
Proceedings of the Royal Society of Edinburgh , 130A , 1275{1291 , 2000

Dynamics of the di® usive Nicholson’s blow° ies
equation with distributed delay

S. A. Gourley
Department of Mathematics and Statistics, University of Surrey,
Guildford, Surrey GU2 5XH, UK (s.gourley@mcs.surrey.ac.uk)

S. Ruan
Department of Mathematics and Statistics, Dalhousie University,
Halifax, Nova Scotia, Canada B3H 3J5 (ruan@mscs.dal.ca)

(MS received 26 May 1999; accepted 13 August 1999)

In this paper we study the di® usive Nicholson’s blow° ies equation. Generalizing
previous works, we model the generation delay by using an integral convolution over
all past times and results are obtained for general delay kernels as far as possible.
The linearized stability of the non-zero uniform steady state is studied in detail,
mainly by using the principle of the argument. Global stability both of this state and
of the zero state are studied by using energy methods and by employing a
comparison principle for delay equations. Finally, we consider what bifurcations are
possible from the non-zero uniform state in the case when it is unstable.

1. Introduction

Over a period of two years, Nicholson [14] carefully recorded the population of
the Australian sheep-blow®y (Lucia cuprina) and observed a regular basic periodic
®uctuation of ca. 40 days. Although the delayed logistic equation (see [9])

du

dt
= ru(t)

³
1

u(t ½ )

K

´

could be used to explain the oscillatory phenomenon (see [13]), with K representing
the food level available and ½ denoting the approximate time for a larva to mature
into an adult, the discrepancy is that the Hutchinson’s equation gives a delay of
ca. 9 days while the actual delay is ca. 11 days. To overcome this discrepancy, Gurney
et al . [8] proposed the following delay model

du

dt
= ¯ u(t) + pu(t ½ ) exp[ au(t ½ )];

where p is the maximum per capita daily egg production rate, 1=a is the size
at which the blow®y population reproduces at its maximum rate, ¯ is the per
capita daily adult death rate and ½ is the generation time. Since this equation
explains Nicholson’s data of blow®ies more accurately (see [15]), it is now referred
to as the Nicholson’s blow° ies equation and has been studied by many researchers
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(see [11, 17, 18] and the references cited therein). Notice that after rescaling

u ¤ = au; t ¤ = ½ t; ½ ¤ = ¯ ½ ; ­ = p=¯

and dropping the asterisks, the Nicholson’s blow®ies equation becomes

du

dt
= ½ u(t) + ­ ½ u(t 1) exp[ u(t 1)]:

Recently, the di¬usive Nicholson’s blow®ies equation

@u

@t
= ½ u(x; t) + ­ ½ u(x; t 1) exp[ u(x; t 1)] + dr2u (1.1)

with Dirichlet boundary conditions has been proposed and investigated by So and
Yang [19]. They studied the global attractivity of the positive steady state of the
equation. Some numerical and Hopf bifurcation analysis of this model has been
carried out by So et al . [20] (see also [22] for an analysis of the equation with
Neumann boundary conditions).

In this paper we shall study various local and global aspects of the following
generalization of (1.1)

@u

@t
= ½ u(x; t)

+ ­ ½

³Z t

1
f(t s)u(x; s) ds

´
exp

³ Z t

1
f (t s)u(x; s) ds

´
+ dr2u

(1.2)

for (x; t) 2 « £ [0; 1), where « is either all of Rn or some ­ nite domain, and where
the kernel f (t) satis­ es f (t) > 0 and the conditions

Z 1

0

f (t) dt = 1 and

Z 1

0

t f(t) dt = 1: (1.3)

Equation (1.2) is a scalar di¬usive equation with distributed (in­ nite) delay. Such
equations have been extensively used to model single species growth with both
di¬usive and hereditary e¬ects and exhibit very rich and interesting dynamics (see,
for example, [1,3,6,16]). For the fundamental theories of reaction di¬usion equations
with delay, we refer to the monograph of Wu [21].

Equation (1.1) is a special case of (1.2) because the kernel f(t) in (1.2) can be
chosen to be ¯ (t 1). The ­ rst of the conditions (1.3) ensures that the presence of
delays does not a¬ect the equilibrium (steady) states. The quantity ½ measures the
delay in the system in the sense that an alternative way to formulate the problem
is to take ½ = 1 in (1.2), drop the second assumption in (1.3) and then de­ ne

½ =

Z 1

0

t f (t) dt;

the mean of the delay kernel f (t) (this is the standard way to de­ ne the delay
in distributed delay models). If one does this and then makes appropriate non-
dimensionalizations, the result is equation (1.2), with the second assumption in
(1.3). This is the sense in which ½ in (1.2) measures the delay. The point is that
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we want ½ to appear explicitly in the model equation, not implicitly through some
constraint.

The time delay in the model of the present paper represents generation time.
There are numerous other possible reasons for incorporating time delays into mod-
els of populations, for example, resource regeneration times and gestation periods
(see [5] for a general discussion of the reasons for introducing time delays in popu-
lation models). Indeed, one can further argue that the incorporation of time delays
into a di¬usion model should give rise to non-local spatial e¬ects (see [3]). This
can be done straightforwardly only if the domain is in­ nite (in which case the time
delayed term will also involve a convolution in the spatial variable). However, in
this paper one of our main interests is the question of global convergence and our
techniques are only suitable for studying such problems on a ­ nite domain. Thus
non-local spatial e¬ects are not included.

The paper is organized as follows. In x 2 we con­ rm that solutions of our equation
which start positive, stay positive. This is important for ecologism realism and
positivity of solutions is also needed in certain parts of our mathematical analysis.
In x 3 we study the uniform states u ² 0 and u ² ln ­ of (1.2) in terms of both
their local (linearized) stability and their global stability. Global stability is analysed
using energy methods and comparison methods, while for the linearized analysis the
roots of the dispersion relations are studied by using the principle of the argument.
In x 4 we consider what bifurcations might occur from the ln ­ state when it is
unstable, and ­ nally we summarize our conclusions in x 5.

2. Positivity of solutions

In models of population dynamics it is important to ensure, for biological realism,
that solutions of the model equations remain positive for all time. In this subsection
we prove the following theorem.

Theorem 2.1. If the spatial domain « is ¯nite, with homogeneous Neumann
boundary conditions ru ¢ n = 0 on the smooth boundary @« , then the solution
of (1.2) corresponding to the initial data u(x; t) = ¿ (x; t) for t 6 0, x 2 ·« will
satisfy u(x; t) > 0 for all t > 0 and x 2 ·« , provided that ¿ > 0 and ¿ 6² 0.

Proof. Without loss of generality we can assume u(x; 0) = ¿ (x; 0) 6² 0. Otherwise
there must exist an earlier time at which ¿ 6² 0 and that earlier time can play the
role of t = 0 in the argument below. In this case, the integral terms in (1.2) will
play the role of forcing functions from this earlier time until time t = 0, but our
argument still holds.

Suppose the theorem is false, then there is a ­ rst time t ¤ and corresponding
x ¤ 2 ·« such that u(x¤ ; t ¤ ) = 0. Then the integral terms in (1.2) are non-negative
for t 6 t ¤ and so

@u

@t
dr2u + ½ u(x; t) > 0 for (x; t) 2 « £ (0; t ¤ ]:

The strong maximum principle (see [2, theorem 4.9]) then says that either u > 0 in
« £ (0; t ¤ ] or u ² 0 in « £ (0; t ¤ ¤ ] for some t ¤ ¤ 6 t ¤ . The ­ rst of these possibilities
will contradict u(x¤ ; t ¤ ) = 0 unless x¤ 2 @« , a possibility still to be covered, while
the second possibility would imply u(x; 0) ² 0 which contradicts u(x; 0) 6² 0.
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If u(x¤ ; t ¤ ) = 0 with x¤ 2 @« , then the boundary point lemma says either that
ru ¢ n < 0 at (x ¤ ; t ¤ ) (contradicting the boundary conditions) or that u ² 0 in
« £ (0; t ¤ ¤ ] for some t ¤ ¤ 6 t ¤ which, as above, contradicts the fact that the initial
data is not identically zero. This completes the proof of the theorem.

3. Stability of the uniform states

Equation (1.2) has two spatially uniform steady states, these are the zero state and
the state u ¤ ² ln ­ . Of course, the latter is only ecologically relevant if ­ > 1 and its
stability will be studied under this assumption. In this section we present detailed
stability results for each of these two states, starting with the zero state.

3.1. Global stability of the zero state

In this subsection we shall discuss the global stability (in the L2 norm) of the
zero steady state of (1.2) if the domain is bounded and the boundary conditions
are homogeneous Neumann.

Theorem 3.1. If ­ < 1 and the spatial domain « is ¯nite, with homogeneous
Neumann boundary conditions ru ¢ n = 0 on the smooth boundary @« , then the
zero steady state of (1.2) is globally asymptotically stable.

Proof. Letting u be a solution of (1.2), we de­ ne

H(t) =

Z

«

(u(x; t))2 dx:

We di¬erentiate H(t) along solutions of (1.2). Certainly,
Z

«

ur2u dx =

Z

@«

u ru ¢ n dS

Z

«

jruj2 dx;

which is clearly negative, since ru ¢ n = 0 on @« . Also, since u has been shown to
be positive,

exp

µ Z t

1
f (t s)u(x; s) ds

¶
6 1:

Thus it is easily seen that

1

2

dH

dt
6 ½ H(t) + ­ ½

Z t

1
f(t s)

Z

«

u(x; t)u(x; s) dx ds:

Next we use the basic inequality xy 6 1
2
¬ 2x2 + (1=2¬ 2)y2, where ¬ can be chosen

to our advantage. The second term in the above is bounded by

­ ½

Z t

1
f (t s)

µZ

«

1
2 ¬ 2(u(x; t))2 dx

¶
ds+­ ½

Z t

1
f(t s)

µZ

«

1

2 ¬ 2
(u(x; s))2 dx

¶
ds;

which equals, using Z 1

0

f (t) dt = 1
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on the ­ rst term,

1
2
­ ½ ¬ 2H(t) +

­ ½

2 ¬ 2

Z t

1
f (t s)H(s) ds:

Thus

1

2

dH

dt
6 ( ½ + 1

2 ­ ½ ¬ 2)H(t) +
­ ½

2¬ 2

Z t

1
f (t s)H(s) ds

or, on choosing ¬ = 1=
p

­ ,

dH

dt
6 ½ H(t) + ­ 2 ½

Z t

1
f (t s)H(s) ds:

Solutions of this di¬erential inequality are bounded by solutions of the correspond-
ing di¬erential equality, to which the theorems of [12] and [4] apply. The conclusion
is that H(t) ! 0 as t ! 1 if all the roots ¼ of the equation ¼ + ½ ­ 2 ½ ·f( ¼ ) = 0 are
strictly in the left half of the complex plane, where ·f denotes the Laplace transform
of f ,

·f ( ¼ ) =

Z 1

0

f (t)e ¼ t dt:

We show that ­ < 1 ensures that the roots of this equation are where we want
them. Suppose that ­ < 1 but that there is a root ¼ with Re ¼ > 0. For such a root,

j ·f ( ¼ )j 6
Z 1

0

f (t)je ¼ tj dt

=

Z 1

0

f (t)je (Re ¼ )tj dt

6
Z 1

0

f (t) dt

= 1:

Since the root satis­ es ¼ + ½ ­ 2 ½ ·f( ¼ ) = 0, we have

j¼ + ½ j = j­ 2 ½ ·f( ¼ )j 6 ­ 2 ½ ;

so that it lies in the circle centred at ½ in the complex plane and having radius
­ 2 ½ . But ­ < 1 implies that this circle is contained entirely in the left half plane,
contradicting the assumption that Re ¼ > 0.

Thus we have shown that if ­ < 1, then the zero solution of our equation is
globally asymptotically stable in the L2 norm sense. What we are doing essentially
is bounding the L2 norm of u, namely H(t), in terms of the solutions of a linear
di¬erential inequality, so that we end up using linear ideas in obtaining a nonlinear
result.

It can easily be shown that if ­ > 1, then the zero steady state is linearly unstable.
Thus our stability condition cannot be improved.
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3.2. Linearized stability of the non-zero steady state

The result in the previous subsection indicates that (1.2) undergoes the ­ rst
bifurcation at ­ = 1: when ­ < 1, the zero steady state is stable; when ­ > 1,
it becomes unstable and a non-zero steady state u ¤ = ln ­ exists. Throughout the
remainder of this paper we shall assume that ­ > 1 so that this steady state is
positive.

If we linearize (1.2) about u ¤ = ln ­ , by setting u = ln ­ + ~u and neglecting
nonlinear terms in ~u, we obtain

@~u

@t
= ½ ~u + ½ (1 ln ­ )

Z t

1
f (t s)~u(x; s) ds + dr2~u: (3.1)

Trial solutions of the form
~u = exp( ¼ t + ik ¢ x)

exist whenever

¼ + ½ ½ (1 ln ­ ) ·f ( ¼ ) + dk2 = 0; (3.2)

where k2 = k ¢k and ·f denotes the Laplace transform of f . Of course, if the domain
is ­ nite, then exp(ik ¢ x) is not necessarily the appropriate trial solution, it depends
on the shape of the domain. However, the eigenvalue equation will always have
the form given by (3.2), k2 being an eigenvalue of r2. There will be a countably
in­ nite sequence of eigenvalues if the domain is ­ nite, and any positive value is
allowable if it is in­ nite.

We ­ rst prove the following result which gives a local stability condition on the
steady state u¤ = ln ­ that is independent of the delay ½ .

Theorem 3.2. If 1 < ­ 6 e2, then the steady state u ¤ = ln ­ of (1.2) is linearly
stable for any delay kernel.

Proof. We need to show that all the roots ¼ of (3.2) are in the left half of the
complex plane for any k2 > 0. Let’s assume for contradiction that there is a root
with Re ¼ > 0 for some k2 > 0. For this root, j ·f ( ¼ )j 6 1, so that

j ¼ + ½ + dk2j = j ½ (1 ln ­ ) ·f ( ¼ )j
6 ½ j1 ln ­ j

and the root lies in the circle centred at ½ dk2 and having radius ½ j1 ln ­ j.
The desired contradiction will certainly be achieved if this circle is entirely in the
left half complex plane and, noting that the worst case scenario is k = 0, this will
be the case if ½ j1 ln ­ j < ½ , which gives 1 < ­ < e2. If ­ = e2, then the above-
mentioned circle will have radius ½ and so, if k = 0, it will just include the origin.
But it is easily veri­ ed that ¼ = 0 cannot be a root of the eigenvalue equation. This
completes the proof.

Next we shall analyse the eigenvalue equation (3.2) in a more general way, and
then give some further su¯ cient stability conditions which follow from this. The
eigenvalue equation is F ( ¼ ) = 0, where

F ( ¼ ) = ¼ + ½ ½ (1 ln ­ ) ·f ( ¼ ) + dk2:
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It follows from a general result in complex variable theory that the number of roots
of F ( ¼ ) = 0 in the right half of the complex plane will be given by

lim
R ! 1

1

2 º i

Z

® (R)

F 0( ¼ )

F ( ¼ )
d ¼ ;

where ® (R) is taken as the closed semicircular contour centred at the origin and
contained in Re ¼ > 0. We let ® c(R) be the curved part

® c(R) = fRei³ ; ³ 2 [ º =2; º =2]g

and ® s (R) be the straight part

® s (R) = fiy; y 2 [R; R]g;

so the contour is traversed in the anticlockwise sense. We shall ­ rst show that

lim
R ! 1

1

2º i

Z

® c(R)

F 0( ¼ )

F ( ¼ )
d ¼ = 1

2 :

To prove this, ­ rst note that

1

2 º i

Z

® c(R)

d ¼

¼
= 1

2 :

Hence
­­­­

1

2 º i

Z

® c(R)

F 0( ¼ )

F ( ¼ )
d ¼ 1

2

­­­­

=
1

2 º

­­­­
Z

® c(R)

³
F 0( ¼ )

F ( ¼ )

1

¼

´
d ¼

­­­­

=
1

2 º

­­­­
Z º =2

º =2

³
Rei ³ ½ (1 ln ­ ) ·f 0(Rei³ ) ½ + ½ (1 ln ­ ) ·f (Rei³ ) dk2

Rei ³ (Rei³ + ½ ½ (1 ln ­ ) ·f (Rei ³ ) + dk2)

´
iRei ³ d ³

­­­­

6 1

2 º

Z º =2

º =2

³
R½ j1 ln ­ jj ·f 0(Rei³ )j + ½ + ½ j1 ln ­ j + dk2

R ½ ½ j1 ln ­ j dk2

´
d ³

6 const:

Z º =2

º =2

j ·f 0(Rei³ )j d ³ + O

³
1

R

´
! 0 as R ! 1 (see below):

In one of these estimates we have used the fact that j ·f (Rei ³ )j 6 1. The term
j ·f 0(Rei³ )j 6 1 has to be estimated in a more sensitive way, as follows:

Z º =2

º =2

j ·f 0(Rei³ )j d ³ =

Z º =2

º =2

­­­­
Z 1

0

tf(t) exp( tRei³ ) dt

­­­­d ³

6
Z º =2

º =2

Z 1

0

tf (t)e tR cos ³ dt d ³

= 2

Z 1

0

tf (t)

³Z º =2

0

e tR s in ¿ d ¿

´
dt

6 2

Z 1

0

tf (t)

³Z º =2

0

e 2tR¿ =º d ¿

´
dt
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=
º

R

Z 1

0

f (t)(1 e tR) dt

6 º

R
! 0 as R ! 1:

In one of these estimates we have used the inequality sin ¿ > 2¿ =º , which is valid
for 0 6 ¿ 6 º =2.

We now have that

lim
R ! 1

1

2 º i

Z

® (R)

F 0( ¼ )

F ( ¼ )
d ¼ = 1

2 + lim
R ! 1

1

2 º i

Z R

R

F 0(iy)

F (iy)
i dy

= 1
2

+ lim
R ! 1

1

2 º i
(ln F ( iR) ln F (iR))

= 1
2

1

º
lim

R ! 1
arg F (iR):

Here we have used the fact that F (iR) and F ( iR) are complex conjugates of each
other (as can easily be shown) so their moduli are equal but their arguments di¬er
in sign.

We’ve now shown that the number of roots of F ( ¼ ) = 0 in the right half complex
plane is given by the last line in the above calculation. Some further facts will
enable us to pin down the various possibilities. First note that

F (0) = ½ ½ (1 ln ­ )

Z 1

0

f(t) dt + dk2 = ½ ln ­ + dk2 > 0:

Also, F (iR) = iR+ ½ ½ (1 ln ­ ) ·f (iR)+dk2, so that, since j ·f (iR)j 6 1, j Re F (iR)j is
bounded independently of R while Im F (iR) grows linearly with R. If one imagines
drawing the graph of Im F (iR) against Re F (iR) (with R as a parameter), the graph
will start on the positive real axis and will go to in­ nity like the positive imaginary
axis, being con­ ned to some strip centred thereon. The origin could be on either
side of this graph or the graph may encircle it, possibly many times. The total
change in arg F (iR), as R goes from zero to in­ nity, must be one of the values
(1 4n) º =2, n = 0; 1; 2; : : : . The actual number of roots of F ( ¼ ) = 0 in the right
half complex plane will then be 2n and n = 0 is therefore the only possibility for
stability.

The following two theorems give conditions which are su¯ cient (but not neces-
sary) to have stability of the steady state u¤ = ln ­ , by ensuring that arg F (i1)
will be º =2 in the above analysis. It will be useful to note that

Re F (iR) = ½ ½ (1 ln ­ )

Z 1

0

f(t) cos Rt dt + dk2; (3.3)

Im F (iR) = R + ½ (1 ln ­ )

Z 1

0

f(t) sinRt dt: (3.4)

The ­ rst result yields stability for any convex kernel f (t), the second gives stability
for su¯ ciently small delays.

Theorem 3.3. Let the kernel f (t) satisfy f 00(t) > 0, f (1) = 0 and f 0(1) = 0.
Then the steady state u ¤ = ln ­ of (1.2) is linearly stable.
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Proof. We aim to show that Re F (iR) > 0 for all R > 0. Integration by parts twice
shows that

Z 1

0

f (t) cos Rt dt =
1

R2

³
f 0(0) +

Z 1

0

f 00(t) cos Rt dt

´

=
1

R2

Z 1

0

f 00(t)(1 cos Rt) dt > 0:

Now, if ­ 6 e2, the statement of the theorem trivially holds (by a previous theorem),
so assume ­ > e2. Then 1 ln ­ < 0 and so, since

Z 1

0

f (t) cos Rt dt > 0;

it is clear that Re F (iR) > 0 for all R > 0. In view of this fact, it is clear that
the change in arg F (iR), as R runs from zero to in­ nity, can only be º =2 and this
implies that the equation F ( ¼ ) = 0 will have no roots in the right half complex
plane. The proof is complete.

Theorem 3.4. Let ­ > e2 and

½ <
1

ln ­ 1
:

Then the steady state u ¤ = ln ­ of (1.2) is linearly stable.

Proof. First note that
­­­­
Z 1

0

f (t) sin Rt dt

­­­­6
Z 1

0

f (t)j sin Rtj dt 6 R

Z 1

0

tf (t) dt = R:

Thus

Im F (iR) > R ½ (ln ­ 1)

­­­­
Z 1

0

f (t) sin Rt dt

­­­­

> R ½ (ln ­ 1)R

> 0 by hypothesis:

In view of this, it is clear that arg F (i1) can only be º =2 and so stability is assured.
The proof is complete.

3.3. Global stability of the non-zero steady state

In this subsection we prove that, under the condition ­ 2 (1; e], non-negative
solutions of (1.2), posed on a ­ nite domain with homogeneous Neumann boundary
conditions, will converge uniformly to the homogeneous state u ¤ = ln ­ , provided
they do not start identically zero. The method is via the use of the theory of
comparison principles for delay equations due to R. Redlinger. This method has
also been used by Gourley and Britton [6] to study global convergence in a logistic
equation with delay.

We ­ rst introduce Redlinger’s [16] de­ nition of subsolutions and supersolutions
as it applies to our particular problem. A pair of suitably smooth functions v(x; t)
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and w(x; t) is called a pair of subsolutions and supersolutions for (1.2), respectively,
for (x; t) 2 « £ [0; 1) with the boundary condition ru ¢ n = 0 on @« and initial
conditions u(x; t) = ¿ (x; t) for t 6 0, x 2 ·« , if the following conditions hold.

(i) v(x; t) 6 w(x; t) for (x; t) 2 ·« £ [0; 1).

(ii) The di¬erential inequalities

@v

@t
6 ½ v + ­ ½

³Z t

1
f(t s)ã(x; s) ds

´

£ exp

µ Z t

1
f (t s)ã(x; s) ds

¶
+ dr2v;

@w

@t
> ½ w + ­ ½

³Z t

1
f (t s)ã(x; s) ds

´

£ exp

µ Z t

1
f (t s)ã(x; s) ds

¶
+ dr2w

hold for all functions ã 2 C(( ·« £ [0; 1)) [ ( ·« £ ( 1; 0])), with v 6 ã 6 w.

(iii) rv ¢ n = 0 and rw ¢ n = 0 on @« £ [0; 1).

(iv) v(x; t) 6 ¿ (x; t) 6 w(x; t) in ·« £ ( 1; 0].

The following lemma can be proved by employing an argument similar to that of
theorem 3.4 in Redlinger [16].

Lemma 3.5. Let v(x; t) and w(x; t) be a pair of sub- and supersolutions for (1.2),
de¯ned as above. Suppose that ¿ 2 C( ·« £ ( 1; 0]) is bounded, non-negative, uni-
formly H�older continuous and ¿ 0(x) = ¿ (x; 0) 2 C1( ·« ). Then there exists a unique
regular solution u(x; t) of the initial boundary-value problem (1.2) such that

v(x; t) 6 u(x; t) 6 w(x; t) for (x; t) 2 ·« £ [0; 1):

Next we shall prove that the solution u(x; t) is bounded above by a constant.

Lemma 3.6. There exists a constant K = K( ¿ ) > 0 such that

u(x; t) 6 K on ·« £ [0; 1):

Proof. Let w0(t) be the solution of the initial value problem

dw0

dt
= ½ w0 +

­ ½

e
; t > 0;

w0(0) = sup
s2 ( 1 ;0]

max
x 2 ·«

¿ (x; s):

De­ ne

·w0(t) =

(
w0(0); t 2 ( 1; 0];

w0(t); t > 0:
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Since 0 6 ¿ 6 ·w0, it follows that (0; ·w0) is a pair of sub- and supersolutions of (1.2)
under the initial and boundary conditions. For any

ã 2 C(( ·« £ [0; 1)) [ ( ·« £ ( 1; 0]))

with 0 6 ã 6 ·w0, since ye y 6 1=e for y > 0, we have

@ ·w0

@t
+ ½ ·w0 ­ ½

³Z t

1
f (t s)ã(x; s) ds

´
exp

µ Z t

1
f (t s)ã(x; s) ds

¶
dr2 ·w0

> @ ·w0

@t
+ ½ ·w0

­ ½

e
= 0:

Thus, by lemma 3.5, 0 6 u(x; t) 6 ·w0(t). Notice that since limt! 1 ·w0(t) = ­ =e, it
follows that there exists a constant K = ­ =e > 0 such that ·w0(t) 6 K for all t > 0.
This proves the result.

Now we can state and prove our main result on the global attractivity of the
positive steady state u ² ln ­ of (1.2).

Theorem 3.7. If 1 < ­ 6 e, then any non-trivial solution u(x; t) of (1.2) with
initial and boundary conditions satis¯es

lim
t ! 1

u(x; t) = u ¤ := ln ­

uniformly in x 2 « .

Proof. Let ·w(t) be the solution of the initial value problem

d ·w

dt
= ½ ·w + ­ ½

Z t

1
f (t s) ·w(s) ds;

·w( ³ ) = max
x2 ·«

¿ (x; ³ ):

Then (0; ·w(t)) is a pair of sub- and supersolutions. Thus, by lemma 3.5, we have

0 6 u(x; t) 6 ·w(t):

Since ­ =e > ln ­ when 1 < ­ < e and ­ =e = ln ­ when ­ = e, we have that
­ =e > u¤ = ln ­ . Now de­ ne

u(t) = min
x 2 ·«

u(x; t); ·u(t) = max
x 2 ·«

u(x; t)

and let
u = lim inf

t ! 1
u(t); ·u = limsup

t! 1
·u(t):

We shall prove that u = u ¤ = ·u. Theorem 2.1 and lemma 3.6 imply that

0 6 u 6 ·u 6 ­ =e:

To improve the supersolution, let ° > 0 be su¯ ciently small. Then, for t0 > 0,
we have

·u(t) 6 ­ =e + ° < 1; t > t1:
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This implies that
u(x; t) 6 ­ =e + ° < 1 on ·« £ [t1; 1):

Let w1(t) be the solution of the initial value problem

dw1

dt
= ½ w1 + ­ ½

³
­

e
+ °

´
exp

µ ³
­

e
+ °

´¶
; t > t1;

w1(t1) = ­ =e + °

and de­ ne

·w1(t) =

(
maxfsupt 2 ( 1 ;t1] ·w(t); ­ =e + ° g; t 2 ( 1; t1];

w1(t); t > t1:

It follows that (0; ·w1) is a pair of sub- and supersolutions of (1.2) under the initial
and boundary conditions. Denote ¸ 1 = ­ =e. Since

lim
t! 1

·w1(t) = ­

³
­

e
+ °

´
exp

µ ³
­

e
+ °

´¶

and ° can be chosen sū ciently small, we have

0 6 u(x; t) 6 ­

³
­

e
exp

µ
­

e

¶´
= ­ ( ¸ 1 exp[ ¸ 1]):

Let ¸ 2 = ­ ( ¸ 1 exp[ ¸ 1]). Then ¸ 2 < ¸ 1 since ¸ 1 > u ¤ = ln ­ . If 1 < ­ < e,
then ¸ 2 > u¤ = ln ­ . Repeating the above procedure, we obtain a sequence f ¸ ng
satisfying ¸ n+ 1 = ­ ( ¸ n exp[ ¸ n]) and

0 6 u 6 ·u 6 ¸ n + 1 < ¸ n < ¢ ¢ ¢ < ¸ 1:

Thus we obtain that
0 6 u 6 ·u 6 u ¤ = ln ­ ;

since ¸ n ! u¤ as n ! 1.
To improve the subsolution, let ° > 0 be sū ciently small so that there exists

t2 > 0 such that
·u(t) 6 u ¤ + ° for t > t2:

Denote
· 0 = 1

2 minf min
t2 [t2=2;t2]

u(t); u¤ g:

Let v ° (t) be the solution of the initial value problem

dv °

dt
= ½ v ° + ­ ½ ( · 0 exp[ · 0]); t > t2;

v ° (t2) = · 0:

De­ ne

·v ° (t) =

8
><

>:

0; t 2 ( 1; t2=2];

( · 0=t2)(2t t2); t 2 (t2=2; t2];

v ° (t); t > t2
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and

·w ° (t) =

8
><

>:

maxfsupt 2 ( 1 ;t2=2] ·w(t); u ¤ + ° g = K; t 2 ( 1; t2=2];

K + ((u ¤ + ° K)=t2)(2t t2); t 2 (t2=2; t2];

u¤ + ° ; t > t2:

Then (·v ° (t); ·w ° (t)) is a pair of sub- and supersolutions. Thus

­ ( · 0 exp[ · 0]) 6 u 6 ·u 6 u ¤ + ° :

Let · 1 = ­ ( · 0 exp[ · 0]). Then · 0 < · 1 < u ¤ . Similarly, we obtain an increasing
sequence f · ng satisfying · n = ­ ( · n 1 exp[ · n 1]) and

· 0 < · 1 < ¢ ¢ ¢ < · n 6 u 6 ·u 6 u ¤ + ° ;

with

lim
n ! 1

· n = u¤ :

This implies that

u = ·u = u ¤ = ln ­ :

The case when ­ = e can be treated similarly. This completes the proof.

4. Bifurcations from the non-zero uniform state

In this section we demonstrate that two bifurcations typically occur from the uni-
form steady state u¤ = ln ­ of (1.2) as the delay ½ is varied. The ­ rst of these is a
bifurcation to a spatially periodic function with temporally varying amplitude, the
temporal variation having been introduced via a Hopf bifurcation. At bifurcation,
the spatial variation is of the form exp(ikx), but the bifurcation can only happen
for k sū ciently small (i.e. suitably large wavelength) in a sense to be made precise.

In the literature, the two kernels f (t) = e t and f (t) = te t are frequently
considered. These are called weak and strong generic delay kernels, respectively.
The use of the weak one implies that events in the past simply become exponentially
less important the further one looks into the past. The strong kernel implies that
a particular instant in the past is more important than any other and, with the
non-dimensionalization we have in place here, this will be one time unit ago in our
model.

The weak kernel f (t) = e t is, of course, convex. Therefore, by one of our
local stability theorems, it cannot destabilize the uniform state. The strong ker-
nel f (t) = te t has Laplace transform ·f ( ¼ ) = 1=(1 + ¼ )2, so the eigenvalue equa-
tion (3.2) determining stability of the u ¤ = ln ­ state can be written in the form

¼ 3 + ( ½ + 2 + dk2) ¼ 2 + (2 ½ + 1 + 2dk2) ¼ + ½ ln ­ + dk2 = 0: (4.1)

Recall that this is for perturbations of the form exp( ¼ t + ikx) and we consider k
­ xed here. To seek a Hopf bifurcation we set ¼ = i!, with ! being real. This gives

!2( ½ + 2 + dk2) = ½ ln ­ + dk2 and !2 = 2 ½ + 1 + dk2:
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Combining these, we ­ nd that ½ is found from the quadratic equation

2½ 2 + (5 + 3dk2 ln ­ ) ½ + d2k4 + 2dk2 + 2 = 0: (4.2)

This equation has two real positive roots for ½ if and only if

ln ­ > 5 + 3dk2 +
p

8(d2k4 + 2dk2 + 2): (4.3)

Thus, if k satis­ es (4.3), then as ½ is increased, the uniform state can lose stability
through a Hopf bifurcation when ½ passes through the smaller root of (4.2). The
bifurcating solution will be a standing wave. However, when ½ is further increased
past the larger root of (4.2), the uniform state will regain stability, again through
a Hopf bifurcation. To con­ rm that the bifurcation occurs, it is necessary to verify
a transversality condition, namely, that as ½ is passed through the critical value,
the eigenvalues ¼ cross the imaginary axis transversely. Assume that at ½ = ½ 0,
¼ = §i!0. Close to this value of ½ let the eigenvalue with positive imaginary part
be ¼ ( ½ ). It satis­ es

¼ ( ½ )3 + ( ½ + 2 + dk2) ¼ ( ½ )2 + (2 ½ + 1 + 2dk2) ¼ ( ½ ) + ½ ln ­ + dk2 = 0:

Di¬erentiating this implicitly with respect to ½ , then evaluating at ½ = ½ 0 and using
!2

0 = 2½ 0 + 1 + dk2 on certain terms only gives

¼ 0( ½ 0) =
ln ­ 2i!0 + !2

0

2!2
0 + 2i!0( ½ 0 + 2 + dk2)

:

Taking the real part,

Re ¼ 0( ½ 0) =
ln ­ 5 4 ½ 0 3dk2

2(!2
0 + ( ½ 0 + 2 + dk2)2)

:

Now ½ 0 is either of the two roots of the quadratic

q( ½ ) := 2½ 2 + (5 + 3dk2 ln ­ ) ½ + d2k4 + 2dk2 + 2 = 0:

We claim that Re ¼ 0( ½ 0) > 0 when ½ 0 is the smaller of these roots, and Re ¼ 0( ½ 0) < 0
when ½ 0 is the larger. To show this, it is enough to formally set Re ¼ 0( ½ 0) = 0
and show that the value of ½ 0 at which this happens is in between these two
roots. A simple graphical argument will show that it is enough to show that
q((ln ­ 5 3dk2)=4) < 0. After some algebra, this is equivalent to showing that
(ln ­ 5 3dk2)2 > 8(d2k4 + 2dk2 + 2) and we are, in fact, already assuming this
in (4.3).

This con­ rms that Hopf bifurcations occur but does not establish whether the
bifurcations are sub or supercritical.

Another bifurcation that can occur in (1.2) from its uniform state u ¤ = ln ­ is a
bifurcation to periodic travelling wave solutions. All we shall do here is determine
the bifurcation curve in the ( ½ ; c) parameter plane along which this occurs, where
c is the speed of the wave. If we convert (1.2) into travelling wave form by writing
u(x; t) = U (z) = U(x ct), and then linearize by setting U (z) = ln ­ + V (z), the
result is

dV 00 + cV 0 ½ V + ½ (1 ln ­ )

Z 1

0

f ( ¹ )V (z + c¹ ) d ¹ = 0:
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0

c

t

Figure 1. Bifurcation curve in the ( ½ ; c) parameter plane, for the bifurcation to periodic
travelling wave solutions from the uniform state u¤ = ln ­ of (1.2).

To seek a periodic travelling wave, set V = exp(i!z). This gives

d!2 + c!i ½ + ½ (1 ln ­ ) ·f ( c!i) = 0; (4.4)

·f being the Laplace transform of f . The bifurcation can only occur for the strong
generic kernel f(t) = te t. For this case, equating real and imaginary parts in (4.4)
will give ½ and c in terms of !. The result is, provided ln ­ > 9,

½ = 1
4
[ln ­ 5 §

p
(ln ­ )2 (ln ­ )(10 + 8d!2) + 9 + 8d!2] d!2;

c =

r
1

2!2
(ln ­ 3 §

p
(ln ­ )2 (ln ­ )(10 + 8d!2) + 9 + 8d!2)

for 0 < !2 6 (ln ­ 9)=8d. These equations de­ ne a curve in the ( ½ ; c) parameter
plane (shown in ­ gure 1) and the bifurcation will occur as this curve is crossed.

5. Discussion

We have studied a version of Nicholson’s blow®ies equation that is more general
than the versions studied by Yang and So [19, 22] by incorporating the maturation
delays by way of an integral convolution over all past times (a distributed delay)
which we have studied as far as possible for general delay kernels f (t). Using mainly
the principle of the argument applied to the linearized equation, we have obtained
various conditions which are sū cient to ensure the linearized stability of the non-
zero uniform steady state. One consequence is that no convex kernel can destabilize
this uniform state.

We have also studied the global convergence of solutions and have proved global
convergence to the zero state under the condition ­ < 1, a condition that cannot
be improved since the zero state is linearly unstable if the inequality is reversed.

By employing a theory of sub- and supersolutions for delay di¬erential equations,
we were able to show, by successively improving pairs of sub- and supersolutions for
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our equation, that global stability of the non-zero uniform state is assured under the
condition 1 < ­ 6 e. The weaker condition 1 < ­ 6 e2 guarantees linear stability
of the same state.

We also studied the case when the non-dimensionalized delay kernel assumes
the special form te t, the strong generic case, and noted that two bifurcations are
possible, both of which are associated with temporal oscillations in the kinetics.
These bifurcations are to periodic standing wave solutions and periodic travelling
waves (wavetrains) and which ones will be observed will in practice depend on the
boundary conditions (if any). If bifurcation occurs at all, there are two bifurcation
points; the uniform ln ­ state is stable both for sū ciently small and su¯ ciently
large delays. It will be interesting to investigate the stability of, in particular, the
periodic travelling wave solutions since it was shown by Gourley and Britton [7], for
a modi­ ed logistic equation with time delays (and non-local spatial e¬ects too), that
small-amplitude periodic travelling waves arising via bifurcation from a uniform
state are unstable. Results of this kind are also known for the special class of
reaction{di¬usion systems known as ¶ {! systems (see [10]). We would conjecture
that our wavetrains are probably only stable when their amplitude exceeds a certain
critical value. Further investigation of the stability of these solutions is presently in
progress.
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