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A model is developed for the collision between the baseball and bat, taking into account the
transverse bending vibrations of the bat. By coupling the flexible bat to the ball via a parametrized
force that each mutually exerts on the other, a complete description of the collision process is
obtained, including the exit speed of the ballv f . It is shown that vibrations play an important role
in determiningv f . The model is in excellent agreement with experimental data at low impact
velocities. At the higher velocities more appropriate to the game of baseball,v f is shown to coincide
with the rigid-body value only over a very small region in the barrel of the bat and to drop off
sharply for impacts removed from that region. Some interesting insights into the collision process
are obtained, including the observation that for impacts in the barrel of the bat, the momentum
transferred to the ball is essentially complete by the time the elastic wave first arrives at the handle
and that any clamping action of the hands will affect the bat at the impact point only after the ball
and bat have separated. This suggests thatv f is independent of the size, shape, and method of
support of the bat at distances far from the impact location. ©2000 American Association of Physics
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I. INTRODUCTION

The game of baseball has a certain fascination for ph
cists. In addition to the popular book by Adair,1 there have
been numerous papers in the literature2 addressing a wide
variety of issues amenable to a physics calculation. Th
include such diverse topics as the aerodynamics of a s
ning baseball; the peculiar behavior of the knuckleball;
coefficient of restitution of a baseball and its effect on t
bounce of the ball off the bat; and the dynamics of the ba
bat collision. It is this latter topic that is the subject of th
present paper.

Over the years, papers in this journal have addressed
experimental and theoretical issues associated with
baseball–bat collision. Notable experimental papers
those of Brody3 and Cross.4 Brody studied the vibrationa
spectrum of a hand-held bat during and after the collis
and showed that the bat behaves as a free body on the
time scale of the collision. Cross did an extensive study
the vibrational spectrum of free and hand-held bats and c
cluded that there exists a zone of impact locations on
barrel end of the bat where the impact forces on the ha
due to recoil and vibration are minimized. Early theoretic
treatments concentrated mainly on the rigid-body aspect
the collision,5,6 but in more recent years two important th
oretical papers have appeared that go beyond the rigid
proximation by treating the bat as a dynamic, flexible obje

The first paper was that of Van Zandt.7 Applying the stan-
dard theory of beams, suitably modified for a nonunifo
bat, he solved the eigenvalue problem to find the norm
modes for transverse bending vibrations in the bat. By c
pling the ball to the bat and decomposing the motion of
bat into normal modes, he solved the collision problem t
ing full account of the vibrations excited in the bat and th
consequent effect on the flight of the ball. In the process
elucidated many interesting features of the collision, such
the time evolution of the motion of the bat. From the point
view of the game of baseball, the most important outcome
Van Zandt’s work was the calculation of the ball exit spee
v f , as a function of impact position along the bat. It w
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shown that under typical conditions,v f is maximized and
equal to its rigid-body value when the impact is in the bar
of the bat near a node of the fundamental mode. Unfo
nately, for reasons we will discuss fully herein, his calcu
tion of v f was flawed, resulting in a qualitatively incorre
picture of howv f falls off as the impact point moves awa
from the node. One of the purposes of the present calc
tions is to apply a different model for the ball–bat couplin
that leads to very different results forv f .

The second paper was that of Cross,8 who both performed
experiments and did theoretical calculations of the collis
of superballs with a variety of uniform aluminum beam
While his calculations do not directly address the baseba
bat collision, the calculational technique and the essen
results are relevant. Particularly noteworthy is his use o
dynamic model for the coupling of the ball to the bea
which corrects the shortcomings of the Van Zandt treatme
The resulting calculations ofv f are in remarkably good
agreement with Cross’s own data, indicating that the ess
tial physics of the problem has been identified. Perhaps
most interesting result to emerge from those studies is
when the superball collides with an initially stationary bea
v f is essentially independent of the length of the beam or
manner in which the ends of the beam are supported, as
as the impact location is not too close to an end. In effect,
the relatively short time scale of the collision, the ball do
not ‘‘see’’ the full beam but only a segment of it that is in th
vicinity of the impact point. To the extent that this result
relevant to the ball–bat collision, it provides a concise the
retical explanation of the ‘‘free-bat’’ observation of Brody3

Cross gives a nice interpretation of this result in the cont
of the interplay between collision times and pulse propa
tion times. We give an alternate~but completely equivalent!
explanation by means of a highly simplified toy model~Ap-
pendix A! and show how this simple picture is relevant to t
ball–bat collision in Sec. III.

The present paper is organized as follows. In Sec. II
develop a theoretical model for the ball–bat collision that
a hybridization of the Van Zandt and Cross techniques,
979g/ajp/ © 2000 American Association of Physics Teachers
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lizing what we believe to be the best features of both wor
Our treatment of the normal modes is identical to that of V
Zandt ~Sec. II A!, whereas our model for the ball and i
coupling to the bat is conceptually similar to that of Cro
~Secs. II B and II C!. The issue of energy conservation and
discussion of the ball exit speed are addressed in Secs.
and II E, respectively. In Sec. III we apply our model to
typical wooden bat, comparing our calculations with re
data4,9 and presenting results of practical interest to the ga
of baseball. We conclude with a brief summary. We releg
to Appendix B some details of the relationship between
treatment of the normal modes and that given in the te
books.

II. MODEL FOR THE COLLISION

A. Vibrations of the bat

For this part of the calculation, we follow nearly exact
the work of Van Zandt.7 We start with Fig. 1, where we
show schematically a baseball bat that has been disto
from its equilibrium shape due to bending and shearing. T
distortion of a particular segment of the bat can be cha
terized by its transverse displacementy(z) and orientation
f(z) as a function of its coordinatez along the long axis of
the bat. We divide the bat intoN parallel slices of circular
cross section, each of thicknessDz and each elastically
coupled to its neighbors through the Young’s modulusY and
the shear modulusS. Van Zandt shows in detail how to de
rive the equations of motion ofy and f for free ~i.e., no
external force or torque! vibrations of a bat with nonuniform
cross section.7 We have rederived and corrected slightly h
equations, arriving at

ÿi5
S

rDz2 F ~yi 111yi 2122yi !1
Ai2Ai 21

Ai

3~yi2yi 211F i 21!1~F i2F i 21!G ~1!

and

Fig. 1. Schematic~greatly exaggerated! representation of a bat that is ben
and sheared. The coordinateyi is the displacement of thei th section of the
bat relative to thez axis, whereasf i is the angle between the plane of thei th
section and they axis.
980 Am. J. Phys., Vol. 68, No. 11, November 2000
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rDz2 F ~F i 111F i 2122F i !1
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~F i2F i 21!G

2
S

2rI i
@Ai~yi 112yi 211F i1F i 21!

2~Ai2Ai 21!~yi2yi 211F i 21!#, ~2!

wherer, Ai , andI i are the density, cross-sectional area, a
area moment of inertia of slicei ~about an axis passing
through the center of mass of the slice and normal to they–z
plane!, respectively, andF i5f iDz. All the bats we consider
herein have a circular cross section. For solid bats~such as a
typical wood bat!, a slice of radiusRi hasAi5pRi

2 and I i

5pRi
4/4. For hollow bats~such as a typical aluminum bat!, a

slice of inner radiusR1,i and outer radiusR2,i has Ai

5p(R2,i
2 2Ri ,1

2 ) and I i5p(R2,i
4 2R1,i

4 )/4. We assume thatr,
Y, and S are uniform~i.e., independent ofi!, although the
formalism could easily be extended to include such nonu
formities. We note that the treatment given here is equiva
to that presented in various textbooks~for example, see
Graff10!, and we show the connection in Appendix B.

We complete the statement of the problem by specify
the boundary conditions. We assume that both ends of
bat are completely free,3 meaning that the force and torqu
on the end slices are due only to the next inner slices.
will show that this is a very good assumption for many pu
poses, including the calculation of the rebound velocity
the baseball.

In order to find the normal modes of the bat implied
our equations of motion, we assume harmonic vibrations
that ÿi52v2yi andF̈ i52v2F i . Then Eqs.~1! and~2! can
be rewritten in a compact matrix notation as

Hcn52vn
2cn , ~3!

where

cn[S yn1

]

ynN

Fn1

]

FnN

D
is a 2N-element column matrix andH is a nonsymmetric
2N32N matrix. One immediately recognizes this as an
genvalue problem, requiring the diagonalization ofH in or-
der to find the normal mode frequenciesvn and associated
eigenvectorscn . Standard numerical techniques are used
accomplish this, using theLAPACK subroutine package,11 al-
though some care is needed in applying these to a nons
metric matrix. We remark that the lowest two modes a
zero-frequency rigid body modes corresponding to unifo
translation~yni independent ofi, Fni50! and uniform rota-
tion ~yni linear in i, Fni independent ofi!.

In the presence of a time-dependent external force on
i th slice, an additional termFi(t)/(rAiDz) appears on the
right-hand-side of Eq.~1!. Since the normal modes of th
free vibration form a complete set, we write the solution
an expansion

yi~ t !5(
n

an~ t !yni ,
980Alan M. Nathan
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(
n

~ än~ t !1vn
2an~ t !!yni5

Fi~ t !

rAiDz
. ~4!

Using the orthogonality of the eigenstates,

(
i

AiymiyniDz5Ādmn ,

which definesĀ, we project out themth mode to arrive at

äm~ t !1vm
2 am~ t !5

1

rĀ
(

i
Fi~ t !ymi . ~5!

In the ball–bat collision, the driving forceFi(t) is the force
that the ball and bat mutually exert on each other. We n
turn to a discussion of the ball and a model for the force

B. Model for the ball

The baseball–bat collision is violent and involves lar
forces which act over a very short time and which compr
the ball to a fraction of its normal size. It should be n
surprise that such a collision is highly inelastic, with a s
nificant fraction of the initial ball–bat energy dissipated in
heat. The phenomenological embodiment of this inelasti
is the coefficient of restitution, which we denote by the sy
bol e0 . It is defined as the ratio of relative speeds after
before the collision of the ball with a perfectly rigid objec

coefficient of restitution:e0[
v rel,f

v rel,b
. ~6!

With this definition, the fraction of the initial center of mas
energy that is dissipated equals 12e0

2. For a baseball,e0 is
approximately 0.5, so when dropped from heighth onto a
massive rigid body~e.g., a hard floor!, it will rebound to
abouth/4. It is clear that with such a large loss of energ
it will not be possible to understand the baseball–
collision without accounting for the dissipation of energy
the ball.

Our approach is essentially that of Cross,8,12 who models
the ball as a nonlinear, lossy spring. For the collision of
baseball with a stationary massive rigid body, the cont
force between the ball and body compresses the b
spring, converting the kinetic energy into potential ener
At the point of maximum compression, the ball momentar
comes to rest. Then the spring expands, converting pote
energy back into kinetic energy. Because the spring is lo
not all the initial kinetic energy is restored and the ball ex
with a lower speed. This process can be understood with
help of the dynamic stress–strain hysteresis curve show
Fig. 2, in which the path taken during the compression ph
is different from that taken during the expansion phase. T
area bounded by the two curves is the energy dissipated

Elost5 R F~u!du. ~7!

Defining u as the compression of the radius of the ball,
parametrize the hysterisis curve as

compression:F~u!5k1ua,
~8!expansion: F~u!5k2ub,
981 Am. J. Phys., Vol. 68, No. 11, November 2000
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where generallyb>a. Since the fractional energy loss is
2e0

2, Eqs.~7! and ~8! lead to

b5
11a

e0
2 21.

The parameterk2 is determined from the remaining param
eters by equating the two expressions for the force at
point of maximum compression. Our model therefore h
three parameters: the compression constantk1 , the compres-
sion exponenta, ande0 . The parameterk1 essentially sets
the overall time scale for the collision, whereasa determines
the variation of the collision time with initial impact spee
For a linear spring (a51) with no losses, the collision time
is half of the oscillation period of the spring independent
the impact speed, whereas fora.1 the collision time de-
creases with increasing impact speed. Despite the simpl
of our model, we anticipate that the essential results of
collision calculations are not critically dependent on the d
tails of the model, provided that the collision time ande0 are
about right. We will return to this point in Sec. II D. Sinc
there are very few data at impact speeds relevant to the g
of baseball to guide us in the choice of these parameters
make intelligent guesses based on static hyster
measurements5 and dynamic measurements done at lo
speed4,12,13 to arrive at the curve shown in Fig. 2, which
essentially that shown by Adair.1 With the choice of param-
eters shown in the caption to Fig. 2, the collision time of o
model baseball with a stationary massive rigid object,
fined as the time for 99% of the impulse, is about 2.2 ms
1 m/s, decreasing to 1 ms at 11 m/s, 0.7 ms at 45 m/s,
0.6 ms at 67 m/s~or roughly an 85-mph fastball on a 65-mp
bat!, as shown in Fig. 3. Note that the collision time is n
the same as the ball–bat contact time. Due to the natur
the expansion phase of the hysteresis curve, the force fal
zero while there is still considerable compression of the b
~see Fig. 2!. For example, at 67 m/s the contact time is a
proximately 1.1 ms, whereas the collision time is 0.6 ms

C. The ball–bat collision

We are now in a position to formulate the collision pro
lem. We assume that the ball impacts the bat on thekth slice.
The formalism could easily be generalized to allow for

Fig. 2. A model dynamic hysteresis curve for a typical baseball, whereu is
the compression of the radius of the ball andF is the force needed to achiev
that compression. The curve shown is that appropriate for an impact
58-m/s~130-mph! ball with a rigid surface, with the coefficient of restitutio
e050.53. The curve for the compression phase is described byF5k1ua,
with k56.533107 anda51.84.
981Alan M. Nathan
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force spread over several slices, as was done in Van Zan
treatment, but we have checked that the essential resul
the calculation do not require that this be done. The fo
that the ball and bat mutually exert on each other depend
the compression of the radius of the ball according to Eq.~8!.
We takeu to be the separation between the surface of the
yk(t) and the center of the ballyball(t) but offset by the
natural radiusRball so thatu50 corresponds to no compre
sion. As discussed in the preceding section, the functio
form of that force depends on whether the spring is co
pressing (u̇,0) or expanding (u̇.0). Putting all this to-
gether, the complete dynamics of the collision are contai
in the equations

yi~ t !5(
n

an~ t !yni , ~9!

än~ t !1vn
2an~ t !5

F~u~ t !!ynk

rĀ
, ~10!

mball ÿball52F~u~ t !!, ~11!

u~ t !5Rball2~yball~ t !2yk~ t !!, ~12!

together with the normal modes, the force law, and the ini
conditions. For the latter, we taket50 to be the time when
the ball and bat come into contact for the first time~u50,
u̇,0!, at which time the ball and the rigid-body modes
the bat each have initial velocities which must be specifi
Under typical conditions, the ball and bat~at the impact
point! are initially moving in opposite directions. Since th
bat is assumed not to be vibrating prior to the collision,
set an(0)5ȧn(0)50 for the true vibrational modes. Stan
dard fourth-order Runge–Kutta14 is used to integrate the
coupled differential equations numerically, using a time g
adjusted to give stable results. For a typical collision last
less than 1 ms, a mesh of 5ms is more than adequate. Whe
the ball and bat separate~u50, u̇.0!, the force goes to zero
the bat vibrates freely, and the ball exits with constant vel
ity v f .

The technique used here is equivalent to the one use
Cross in his study of the collision of superballs with unifor
aluminum beams.8 Our implementations are different, how
ever, since Cross works in the time domain by solving

Fig. 3. Collision timet for the impact of a baseball with a stationary ma
sive rigid object as a function of the impact speed. These times were c
lated using the parametrization of the dynamic hysteresis curve given in
caption to Fig. 2.
982 Am. J. Phys., Vol. 68, No. 11, November 2000
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equations of motion directly without expanding into norm
modes, whereas we work in the complementary freque
domain.

D. Energy conservation

One of the important features of our calculation is th
energy conservation is respected. That is, once the ball
bat separate, the initial kinetic energy of the ball-plus-b
system is shared among the final kinetic energy of the b
the energy contained in rigid-body modes~translation and
rotation! of the bat, vibrational energy of the bat, and ener
lost in the compression and expansion of the ball. This i
nontrivial feature, since it is precisely what distinguishes o
calculation from that of Van Zandt, as we will discuss mo
fully in the following. For now, we will find it useful to
develop some formulas for the partitioning of the energy
the bat among the normal modes. Following Goldsmith,15 the
energy contained in thenth vibrational mode is given by

En5 1
2rĀ~ ȧn

2~t!1vn
2an

2~t!!, ~13!

wheret is the collision time.16 We define the force profile
F[F/I, whereI is the total impulse imparted to the ball i
the collision, so that

E
0

t

F~ t !dt51.

Assumingan(0)5ȧn(0)50, the solution to Eq.~10! can be
written

an~t!5
ynkI

rĀvn

E
0

t

F~ t !sinvn~t2t !dt,

from which we derive

En5
I2

2mball
Rn ,

Rn[F ynk
2 mball

rĀ
Gg~vn!, ~14!

g~vn![U E
0

t

F~ t !eivntdtU2

.

These equations defineRn , which is a dimensionless param
eter that is proportional to the energy transferred to thenth
normal mode as a result of the collision. As we will see
the following, it plays an important role in determining th
exit velocity v f . On the other hand, the rms vibrational am
plitude, velocity, and acceleration of thenth mode are pro-
portional toARn/vn , ARn, andvnARn, respectively. There-
fore the vibrational amplitude and acceleration tend
emphasize more strongly the low and high frequencies,
spectively, relative to the effect these frequencies have
v f . In general, one can interpretRn as the ratio of ball mass
to an effectivebat mass. It depends in part on the squa
amplitude of the mode at the impact point (ynk

2 ). For impact
near an antinode, the term in brackets in Eq.~14! is a number
of ordermball /M , whereM is the mass of the bat, whereas
vanishes for impact at a node.Rn also depends on the ratio o
collision time to vibrational period (vnt) through the re-
sponse functiong. Sinceg is the Fourier transform ofF, it

u-
he
982Alan M. Nathan
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has the property thatg→1 for vnt!1 andg→0 for vnt
@1. Therefore normal modes withvn@1/t will not be ex-
cited in the collision, in agreement with both our intuitio
and the toy model described in Appendix A. As an exam
we have solved our equations of motion for a standard w
bat~discussed in the following!, using the hysteresis curve i
Fig. 2 to find a typical force profileF @Fig. 4~a!#. For a large
range of impact speeds~1–70 m/s!, we find the response
function g lies on a universal curve when plotted as a fun
tion of vt @see Fig. 4~b!#. Moreover, because of the prope
ties of Fourier transforms,any force profile having the sam
general shape as the one shown in Fig. 4~a! will have ap-
proximately the same response, at least for those frequen
for which g is large. Since those are the most importa
frequencies for determining the dynamics of the collisio
this confirms the remark made earlier that the precise de
of the ball–bat force are not important, as long as the ti
scale for the transfer of momentum is about right.15

E. The exit speed of the ball

One of the practical goals of our analysis is to calcul
the exit speed of the ballv f . We will find it useful to de-
velop some formulas relatingv f to the initial speed of the
ball vball and the initial speed of the bat at the impact po
vbat. We do this first for a rigid bat~i.e., a bat with only rigid
modes but no true vibrational modes!. In fact, although one
need not use all the machinery we have developed to t
this case~see, for example, Brody6!, we will find it instruc-
tive to do so. We proceed by eliminating all but the tw
zero-frequency rigid-body modes, which correspond to

Fig. 4. ~a! Force profileF(t) for a 70-m/s impact speed baseball on
standard wood bat, as determined from our calculations and the dyn
hysteresis curve shown in Fig. 2;~b! the curveg(v) defined by Eq.~14! is
calculated withF(t).
983 Am. J. Phys., Vol. 68, No. 11, November 2000
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recoil of the center of mass of the bat and the rigid rotat
of the bat about its center of mass. The calculation ofR for
these modes is straightforward, resulting in

R05
mball

M F11S zk2zCM
2

r g
D G , ~15!

wherezk is the location of thekth slice ~the impact point!
and r g is the radius of gyration (I CM5Mr g

2). We easily ar-
rive at

rigid approximation: v f5Fe02R0

11R0
Gvball1F e011

11R0
Gvbat.

~16!

This result is expected to be valid whenever the energy c
tained in vibrations is small, such as when the impact poin
close to one or more nodes of the lowest-frequency mod
This formula conserves momentum and angular momen
and satisfies Eq.~6!; moreover the fractional energy diss
pated in the ball~in the frame in which the bat is initially a
rest at the impact point! is (12e0

2)/(11R0), which is con-
sistent with the definition of coefficient of restitution.

We attempt to generalize this result for the case in wh
vibrations are included. We start with the simple case
which there are vibrations in the bat but no dissipation in
ball ~i.e., e051!. Under such conditions, one can rigorous
show that the correct formula for the exit speed of the bal
given by15

e051: v f5F12(n Rn

11(n Rn
Gvball1F 2

11(n Rn
Gvbat, ~17!

where the sum is over all the normal modes~rigid and vibra-
tional!. One can easily show that this result strictly conserv
energy and that the relative velocity between the ball a
rigid modes of the bat is identical before and after the co
sion. Interpreting(n Rn as the ratio of ball mass to effectiv
bat mass, we see that the effect of vibrations is todecrease
the effective bat mass~in general,(n Rn>R0!, which re-
duces the exit speed of the ball. Said differently, on the ti
scale of the collision, the bat is not a rigid body and the b
‘‘sees’’ only a fraction of the bat mass. This is completely
accord with our intuititive understanding of the collision pr
cess, as exemplified by the toy model described in Appen
A.

One might be tempted to generalize Eq.~17! for e0<1 by
simply reinsertinge0 where it was in Eq.~16!. Such a for-
mula would be very appealing physically since it wou
clearly separate the effects of energy dissipation in the
~which depends one0! and vibrational energy in the ba
~which depends on theRn!. Unfortunately, although this for-
mula is a good approximation tov f , explicit calculation
shows that it somewhat underestimatesv f by overestimating
the energy dissipated in the ball. Evidently the partitioning
energy between vibrational modes in the bat and dissipa
in the ball is not very straightforward. The latter energy d
pends directly on the maximum compression of the b
which in turn depends on the ‘‘give’’ of the bat. When
vibrational mode is strongly excited, more of the initial im
pact energy is taken up in the recoil of the segment of the
in contact with the ball, so that less energy is stored~and
therefore dissipated! in the ball. This effect will be evident
when we present the results of our calculations with act
bats in the next section.

ic
983Alan M. Nathan
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The most general case can be cast in the form

general case: v f5Feeff2R0

11R0
Gvball1Feeff11

11R0
Gvbat, ~18!

which is identical to Eq.~16! if e0 is replaced byeeff .
Wherease0 is the coefficient of restitution for the collision o
the ball with a rigid surface~and therefore a property of th
ball alone!, eeff is an effective coefficient of restitution fo
the collision of the ball with a flexible bat. It has the desir
properties that it reduces toe0 in the limit that vibrations are
neglected and it satisfies the definition of coefficient of r
titution @Eq. ~6!# considering only the rigid-body motion o
the bat. Moreover, the fractional energy lost in the collisi
to thecombinedeffects of dissipation in the ball and vibra
tions in the bat is (12eeff

2 )/(11R0) in the frame in which the
bat is initially at rest at the impact point. As we just di
cussed, there is no easy relation that allows us to separat
two forms of energy loss other than by direct numerical c
culation. Moreover, Eq.~18! separates purely kinematic e
fects, such as the bat and ball speeds and masses, from
namic effects that are contained completely ineeff . We
anticipate thateeff depends strongly on the impact locatio
but only weakly on the impact speed, as we shall see in
next section.

We finally come to the point of the different approa
used by Van Zandt7 in his treatment of the collision problem
Van Zandt attempts to improve on the rigid-body result
arguing that the relevant final relative velocity appearing
the definition of the coefficient of restitution, Eq.~6!, is the
difference between the ball speedv f and the speed of the ba
at the impact point, includingboth the rigid-body motion and
the vibrational motion. He arrives at Eq.~16! with the im-
portant modificationR0→R01mballavib , where avib is the
vibrational velocity per unit impulse at the impact point
the precise time the ball and bat separate. This in turn
calculated by solving Eq.~5! with an assumed force profil
F(t), as opposed to our technique based on solving the e
tions of motion directly. Unfortunately, the result has tw
major problems: It does not conserve energy and it does
agree with experiment. We postpone the latter problem to
next section and address here the conservation of en
problem, which can best be understood for the special c
e051 so that there are no losses in the ball. In that case,
~17! is an exact solution that conserves energy and does
agree with the Van Zandt prescription. In Appendix A, w
show via an exact toy model that the Van Zandt prescript
leads to incorrect results. Based on this, we conclude thav f
is not related in any simple way to the surface speed of
bat at the moment of separation. We emphasize this p
strongly not for reason of principle but because the two
proaches lead to quite different results forv f , as we shall see
in Sec. III.

III. RESULTS WITH A STANDARD WOOD BAT

We have used the formalism described in the preced
sections to do a series of calculations on the bat used
Cross in his extensive set of measurements.4 It is a 33-in./
31-oz Louisville Slugger Model R161, with relevant prope
ties listed in Table I and with a measured radius profileR(z)
shown in Fig. 5. Young’s modulus was adjusted to reprod
approximately the measured frequency of the fundame
vibrational mode, resulting in a value;12% larger than tha
984 Am. J. Phys., Vol. 68, No. 11, November 2000
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used by Van Zandt. The calculations are not very sensitiv
the precise value of the shear modulus, which was set to
same value used by Van Zandt. We setN584(Dz51 cm),
implying that good accuracy will be achieved only for mod
with wavelength large compared to 1 cm. However, as
shall see, only the lowest few modes will turn out to
important for the collision problem and for these the wav
length is>30 cm, which is safely large compared to 1 cm
We will refer to this as our ‘‘standard wood bat.’’ We nex
describe the results of these calculations.

A. Normal modes

Using the input parameters discussed above, the eig
value problem was solved to find the normal mode frequ
cies f n5vn/2p ~see Table II! and eigenstates, the lowe
three ~nonrigid! of which are shown in Fig. 6. The lowes
mode has two nodes, one approximately 17 cm~7 in.! and
the other about 68 cm~27 in.! from the knob end. Each
successive higher mode has one additional node. An inte
ing feature is that the lowest three vibrational modes h
nodes in the range 68–74 cm. We will comment more
that particular feature when we discuss the ball–bat collisi
Finally we note that for all of the collisions discussed belo
we include vibrations up to mode 18.

B. Low-impact collision

We initially investigate low-impact collisions between ba
and bat, since it will allow us to compare our results w
experimental data. The data were taken on our stand
wood bat by R. Cross9 using an experimental arrangeme
conceptually similar to that used in his previous study of
impact of superballs on aluminum beams.8 In the experiment
a 1-m/s~2.237-mph! baseball collided with a stationary ba

Table I. Properties of our standard wood bat including the lengthL, massM,
densityr, distance of center of mass from handlezCM , radius of gyration
about the center of massr g , Young’s modulusY, and shear modulusS.

Property Value

L 84 cm
M 0.885 kg
r 649 kg/m2

zCM 0.564 m
r g 23 cm
Y 1.81431010 N/m2

S 1.053109 N/m2

Fig. 5. Radius profile for our standard wood bat.
984Alan M. Nathan
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andv f was measured as a function of impact position alo
the axis of the bat. The coefficient of restitution of the b
was independently measured to bee050.64 for an impact at
1 m/s on a hard floor.

The data are compared with our calculation in Fig. 7, a
the agreement is excellent providede0 is increased to 0.66, a
value probably safely within the experimental uncertainty
its measurement. On the other hand, calculations for a r
bat ~i.e., a bat with only rigid-body modes but no true vibr
tions! follow the data only over a narrow range of impa
locations, making it clear that the vibrations play a very i
portant role in determining the exit speed of the ball. Cal
lations using the formalism of Van Zandt disagree stron
with the experimental results in the regions where vibratio
are important. In Fig. 8~a! we examine the energy accoun
ing. At these low-impact speeds, the collision time is qu
long ~;2.2 ms! so that only the lowest vibrational mod
acquires any appreciable energy@Fig. 8~b!#. At the node of
the lowest mode~68 cm!, v f is equal to the rigid-body value
as we would expect. However,v f is not peaked at this loca
tion. Rather it is peaked a bit closer to the handle due t
delicate interplay between energy going into vibratio
~which is minimized at the node! and energy going into rigid
recoil of the bat~which is minimized at the center of mas
56 cm!. For a rigid bat, the exit velocity is peaked at pr
cisely the center of mass. Finally we see that the ene
dissipated in the ball seems to be anticorrelated with ene
lost to vibrations, as we suggested in Sec. II E.

Fig. 6. Eigenstates for the vibrational modes of our standard wood
including rigid rotation~dash–dot! and the lowest three vibrations.

Table II. Lowest ten vibrational frequenciesf n for our standard wood ba
calculated using the full Timoshenko theory andf n8 calculated with the
approximate Euler–Bernoulli theory. Also shown are the positions of
nodes for the lowest three modes, as measured from the knob end of th

Mode
f n

~Hz!
f n8

~Hz!
Nodes
~cm!

1 165 169 17, 68
2 568 612 7, 39, 72
3 1177 1 334 5, 25, 50, 74
4 1851 2 220
5 2580 3 304
6 3359 4 637
7 4163 6 198
8 4972 7 962
9 5783 9 942

10 6598 12 139
985 Am. J. Phys., Vol. 68, No. 11, November 2000
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While it is gratifying that our calculations agree well wit
the data in Fig. 7, it should be noted thatv f does not provide
a very sensitive test of the model, since only the lowest m
seems to play a role. A more sensitive test is to examine
acceleration profiles at various locations on the bat dur
and after the collision, since these tend to emphasize
more weakly excited high frequencies, as discussed in S
II D. Cross shows measurements of a variety of accelera
and velocity profiles in Figs. 2–4, 6 and 7 of his paper,4 all
of which are faithfully reproduced by our calculations. As
example we show in Fig. 9 our calculation of the data sho
in Cross’s Fig. 3, for which the impact point was at a bar
node of mode 2~72 cm!. The plot of the acceleration show
a clear signature for the excitation of mode 1 when view
near a node of mode 2~6 cm! and for the excitation of mode

t,

Fig. 7. Exit speed of a baseball in a 1-m/s impact on our standard wood
which is initially stationary. The solid curve is our calculated result for
flexible bat, which includes the effects of vibrations. The dotted curve
calculation for a rigid bat. The long dashed curve~VZ! is a calculation using
the technique of Van Zandt~Ref. 7!. The points with error bars are th
measurements of Cross~Ref. 9!.

Fig. 8. The top panel shows the distribution of energy for a 1-m/s impac
our standard wood bat, initially stationary. The bottom panel shows how
vibrational energy is distributed among the normal modes.

e
bat.
985Alan M. Nathan
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3 when viewed near a node of mode 1~16 cm!, despite the
fact that mode 3 is essentially irrelevant in determiningv f .

This agreement between the calculations and experim
gives us confidence that our model for the bat, ball, a
coupling between them is reasonable and contains all
important physics. Armed with this confidence, we next ta
a look at collisions with impact speeds more relevant to
game of baseball.

C. High-impact collision

We now investigate collisions with an incident ball spe
of 40 m/s~90 mph!, a center-of-mass bat speed of 24 m/s~54
mph!, and a bat angular velocity about the center of mas
51 s21. These numbers correspond to the bat rotating abo
point 9 cm from the knob end and imply an impact speed
71 m/s~160 mph! at a location 71 cm from the knob end~13
cm from the barrel end!. We assumee050.50. The results
for v f , which are shown in Fig. 10, are the primary result
this work. Additional results are shown in Fig. 11 for th
energy accounting and Fig. 12 for the effective coefficient
restitution. We now turn to a discussion of these results.

Fig. 9. Acceleration profiles for the impact of a 1-m/s baseball on
standard wood bat on the barrel at the node of vibrational mode 2.
measurement point is near a handle node of either mode 2~6 cm! or mode
1 ~16 cm!. In the latter case, the effect of mode 3 is very evident, despite
fact that very little energy goes into this mode. These calculations co
spond to the measurements in Fig. 3 of Cross~Ref. 4!.

Fig. 10. Exit speed of a baseball with an initial speed of 40 m/s~90 mph!
colliding with our standard wood bat, which has a CM speed of 24 m/s~54
mph! and a rotational speed about the CM of 51 s21. The three plots corre-
spond to rigid modes only (n50), rigid plus the fundamental vibration (n
51), and rigid plus vibrational modes up ton518.
986 Am. J. Phys., Vol. 68, No. 11, November 2000
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For a rigid bat, Eqs.~15! and ~16! imply that the peak of
v f lies between the center of mass~whereR0 is minimized!
and the end of the bat~wherevbat is maximized!. Interest-
ingly, for our standard wood bat, this location nearly co
cides with the location that minimizes vibrations in the b
about 71–72 cm. Indeed,v f is peaked there and coincide

r
e

e
e-

Fig. 11. The top panel shows the distribution of energy for an impact o
90-mph ball on our standard wood bat, which has a CM speed of 54
and a rotational speed about the CM of 51 s21. The bottom panel shows how
the vibrational energy is distributed among the normal modes.

Fig. 12. Plot ofeeff , which is the effective coefficient of restitution for th
ball–bat collision as defined by Eq.~18!, for the collision described in the
caption to Fig. 10~solid line! and for a collision with half the impact spee
~dashed line!. For a rigid bat,eeff would be 0.5, independent of impac
location and impact speed.
986Alan M. Nathan



a-

d
er

,
t,
hi
h
s

e
b

d
er

n
s.
im

e
s

ct
hi
e
he
ing

le
e

p
od
r

he
c
d

ion,
int
a-

the
ea-
id-
oth

on
if-

has
po-
ed
on

c-
nt

the
sur-
in

re-
at

rly
ct
ut
ted

the
of
-

city
stic
me
stic

odes
of

.

bat
ns,
with the rigid-bat value. This location isnot at a node of the
fundamental~68 cm!, as is often stated in the popular liter
ture, but is closer to a node of mode 2~72 cm!. Actually, as
remarked earlier, there are nodes of the lowest three mo
in region 68–74 cm, so that the vibrational energy is not v
large in this region andv f is close to its rigid value. How-
ever, outside this region,v f drops off rapidly. For example
at 60 cm, which is about the start of the ‘‘fat’’ part of the ba
v f has dropped by about 25% relative to the rigid value. T
is in stark contrast to the results of Van Zandt, for which t
drop-off is of order 2%–3%.7 The ball exit speed also drop
off rapidly for impact locations larger than about 80 cm
which is beyond the outermost node for each of the low
four modes. Therefore all four modes contribute to a siza
vibrational energy and a significant lowering ofv f .17 If v f is
calculated including only the lowest vibrational mode~n
51 curve in Fig. 10!, the curve shifts closer to the rigi
curve, which makes good sense based on energy cons
tion but which disagrees with Van Zandt.

The distribution of energy behaves about the way o
would expect based on our previous discussion and Fig
and 4. The high impact speed leads to a short collision t
~typically 0.6 ms!, resulting in excitation of vibrations up to
about mode 4 (f 451851 Hz), as is evident in Fig. 11. Th
plots also show the anticorrelation between energy losse
the ball and the vibrational energy. In Fig. 12 we ploteeff for
this collision as well as for a collision at half the impa
speed. The similarity confirms our earlier remark that t
quantity is only weakly dependent on the impact speed. G
erally,eeff is slightly higher at the lower impact speed, as t
longer collision time results in less effectiveness in excit
vibrations.

It is interesting to investigate the motion of the hand
resulting from the impact. In Fig. 13 we show the displac
ment of three segments in the handle of the bat~in a frame of
reference in which the segments are initially at rest! when the
ball impacts atz568 cm. Several interesting features are a
parent. There is both a dc component due to the rigid-b
modes and an oscillating component due to the true vib
tions. The measurement point at 13 cm is t
center-of-percussion6 conjugate to the impact point, so the d
component vanishes. For the measurement points at 6 an

Fig. 13. Displacement~including the dc component! of three different seg-
ments in the handle of the bat with an impact location atz568 cm from the
knob end, as viewed in a frame in which the segment is initially at rest
987 Am. J. Phys., Vol. 68, No. 11, November 2000
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cm, which are on opposite sides of the center of percuss
the bat recoils in opposite directions, with the 6-cm po
moving in the direction of the rebounding ball. The vibr
tions are dominated by the second and third modes, since
impact point is close to a node of the primary. For the m
surement point at 6 cm, the vibrational amplitude is cons
erably weaker since this point is very close to nodes of b
the second and third modes~see Fig. 6!. The vibrational
amplitude and waveform observed in the handle depend
the impact location. This is shown in Fig. 14 for three d
ferent impact locations~z561, 71, and 81 cm! and for a
measurement point at 13 cm, where the dc component
been removed in order to emphasize the vibrational com
nents. The vibrational amplitude in the handle is minimiz
at the 71-cm impact point, as one might expect based
consideration of the vibrational energy~Fig. 11!. There is a
wealth of interesting information about the vibrational spe
trum contained in these waveforms, but we will not comme
further on that.

Perhaps the most interesting feature of Fig. 13 is that
handle of the bat responds to the impact only after a mea
able delay. We investigate this point on a finer time scale
Fig. 15, where we show the velocity of the bat~including the
dc component! at the 13-cm point due to an impact atz
568 cm. It is evident that the handle does not start to
spond until about 0.5–0.6 ms after the initial contact,
which time the transfer of momentum to the ball is nea
complete. Any clamping action of the hands will not affe
the bat at the impact location until one round trip, or abo
1.0–1.2 ms, by which time the ball and bat have just star
to separate~see the discussion in Sec. II B!. This justifies the
treatment of the bat as a free object on the time scale of
collision. The hands undoubtedly do affect the vibrations
the bat,4 but only after the collision is complete. It is inter
esting to see whether the propagation time of the velo
pulse is consistent with the expected group velocity of ela
waves in the bat. Guided by Fig. 4 and using a collision ti
of 0.6 ms, we estimate that the frequency spectrum of ela
waves is peaked at zero frequency and has a spreadD f of
about 1600 Hz. Taking the average separation between n
as half a wavelength, we find the corresponding spread
inverse wavelengthsD(1/l) to be about 2.25 m21. Therefore
the group velocityvg;D f /D(1/l) is about 700 m/s. This

Fig. 14. Vibrational component of the displacement of a segment of the
located 13 cm from the knob end with an impact at three different locatio
as viewed in a frame in which the segment is initially at rest.
987Alan M. Nathan
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would imply a propagation time from 68 to 13 cm of abo
0.8 ms, which is roughly consistent with Fig. 15. Because
phase velocity of the elastic waves is a strong function
frequency, there is considerable dispersion in the pulse,
the higher frequency components arriving first.

We can carry this analysis further by considering the c
lision of a ball with a bat that is pivoted about a point on t
handle. This is exactly the condition under which bats
certified for use by the NCAA under their new standards18

so it is both an interesting and a practical question as
whether a pivoted bat behaves differently than a free
~which we have shown is equivalent to a hand-held bat as
as the ball is concerned!. Treatment of a pivoted bat require
modifying our equations of motion by adding an addition
force at the pivot point that is adjusted at each step in
numerical integration to make the acceleration of the ba
that point vanish. We compare a pivoted to a free bat in F
16, where we have assumed in both cases a 40-m/s inc
ball on a bat that is rotated about a pivot point located 15
from the knob end with an angular velocity of 56 s21. Over
the range of impact locations shown, the calculatedv f is
remarkably identical in the two cases, despite the fact
the results are very different if we treat the bat as a ri
body. This result makes sense when analyzed in the con
of pulse propagation times. For an impact at 50 cm, we
timate that the time for the elastic pulse to make the rou
trip to the pivot and back is approximately 1 ms, which
longer than the collision time of 0.6 ms and a little shor

Fig. 15. Velocity of a segment of the bat 13 cm from the knob end with
impact at 68 cm, as viewed in a frame in which the bat is initially at re
The arrow indicates the time at which 99% of the impulse to the ball
occurred. This plot shows that the handle has barely started to react b
time the collision is complete.

Fig. 16. Calculations comparing the exit velocity of the ball for a free~full
curve! and pivoted~points! bat. The dotted and dashed curves are calcu
tions for a rigid free and pivoted bat, respectively.
988 Am. J. Phys., Vol. 68, No. 11, November 2000
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than the contact time of 1.2 ms. For impact locations clo
to the handle than 50 cm, the analysis of the results is c
plicated by the fact that multiple collisions occur due to t
low exit speed of the ball and the large vibrational amplitu
in the bat.

One can similarly investigate the effect of modifying th
bat by changing either the length or the diameter of
handle. Not surprisingly, we find that for impacts far fro
the handle~e.g., in the barrel region!, v f is insensitive to the
detailed size and shape of the handle or to the means
which it is suspended~e.g., free, pivoted, or clamped!. As in
our toy model, the ball doesn’t know that the far end of t
bat is there. This conclusion is completely in accord with t
measurements, calculations, and analysis of Cross for
collision of superballs with aluminum beams.8

IV. SUMMARY

We have developed a model for the collision between
baseball and bat that takes into account the vibrational
grees of freedom of the bat. Although our technique for fin
ing the normal modes closely parallels that of a previo
investigation, our technique for the coupling between the b
and bat differs sharply. We have shown the model to be
excellent agreement with experimental data at low imp
velocities. At the higher velocities more appropriate to t
game of baseball, we show that the vibrations excited in
bat play a crucial role in determining the ball exit speedv f .
In particularv f coincides with the rigid-body value only ove
a very small region in the barrel of the bat and drops
sharply for impacts removed from that region. Our calcu
tions give several insights into the collision process. T
most interesting of these is the observation that the handl
the bat has barely started to react to the impulse by the t
the momentum transferred to the ball is complete and
any clamping action of the hands will affect the bat at t
impact point only after the ball and bat have separated. F
this we have concluded that the exit speed of the bal
essentially independent of the detailed size, shape,
method of support of the bat at distances far removed fr
the impact location.
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APPENDIX A: A TOY MODEL

We propose the toy model shown in Fig. 17 as a way
understand the essential features of the ball–bat collis
We model the ball as a massless linear spring of force c
stantk with a block of massm attached to one end and th

n
.
s
the

-

Fig. 17. Toy model for the ball–bat collision.
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other end free. We model the bat as two massesMa andMb

connected by a linear spring of force constantk1 . This is a
one-dimensional problem, with the ‘‘bat’’ initially at rest an
the ball initially with speedv i . The toy bat has exactly two
degrees of freedom, corresponding to the center-of-mass
tion and to the excitation of the spring. The ball impacts
massMa and the goal is to find the rebound speed of the b
and the energy going into recoil and vibrations of the
after the ball and bat separate. This is a problem that ca
solved analytically, although we will find it more convenie
to do it numerically.

Given the masses andv i , the essential parameter that d
terminesv f is vt, wherev5Ak1 /mab, mab is the reduced
mass of the bat, andt is the collision time~approximately
1/2 the period of oscillation of the ball spring!. For definite-
ness, we fixm, Ma , andMb to be 1, 2, and 4 units, respec
tively, setk51, and calculatev f as a function ofvt ~varying
k1!. Our results are shown in Fig. 18. In the two extrem
regimes,vt@1 andvt!1, a simple physical interpretatio
is possible. Forvt@1, corresponding to a very stiff ba
spring, the ball pushes slowly on the bat, which recoils a
whole without exciting the spring. This is just elastic scatt
ing of a mass 1 object from a mass 6 object, from which
easily calculatev f /v i50.714. On the slow time scale of th
collision, the bat is completely rigid and all the energy
shared between the ball and the center-of-mass mode o
bat. The opposite extreme,vt!1, corresponds to a ver
loose bat spring. On the comparatively short time scale of
collision, Ma is essentially uncoupled fromMb , so that ki-
nematically the collision looks like elastic scattering of

Fig. 18. Results of the toy model calculation ofv f /v i ~top panel! and the
energy partitioning~bottom!. In the top panel, the solid curve is the result
our exact calculation whereas the dashed curve~VZ! is that calculated using
the prescription of Van Zandt~Ref. 7!. In the bottom panel the solid, dotted
and dashed curves are, respectively, the energy fractions going into the
the center-of-mass motion of the bat, and the vibrations of the bat.
989 Am. J. Phys., Vol. 68, No. 11, November 2000
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mass 1 object from a mass 2 object. In effect, the ball d
not ‘‘know’’ that Mb is there. We easily findv f /v i50.333,
with a substantial amount of the energy going into the vib
tional mode of the bat. Also shown isv f /v i predicted from
the prescription of Van Zandt,7 which disagrees with the ex
act calculation except in the two extreme limits. A detail
look at the calculations shows that the exit speed of the
is not related in a simple way to the speed ofMa at the time
of separation.

The essential features of this toy model are applicable
diverse areas of physics. For example, in the scattering
electrons from a composite system such as a nucleus,
electron can scatter elastically from the total charge distri
tion in the nucleus~a process simply called elastic scatterin!
or can scatter from individual protons in the nucleus~com-
monly called quasielastic scattering!. Whenever the energy
of the electron is low compared to typical binding energies
the system~equivalent to long time scales in our classic
problem!, only elastic scattering is possible. At higher ene
gies ~or equivalently short time scales!, quasielastic scatter
ing dominates.

APPENDIX B: EQUATIONS OF MOTION IN THE
CONTINUUM LIMIT

In this Appendix, we show the connection between o
equations of motion and those of Graff.10 We take the con-
tinuum limit ~N→`, Dz→0! of Eqs.~1! and~2!, arriving at
the so-called Timoshenko equations for the free vibration
a nonuniform beam:

rAÿ5
]V

]z
~19!

and

rI f̈5
]M

]z
2V, ~20!

where the shearing forceV is given by

V5SAS ]y

]z
1f D ~21!

and the bending torqueM given by

M5YI
]f

]z
. ~22!

In fact, these equations are even more general than our o
nal ones, since they are valid even ifY, S, andr are nonuni-
form. Indeed, we could have used these as our starting p
One often combines these coupled second-order~in time!
differential equations into the following single fourth-ord
equation, which we have generalized here for nonunifo
cross section:

rAÿ52
]2

]z2 S YI
]2y

]z2D1rS 11
Y

SD ]2~ I ÿ !

]z2 2
r2I

S

....

y . ~23!

A common approximate treatment is effected by negle
ing both the deformation due to the shear forces~S→`,
]y/]z→2f, with V finite! and the moment of inertia in Eq
~20! ~so that]M /]z5V!. In Eq. ~23! this is equivalent to
neglecting the last two terms on the right-hand-side, lead
to the much simpler Euler–Bernoulli equation:10

all,
989Alan M. Nathan
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rAÿ52
]2

]z2 S YI
]2y

]z2D . ~24!

From the structure of Eq.~23!, it is easy to see that th
neglect of the moment of inertia and shear strain introdu
errors into the vibrational frequencies of order (R/l)2 and
(Y/S)(R/l)4, respectively, whereR is a characteristic radiu
of the bat andl is the wavelength of the vibration. If on
were so inclined, one could use the solutions of Eq.~24! as a
starting point and treat the neglected terms in perturba
theory. A comparison between the Timoshenko and Eul
Bernoulli theories for the lowest ten vibrational frequenc
is given in Table II for our standard wood bat. One sees t
the full theory lowers the frequencies by an amount that
creases dramatically for the higher modes. Cross used
Euler–Bernoulli theory in his study of the collision of supe
balls with aluminum beams.8 In the present work, we exclu
sively use the full Timoshenko theory.
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