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Dynamics of the Cosmological Constant in Two-Dimensional Universe 
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Department of Physics, Kyoto University, Kyoto 606-01 

(Received October 1, 1993) 

We consider a two-dimensional model of gravity with the cosmological constant as a dynamical 

variable. The effective cosmological constant is derived when the universe has no initial boundary. 

It turns out to be extremely small if the universe is sufficiently large. 

§ 1. Introduction 

It is a profound mystery about the Universe that the observational bounds for the 

cosmological constant are incredibly small. This has motivated various ideas1
l on 

the subject of gravitation and cosmology. 

Recent interest in two-dimensional gravity might be largely rooted in stringy 

approach to unified theory. However, we hope that two-dimensional theories of 

gravity may also serve as toy models for investigating qualitative features of realistic 

gravity in four dimensions. 

In this paper, we consider a simple model of two-dimensional gravity where the 

cosmological constant appears as a constant of integration. Namely, the cos­

mological constant is determined by an initial conditon for a dynamical variable, 

whose expectation value will be computed when the state of the universe is of the 

Hartle-Hawking type.2
l The effective cosmological constantturns out to be extreme­

ly small if the universe is sufficiently large. 

§ 2. The model 

Let us consider the following model Lagrangian in two dimensions: 

(1) 

where ..£ c(gp.v) denotes the effective Lagrangian for conformal matter with central 

charge c coupled to gravity,3
l,

4
l p is a renormalized cosmological constant, ./ repre­

sents the invariant volume density5
l in terms of the metric tensor gp.v, ;\ is a scalar field 

which contributes to the effective cosmological constant, AP is an abelian gauge field, 

and Ep.v denotes the Levi-Civita tensor. 

The model (1) may be regarded as a two-dimensional analogue of the covariant 

form of unimodular gravity in four dimensions given by Henneaux and Teitelboim.6
l 

Classically its physical contents are almost the same as those of the conventional 

gravity. A major difference results from equations of motion ap.;\=0, which indicate 

that the effective cosmological constant appears as a constant of integration. Thus 

it is determined by an initial condition for the universe. 
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In the following sections, we will calculate the expectation value of the observ­
able il in the case of no-boundary universe, which involves an initial condition we 
need. That is, we adopt as our universe a hemisphere with w wormholes attached. 
Then the desired expectation value will be obtained as a one-point function (il) on a 
closed Riemann surface M with h=2w handles. 

§ 3. Partition function 

In this section, we estimate the partition function for the model (1) exposed in the 
previous section: 

(2) 

where 

(3) 

We note that integration over the multiplier field il should be performed along the 
direction of the imaginary axis7

> so as to put the theory (1) properly in the Euclidean 
path integral (2). 

Let us first define the zero mode ilo of the field il as follows: 

(4) 

where il1 satisfies a condition 

a,"h =o ~ il1 =O. (5) 

Then the action (3) is written as 

(6) 

Here we have introduced 

(7) 

where T comes out to be a number which is independent of fluctuation in the field Ap. 
The form (6) of the action S allows us to perform successive path integration in 

(2) over the fields A" and il1 to obtain 

(8) 

where 

(9) 

Further integration over the variable ilo results in the expression 
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which implies that T characterizes the size of the universe. 

This expression of the partition function Z makes its T dependence apparent4
l 

through scaling behavior: 

(11) 

where we have defined a constant 

X= 
1
1
2 

(h-1)(25-c+J(25-c)(1-c))-1. (12) 

Note that the form (11) is universal in the sense that it appears independent of the 

detailed content of matter-gravity action Sc when the volume T is large. 

§ 4. Cosmological constant 

Now we proceed to compute the desired one-point function <it>. With the aid of 

Eqs. (8) and (9), we see 

z-l a~ z =<ito>=<it>' (13) 

where the last equality follows from the definition (4) and (5). Thus, by means of (11), 

we obtain 

(14) 

Quantum fluctuation X is defined by 

it=<it>+ X, (15) 

which satisfies <X>=O. Substituting the above expressions into the Lagrangian (1), 

we immediately get 

. (16) 

where we have written 

(17) 

As a conceivable interpretation, these results imply that the effective cos­

mological constant, which directly affects the motion of the metric g,..v, is given by A 

with the fluctuation X contributing to it no more. In view of (17), we conclude that 

the effective cosmological constant is expected to be extremely small when the 

universe is sufficiently large. 
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§ 5. Discussion 

We have computed the effective cosmological constant (17) in the theory (1) of 
two-dimensional gravity when the state of the universe is of the Hartle-Hawking type. 

Two remarks are in order: 

i) Although the value A is tiny for large T, it turned out to be non-zero. Observa­
tional cosmology suggests that this feature might be realized in the Universe. 

ii) The effective cosmological constant A is not necessarily small when the size of 

the universe T is not so large. This might be adequate for inflationary scenarios 
which need dominance of the cosmological-constant effect in an early epoch of the 

Universe. 

It seems interesting to ask whether these features will be attained in realistic 

four-dimensional quantum gravity yet to come. 
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