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A model is developed for the collision between the baseball and bat, taking into account the
transverse bending vibrations of the bat. By coupling the flexible bat to the ball via a parametrized
force that each mutually exerts on the other, a complete description of the collision process is
obtained, including the exit speed of the hall. It is shown that vibrations play an important role

in determiningv;. The model is in excellent agreement with experimental data at low impact
velocities. At the higher velocities more appropriate to the game of basepalshown to coincide

with the rigid-body value only over a very small region in the barrel of the bat and to drop off
sharply for impacts removed from that region. Some interesting insights into the collision process
are obtained, including the observation that for impacts in the barrel of the bat, the momentum
transferred to the ball is essentially complete by the time the elastic wave first arrives at the handle
and that any clamping action of the hands will affect the bat at the impact point only after the ball
and bat have separated. This suggests #hadt independent of the size, shape, and method of
support of the bat at distances far from the impact location.20@ American Association of Physics
Teachers.

[. INTRODUCTION shown that under typical conditionsy is maximized and
equal to its rigid-body value when the impact is in the barrel
The game of baseball has a certain fascination for physief the bat near a node of the fundamental mode. Unfortu-
cists. In addition to the popular book by Adaithere have nately, for reasons we will discuss fully herein, his calcula-
been numerous papers in the literafuagldressing a wide tion of v; was flawed, resulting in a qualitatively incorrect
variety of issues amenable to a physics calculation. Thesgicture of howv; falls off as the impact point moves away
include such diverse topics as the aerodynamics of @ spiffrom the node. One of the purposes of the present calcula-
ning baseball; the peculiar behavior of the knuckleball; th&jons is to apply a different model for the ball-bat coupling
coefficient of restitution of a baseball and its effect on they 4t 1eads to very different results for .
bounce of the ball off the bat; and the dynamics of the ball— 1o 5acond paper was that of Cr8ssho both performed
bat collision. It is this latter topic that is the subject of the oy e riments and did theoretical calculations of the collision

pr%sentt[k)]aper. in this h dd db f superballs with a variety of uniform aluminum beams.
Ver the years, papers In this journal have addressed DO ;a pis calculations do not directly address the baseball—

experimental andi .theoret|ca| ISSUEs gssomated with thBat collision, the calculational technique and the essential
baseball-bat collision. Notable experimental papers arg

; S esults are relevant. Particularly noteworthy is his use of a
those of Brody and Cros$. Brody studied the vibrational dynamic model for the coupling of the ball to the beam

zﬁzc;wowvgé a:tat?gggtdbgﬁ;\?gs”g% Zr}?esfé% dthcoenctc;:gs;c;]n pich corrects the shortcomings of the Van Zandt treatment.
y he resulting calculations of; are in remarkably good

time scale of the collision. Cross did an extensive study of

the vibrational spectrum of free and hand-held bats and corfdreement with Cross’s own data, indicating that the essen-
cluded that there exists a zone of impact locations on th&@! physics of the problem has been identified. Perhaps the

barrel end of the bat where the impact forces on the hand®0st interesting result to emerge from those studies is that
due to recoil and vibration are minimized. Early theoreticalWhen the superball collides with an initially stationary beam,
treatments concentrated mainly on the rigid-body aspects dfr iS essentially independent of the length of the beam or the
the collision®® but in more recent years two important the- manner in which the ends of the beam are supported, as long
oretical papers have appeared that go beyond the rigid a@s the impact location is not too close to an end. In effect, on
proximation by treating the bat as a dynamic, flexible objectthe relatively short time scale of the collision, the ball does
The first paper was that of Van Zanfdapplying the stan-  not “see” the full beam but only a segment of it that is in the
dard theory of beams, suitably modified for a nonuniformvicinity of the impact point. To the extent that this result is
bat, he solved the eigenvalue problem to find the normalelevant to the ball-bat collision, it provides a concise theo-
modes for transverse bending vibrations in the bat. By couretical explanation of the “free-bat” observation of Broay.
pling the ball to the bat and decomposing the motion of theCross gives a nice interpretation of this result in the context
bat into normal modes, he solved the collision problem tak-of the interplay between collision times and pulse propaga-
ing full account of the vibrations excited in the bat and theirtion times. We give an alternatbut completely equivalejt
consequent effect on the flight of the ball. In the process, hexplanation by means of a highly simplified toy mod&p-
elucidated many interesting features of the collision, such apendix A and show how this simple picture is relevant to the
the time evolution of the motion of the bat. From the point of ball-bat collision in Sec. IIl.
view of the game of baseball, the most important outcome of The present paper is organized as follows. In Sec. Il we
Van Zandt's work was the calculation of the ball exit speed,develop a theoretical model for the ball-bat collision that is
v¢, as a function of impact position along the bat. It wasa hybridization of the Van Zandt and Cross techniques, uti-
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wherep, A;, andl; are the density, cross-sectional area, and
area moment of inertia of slice (about an axis passing
through the center of mass of the slice and normal to/the
plane, respectively, an®;= ¢;Az. All the bats we consider
herein have a circular cross section. For solid lgstish as a
typical wood bal, a slice of radiusR, hasAi=7rRi2 and|;

Fig. 1. Schemati¢greatly exaggeratedepresentation of a bat that is bent :_WR?M‘ FOI’ hOIIOV\_I batgsuch as a typlcal _alummum baa

and sheared. The coordinatgis the displacement of thieh section of the slice of inner radiusR;; and outer radiusR,; has A

bat r_elative to the a_xis, whereas; is the angle between the plane of ilie = W(Rg,i - R|21) and| = 'n'( Rg,i — R‘l"i)/4_ We assume thai,

section and thy axis. Y, and S are uniform(i.e., independent of), although the

formalism could easily be extended to include such nonuni-

formities. We note that the treatment given here is equivalent

to that presented in various textbook®r example, see

Graff'%, and we show the connection in Appendix B.

N we complete the statement of the problem by specifying

the boundary conditions. We assume that both ends of the

bat are completely freémeaning that the force and torque
n the end slices are due only to the next inner slices. We
ill show that this is a very good assumption for many pur-

lizing what we believe to be the best features of both works
Our treatment of the normal modes is identical to that of Va
Zandt (Sec. Il A), whereas our model for the ball and its
coupling to the bat is conceptually similar to that of Cross
(Secs. I B and Il §. The issue of energy conservation and a
discussion of the ball exit speed are addressed in Secs. I

and Il E, respectively. In Sec. Il we apply our model 10 a <o “inciuding the calculation of the rebound velocity of
typical wooden bat, comparing our calculations with realthe baseball

datd° and presenting results of practical interest to the game In order to find the normal modes of the bat implied by

of baseball. We conclude with a brief summary. We relegate,, . o ations of motion, we assume harmonic vibrations, so
to Appendix B some details of the relationship between our

treatment of the normal modes and that given in the textthatyi= — w?y; andd;= — »?®;. Then Eqs(1) and(2) can

For this part of the calculation, we follow nearly exactly
the work of Van Zandf. We start with Fig. 1, where we
show schematically a baseball bat that has been distorted DN

from its equilibrium shape due to bending and shearing. Theés 5 oN-element column matrix andl is a nonsymmetric

dls.torgog O.f a particular s(vja_grr}ent of the batdcan be C.haraCZNXZN matrix. One immediately recognizes this as an ei-
terized by its transverse displaceme) and orientation  gonyaiye problem, requiring the diagonalizationHbin or-

¢(2) as a function of its coordinatealong the long axis of ey {4 find the normal mode frequencies and associated

the bat. We divide the bat inthl parallel slices of circular eigenvectorsy, . Standard numerical techniques are used to

cross secti_on, gach of thicknegsz and each elastically accomplish this, using theapAck subroutine packagé,al-
coupled to its neighbors through the Young’s modwiend  yh4,gh some care is needed in applying these to a nonsym-
the shear moduluS. Van Zandt shows in detail how t0 de- meiric matrix. We remark that the lowest two modes are

rive thel fequations of mlc*;tior_l of a?d ‘é’ for _fLee (i.e.,'fno zero-frequency rigid body modes corresponding to uniform
external force or torquevi rations of a bat with nonuniform translation(y,; independent of, ®,;=0) and uniform rota-
cross sectiod.We have rederived and corrected slightly his . . o :

tion (y,; linear ini, ®,; independent of).

equations, arriving at .
g 9 In the presence of a time-dependent external force on the

books. be rewritten in a compact matrix notation as
H‘ﬁn:_wﬁ‘ﬂn: Q)
where
Il. MODEL FOR THE COLLISION
Yn1
A. Vibrations of the bat | YN
Yn= d
nl

. S i—A_1 ith slice, an additional ternf;(t)/(pA;Az) appears on the
yi:_pAzz (YiertYi-1—2y)+ A right-hand-side of Eq(1). Since the normal modes of the
' free vibration form a complete set, we write the solution as
an expansion
X(Yi=Yi-1t @i g) + (P =P y) (o

Yi(t):; an(Hyni,

and
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Using the orthogonality of the eigenstates,
_ 20F
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which definesA, we project out thenth mode to arrive at
o A L -k s L 'l 1
) 2 1 0 2 4 6 10 12 14 16
an(t) + 05an(t) = _;Ei Fi(t)Ymi- 5 u (mm)
P

o o . Fig. 2. A model dynamic hysteresis curve for a typical baseball, whése
In the ball-bat collision, the driving forck;(t) is the force  the compression of the radius of the ball &his the force needed to achieve
that the ball and bat mutually exert on each other. We nexthat compression. The curve shown is that appropriate for an impact of a

turn to a discussion of the ball and a model for the force. 58-m/s(130-mph ball with a rigid surface, with the coefficient of restitution
e,=0.53. The curve for the compression phase is describeH by u,

with k=6.53x 10’ and «=1.84.

B. Model for the ball
o _ where generally3= «. Since the fractional energy loss is 1
The baseball-bat collision is violent and involves large—e2 Eqs.(7) and(8) lead to
forces which act over a very short time and which compress
the ball to a fraction of its normal size. It should be no _1ta
surprise that such a collision is highly inelastic, with a sig- - eé
nificant fraction of the initial ball-bat energy dissipated into ) ) o
heat. The phenomenological embodiment of this inelasticityl he parametek; is determined from the remaining param-
is the coefficient of restitution, which we denote by the sym-eters by equating the two expressions for the force at the
bol e,. It is defined as the ratio of relative speeds after toP0iINt of maximum compression. Our model therefore has
before the collision of the ball with a perfectly rigid object: three parameters: the compression constanthe compres-
sion exponenty, ande,. The parametek; essentially sets
coefficient of restitution: e,= Urel f _ (6) the overall time scale for the collision, whereasletermines
Urelb the variation of the collision time with initial impact speed.

With this definition, the fraction of the initial center of mass FOF @ linear spring ¢=1) with no losses, the collision time

energy that is dissipated equals- aa(2). For a baseballe, is is hglf of the oscillation period of the spring !ndependent of
approximately 0.5, so when dropped from heighonto a the Impact speed, w_herv_aas fat>1 the CO"'S'.On tlme.de-_ .
massive rigid body(e.g., a hard floor it will rebound to creases with increasing impact speed. Despite the simplicity
abouth/4. It is clear that with such a large loss of energy,

of our model, we anticipate that the essential results of our
it will not be possible to understand the baseball—batt

collision calculations are not critically dependent on the de-
collision without accounting for the dissipation of energy in

ails of the model, provided that the collision time agdare
the ball. about right. We will return to this point in Sec. IID. Since

Our approach is essentially that of Cré¢dwho models there are very few data at impact speeds relevant to the game

the ball as a nonlinear, lossy spring. For the collision of the?f baseball to guide us in the choice of these parameters, we

baseball with a stationary massive rigid body, the contacfhke intelligent g gOLIJesse_s based on tsta:jic hysttelresis
force between the ball and body compresses the ball’§'€3sSurementsand dynamic measurements done at fow

- - L - - speed'?13to arrive at the curve shown in Fig. 2, which is
spring, converting the kinetic energy into potential energy. : L .
At the point of maximum compression, the ball momentarily €SSentially that shown by Adalitwith the choice of param-

comes to rest. Then the spring expands, converting potentigf€rs Shown in the caption to Fig. 2, the collision time of our
pring exp gp odel baseball with a stationary massive rigid object, de-

energy back into kinetic energy. Because the spring is loss ) ) .
not all the initial kinetic energy is restored and the ball exits/ned @s the time for 99% of the impulse, is about 2.2 ms at
with a lower speed. This process can be understood with thk M/S: decreasing to 1 ms at 11 m/s, 0.7 ms at 45 m/s, and
help of the dynamic stress—strain hysteresis curve shown if:6 MS @t 67 m/sor roughly an 85-mph fastball on a 65-mph
Fig. 2, in which the path taken during the compression phas ab, as shown in Fig. 3. Note that .the collision time is not
is different from that taken during the expansion phase. Th&'€ Same as the ball-bat contact time. Due to the nature of
area bounded by the two curves is the energy dissipated € expansion phase of the hysteresis curve, the force falls to
zero while there is still considerable compression of the ball

B d (see Fig. 2 For example, at 67 m/s the contact time is ap-
Eios= ¢ F(u)du. (7 proximately 1.1 ms, whereas the collision time is 0.6 ms.

Defining u as the compression of the radius of the ball, we L

parametrize the hysterisis curve as C. The ball-bat collision
We are now in a position to formulate the collision prob-

lem. We assume that the ball impacts the bat orktheslice.

expansion: F(u) =k,u?, (8) The formalism could easily be generalized to allow for a

compression:F(u)=k;u¢,
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T (ms) equations of motion directly without expanding into normal
- modes, whereas we work in the complementary frequency
domain.

1.6 D. Energy conservation
One of the important features of our calculation is that
energy conservation is respected. That is, once the ball and
bat separate, the initial kinetic energy of the ball-plus-bat
system is shared among the final kinetic energy of the ball,
the energy contained in rigid-body modésanslation and
e S TS T~ rotation of the bat, vibrational energy of the bat, and energy
o 10 ,20 30 40 50 60 70 lost in the compression and expansion of the ball. This is a
impact speed (m/s) nontrivial feature, since it is precisely what distinguishes our
Fig. 3. Collision timer for the impact of a baseball with a stationary mas- calcullatlon from that of Van Zandt, as .We.WIH 'dISCUSS more
sive rigid object as a function of the impact speed. These times were cach—u”y in the following. For now, we W'”_ find it useful to
lated using the parametrization of the dynamic hysteresis curve given in thdevelop some formulas for the partitioning of the energy of
caption to Fig. 2. the bat among the normal modes. Following Goldsrhitine

energy contained in thieth vibrational mode is given by

12[

0.8}

0.4

force spread over several slices, as was done in Van Zandt's E,=3pA(a3(7)+ w2a3(7)), (13
treatment, but we have checked that the essential results gf, . o s the collision time'® We define the force profile
the calculation do not require that this be done. The force _£/7 whereT is the total impulse imparted to the ball in
that the ball and bat mutually exert on each other depends MNe collision <o that P P

the compression of the radius of the ball according to(Bg. '

We takeu to be the separation between the surface of the bat T

yi(t) and the center of the balf,u(t) but offset by the fo Ftdt=1.

natural radiugRy,,, so thatu=0 corresponds to no compres-

sion. As discussed in the preceding section, the functionahssuminga,(0)=a,(0)=0, the solution to Eq(10) can be
form of that force depends on whether the spring is comwritten
pressing <0) or expanding ¢>0). Putting all this to-

gether, the complete dynamics of the collision are contained 5 (7)= Yol fT}'(t)sinwn(r—t)dt,
in the equations pAw, 0
n
yi() =2 ay(t)yni, (9) from which we derive
n IZ
En=5—Run,
F(u(t 2Mpy
(1) + 02 (1) = (10 L
pA YnkMpall
) Ro=| =" =" g(@n), (14)
Mpa Yoar= — F(U(t)), (11) pA
u(t) =Rpar— (Ypai(t) —Yi(t)), 12 2

. o gleg)= f F(t)e'“n'dt
together with the normal modes, the force law, and the initial 0

conditions. For the latter, we take=0 to be the time when

Fhe Oball an?]_bﬁt _comehlntg) ﬁontzcthfor _th_z Ersc'; tmezo, feter that is proportional to the energy transferred torttre
U<0), at which time the ball and the rigid-body modes of |\, a1 mode as a result of the collision. As we will see in

the bat each have initial velocities which must be specified, following, it plays an important role in determining the

Ugiﬂgra%p'iﬁﬁliaﬁonnﬂgﬁzs’ i:1h§ bi!itingirggzrﬁge Slmrégctthe exit velocityv¢. On the other hand, the rms vibrational am-
b y 9 bp i plitude, velocity, and acceleration of ttmth mode are pro-

bat is assumed not to be vibrating prior to the collision, we™ ™ :

seta,(0)=4,(0)=0 for the true vibrational modes. Stan- Portional toVRy/w,, VR, andw, R, respectively. There-

dard fourth-order Runge—Kufthis used to integrate the fore the vibrational amplitude and acceleration tend to
demphasize more strongly the low and high frequencies, re-

coupled differential equations numerically, using a time gri el lati he eff h ¢ ies h
adjusted to give stable results. For a typical collision lasting?Pectively, relative to the eflect these frequencies have on

less than 1 ms, a mesh ofi is more than adequate. When U1 - In general, one can interprgf, as the ratio of ball mass
the ball and bat separate=0, u>0), the force goes to zero, © an effectivebat mass. It de_pends in part on th_e squared
the bat vibrates freely, and the ball exits with constant veloc@mplitude of the mode at the impact poiny(). For impact
ity vy. near an antinode, the term in brackets in 84) is a number
The technique used here is equivalent to the one used Bf ordermy, /M, whereM is the mass of the bat, whereas it
Cross in his study of the collision of superballs with uniform vanishes for impact at a node,, also depends on the ratio of
aluminum beam$s.0Our implementations are different, how- collision time to vibrational period ¢,7) through the re-
ever, since Cross works in the time domain by solving thesponse functiorg. Sinceg is the Fourier transform aof, it

These equations defi®,, which is a dimensionless param-
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recoil of the center of mass of the bat and the rigid rotation
of the bat about its center of mass. The calculatiofR éor
these modes is straightforward, resulting in

3 2
_ Mpay Zx—Zcm

_: RO_ M ( ry ) ’ (15)

: wherez, is the location of thekth slice (the impact point

gndry is the radius of gyrationlgy= Mri). We easily ar-

3 rive at

inid . |e~ R e+1

08 rigid approximation: v;= 1+—R0 Upant 1+—F\’o Upat-

(16)

This result is expected to be valid whenever the energy con-
tained in vibrations is small, such as when the impact point is
close to one or more nodes of the lowest-frequency modes.
This formula conserves momentum and angular momentum
and satisfies Eq(6); moreover the fractional energy dissi-
pated in the ballin the frame in which the bat is initially at
rest at the impact poipts (1— eé)/(lﬂL Ro), which is con-
sistent with the definition of coefficient of restitution.

We attempt to generalize this result for the case in which
vibrations are included. We start with the simple case in
which there are vibrations in the bat but no dissipation in the
ot ball (i.e., e5=1). Under such conditions, one can rigorously

show that the correct formula for the exit speed of the ball is
Fig. 4. (a) Force profile A/(t) for a 70-m/s impact speed baseball on a %iven b)}S
standard wood bat, as determined from our calculations and the dynami
hysteresis curve shown in Fig. @) the curveg(w) defined by Eq(14) is
calculated with7(t). e=1: vs=

g(et)
0.4

1-3,R, 2
1+3,R, 1+3,R,

where the sum is over all the normal modegid and vibra-
has the property thaj—1 for w,7<1 andg—0 for w,7  tional. One can easily show that this result strictly conserves
> 1. Therefore normal modes with,>1/7 will not be ex-  energy and that the relative velocity between the ball and
cited in the collision, in agreement with both our intuition gid modes of the bat is identical before and after the colli-
and the toy model described in Appendix A. As an examplesion. Interpretingz, R, as the ratio of ball mass to effective
we have solved our equations of motion for a standard woo#yat mass, we see that the effect of vibrations isléarease
bat (discussed in the following using the hysteresis curve in the effective bat masén general, =, R,=R,), which re-
Fig. 2 to find a typical force profile= [Fig. 4@)]. For alarge  duces the exit speed of the ball. Said differently, on the time
range of impact speedd—70 m/g, we find the response scale of the collision, the bat is not a rigid body and the ball
function g lies on a universal curve when plotted as a func-“sees” only a fraction of the bat mass. This is completely in
tion of w7 [see Fig. 4b)]. Moreover, because of the proper- accord with our intuititive understanding of the collision pro-
ties of Fourier transformsny force profile having the same cess, as exemplified by the toy model described in Appendix
general shape as the one shown in Fig) 4vill have ap- A.
proximately the same response, at least for those frequenciesOne might be tempted to generalize Etj7) for ep<1 by
for which g is large. Since those are the most importantsimply reinsertinge, where it was in Eq(16). Such a for-
frequencies for determining the dynamics of the collision,mula would be very appealing physically since it would
this confirms the remark made earlier that the precise detailglearly separate the effects of energy dissipation in the ball
of the ball-bat force are not important, as long as the timgwhich depends ore,) and vibrational energy in the bat
scale for the transfer of momentum is about right. (which depends on thR,,). Unfortunately, although this for-

mula is a good approximation tos, explicit calculation
E. The exit speed of the ball shows that it somewhat underestimatesy overestimating
. . the energy dissipated in the ball. Evidently the partitioning of

One of the practical goals of our analysis is to calculateynergy hetween vibrational modes in the bat and dissipation

the exit speed of the bail;. We will find it useful to de- j, the pall is not very straightforward. The latter energy de-
velop some formulas relating; to the initial speed of the pends directly on the maximum compression of the ball,
ball v,, and the initial speed of the bat at the impact pointwhich in turn depends on the “give” of the bat. When a
Vpat- We do this first for a rigid bai.e., a bat with only rigid  vibrational mode is strongly excited, more of the initial im-
modes but no true vibrational mode#n fact, although one pact energy is taken up in the recoil of the segment of the bat
need not use all the machinery we have developed to tredan contact with the ball, so that less energy is stofadd
this case(see, for example, Brody, we will find it instruc-  therefore dissipatgdn the ball. This effect will be evident
tive to do so. We proceed by eliminating all but the two when we present the results of our calculations with actual
zero-frequency rigid-body modes, which correspond to théats in the next section.

Upait Upatr (17

983 Am. J. Phys., Vol. 68, No. 11, November 2000 Alan M. Nathan 983



The most general case can be cast in the form Table I. Properties of our standard wood bat including the lebgthassM,
density p, distance of center of mass from handlg,, radius of gyration

€ert— Ro €t 1 about the center of mass, Young's modulusy, and shear moduluS.
general case: vi=|———=—|Upart| 575 |Vpats (18
1+R, 1+R,
Property Value
which is identical to Eq.(16) if ey is replaced byeg. L ”
. .. . .. cm

Whereas, is the coefficient of restitution for the collision of M 0.885 kg
the ball with a rigid surfac¢and therefore a property of the p 649 kg/n?
ball alone, ey is an effective coefficient of restitution for Zcw 0.564 m
the collision of the ball with a flexible bat. It has the desired ry 23 cm _
properties that it reduces &g in the limit that vibrations are Y 1.814x10° N/;n
neglected and it satisfies the definition of coefficient of res- S 1.05<10° N/m

titution [Eq. (6)] considering only the rigid-body motion of
the bat. Moreover, the fractional energy lost in the collision

to the combinedeffects of dissipation in the ball and vibra- ;56 ppy van zandt. The calculations are not very sensitive to
tions in the bat is (1 €5)/(1+Ry) in the frame in which the  ne precise value of the shear modulus, which was set to the
bat is initially at rest at the impact point. As we just dis- same value used by Van Zandt. We bkt 84(Az=1 cm),
cussed, there is no easy relation that aIIO\_Ns us to separate thﬁplying that good accuracy will be achieved only for modes
two f_orms of energy loss other than by direct n_umerlqal calyyith wavelength large compared to 1 cm. However, as we
culation. Moreover, Eq(18) separates purely kinematic ef- gpq| see, only the lowest few modes will turn out to be
fects, such as the bat and ball speeds and masses, from gysnortant for the collision problem and for these the wave-
namic effects that are contained completely dgs. We  |ength is=30 cm, which is safely large compared to 1 cm.
anticipate thakeg; depends strongly on the impact location We will refer to this as our “standard wood bat.” We next
but only weakly on the impact speed, as we shall see in theescribe the results of these calculations.
next section.

We finally come to the point of the different approach 5 Normal modes
used by Van zandin his treatment of the collision problem.
Van Zandt attempts to improve on the rigid-body result by Using the input parameters discussed above, the eigen-
arguing that the relevant final relative velocity appearing invalue problem was solved to find the normal mode frequen-
the definition of the coefficient of restitution, E(p), is the  cies f,=w,/27 (see Table |l and eigenstates, the lowest
difference between the ball speegdand the speed of the bat three (nonrigid of which are shown in Fig. 6. The lowest
at the impact point, includingoththe rigid-body motion and mode has two nodes, one approximately 17 @mn.) and
the vibrational motion. He arrives at E(L6) with the im-  the other about 68 cni27 in) from the knob end. Each
portant modificationRy— Ro+ Mpdyin, Whereay, is the _successive higher mode has one addit_iona_l node. An interest-
vibrational velocity per unit impulse at the impact point ating feature is that the lowest three vibrational modes have
the precise time the ball and bat separate. This in turn i§odes in the range 68—74 cm. We will comment more on
calculated by solving Eq5) with an assumed force profile that particular feature when we d|scqs§ the pall—bat collision.
F(t), as opposed to our technique based on solving the equ&inally we note that for all of the collisions discussed below,
tions of motion directly. Unfortunately, the result has two We include vibrations up to mode 18.
major problems: It does not conserve energy and it does not
agree with experiment. We postpone the latter problem to th8. Low-impact collision
next section and address here the conservation of energy

. . We initially investigate low-impact collisions between ball
problem, which can best be understood for the special €a%hd bat sin)ée it wil? allow us tg compare our results with

e0=_1 so that there are no losses in the ball. In that case, E%xperimental data. The data were taken on our standard
(17) is an exact solution that conserves energy and does ngt,,q pat by R. Crodsusing an experimental arrangement
agree with the Van Zandt prescription. In Appendix A, We oo cennally similar to that used in his previous study of the
show via an exact toy model that the Van Zandt prescrlptlor}mp‘,ict of superballs on aluminum beafris. the experiment

!eads to incorr_ect resu_lts. Based on this, we concludeuthat a 1-m/s(2.237-mph baseball collided with a stationary bat
is not related in any simple way to the surface speed of the

bat at the moment of separation. We emphasize this point

strongly not for reason of principle but because the two ap- a5 N —
proaches lead to quite different results #gr, as we shall see
in Sec. lll. 30
[ll. RESULTS WITH A STANDARD WOOD BAT R )25 :
mm

We have used the formalism described in the preceding 20 E
sections to do a series of calculations on the bat used by
Cross in his extensive set of measureméritsis a 33-in./ 15
31-0z Louisville Slugger Model R161, with relevant proper- f
1 1 H 1 H N 10 PR L il Lassald . ! 'l L .
ties Ilstgd in Table | anq W|thameasured'rad|us prak(e) 0 10203020 50 60 70 80
shown in Fig. 5. Young’s modulus was adjusted to reproduce z(cm)
approximately the measured frequency of the fundamental
vibrational mode, resulting in a value12% larger than that Fig. 5. Radius profile for our standard wood bat.
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Table Il. Lowest ten vibrational frequenciég for our standard wood bat T T T T T T T
calculated using the full Timoshenko theory afidl calculated with the 0.4

approximate Euler—Bernoulli theory. Also shown are the positions of the 3
nodes for the lowest three modes, as measured from the knob end of the bat.

0.3¢F

fi f) Nodes E
v (m/s :
Mode (Hz) (Hz) (cm) , (m/s) - . \'-,\:
1 165 169 17, 68 02f flexible bat v, =1m/s \\_:
2 568 612 7,39, 72 ] ,=0.66 3
3 1177 1334 5, 25, 50, 74 4 E
4 1851 2220 X | N TR PO T U T TS
5 2580 3304 45 50 55 60 65 70 75 80
6 3359 4637 distance from knob (cm)
7 4163 6198 _ , _ _
) 4972 7962 Fig. 7. Exit speed of a baseball in a 1-m/s impact on our standard wood bat,
9 5783 9942 which is initially stationary. The solid curve is our calculated result for a
10 6598 12139 flexible bat, which includes the effects of vibrations. The dotted curve is a

calculation for a rigid bat. The long dashed cufV&) is a calculation using
the technique of Van ZandRef. 7). The points with error bars are the
measurements of Crog$Ref. 9.

andv; was measured as a function of impact position along
the axis of the bat. The coefficient of restitution of the ball While it is gratifying that our calculations agree well with
was independently measured todye=0.64 for an impact at the data in Fig. 7, it should be noted thatdoes not provide
1 m/s on a hard floor. a very sensitive test of the model, since only the lowest mode
The data are compared with our calculation in Fig. 7, andseems to play a role. A more sensitive test is to examine the
the agreement is excellent provideglis increased to 0.66, a acceleration profiles at various locations on the bat during
value probably safely within the experimental uncertainty ofand after the collision, since these tend to emphasize the
its measurement. On the other hand, calculations for a rigidhore weakly excited high frequencies, as discussed in Sec.
bat(i.e., a bat with only rigid-body modes but no true vibra- Il D. Cross shows measurements of a variety of acceleration
tions) follow the data only over a narrow range of impact and velocity profiles in Figs. 2—4, 6 and 7 of his papail
locations, making it clear that the vibrations play a very im-of which are faithfully reproduced by our calculations. As an
portant role in determining the exit speed of the ball. Calcu-example we show in Fig. 9 our calculation of the data shown
lations using the formalism of Van Zandt disagree stronglyin Cross’s Fig. 3, for which the impact point was at a barrel
with the experimental results in the regions where vibrationsiode of mode 272 cm. The plot of the acceleration shows
are important. In Fig. & we examine the energy account- a clear signature for the excitation of mode 1 when viewed
ing. At these low-impact speeds, the collision time is quitenear a node of mode & cm) and for the excitation of mode
long (~2.2 m9 so that only the lowest vibrational mode
acquires any appreciable enerdyig. 8b)]. At the node of

the lowest modé68 cm), v; is equal to the rigid-body value, °/°5§"9’9Y

as we would expect. However, is not peaked at this loca-  losses e ]
tion. Rather it is peaked a bit closer to the handle due to a sf in ball/’N'
delicate interplay between energy going into vibrations - " 1
(which is minimized at the nodend energy going into rigid 30 £ - ~ rigid recoil

recoil of the bat(which is minimized at the center of mass, :'._':.-.:——’ E
56 cm. For a rigid bat, the exit velocity is peaked at pre- i .. ]
cisely the center of mass. Finally we see that the energy 20¢F ™ YVibrations ;

dissipated in the ball seems to be anticorrelated with energy

lost to vibrations, as we suggested in Sec. Il E. 10}
30

) ®
.dg> 25 N 3

= 3 \
£ 20F N\ Total 3
5 15F Mode 1) =
) ] ’
=4 9
$ 10¢ N 3
g ] ]
2 F Mode 2 N 3
ARV TR VRPN PO TP 2 45 50 55 60 65 70 75 80

0 10 20 30 40 50 60 70 80 distance from knob (cm)

distance from knob (cm)
Fig. 8. The top panel shows the distribution of energy for a 1-m/s impact on

Fig. 6. Eigenstates for the vibrational modes of our standard wood batpur standard wood bat, initially stationary. The bottom panel shows how the
including rigid rotation(dash—dotand the lowest three vibrations. vibrational energy is distributed among the normal modes.
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T T T % Energy

01l 6 cm 3 70 pg—r—r ' T T (é)
] E rigid recoil
) 60

,l

losses in
bal'I.

a (m/s?)
(=]
- o©
N erl
3
V4
Pd
P4
/

16em 30 Fvibrations

Fig. 9. Acceleration profiles for the impact of a 1-m/s baseball on our
standard wood bat on the barrel at the node of vibrational mode 2. The
measurement point is near a handle node of either ma@ecgn) or mode

1 (16 cm. In the latter case, the effect of mode 3 is very evident, despite the
fact that very little energy goes into this mode. These calculations corre-
spond to the measurements in Fig. 3 of Cr(Ref. 4.

3 when viewed near a node of mod€16 cm), despite the
fact that mode 3 is essentially irrelevant in determining

This agreement between the calculations and experiment
gives us confidence that our model for the bat, ball, and
coupling between them is reasonable and contains all the
important physics. Armed with this confidence, we next take
a look at collisions with impact speeds more relevant to the
game of baseball.

C. High-impact collision

distance from knob (cm)

We now investigate collisions with an incident ball speed
of 40 m/s(90 mph, a center-of-mass bat speed of 24 % Fig. 11. The top panel shows the distribution of energy for an impact of a
mph), and a bat angular velocity about the center of mass 0§0-mph ball on our standard wood bat, which has a CM speed of 54 mph
51 s 1. These numbers correspond to the bat rotating about @d a rotational speed about the CM of 51.§The bottom panel shows how
point 9 cm from the knob end and imply an impact speed othe vibrational energy is distributed among the normal modes.

71 m/s(160 mph at a location 71 cm from the knob e(i3

cm from the barrel end We assumesy=0.50. The results

for v, which are shown in Fig. 10, are the primary result of For a rigid bat, Eqs(15) and (16) imply that the peak of

this work. Additional results are shown in Fig. 11 for the v; lies between the center of ma@shereR, is minimized

energy accounting and Fig. 12 for the effective coefficient ofand the end of the bdwherev, is maximized. Interest-

restitution. We now turn to a discussion of these results. ingly, for our standard wood bat, this location nearly coin-
cides with the location that minimizes vibrations in the bat,
about 71-72 cm. Indeed,; is peaked there and coincides

v, (m/s)

50 vy vt '

40
aol

20

10. IS WPEPEPEPEE EPEPEPRE SR S | L
40 50 60 70 80 40

50 60 70 80
distance from knob (cm) distance from knob (cm)

Fig. 10. Exit speed of a baseball with an initial speed of 40 (80 mph Fig. 12. Plot ofe.s, which is the effective coefficient of restitution for the
colliding with our standard wood bat, which has a CM speed of 24(B#s  ball-bat collision as defined by EL8), for the collision described in the
mph) and a rotational speed about the CM of 51.sThe three plots corre-  caption to Fig. 1Qsolid line) and for a collision with half the impact speed
spond to rigid modes onlyn(=0), rigid plus the fundamental vibratiom(  (dashed ling For a rigid bat,e.; would be 0.5, independent of impact
=1), and rigid plus vibrational modes up te=18. location and impact speed.
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Fig. 13. Displacemen(including the dc componenof three different seg-  Fig. 14. Vibrational component of the displacement of a segment of the bat
ments in the handle of the bat with an impact locatior=a68 cm from the  located 13 cm from the knob end with an impact at three different locations,
knob end, as viewed in a frame in which the segment is initially at rest. as viewed in a frame in which the segment is initially at rest.

cm, which are on opposite sides of the center of percussion,
the bat recoils in opposite directions, with the 6-cm point
: moving in the direction of the rebounding ball. The vibra-
tre, but is cIo_ser to a node of mod&(22 cm. Actually, as tions are dominated by the second and third modes, since the
remarked earlier, there are nodes of the lowest three modes, -+ oint is close to a node of the primary. For the mea-
In reglon 6.8_74 cm, so th"?‘t the wbratyonql energy 1s NOLVeryg rement point at 6 cm, the vibrational amplitude is consid-
large in this region and; is close to its rigid value. HOw-  grapy weaker since this point is very close to nodes of both
ever, outside this region,; drops off rapidly. For example, the second and third moddsee Fig. 6 The vibrational
at 60 cm, which is about the start of the “fat” part of the bat, amplitude and waveform observed in the handle depend on
v has dropped by about 25% relative to the rigid value. Thighe impact location. This is shown in Fig. 14 for three dif-
is in stark contrast to the results of Van Zandt, for which theferent impact locationgz=61, 71, and 81 cinand for a
drop-off is of order 2%—3%:The ball exit speed also drops measurement point at 13 cm, where the dc component has
off rapidly for impact locations larger than about 80 ¢m, heen removed in order to emphasize the vibrational compo-
which is beyond the outermost node for each of the loweshents. The vibrational amplitude in the handle is minimized
four modes. Therefore all four modes contribute to a sizablgyt the 71-cm impact point, as one might expect based on
vibrational energy and a significant loweringwf.*’ If v+ is  consideration of the vibrational energlyig. 11). There is a
calculated including only the lowest vibrational mode  wealth of interesting information about the vibrational spec-
=1 curve in Fig. 10, the curve shifts closer to the rigid trum contained in these waveforms, but we will not comment
curve, which makes good sense based on energy consenaither on that.
tion but which disagrees with Van Zandt. Perhaps the most interesting feature of Fig. 13 is that the
The distribution of energy behaves about the way onéandle of the bat responds to the impact only after a measur-
would expect based on our previous discussion and Figs. 8ble delay. We investigate this point on a finer time scale in
and 4. The high impact speed leads to a short collision timé&ig. 15, where we show the velocity of the latcluding the
(typically 0.6 mg, resulting in excitation of vibrations up to dc componentat the 13-cm point due to an impact at
about mode 4 1,=1851 Hz), as is evident in Fig. 11. The =68cm. It is evident that the handle does not start to re-
plots also show the anticorrelation between energy losses ispond until about 0.5-0.6 ms after the initial contact, at
the ball and the vibrational energy. In Fig. 12 we mgt for ~ which time the transfer of momentum to the ball is nearly
this collision as well as for a collision at half the impact complete. Any clamping action of the hands will not affect
speed. The similarity confirms our earlier remark that thisthe bat at the impact location until one round trip, or about
quantity is only weakly dependent on the impact speed. Gent.0—-1.2 ms, by which time the ball and bat have just started
erally, es is slightly higher at the lower impact speed, as theto separatésee the discussion in Sec. I).Brhis justifies the
longer collision time results in less effectiveness in excitingtreatment of the bat as a free object on the time scale of the
vibrations. collision. The hands undoubtedly do affect the vibrations of
It is interesting to investigate the motion of the handlethe bat; but only after the collision is complete. It is inter-
resulting from the impact. In Fig. 13 we show the displace-esting to see whether the propagation time of the velocity
ment of three segments in the handle of the(a& frame of ~ pulse is consistent with the expected group velocity of elastic
reference in which the segments are initially atregten the ~ waves in the bat. Guided by Fig. 4 and using a collision time
ball impacts az=68 cm. Several interesting features are ap-of 0.6 ms, we estimate that the frequency spectrum of elastic
parent. There is both a dc component due to the rigid-bodyvaves is peaked at zero frequency and has a spkdaalf
modes and an oscillating component due to the true vibraabout 1600 Hz. Taking the average separation between nodes
tions. The measurement point at 13 cm is theas half a wavelength, we find the corresponding spread of
center-of-percussidrconjugate to the impact point, so the dc inverse wavelength& (1/A) to be about 2.25 . Therefore
component vanishes. For the measurement points at 6 and 1¢e group velocityv ;~Af/A(1/\) is about 700 m/s. This

with the rigid-bat value. This location isot at a node of the
fundamental68 cm), as is often stated in the popular litera-
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25 — e . — k k,
20
15 Eimpact at 68 cm W M,
10 vat13cm 3
v (m/s) 5 Fig. 17. Toy model for the ball-bat collision.
Ot e e e e =
5E than the contact time of 1.2 ms. For impact locations closer
10k to the handle than 50 cm, the analysis of the results is com-
] plicated by the fact that multiple collisions occur due to the
185 05 T 15 2 low exit speed of the ball and the large vibrational amplitude

t (ms) in the bat.
One can similarly investigate the effect of modifying the
Fig. 15. Velocity of a segment of the bat 13 cm from the knob end with anbat by changing either the length or the diameter of the
iT“;]paCt at 68 o, 2 t"ri]e"‘;?d in 2 fﬁmheggyhi?*:hth? batlis i?i“{ar:'y 2t et handle. Not surprisingly, we find that for impacts far from
€ arrow Inaicates the time at whicl () € Impulse 1o the bal a - . [P e

occurred. This plot shows that the handle has barely Fs)tarted to react by t%he handle.(e'g" in the barrel regionu is insensitive to the
time the collision is complete. etailed size and shape of the handle or to the means by

which it is suspende¢e.qg., free, pivoted, or clampgdAs in

our toy model, the ball doesn’t know that the far end of the
would imply a propagation time from 68 to 13 cm of about bat is there. This conclusion is completely in accord with the
0.8 ms, which is roughly consistent with Fig. 15. Because theneasurements, calculations, and analysis of Cross for the
phase velocity of the elastic waves is a strong function ofollision of superballs with aluminum bearfs.
frequency, there is considerable dispersion in the pulse, with
the higher frequency components arriving first. IV. SUMMARY

We can carry this analysis further by considering the col- .
lision of a ball with a bat that is pivoted about a point on the W€ have developed a model for the collision between the

handle. This is exactly the condition under which bats ard’aseball and bat that takes into account the vibrational de-
certified for use by the NCAA under their new standaftls, 9"€€S of freedom of the bat. Although our technique for f_ind-
so it is both an interesting and a practical question as t¢'9 the normal modes closely parallels that of a previous
whether a pivoted bat behaves differently than a free ballnvesngatl.on, our technique for the coupling between the ba_II
(which we have shown is equivalent to a hand-held bat as ft"d bat differs sharply. We have shown the model to be in
as the ball is concerngdTreatment of a pivoted bat requires €xcellent agreement with experimental data at low impact
modifying our equations of motion by adding an additional Velocities. At the higher velocities more appropriate to the
force at the pivot point that is adjusted at each step in thgame of baseball, we show that the vibrations excited in the
numerical integration to make the acceleration of the bat aat play a crucial role in determining the ball exit spegd

that point vanish. We compare a pivoted to a free bat in Figln particularv; coincides with the rigid-body value only over
16, where we have assumed in both cases a 40-m/s incideatvery small region in the barrel of the bat and drops off
ball on a bat that is rotated about a pivot point located 15 cnsharply for impacts removed from that region. Our calcula-
from the knob end with an angular velocity of 56'sOver  tions give several insights into the collision process. The
the range of impact locations shown, the calculatgdis most interesting of these is the observatiqn that the handlt_e of
remarkably identical in the two cases, despite the fact thahe bat has barely started to react to the impulse by the time
the results are very different if we treat the bat as a rigidthe momentum transferred to the ball is complete and that
body. This result makes sense when analyzed in the conteffly clamping action of the hands will affect the bat at the
of pulse propagation times. For an impact at 50 cm, we esimpact point only after the ball and ba.t have separated. Fro_m
timate that the time for the elastic pulse to make the roundhis we have concluded that the exit speed of the ball is
trip to the pivot and back is approximately 1 ms, which is€essentially independent of the detailed size, shape, and

longer than the collision time of 0.6 ms and a little shortermethod of support of the bat at distances far removed from
the impact location.

rigid
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I 6'0 . . ‘7'0 T APPENDIX A: A TOY MODEL

distance from knob (cm)

We propose the toy model shown in Fig. 17 as a way to
Fig. 16. Calculations comparing the exit velocity of the ball for a fiett ~ Understand the essential features of the ball—bat collision.

curve and pivoted(points bat. The dotted and dashed curves are calcula-\WWe mOd?' the ball as a massless linear spring of force con-
tions for a rigid free and pivoted bat, respectively. stantk with a block of massn attached to one end and the
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mass 1 object from a mass 2 object. In effect, the ball does
not “know” that My, is there. We easily finad/v;=0.333,
with a substantial amount of the energy going into the vibra-
tional mode of the bat. Also shown is /v; predicted from

the prescription of Van Zandtwhich disagrees with the ex-
act calculation except in the two extreme limits. A detailed
look at the calculations shows that the exit speed of the ball
is not related in a simple way to the speedwf at the time

of separation.

The essential features of this toy model are applicable in
diverse areas of physics. For example, in the scattering of
electrons from a composite system such as a nucleus, the
electron can scatter elastically from the total charge distribu-
tion in the nucleuga process simply called elastic scattejing
or can scatter from individual protons in the nucléosm-
monly called quasielastic scatteringVhenever the energy
of the electron is low compared to typical binding energies in
the system(equivalent to long time scales in our classical
problem), only elastic scattering is possible. At higher ener-
gies (or equivalently short time scalgsjuasielastic scatter-

Iv/vil

e o
a w
5
=
L

o
FY

Energy Fraction
o o
D oW

-

] ~« _Bat Vibrations ] ing dominates.
01 \\\ E
0 2 M 4.:.‘:_,‘5= P 3
0 2 4 6 8 10 APPENDIX B: EQUATIONS OF MOTION IN THE
ot CONTINUUM LIMIT

Fig. 18. Results of the toy model calculation®f/v; (top panel and the . . .
energy partitioningbottom). In the top panel, the solid curve is the result of In this Appendix, we show the connection between our

our exact calculation whereas the dashed c(¥® is that calculated using gquatioqs _Of motion and those of Graffwe take the con-
the prescription of Van ZandRef. 7). In the bottom panel the solid, dotted, tinuum limit (N— o, Az—0) of Egs.(1) and(2), arriving at
and dashed curves are, respectively, the energy fractions going into the bathe so-called Timoshenko equations for the free vibration of

the center-of-mass motion of the bat, and the vibrations of the bat. a nonuniform beam:
A%
other end free. We model the bat as two masdesandM,, pAY=— (19
connected by a linear spring of force constlnt This is a d
one-dimensional problem, with the “bat” initially at rest and an
the ball initially with speed); . The toy bat has exactly two —1\Y
degrees of freedom, corresponding to the center-of-mass mo- pld= 9z -V, (20)
tion and to the excitation of the spring. The ball impacts the ) o
massM , and the goal is to find the rebound speed of the ballvhere the shearing forcé is given by
and the energy going into recoil and vibrations of the bat ay
after the ball and bat separate. This is a problem that can be V=SA(—+ 1) (22
solved analytically, although we will find it more convenient 9z
to do it numerically. and the bending torqui given by
Given the masses and, the essential parameter that de-

) . . ¢

terminesv; is wr, wherew= K/ uap, pap iS the reduced M :YIE' (22

mass of the bat, and is the collision time(approximately
1/2 the period of oscillation of the ball spring-or definite-  |n fact, these equations are even more general than our origi-
ness, we fixm, M,, andMy, to be 1, 2, and 4 units, respec- nal ones, since they are valid everYif S andp are nonuni-
tively, setk=1, and calculate; as a function ofwr (varying  form. Indeed, we could have used these as our starting point.
ky). Our results are shown in Fig. 18. In the two extremeOne often combines these coupled second-ofifertime)
regimesyw7->]_ andw7<l, a Simp|e physica| interpretation dlfferentlal equations into the f0||0W|ng Single fourth-or_der
is possible. Forwr>1, corresponding to a very stiff bat equation, yvhlch we have generalized here for nonuniform
spring, the ball pushes slowly on the bat, which recoils as &0SS section:
whole without exciting the spring. This is just elastic scatter- 52 PPy
ing of a mass 1 object from a mass 6 object, from which wepAy= — E(YIE 1+ s 972 s y. (23
easily calculatey ¢ /v;=0.714. On the slow time scale of the

collision, the bat is completely rigid and all the energy is A common approximate treatment is effected by neglect-
shared between the ball and the center-of-mass mode of tlieg both the deformation due to the shear for¢8s-«,

bat. The opposite extremeyr<<1, corresponds to a very dy/dz— — ¢, with V finite) and the moment of inertia in Eq.
loose bat spring. On the comparatively short time scale of thé20) (so thatdM/dz=V). In Eq. (23) this is equivalent to
collision, M is essentially uncoupled frorl,, so that ki- neglecting the last two terms on the right-hand-side, leading
nematically the collision looks like elastic scattering of ato the much simpler Euler—Bernoulli equatith:

Y a2(|y)_p2|

+p
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pAY=— — (24) 692-702(1999.
Jz °R. Cross(private communication
From the structure of Eq(23), it is easy to see that the 10K, F. Graff, Wave Motion in Elastic SolidéOxford U.P., Oxford, 1975
neglect of the moment of inertia and shear strain introducegPP- 140-212.

. . . . 2 The Linear Algebra Packadeapack) subroutines are downloadable from
errors into the vibrational frequencies of ordd€¥/{)~ and the WWW site http://nacphys.phys.orst.edu/lapack.

(Y/S)(RIN)4, respectively, wherR s a characteristic radius 1R, Cross, “The bounce of a ball.” Am. J. Phy87, 222-227(1999.

of the bat and\ is the wavelength of the vibration. If one 1srpe ryles of Major League Baseball specify tigtfor a baseball lies in
were so inclined, one could use the solutions of @¢) as a the range 0.514-0.578 for a 26 m/s hitting a massive stationary object.
starting point and treat the neglected terms in perturbationthere is much debate as to the actegfor more realistic impact speeds
theory. A comparison between the Timoshenko and Euler—of 70 m/s and whether the baseballs of today have a laget these
Bernoulli theories for the lowest ten vibrational frequencies speeds than did the baseballs of yesteryear.

is given in Table Il for our standard wood bat. One sees thatw. H. Presset al, Numerical RecipegCambridge U.P., Cambridge,
the full theory lowers the frequencies by an amount that in- 1986, p. 553.

creases dramatically for the higher modes. Cross used tH&V. Goldsmith,Impact(Amold, London, 1960 pp. 108—129.
Euler—Bernoulli theory in his study of the collision of super- 8This expression ignores the vibrational energy associated with the shearing

balls with aluminum beantin the present work, we exclu- ~ motion as well as the rotational energy of the individual slices. As dis-
sively use the full Timoshenko theory. cussed in Appendix B, these effects are expected to be small. Indeed, we

have verified by direct calculation that less than 1% of the energy appears
a ; P ; in these modes under conditions typical for the ball-bat collision.
1,5:)%2;??(_: Qggi.r?T?]ithsa)%légjccfd;asebamarperCoIIins, New York, A more realistic model for the ball would allow for a coefficient of resti-
1994, 2nd ed., pp. 71-79. tution e, which decreases slowly with increasing impact speed, as dis-
2A useful compendium of articles, mostly reprinted from tAmerican cussed by Adair in his bookRef. 1). Since the impact speed for a bat
Journal of Physicsare contained in the book edited by Angelo Armenti, rotated about its handle depends on impact position, this would imply an
Jr., The Physics of SportéAmerican Institute of Physics, New York, e, that decreases with increasing distance from the knob. For the high-
1992. Besides the reprinted articles, there is an extensive bibliography impact collision described in the text, is estimated to vary by approxi-

92 &Zy 8R. Cross, “Impact of a ball with a bat or racket,” Am. J. Phy&%,
Yl—].

3\II-|VMI]3 recfiere‘PMceZ t? mfazy adbdiltliobneil f’i"'t,i‘flesj PhyS5, 756_756(1990 mately 15% for impacts between 40 and 80 cm. Explicit calculation shows
- brody,  Models of baseball bats,” Am. J. ’ N : that this would change the quantitatifieut not the qualitativefeatures of
“R. Cross, “The sweet spot of a baseball bat,” Am. J. PI§8.772—-779 9 g 9 P

(1998 vy in Fig. 10, making it slightly broader on the low side of the peak at

5P. Kilpatrick, “Batting the ball,” Am. J. Phys31, 606—613(1963. 71-72 cm. For example, relative to the peak, at 40 cm would be
H. Brody, “The sweet spot of a baseball bat,” Am. J. Phy4, 640—643 boosted by only about 10%.

(1986. ®The September 1999 report that establishes procedures for certification of
L. L. Van Zandt, “The dynamical theory of the baseball bat,” Am. J. bats can be found on the WWW at the site http://www.ncaa.org/releases/
Phys.60, 172-181(1992. makepage.cgi/miscellaneous/1999092901ms.htm.
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