

and given any sequence {ḡi} ⊂ A which is divergent in G/H , the sequence {giµH }

converges to µG, and hence ψH (ḡi) → 〈ψ,1〉. Thus by (5.19) and (5.20), one obtains
limt→∞〈F̂t ,ψ〉 = 〈1,ψ〉, which proves (5.18).
First we give a special case of Theorem 5.4.1.

COROLLARY 5.4.2. In the main counting problem, further suppose that H 0 is a maximal
Q-subgroup ofG and admits no nontrivialQ-characters. Then the conclusion (5.17) holds.

In [78], Theorem 5.4.1 was applied to prove the following:
Let P be a monic Q-irreducible polynomial of degree n ! 2 with integral coefficients.

Let

VP =
{
X ∈ Mn(R): det(λI − X) = P(λ)

}
.

Since P has n distinct roots, VP is the set of real n × n-matrices X such that roots of P

are the eigenvalues of X. Let VP (Z) denote the set of matrices in VP with integral entries.
Let Bt denote the ball inMn(R) centered at 0 and of radius t with respect to the Euclidean
norm: ‖(xij )‖ = (

∑
i,j x2ij )

1/2. We are interested in estimating, for large T , the number of
integer matrices in Bt with characteristic polynomial P .

THEOREM 5.4.3. There exists a constant CP > 0 such that

lim
t→∞

#(VP (Z) ∩ Bt )

tn(n−1)/2 = CP .

THEOREM 5.4.4. Let α be a root of P and K = Q(α). Suppose that Z[α] is the integral
closure of Z in K . Then

CP =
2r1(2π)r2hR

w
√

D
·

πm/2/Γ (1+ (m/2))∏n
s=2π−s/2Γ (s/2)ζ(s)

,

where h = ideal class number of K , R = regulator ofK , w = order of the group of roots of
unity in K , D = discriminant of K , r1 (resp. r2) = number of real (resp. complex) places
of K , m = n(n − 1)/2, and Γ denotes the usual Γ -function.

REMARK 5.4.5. The hypothesis of Theorem 5.4.4 is satisfied if α is a root of the unity
(see [119, Theorem 1.61]).
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In the general case, the formula for CP is a little more involved.

THEOREM 5.4.6. Let the notation be as in Theorem 5.4.3. Then

CP =
∑

O⊃Z[α]

2r1(2π)r2hORO

wO

√
D

·
πm/2/Γ (1+ (m/2))∏n
s=2 π−s/2Γ (s/2)ζ(s)

,

where O denotes an order in Z[α], hO the class number of the order, RO the regulator of
the order, and wO the order of the group of roots of unity contained in O.

We note that the orders in K containing Z[α] are precisely the subrings of K which
contain Z[α] and are contained in the integral closure of Z in K . The reader is referred to
[119, Chapter 1, Section 1] for further details about orders in algebraic number fields.
Note also that in [205], Theorems 5.4.3, 5.4.4 and 5.4.6 are obtained as direct

consequences of a slightly modified version of Theorem 3.6.3.

4b. Counting lattice points in polyhedra. Here we discuss the version of the ‘circle
problem’ where P is a compact polyhedron in Rk . It is easy to show that the estimate
R(tP,Λ) =O(tk−1), t → ∞, is valid for any polyhedron P and any lattice Λ. Moreover,
it is best possible if Λ = Zk and P is a parallelepiped with edges parallel to the
coordinate axes. However, the error term may be logarithmically small (and, presumably,
logarithmically small errors may appear only for polyhedra).
First results for k = 2 with the help of continued fractions were obtained in the 20-s by

Hardy and Littlewood [93] and Khintchine [111].

THEOREM 5.4.7. Suppose that a polygon P ⊂ R2 with m sides is such that the ith side is
parallel to a vector (1, ai), i = 1, . . . ,m. If all the numbers ai, 1 " i " m, are badly
approximable, then R(tP,Z2) = O(ln t). If all the numbers are algebraic irrationals,
then R(tP,Z2) = O(tε) with arbitrarily small ε > 0. Finally, for almost all collections
(a1, . . . , am), R(tP,Z2) =O((ln t)1+ε) with arbitrarily small ε > 0.

Note that the first assertion was implicitly contained in [93]. The second one was proved
by Skriganov in [215] with the help of Roth’s theorem, and the third one in [111] and [214].
Subsequently Skriganov [214] generalized the result of Hardy and Littlewood to higher

dimensions as follows. For Λ ∈ Ωk let

Nm(Λ) = inf
{∣∣Nm(x)

∣∣, x ∈ Λ − {0}
}

be the homogeneous minimum with respect to the norm form

Nm(x) =

k∏

i=1

xi, x ∈ Rk.

The lattice Λ is said to be admissible if Nm(Λ) > 0.
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THEOREM 5.4.8. Let Π be a parallelepiped with sides parallel to coordinate axes, and
let Λ be an admissible unimodular lattice in Rk . Then R(tΠ,Λ) =O((ln t)k−1).

Notice that the exponent k − 1 here is, apparently, the best possible. Apart from
parallelepipeds, no other examples in higher dimensions are known with such an
asymptotics of the error term.
Recently Skriganov [216] obtained remarkable results about ‘typical’ error for a given

polyhedron P ⊂ Rk .

THEOREM 5.4.9. Let P be a compact polyhedron. Then for almost all unimodular lattices
Λ ⊂ Rk , R(tP,Λ) =O((ln t)k−1+ε) with arbitrarily small ε > 0.

The result was obtained via studying the dynamics of Cartan subgroup action on the
space Ωk . In short, the idea is as follows. To each flag

f =
{
P = P k

f ⊃ P k−1
f ⊃ · · · ⊃ P 0

f , dimP
j
f = j

}

of faces of P one associates an orthogonal matrix gf ∈ SO(k) whose j -th row represents

the unit vector parallel to P
k−j+1
f and orthogonal to P

k−j
f . Given a lattice Λ ∈ Ωk , let

Λ⊥ be the dual lattice determined by the relation (Λ,Λ⊥) ⊂ Z. One considers the orbits
Dgf Λ⊥ ⊂ Ωk , where D ⊂ SL(k,R) is the Cartan subgroup of all diagonal matrices.
Notice that D keeps Nm(Λ) invariant. It turns out that the rate of approach of these orbits
to infinity (= the cusp ofΩk) determines the behavior of the corresponding error R(tP,Λ)

as t → ∞.
The connection requires rather refined Fourier analysis on Rk; see [216] for the details.

It turns out that the asymptotics of R(tP,Λ) depends on the behavior of the ergodic sums
S(gf Λ⊥, r). Here

S(Λ, r) =
∑

d∈∆r

δ(dΛ)−k,

where

∆ =
{
diag

(
2m1, . . . ,2mk

)
, mi ∈ Z, m1 + · · · + mk = 0

}

is a discrete lattice in D,

∆r =
{
diag

(
2m1, . . . ,2mk

)
, |mi | " r, m1 + · · · + mk = 0

}

is a ‘ball’ in ∆, and δ(·) is as defined in (1.2). Note that ∆ 0 Zk−1 and card(∆r ) ∼ rk−1.
Clearly, δ(Λ) ! (Nm(Λ))1/k and hence S(Λ, r) =O(rk−1) for any admissible latticeΛ.

Also, by Mahler’s criterion, if Λ is admissible then the orbitDΛ ⊂ Ωk is bounded. If Π is
a parallelepiped with edges parallel to coordinate axes then the matrices gf form the group
of permutations and reorientations of coordinate axes. Hence S(gf Λ⊥, r) = S(Λ⊥, r). If



hass v.2002/01/24 Prn:31/01/2002; 15:11 F:HASS11.tex; VTEX/ELE p. 109

Dynamics of subgroup actions 109

Λ is admissible then so isΛ⊥ and hence S(gf Λ⊥, r) =O(rk−1) for any flag of faces ofΠ .
This leads to the bound R(tΠ,Λ) = O((ln t)k−1) and proves Theorem 5.4.8.
Notice that the set of admissible lattices is a null set inΩk because the action of∆ onΩk

is ergodic and hence almost all ∆-orbits are everywhere dense in Ωk . Typical asymptotics
for S(Λ, r) can be obtained using the Pointwise Ergodic Theorem applied to the action
of ∆. Unfortunately, the function δ(Λ)−k is not integrable overΩk . However, the function
δ(Λ)ε−k with arbitrary ε > 0 is already integrable and one easily derives that for almost all
Λ ∈ Ωk , we have S(Λ, r) =O(rk−1+ε) with arbitrarily small ε > 0. One treats this saying
that for a typicalΛ, the ‘balls’∆rΛ approach infinity very slowly. This leads to the typical
asymptotics S(tP,Λ) =O((ln t)k−1+ε).
The main result of [216] was sharpened by Skriganov and Starkov [217] as follows:

THEOREM 5.4.10. Given a compact polyhedron P and a lattice Λ ∈ Ωk , for almost
all orthogonal rotations g ∈ SO(k) one has the bound R(tP,gΛ) = O((ln t)k−1+ε) with
arbitrarily small ε > 0.

This result is derived from Theorem 5.4.9 using the symmetries generated by the Weyl
group.
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[246] M. Urbański, The Hausdorff dimension of the set of points with nondense orbit under a hyperbolic

dynamical system, Nonlinearity 4 (2) (1991), 385–397.
[247] W.A. Veech, Unique ergodicity of horospherical flows, Amer. J. Math. 99 (4) (1977), 827–859.
[248] M.-F. Vignéras, Quelques remarques sur la conjecture λ1 ! 1/4, Seminar on Number Theory, Paris 1981–

82 (Paris, 1981/1982), Birkhäuser, Boston, MA (1983), 321–343.
[249] E.B. Vinberg, V.V. Gorbatsevich and O.V. Shvartsman, Discrete subgroups of Lie groups, Lie Groups and

Lie Algebras, II, Springer, Berlin (2000), 1–123, 217–223.
[250] R.È. Vinograd, On a problem of N. P. Erugin, Differencialńye Uravnenija 11 (4) (1975), 632–638, 763.
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