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Dynamics of tapping mode atomic force microscopy in liquids:
Theory and experiments
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A mathematical model is presented to predict the oscillating dynamics of atomic force microscope
cantilevers with nanoscale tips tapping on elastic samples in liquid environments. Theoretical
simulations and experiments performed in liquids using low stiffness probes on hard and soft
samples reveal that, unlike in air, the second flexural mode of the probe is momentarily excited near
times of tip-sample contact. The model also predicts closely the tip amplitude and phase of the tip
at different set points. © 2007 American Institute of Physics. �DOI: 10.1063/1.2760175�

The atomic force microscope �AFM� has become an in-
dispensable tool in biology because it permits the imaging
and probing of nanomechanical properties of biological
samples such as biopolymers1,2 and viruses3 under physi-
ological �liquid environments� conditions. Although the dy-
namics of the oscillating tip in tapping mode AFM under
ambient or ultrahigh vacuum conditions are relatively well
understood,4 very little is known about the tip dynamics in
liquid environments.2,5–9 Here, we present a theoretical
model to predict AFM tip dynamics in liquid environments
tapping on elastic samples and compare the predictions with
experimental results.

We begin by presenting a first-principles mathematical
model of the dynamics of the AFM microcantilever vibrating
in a viscous, polar fluid and tapping on an elastic surface.
The theory is initially developed for uniform, rectangular
levers and later extended to levers of arbitrary geometry. The
oscillations of the rectangular, uniform cantilever about its
equilibrium position then are governed by the following par-
tial differential equation:

EIw,xxxx + �cw,tt = fh + fd�t� + f ts�Zc − w�L,t�� , �1�

where Zc, w�x , t�, fh, fd, and f ts are, respectively, the distance
of the tip from the surface in the absence of any interaction
forces, transverse deflection of the lever, the hydrodynamic
forces per unit length due to the surrounding liquid, the driv-
ing force, and the tip-sample interaction force. L is the
length, EI is the flexural rigidity, and �c is the mass per unit
length of the lever.

The tip-sample interaction forces �f ts� are modeled using
the Derjaguin-Landau-Verwey-Overbeek �DLVO� theory10

before contact and by the Derjaguin-Muller-Toporov �DMT�
contact mechanics10 after contact. For the case of a spherical
tip and a flat elastic surface this becomes

f ts�d� = FDLVO�d� =
4�Rt

��0KD
�T�Se−KDd −

ARt

6d2 , d � a0, �2�

f ts�d� = FDMT�d� =
4E��Rt

3
�a0 − d�3/2 + FDLVO�a0�, d � a0,

�3�

where E�, A, Rt, d, 1 /KD, �0, �, �T, �S, and a0 are, respec-
tively, effective Young’s modulus of the tip and the sample
material,7 the Hamaker constant between the tip and the
sample material, the tip radius, the instantaneous tip-sample
separation, the Debye length, the permittivity of free space,
the dielectric constant of the medium, the surface charge
density of the tip and sample, and the intermolecular
distance.11 Neglect of the double layer contribution to the
adhesion force leads to a nonphysical force discontinuity at
d=a0.7 Our model includes this contribution and leads to a
physically reasonable, continuous interaction model in liq-
uids as supported by prior experimental studies.12

Here we focus on a common implementation where the
lever is uniformly coated with a magnetic material1 and ex-
cited by an oscillating magnetic field. Accordingly, the mag-
netic force per unit length is constant over the lever and
harmonic in time fd�t�=Fdej�dt, where Fd is the magnetic
force per unit length and �d is the drive frequency.

The hydrodynamic forces fh influence primarily the Q
factors and wet resonance frequencies �resonance frequen-
cies in liquid� of different modes of the lever and can be
determined using either fully three-dimensional
simulations,13 or semianalytical hydrodynamic functions
close to a sample surface.14 Alternatively, the Q factors and
wet resonance frequencies of each mode close to a surface
can be measured experimentally from the thermal spectrum
of the cantilever close to the sample surface.

We assume that the cantilever is driven near the reso-
nance frequency of the lowest frequency flexural mode of the
cantilever. However, we allow the response to include con-
tributions from the second flexural mode. Accordingly we
assume the steady state forced response to be w�x , t�

a�Electronic mail: raman@ecn.purdue.edu

TABLE I. List of levers and substrate materials studied. All samples were
investigated with each cantilever. R1, R2, and R3 are rectangular levers and
T1 and T2 are triangular levers. L=length, W=width, k=nominal spring
constant, and Y =Young’s modulus.

Lever
Dimensions

L��m�	W��m�
k

�N/m� Substrates
Y

�GPa�

R1 250	35 0.2 Polyester 2.8–3.1
R2 300	35 0.15 PVC 2.9–3.4
R3 350	35 0.1 Mica 60
T1 140	18 0.1 Polycarbonate 2–2.4
T2 220	22 0.03 LDPE 0.17–0.28
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=
1�x�q1�t�+
2�x�q2�t�, where 
1�x� and 
2�x� are the
eigenfunctions of flexural modes 1 and 2 of a cantilever
scaled such that 
1�L�=1 and 
2�L�=1. Furthermore q1�t�
and q2�t� are the contributions to tip displacement from the
two flexural modes, respectively. The absolute tip motion is
q�t�=q1�t�+q2�t�; however, the raw photodiode output is
proportional to the slope at the free end of the lever
q1�t�d
1�L� /dx+q2�d
2�L� /dx�. The conventional calibra-
tion of the photodiode output approximately accounts for the
slope of mode 1 only. Thus the conventionally calibrated
photodiode output is q1�t�+ �d
2�L� /dx /d
1�L� /dx�q2�t�
which equals q1�t�+3.47q2�t� for rectangular levers and

q1�t�+2.69q2�t� for triangular levers �using finite element
based modal analysis of typical triangular levers�.

Substitution of the hydrodynamic forces by the Q factors
and the wet frequencies13,14 for each mode, inserting
w�x , t�=
1�x�q1�t�+
2�x�q2�t� into Eq. �1�, and using the
orthogonality relation �0

L
1�x�
2�x�dx=0, we arrive at the
following two-degrees-of-freedom tip dynamics model:

q1,tt

�1
2 +

1

�1Q1
q1,t

+ q1 =
F1ej�dt

k1
+

f ts�Zc − q1 − q2�
k1

, �4a�

q2,tt

�2
2 +

1

�2Q2
q2,t

+ q2 =
F2ej�dt

k2
+

f ts�Zc − q1 − q2�
k2

, �4b�

where F1=Fd�0
L
1�x�dx=0.39LFd and F2=Fd�0

L
2�x�dx=
−0.22LFd are the effective driving forces on modes 1 and 2,
respectively. Furthermore, as discussed earlier Q1, Q2, �1,
and �2 are the Q factors and the wet frequencies of modes 1
and 2 near the sample surface. The effective stiffnesses of the
two modes are given by k1=EI�1.875/L�4�0

L
1
2�x�dx and k2

=EI�4.694/L�4�0
L
2

2�x�dx.15 However, due to inevitable im-
perfections, these stiffness formulas are approximate, and it
is preferable to calculate the effective stiffnesses from ex-
periments using the method of Sader et al.16 Note that by
setting q2�t�=0 and retaining only Eq. �4a� we recover the
classical point-mass model commonly used to model dy-
namic AFM.2,5–7 Thus we will compare the theoretically pre-
dicted time series for q1�t�+ �d
2�L� /dx /d
1�L�dx�q2�t�
with the experimental results which are calibrated conven-
tionally.

Equations �4a� and �4b� have been derived for a uniform
rectangular lever. However, they can also be applied to
simulate17 the response of an arbitrarily shaped lever tapping
on an elastic sample, in a polar, viscous fluid as long as
k1, k2, Q1, Q2, �1, and �2 near the sample surface can be
determined.

Extensive experiments are performed to measure the tap-
ping tip dynamics in de-ionized water on hard and soft
samples and using different types of magnetically excited
levers �Table I�. The repeatability is excellent. All the experi-
ments are performed on an Agilent 5500 AFM system. The
tip displacement data are acquired at a 5 MHz sampling rate
using a NI5911 data acquisition board with 16 bit resolution.
In this letter we focus on representative experimental results
acquired using rectangular lever, R1 and triangular lever, T2
on both mica and soft low density polyethylene �LDPE�
samples �Table I�. The experimental procedure is as follows:
Q1, Q2, �1, and �2 are measured experimentally at a distance
of �15–20 nm from the sample surface. k1 and k2 are deter-
mined from thermal spectra in air using the method of Sader
et al.16 Following this, each probe is magnetically excited at
amplitudes of 10–20 nm at a drive frequency corresponding
to the maximum resonance amplitude. Next, the tip displace-
ment data are acquired while �i� the tip slowly, continuously
approaches the sample, and �ii� the cantilever is held at dif-
ferent positions from the sample; each position leads to a
different amplitude reduction or set point amplitude ratio.

We begin by describing a previously unrecognized phe-
nomenon that is observed under all amplitude set points
tested and in all cantilever-sample combinations listed in
Table I. In Figs. 1�a�–1�d� we present measured tip oscilla-
tion wave forms on hard and soft samples that show a dis-

FIG. 1. Tip motion observed in water on mica and LDPE samples for lever
R1 �Table I� ��a� and �b��, and for lever T2 �Table I� ��c� and �d��. For R1,
�d /2�=8 kHz and the amplitude at 100% set point is �12 nm. For T2,
�d /2�=2.5 kHz and the amplitude at 100% set point is �12 nm. The wave
forms for both levers are acquired from 100% to 30% set point at 10%
decrements. Each division on the ordinate axis corresponds to 20 nm.

FIG. 2. �Color online� Comparison of experimentally measured and theo-
retically predicted tip dynamics as lever R1 �Table I� dynamically ap-
proaches mica in de-ionized water. The simulation results are obtained by
solving Eqs. �4a� and �4b� with zero initial conditions and using interaction
and cantilever parameters from Ref. 11. �a� Experimentally measured tip
oscillation data, and predictions from �b� the point-mass model, and �c� the
two-mode model on mica. Comparison of the point-mass model and the
two-mode model with the experimental �d� amplitude-distance and �e�
phase-distance plots on mica in water.
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tinct distortion in the form of decaying ripples of an other-
wise harmonic wave near the instants of tip-sample contact.
Interestingly, the time period of the localized ripples to that
of the driving time period, Td, approximately equals �d /�2
for all the levers, samples, and set points tested. Moreover,
the number of ripples is directly correlated to the Q factor of
mode 2 near the sample surface. For instance, the number of
ripples for lever R1 �Q2=6.5� is greater than that for lever T2
�Q2=2.6�. Therefore, the experiments suggest that mode 2 of
the cantilever is locally excited near time instants when the
tip impacts the sample.

Next we compare the predictions of the two-mode model
and the widely used point-mass model2,5–7 with the experi-
mental results. We focus on the dynamics of levers R1 and
T2 on mica for which all the parameters for the numerical
simulations are easily determined.11 The comparisons with
data acquired with lever R1 on mica are presented in Figs. 2,
3�a�, and 3�b�. Clearly the tip-oscillation envelopes, the am-
plitude, and phase are well predicted by both the point-mass
and the two-mode models; the two-mode model predictions
are slightly better than those of the point-mass model. How-
ever, the tip oscillation wave forms are correctly predicted
only by the two-mode model �Fig. 3�b��. Remarkably, for all
set points studied, the two-mode model captures consistently
the number and time period of the transient ripples of the
second mode near times of tip-sample impact for both levers
R1 and T2 �Fig. 3�d��.

The excellent agreement of the two mode model predic-
tions with the experimental tip oscillation wave form �com-
pare Fig. 3�b� with Fig. 1�a� and Fig. 3�d� with Fig. 1�c��
confirms that the tip-sample interaction excites momentarily
the second bending mode of the cantilever regardless of the
cantilever or sample used. There are two fundamental rea-
sons for this result. First, in liquids the wet frequency f1 is
typically very small ��20 kHz�; this means that the higher
harmonics in the tapping tip wave form will be spaced nar-
rowly ��20 kHz� apart. Secondly, mode 2 in liquids has a

low Q factor so its response bandwidth is wide. As a conse-
quence of both facts, several higher harmonics of the drive
frequency will be amplified through nonlinear interactions
with the second mode.

The fact that the second vibration mode contributes to
the tip dynamics in liquids is an exciting result because stud-
ies have suggested that a single mode description is, in most
cases, adequate for predicting the tip dynamics in ambient
conditions.18,19 The second mode may significantly influence
the tip-sample �imaging� forces and nanomechanical prop-
erty measurements for applications in liquids and this is a
topic of current investigation.

In conclusion we have developed a first-principles model
to predict tapping tip dynamics of soft AFM cantilevers on
soft and hard elastic samples in liquids. The model uses a
physically reasonable tip-sample interaction model, and in-
cludes two flexural modes of the cantilever. The proposed
model not only correctly predicts this time localized transient
behavior but also predicts closely the tip amplitude and
phase during approach towards the sample.

The authors acknowledge financial support for this re-
search from the National Science Foundation under Grant
No. CMMI 0409660 and from the Sandia National Labora-
tories under Contract No. 623235.
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