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Abstract

Consider a population of fixed size that evolves over time. At each time, the ge-
nealogical structure of the population can be described by a coalescent tree whose
branches are traced back to the most recent common ancestor of the population.
As time goes forward, the genealogy of the population evolves, leading to what is
known as an evolving coalescent. We will study the evolving coalescent for popula-
tions whose genealogy can be described by the Bolthausen-Sznitman coalescent. We
obtain the limiting behavior of the evolution of the time back to the most recent com-
mon ancestor and the total length of the branches in the tree. By similar methods, we
also obtain a new result concerning the number of blocks in the Bolthausen-Sznitman
coalescent.
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1 Introduction

Consider a haploid population of fixed size n that evolves over time. The genealogy
of the population at time t can be represented by a coalescent process (Π(s), s ≥ 0)

taking its values in the set of partitions of {1, . . . , n}, which is defined so that integers
i and j are in the same block of Π(s) if and only if the ith and jth individuals in the
population at time t have the same ancestor at time t − s. The genealogical structure
encoded by the coalescent process can also be represented as a tree Tn(t). The shape
of this tree changes over time as the population evolves, leading to what was called in
[23] an evolving coalescent. The associated tree-valued stochastic process, for infinite
as well as finite populations, was constructed and studied by Greven, Pfaffelhuber, and
Winter [19]. Depperschmidt, Greven, and Pfaffelhuber [11] incorporated mutation and
selection into the model.

Rather than studying the full tree-valued process, one can follow the evolution of
certain properties of the tree that are of interest. One such property is the time back
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Evolving Bolthausen-Sznitman coalescent

to the most recent common ancestor (MRCA) of the population. This evolution can be
described by a process (An(t), t ≥ 0), where

t−An(t) = sup{s : one individual at time s is the ancestor of all individuals at time t}.

Note that An(t) is the height of the tree Tn(t). The process (An(t), t ≥ 0) increases
linearly at speed one between jumps, and jumps downward when a new, more recent
MRCA is established. A new MRCA is established when the population consists of two
families, which coalesce at the time of the MRCA, and then one of these two families
dies out. One can also consider the process (Ln(t), t ≥ 0), where Ln(t) denotes the
sum of the lengths of all branches in the tree Tn(t). This process is of interest because,
assuming that mutations occur at a constant rate θ along each branch of the coalescent
tree, Ln(t) should be roughly proportional to the number of distinct mutations observed
in the population at time t.

A natural population model to consider is the Moran model [22]. In this model,
the population size stays fixed at n. Changes in the population occur at times of a
homogeneous Poisson process, and we will scale time so that these changes occur at
rate n(n − 1)/2. At the time of each such change, one of the n individuals is chosen
at random to give birth to a new offspring, and independently one of the other n − 1

individuals is chosen at random to be killed. For any fixed t ∈ R, the genealogy of
the population follows Kingman’s coalescent [20], meaning that each pair of lineages
merges at rate one and no other transitions are possible. An analogous construction for
infinite populations can be carried out using the lookdown construction of Donnelly and
Kurtz [14]. The associated evolving coalescent was studied by Pfaffelhuber and Wakol-
binger [23]. They showed that the jumps of the process (A(t), t ≥ 0) that follows the
time back to the MRCA occur at times of a homogeneous Poisson process, but that the
process (A(t), t ≥ 0) is not Markov. They also calculated the distributions of some other
quantities, such as the number of individuals in the population at time t who will have
descendants in the population when the next MRCA is established and the number of
individuals in the population who will become the MRCA of the population in the future.
Delmas, Dhersin, and Siri-Jegousse [12] extended these results by considering also the
distribution of the sizes of the two oldest families at time t. Simon and Derrida [32] did
some further work related to the evolution of the time back to the MRCA for popula-
tions with genealogies governed by Kingman’s coalescent, and considered correlations
between the time back to the MRCA and a measure of genetic diversity. Pfaffelhu-
ber, Wakolbinger, and Weisshaupt [24] studied the evolution of the total branch length.
They showed that the sequence of processes (Ln(t) − 2 log n, t ∈ R) converges weakly
as n → ∞ to a limit process which is a stationary process with infinite infinitesimal
variance.

Evans and Ralph [17] studied the dynamics of the time back to the MRCA in a pop-
ulation in which a single “immortal particle" produces offspring at times of a Poisson
process, and descendants of the offspring eventually die out. In this setting, the process
(A(t), t ≥ 0) is a Markov process whose jump rates and stationary distribution can be
calculated explicitly. An example of a process that fits into this framework is the α-stable
continuous-state branching process conditioned on nonextinction with 1 < α ≤ 2.

The goal of the present paper is to determine the dynamics of the time back to
the MRCA and the total branch length for populations whose genealogy is given by
the Bolthausen-Sznitman coalescent. The Bolthausen-Sznitman coalescent, which was
introduced in [6], is an example of a coalescent with multiple mergers [25, 28], in which
it is possible for many lineages to merge at once. More precisely, the Bolthausen-
Sznitman coalecent started with n blocks is a continuous-time Markov chain taking its
values in the set of partitions of {1, . . . , n} such that whenever the partition has b blocks,
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each transition that involves the merger of k blocks into one is happening at rate

λb,k =

∫ 1

0

xk−2(1− x)b−k dx =
(k − 2)!(b− k)!

(b− 1)!
. (1.1)

This means that the total rate of all transitions when there are b blocks is

λb =

b∑
k=2

(
b

k

)
λb,k.

It is well-known (see, for example, [25]) that this process has the property of sam-
pling consistency, meaning that if m < n, then the process restricted to the integers
{1, . . . ,m} is a Bolthausen-Sznitman coalescent started with m blocks.

The questions about the evolution of the time back to the MRCA and the total branch
length could also be considered for other coalescents with multiple mergers besides
the Bolthausen-Sznitman coalescent. However, some of the tools used here, especially
the recursive tree construction introduced in section 2, are specific to the Bolthausen-
Sznitman coalescent and do not have a counterpart for other coalescents with multiple
mergers. Consequently, our results and methods are restricted to this case. Neverthe-
less, the Bolthausen-Sznitman coalescent has arisen in a variety of settings. It has been
shown recently to describe the genealogy of certain populations undergoing selection
[3, 8]. The Bolthausen-Sznitman coalescent also describes the genealogical structure
of Neveu’s continuous-state branching process [5], certain Galton-Watson processes
with heavy-tailed offspring distributions [31], and Derrida’s generalized random energy
model [6, 7].

We describe the population model that we will study in section 1.1. In section 1.2, we
state our main result concerning the dynamics of the time back to the MRCA. In section
1.3, we state our main result concerning the total branch length. By similar methods, we
also obtain a new result concerning the number of blocks of the Bolthausen-Sznitman
coalescent. We state this result in section 1.4. The rest of the paper is devoted to proofs.

1.1 A population model

We now define more precisely the population model that we will study in this paper.
We assume that for all times t ∈ R, there are exactly n individuals in the population,
labeled by the integers 1, . . . , n. Changes in the population occur at times of a homoge-
neous Poisson process on R with rate n − 1. At the time of such a change, one particle
is chosen at random to give birth to a random number ξ of new offspring, with

P (ξ = k) =
n

n− 1
· 1

k(k + 1)
, k = 1, 2, . . . , n− 1. (1.2)

Then ξ of the n− 1 individuals who did not give birth are chosen at random to be killed,
and the new individuals take over the labels of the individuals who were killed.

We now give a representation of the genealogy of this population. For each s ∈ R
and t ≥ 0, let Πn(s, t) be the partition of 1, . . . , n such that i and j are in the same block
of Πn(s, t) if and only if the individuals at time s labeled i and j are descended from
the same ancestor at time (s− t)−. We consider the population at time (s− t)−, rather
than exactly at time s − t, to ensure that for each s ∈ R, the process (Πn(s, t), t ≥ 0) is
right continuous. As long as there is no change in the population at time s, the partition
Πn(s, 0) consists of n singletons. However, if k new individuals are born at time s, then
Πn(s, 0) will consist of one block of size k + 1 and n− k − 1 singleton blocks.

Proposition 1.1. Fix s ∈ R. Then (Πn(s, t), t ≥ 0) is the Bolthausen-Sznitman coales-
cent started with n blocks.
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Proof. With probability one, there is no change in the population at time s, and Πn(s, 0)

consists of n singletons. When ancestral lines are followed backwards in time, an event
in which k − 1 individuals are born becomes an event in which k randomly chosen
lineages merge, because the ancestral lines of the k− 1 children merge with that of the
parent. The rate of events in which k − 1 individuals are born is

(n− 1)P (ξ = k − 1) =
n

k(k − 1)
=

(
n

k

)
λn,k, (1.3)

where λn,k comes from (1.1). Therefore, (Πn(s, t), t ≥ 0) follows the dynamics of the
Bolthausen-Sznitman coalescent up to the time of the first merger. That the process
continues to follow the dynamics of the Bolthausen-Sznitman coalescent after this time
is a consequence of the exchangeability of the population model and the sampling con-
sistency of the Bolthausen-Sznitman coalescent.

For s ∈ R and t ≥ 0, let Nn(s, t) be the number of blocks of the partition Πn(s, t). Let

An(s) = inf{t : Nn(s, t) = 1}, (1.4)

which is the time back to the MRCA of the population and corresponds to the height of
the tree Tn(s) that represents the genealogy of the population at time s. Let

Ln(s) =

∫ ∞
0

Nn(s, t)1{Nn(s,t)>1},

which is the sum of the lengths of all branches in the tree Tn(s).

1.2 Time back to the MRCA

We consider here how the time back to the MRCA of the population evolves over
time. Proposition 3.4 of [18] states that if Y has the exponential distribution with mean
1, then for each fixed t ∈ R, we have

An(t)− log log n⇒ − log Y, (1.5)

where ⇒ denotes convergence in distribution as n → ∞. We are interested here in
finding the limit of the stochastic processes (An(t), t ≥ 0) as n→∞.

We now construct the limit process (A(t), t ∈ R) and its time-reversal (R(t), t ∈ R)

from a Poisson point process. The construction is similar to constructions in [16] and
[17]. Let N be a Poisson process on R2 with intensity λ × ν, where λ is Lebesgue
measure and ν(dy) = e−y dy. Let M consist of the points {(t, y) : (−t, y) is a point of N}.
Note that M is also a Poisson process on R2 with the same intensity as N . For each
(t, x) ∈ R2, define the wedges

W (t, x) = {(s, y) ∈ R2 : s ≤ t and y ≥ x+ t− s},
W ′(t, x) = {(s, y) ∈ R2 : s > t and y ≥ x+ s− t}.

Then let

R(t) = sup{x : there is a point of N in W (t, x)},
A(t) = sup{x : there is a point of M in W ′(t, x)}.

To see that these quantities are well-defined, observe that if t ∈ R and x ∈ R, then the
event that there is no point of N in W (t, x) has probability

exp

(
−
∫ t

−∞

∫ ∞
x+t−s

e−y dy ds

)
= exp(−e−x). (1.6)
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Note also that both (R(t), t ∈ R) and (A(t), t ∈ R) are right continuous, and because of
the relationship between N and M , we have A(t) = R(−t) for all t such that there is no
point in M whose first coordinate is t. If (t, z) is a point of M and R((−t)−) < z, then
R(−t) = z and A(t) = R((−t)−).

The figure below shows how (R(t), t ∈ R) and (A(t), t ∈ R) are constructed from
the Poisson point process. The process (R(t), t ∈ R) decreases linearly at speed one
between jumps but jumps up to the level of any point of N that appears above it. That
is, if (t, y) is a point of N and R(t−) < y, then R(t) = y. The process (A(t), t ∈ R)

increases linearly at speed one between jumps. When the trajectory of the process
encounters a point of M at time t, the process jumps downward to the highest level y
such that there is a point of M on the half-line starting at (t, y) and extending diagonally
upward and to the right, in the direction of the vector (1, 1).
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Figure 1: The processes (R(t), t ∈ R) and (A(t), t ∈ R)

The following theorem is our main result concerning the time back to the MRCA
for the evolving Bolthausen-Sznitman coalescent. This result is proved in Section 2 by
considering the processes in reversed time and obtaining convergence to (R(t), t ≥ 0).
Note that unlike in the case of Kingman’s coalescent, the limit process is Markov.

Theorem 1.2. As n → ∞, the sequence of processes ((An(t) − log log n), t ≥ 0) con-
verges weakly to (A(t), t ≥ 0).

Remark 1.3. From the form of the Poisson process M , we see that (R(t), t ∈ R) and
(A(t), t ∈ R) are stationary processes. Note that if Y has the exponential distribution
with mean one, then P (− log Y ≤ x) = exp(−e−x). Therefore, it follows from (1.6)
that the stationary distribution of (R(t), t ∈ R) and (A(t), t ∈ R) is the same as the
distribution of − log Y . This result also follows from Theorem 1.2 and (1.5).

Remark 1.4. The processes (R(t), t ∈ R) and (A(t), t ∈ R) are both examples of piece-
wise deterministic Markov processes, a class of processes whose theory was developed
by Davis [9, 10]. These processes are characterized by their deterministic behavior be-
tween jump times, which is linear drift for the processes (R(t), t ∈ R) and (A(t), t ∈ R),
and their jump rates. The jump rates for (R(t), t ∈ R) can easily be read off the Poisson
process N . The process (R(t), t ∈ R) jumps away from x at rate e−x, and when it jumps
away from x, the distribution of the location to which it jumps has density ex−y1{y≥x}.
This means that the rate of jumps from x to y is given by q(x, y) = e−y1{y≥x}.

To obtain the jump rates for (A(t), t ∈ R), note that if A(t) = x then there is a point
of M at (t+ s, x+ s) for some s ≥ 0 but no points above this diagonal line. Because the
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density of the intensity measure of M at (t+ s, x+ s) is e−(x+s), we see that conditional
on A(t) = x, the distribution of the time before the next jump is exponential with mean
1. That is, for all x ∈ R, the process (A(t), t ∈ R) jumps away from x at rate one, which
implies that the jump times of (A(t), t ∈ R) form a homogeneous Poisson process of
rate one on R. If the process jumps away from x at time t, then the probability that it
jumps below y is the probability that there is no point of M in the trapezoidal region
{(s, z) : s > t and y + s− t ≤ z ≤ x+ s− t}, which is

exp

(
−
∫ ∞
t

∫ x+s−t

y+s−t
e−z dz ds

)
= exp(e−x − e−y).

Differentiating with respect to y, we see that the rate of jumps from x to y is given by
r(x, y) = exp(e−x − e−y − y)1{y≤x}.

As a check on these formulas, let π(y) = e−ye−e
−y

for y ∈ R, which is the density of
the stationary distribution, obtained by differentiating the right-hand side of (1.6). Then
note that π(x)q(x, y) = π(y)r(y, x) for all x, y ∈ R, as expected given that (R(t), t ∈ R)

and (A(t), t ∈ R) are related by time reversal.

1.3 Total branch length

Theorem 5.2 of [13] establishes that for each fixed t ∈ R,

(log n)2

n

(
Ln(t)− n

log n
− n log logn

(log n)2

)
⇒ X, (1.7)

where, using γ to denote Euler’s constant,

E[eiuX ] = exp

(
− π

2
|u|+ iu log |u|

)
= exp

(
iu(1− γ)−

∫ 0

−∞

(
1− eiux + iux1{|x|≤1}

)
x−2 dx

)
. (1.8)

We consider now the stochastic process Ln = (Ln(t), t ≥ 0). If there are no changes
in the population between times t and t+s, then the tree Tn(t+s) is obtained by starting
with the tree Tn(s) and then adding a segment of length s to each of the n branches.
Consequently, the process Ln increases at speed n between jumps. However, if k indi-
viduals die at time t, then to obtain the tree Tn(t) from Tn(t−), we must remove the k
external branches corresponding to the k individuals who died. This causes a downward
jump in Ln. Our main result concerning the dynamics of the total branch length for the
Bolthausen-Sznitman coalescent is that the processes (Ln(t), t ≥ 0), properly centered
and scaled, converge to a stable process of Ornstein-Uhlenbeck type.

We now review some facts about processes of Ornstein-Uhlenbeck type, which can
be found in Chapter 17 of [30]. Suppose (Z(t), t ≥ 0) is a Lévy process such that

E[eiuZ(t)] = exp

(
iaut− bu2t

2
− t
∫ ∞
−∞

(
1− eiux + iux1{|x|≤1}

)
ν(dx)

)
.

Given c > 0 and a random variable X(0), there is a unique process (X(t), t ≥ 0) having
paths that are almost surely right continuous with left limits such that

X(t) = X(0) + Z(t)− c
∫ t

0

X(s) ds (1.9)

almost surely. Following [30], we call (X(t), t ≥ 0) the process of Ornstein-Uhlenbeck
type generated by (a, b, ν, c). As long as∫

|x|>2

log |x| ν(dx) <∞,
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the process (X(t), t ≥ 0) has a unique stationary distribution µ, with characteristic
function∫ ∞

−∞
eiuxµ(dx) = exp

(
iαu− βu2

2
−
∫ ∞
−∞

(
1− eiux + iux1{|x|≤1}

)
ρ(dx)

)
, (1.10)

where β = b/2c, α = (a+ ν((1,∞))− ν((−∞,−1)))/c, and for all Borel sets B,

ρ(B) =
1

c

∫ ∞
−∞

∫ ∞
0

1B(e−sy) ds ν(dy)

(see Theorem 17.5 of [30]). In this case, if X(0) has distribution µ, then the process
(X(t), t ≥ 0) is stationary.

Theorem 1.5. Let ν be the measure on R whose density with respect to Lebesgue
measure is given by x−21(−∞,0)(x). Let (L(t), t ≥ 0) be a stationary process of Ornstein-
Uhlenbeck type generated by (2− γ, 0, ν, 1). As n→∞, the sequence of processes(

(log n)2

n

(
Ln

(
t

log n

)
− n

log n
− n log log n

(log n)2

)
, t ≥ 0

)
converges weakly to (L(t), t ≥ 0).

Remark 1.6. The stationary distribution of (L(t), t ≥ 0) has characteristic function
given by (1.10) with α = 1 − γ, β = 0, and ρ = ν, which matches the right-hand side of
(1.8). To see this, observe that ν((1,∞)) = 0 and ν((−∞, 1)) = 1, so α = (2−γ)−1 = 1−γ.
Also, for all z > 0,

ρ((−∞,−z]) =

∫ 0

−∞

∫ ∞
0

1(−∞,−z](e
−sy)y−2 ds dy

=

∫ ∞
0

∫ −zes
−∞

y−2 dy ds =
1

z
= ν((−∞,−z]). (1.11)

Thus, the convergence implied by Theorem 1.5 for each fixed t is consistent with the
result (1.7).

1.4 Number of blocks

The techniques used to establish Theorem 1.5 can also be used to prove a new result
about how the number of blocks of the Bolthausen-Sznitman coalescent changes over
time. Because the number of blocks for other coalescents with multiple mergers has
been studied in some depth (see, for example, [1, 2]), we believe that this result may be
of independent interest.

Theorem 1.7. Let (Πn(t), t ≥ 0) be a Bolthausen-Sznitman coalescent started with n

blocks. Let Nn(t) be the number of blocks of Πn(t), and let

Xn(t) =
log n

n

(
Nn

(
t

log n

)
− ne−t − nte−t log log n

log n

)
.

Let (S(t), t ≥ 0) be a stable Lévy process satisfying

E[eiuS(t)] = exp

(
− πt

2
|u|+ itu log |u|

)
.

As n→∞, the sequence of processes (Xn(t), t ≥ 0) converges weakly to(
e−tS(t) +

e−tt2

2
, t ≥ 0

)
.
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2 Proof of Theorem 1.2

2.1 Construction from random recursive trees

Our proof of Theorem 1.2 uses a connection between the Bolthausen-Sznitman coa-
lescent and random recursive trees which was discovered by Goldschmidt and Martin
[18]. Suppose `1, . . . , `n are labels, with an ordering so that `1 < · · · < `n. A random
recursive tree with vertices labeled `1, . . . , `n can be constructed inductively as follows.
The vertex labeled `1 is the root. For k ≥ 2, once the vertices labeled `1, . . . , `k−1 have
been placed in the tree, the vertex labeled `k is attached to a vertex chosen uniformly
at random from those labeled `1, . . . , `k−1.

Consider a random recursive tree in which the labels are disjoint subsets ofN, where
`i < `j if the smallest element of `i is less than the smallest element of `j . Suppose e is
an edge in the tree connecting vertices x and y, where x is closer to the root than y. We
can cut the tree at the edge e by deleting the edge e from the tree as well as the entire
subtree below e. That is, we remove all vertices z such that the shortest path from the
root to z goes through x. All integers that are in labels of vertices that are removed
from the tree are then added to the label of x. When a random recursive tree is cut at
a randomly chosen edge, the remaining tree is a random recursive tree on the new set
of labels (see Proposition 2.1 of [18]).

To establish the connection with the Bolthausen-Sznitman coalescent, start with a
random recursive tree on n vertices, labeled with the one-element sets {1}, . . . , {n}.
Then to each edge, assign an independent exponential random variable with mean 1,
whose value gives the time at which the edge is cut. For all t ≥ 0, let Πn(t) denote
the partition of {1, . . . , n} such that i and j are in the same block of Πn(t) if and only
if the integers i and j are in the same vertex label at time t. Then (Πn(t), t ≥ 0) is
the Bolthausen-Sznitman coalescent started with n blocks (see Proposition 2.2 of [18]).
Because the last transition always involves deleting an edge adjacent to the root, the
time back to the MRCA for this Bolthausen-Sznitman coalescent is the maximum of
the exponential random variables assigned to the edges adjacent to the root. In [18],
Goldschmidt and Martin used this fact to prove (1.5).

We now use recursive trees to construct an evolving Bolthausen-Sznitman coales-
cent in reversed time. Note that the dynamics of an evolving Bolthausen-Sznitman
coalescent in reversed time are the same as the dynamics of an ordinary Bolthausen-
Sznitman coalescent, except that whenever k lineages are lost due to a merger, these
lineages are replaced by k new lineages. We account for this in the construction by
adding new vertices to the tree to replace those lost when an edge is cut.

Vertex labels, instead of being subsets of N, will be ordered pairs (t, i), where t ≥ 0

and i ∈ {1, . . . , n}. We can order such labels by saying that (s, i) < (t, j) if either s < t or
if s = t and i < j, so the notion of a recursive tree with labels of this form is well-defined.

To carry out our construction, begin with a random recursive tree with n vertices
labeled (0, 1), . . . , (0, n). Assign an independent exponential random variable with mean
1 to each edge. Denote the resulting tree by Tn(0). The tree-valued process (Tn(t), t ≥ 0)

then evolves in time as follows. The edge labels decrease linearly at speed one. Suppose
that, at time τ , one of the edge labels hits zero. Suppose the edge whose label hits zero
connects (s0, i0) to a subtree consisting of vertices labeled (s1, i1), . . . , (sk, ik). We then
cut the tree at this edge, thereby removing the edge along with the k vertices below
it. We next pick an integer j uniformly at random from {0, 1, . . . , k}, and we make
(sj , ij) the new label of the vertex that was previously labeled (s0, i0). We then add k

new vertices to the tree, labeled (τ, i0), . . . , (τ, ij−1), (τ, ij+1), . . . , (τ, ik), one at a time
in increasing order of their labels, by attaching them to randomly chosen vertices of
the existing tree. Note that the tree changes each time a vertex is added, so once m
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of the k vertices have been replaced, there are n − k + m different vertices to which
the next vertex could be attached. Finally, the k new edges are assigned independent
exponential random variables, and the resulting tree is Tn(τ). We call i0, i1, . . . , ik the
vertices involved in the cut at time τ , and we call ij the vertex preserved by the cut at
time τ . The process then continues to evolve according to the same rules.

To see that the process (Tn(t), t ≥ 0) encodes an evolving Bolthausen-Sznitman co-
alescent, we will show how to couple the process with the population model defined in
section 1.1. The vertices involved in a cut at time τ will correspond to lineages in the
population that merge at time −τ . Let 0 < τ1 < τ2 < . . . be the times at which edges are
cut from the tree. Set τ0 = 0, and let ηm = τm− τm−1 for m ≥ 1. For m = 1, 2, . . . , let Sm
be the set consisting of the vertices involved in the cut at time τm, and let |Sm| be the
cardinality of Sm. Let Bm denote the vertex preserved by the cut at time τm. We can
now construct a population model, defined over the time period (−∞, 0], as follows. For
all times t ∈ (−∞, 0], there are n individuals in the population labeled 1, . . . , n. Changes
in the population occur at the times −τm for m = 1, 2, . . . . At time −τm, the individuals
with labels in Sm \ Bm are killed, and the individual Bm gives birth to |Sm| − 1 new
offspring who take over the labels of the individuals who were killed.

In the population model defined in section 1.1, changes in the population happen
at times of a Poisson process with rate λn = n − 1. Also, from (1.2) we see that the
probability that, at the time of such a change, individual j gives birth while individuals
i1, . . . , ik are killed is

1

n

(
n− 1

k

)−1
P (ξ = k) =

(k − 1)!(n− k − 1)!

(n− 1)!(n− 1)(k + 1)

because, given that ξ = k, there are n choices for the individual who could give birth
and

(
n−1
k

)
choices for the individuals who could be killed. Therefore, the following

result shows that the population model defined from (Tn(t), t ≥ 0) has the same law as
the population process defined in section 1.1.

Proposition 2.1. For all positive integers m, the distribution of ηm is exponential with
rate n − 1. For all positive integers m and all distinct integers j, i1, . . . , ik in {1, . . . , n},
we have

P (Bm = j, Sm = {j, i1, . . . , ik}) =
(k − 1)!(n− k − 1)!

(n− 1)!(n− 1)(k + 1)
, (2.1)

and the pair (Bm, Sm) is independent of ηm. Also, the triples (η1, B1, S1), (η2, B2, S2), . . .

are independent.

Proof. For m ≥ 0, let Fm be the σ-field generated by (η1, B1, S1), . . . , (ηm, Bm, Sm). We
claim that for all integers m ≥ 0, the conditional distribution of Tn(τm) given Fm is the
distribution of a random recursive tree with its set of labels, with independent mean one
exponential random variables assigned to the edges. We prove this claim by induction.
Because Tn(0) is a random recursive tree, the result is immediate when m = 0. Suppose
the result holds for some m ≥ 0. Recall that when a random recursive tree is cut at
a randomly chosen edge, causing k vertices to be removed, the remaining tree is a
random recursive tree on the new set of n − k labels. Therefore, using the induction
hypothesis, after |Sm+1| − 1 vertices are removed from the tree Tn(τm), the distribution
of the remaining tree is that of a random recursive tree on the remaining n− |Sm+1|+ 1

labels. Because Tn(τm+1) is obtained from this tree by adding |Sm+1| − 1 new vertices
to randomly chosen edges, it follows that, ignoring the edge labels, the conditional
distribution of Tn(τm+1) given Fm+1 is that of a random recursive tree on n vertices
with the given set of vertex labels. Furthermore, by the memoryless property of the
exponential distribution, the labels assigned to the edges of Tn(τm+1) are independent
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mean one exponential random variables, conditional on Fm+1. The claim follows by
induction.

Suppose m ≥ 0. Because, conditional on Fm, the labels assigned to the edges of
Tn(τm) are independent mean one exponential random variables, the conditional distri-
bution of ηm+1 given Fm is the distribution of the minimum of n−1 mean one exponential
random variables, which is the exponential distribution with rate n − 1. Also, because,
conditional on Fm, the tree Tn(τm) is a random recursive tree with its given set of la-
bels, it follows from the result of Goldschmidt and Martin that if j, i1, . . . , ik are distinct
integers in {1, . . . , n}, then

P (Sm+1 = {j, i1, . . . , ik}|Fm) =
λn,k+1

λn
=

(k − 1)!(n− k − 1)!

(n− 1)(n− 1)!
.

Because Bm+1 is chosen uniformly at random from the set Sm+1, it follows that

P (Bm+1 = j, Sm+1 = {j, i1, . . . , ik}|Fm) =
(k − 1)!(n− k − 1)!

(n− 1)!(n− 1)(k + 1)
.

Furthermore, (Bm+1, Sm+1) and ηm+1 are conditionally independent given Fm. These
observations imply the proposition.

Let Mn(t) denote the maximum of the exponential random variables assigned to the
edges that are adjacent to the root in the tree Tn(t). Then Mn(t) is the time back to
the MRCA of the population at time −t, as long as there is no change in the population
exactly at time −t. More precisely, defining An as in (1.4) for the population model
defined from (Tn(t), t ≥ 0), we have

Mn(t) = An((−t)−)

for all t ≥ 0. Therefore, if we let Rn(t) = Mn(t) − log log n, then (Rn(t), t ≥ 0) would
have the same law as (An(−t) − log log n, t ≥ 0) if the process (An(−t), t ≥ 0) were
modified at the jump times to make it right-continuous rather than left-continuous.
Consequently, if we can show that the processes (Rn(t), t ≥ 0) converge weakly to
(R(t), t ≥ 0), then in view of the stationarity of the population model and the relation-
ship between (R(t), t ∈ R) and (A(t), t ∈ R) via time reversal, it will follow that the
processes (An(t) − log log n, t ≥ 0) must converge weakly to (A(t), t ≥ 0), which is the
content of Theorem 1.2.

2.2 A heuristic argument

To understand heuristically why Theorem 1.2 is true, note that if Rn(t) ≤ z, then
the process Rn jumps above z only when a new vertex is attached to the root, and the
random variable assigned to the new edge is greater than log logn + z. Because the
number of blocks in the Bolthausen-Sznitman coalescent decreases by k − 1 whenever
k blocks merge into one, the rate of events that cause k − 1 blocks to be lost is

(
n
k

)
λn,k.

Therefore, the total rate of decrease in the number of blocks, and thus the rate at which
new vertices are being added to the tree, is

ηn =

n∑
k=2

(k − 1)

(
n

k

)
λn,k =

n∑
k=2

n

k
≈ n log n.

As long as not too many vertices are cut away from the tree at once, the probability
that a new vertex attaches to the root is approximately 1/n. The probability that the
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exponential random variable assigned to the new edge is greater than log log n + z is
e−z/ log n. Hence, the rate at which the process Rn jumps above z is approximately

(n log n)

(
1

n

)(
e−z

log n

)
= e−z,

in agreement with the dynamics of the process (R(t), t ≥ 0). The rest of the proof
consists of making these ideas rigorous.

2.3 Lemmas pertaining to random recursive trees

We prove here two lemmas related to random recursive trees that will be used later
in the proof of Theorem 1.2.

Lemma 2.2. For all ε > 0 and z ∈ R, the probability that there exists u ∈ [0, ε] such
that Rn(u) 6= Rn(u−) and Rn(u) > z is at most ε(1 + 2e−z).

Proof. The total rate of decrease in the number of blocks for the Bolthausen-Sznitman
coalescent is given by

ηn =

n∑
k=2

n

k
≤ n log n. (2.2)

The rate of events in which at least half the blocks are lost is

n∑
k=dn/2e+1

(
n

k

)
λn,k =

n∑
k=dn/2e+1

n

k(k − 1)
= n

(
1

dn/2e
− 1

n

)
≤ 1.

By the construction, for each block that is lost due to a merger in the Bolthausen-
Sznitman coalescent, a new vertex is added to the tree. As long as the merger causes
at most half the blocks to disappear, the probability that each new vertex attaches to
the root is bounded by 2/n. Furthermore, when a new vertex attaches to the root, the
probability that it causes the process (Rn(t), t ≥ 0) to jump above z is the same as the
probability that an exponential random variable with mean 1 is greater than log log n+z,
which is e−(log logn+z) = e−z/ log n. Consequently, in view of (2.2), the rate of events that
cause the process (Rn(t), t ≥ 0) to jump above z is at most

1 + ηn ·
2

n
· e
−z

log n
≤ 1 + 2e−z.

Thus, the probability that such an event happens before time ε is bounded above by
1− e−ε(1+2e−z) ≤ ε(1 + 2e−z), which is the desired conclusion.

Lemma 2.3. Consider a random recursive tree with vertices labeled 1, . . . , n. Let dk be
the depth of the vertex labeled k, which is the number of edges on the path from the
root to k, and let Dn = d1 + · · ·+ dn. Then

E[Dn] = n

( n∑
k=1

1

k
− 1

)
. (2.3)

Also, there exists a positive constant C such that

Var(Dn) ≤ Cn2. (2.4)

Proof. We first prove (2.3) by induction. Because the vertex labeled 1 is the root vertex,
which has depth zero, clearly E[D1] = 0, verifying (2.3). Suppose (2.3) holds for n =

m − 1, where m ≥ 2. Let Fm−1 = σ(d1, . . . , dm−1). Recall that the random recursive
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tree can be constructed so that the vertex labeled m is attached to one of the previous
m− 1 vertices at random. Consequently, the level of the vertex labeled m is the level of
a randomly chosen previous vertex incremented by one, so

E[dm|Fm−1] = 1 +
d1 + · · ·+ dm−1

m− 1
= 1 +

Dm−1

m− 1
(2.5)

and thus

E[dm] = 1 +
E[Dm−1]

m− 1
.

Therefore, using the induction hypothesis,

E[Dm] = E[Dm−1] +E[dm] = 1 +
m

m− 1
E[Dm−1] = 1 +m

(m−1∑
k=1

1

k
− 1

)
= m

( m∑
k=1

1

k
− 1

)
,

which implies that (2.3) holds for all n ∈ N.

We next show by induction that

Var(Dn) ≤ n2
n∑
k=1

E[d2k]

k2
. (2.6)

The result is clear when n = 1 because Var(D1) = 0. Suppose the claim holds for
n = m − 1, where m ≥ 2. By (2.5), E[Dm|Fm−1] = 1 + mDm−1/(m − 1), so using the
induction hypothesis,

Var(Dm) = E[Var(Dm|Fm−1)] + Var(E[Dm|Fm−1])

= E[Var(dm|Fm−1)] + Var

(
m

m− 1
Dm−1

)
≤ E[E[d2m|Fm−1]] +m2

m−1∑
k=1

E[d2k]

k2

= m2
m∑
k=1

E[d2k]

k2
.

Now (2.6) follows by induction.

It remains to bound E[d2k]. Suppose k ≥ 2. If dk = j ≥ 2, then there is a sequence
of numbers 1 = i0 < i1 < · · · < ij = k such that during the construction of the random
recursive tree, vertex i` attaches to vertex i`−1 for ` = 1, . . . , j. Because the vertex i`
has a choice of i` − 1 vertices to which it can attach, the probability of this event is
1/[(i1 − 1) . . . (ij−1 − 1)(k − 1)]. Thus,

P (dk = j) =
1

k − 1

∑
1<i1<···<ij−1<k

1

(i1 − 1) . . . (ij−1 − 1)

≤ 1

(k − 1)(j − 1)!

( k−1∑
i=2

1

i− 1

)j−1
≤ (1 + log k)j−1

(k − 1)(j − 1)!
.
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Combining this bound with the trivial bound that P (dk = j) ≤ 1 for j = 1, 2 gives

E[d2k] = 5 +
1

k − 1

k−1∑
j=3

j2(1 + log k)j−1

(j − 1)!

= 5 +
(1 + log k)2

k − 1

k−1∑
j=3

j2

(j − 1)(j − 2)
· (1 + log k)j−3

(j − 3)!

≤ 5 +
9(1 + log k)2

2(k − 1)
e1+log k

≤ C(log k)2 (2.7)

for some positive constant C. Combining this bound with (2.6) gives (2.4).

2.4 Generator of the limit process

From the Poisson process construction described in the introduction, it is clear that
(R(t), t ≥ 0) is a Markov process. Furthermore, it is easy to describe its transition
semigroup. Suppose R(0) = x. Then for y > x− t, we have R(t) ≤ y when there are no
points in the Poisson process N above the line segment from (0, y+ t) to (t, y). It follows
that

P (R(t) ≤ y) = exp

(
−
∫ t

0

∫ ∞
y+t−s

e−z dz ds

)
= exp

(
− e−y(1− e−t)

)
,

and

P (R(t) = x− t) = exp
(
− e−(x−t)(1− e−t)

)
.

Let E = [−∞,∞), and for x, y ∈ E, let d(x, y) = |ex − ey|. Then (E, d) is a complete
separable metric space. Let C0(E) be the set of continuous real-valued functions on
[−∞,∞) that vanish at infinity with the norm ‖f‖ = supx∈E |f(x)|. Note that if f ∈
C0(E), then limx→−∞ f(x) exists and equals f(−∞), and limx→∞ f(x) = 0. If f ∈ C0(E)

and x ∈ E, define

Ptf(x) =

∫ ∞
x−t

f(y)e−e
−y(1−e−t)e−y(1− e−t) dy + f(x− t)e−e

−(x−t)(1−e−t), (2.8)

so that E[f(R(t))] = Ptf(x) when R(0) = x. Note that the definition of Ptf(x) makes
sense when x = −∞, in which case the second term is zero. It is easily checked that
Ptf ∈ C0(E) and that Ptf → f as t → 0. Consequently, (Pt)t≥0 is a Feller semigroup on
C0(E), and (R(t), t ≥ 0) is a Feller process with semigroup (Pt)t≥0.

The following result characterizes the infinitesimal generator of (R(t), t ≥ 0) and
describes a core for the generator. We see from the form of the generator in (2.9) that
for y > x, the process jumps from x to y at rate e−y. See also chapter 26 of [10] for a
full characterization of the domain of the extended generator.

Lemma 2.4. Let A be the infinitesimal generator associated with (Pt)t≥0. Let C be the
collection of functions f that are constant on [−∞, z] for some z > −∞ and have the
property that f , f ′, and f ′′ are in C0(E) when we define f ′ and f ′′ in the usual way on
(−∞,∞) and set f ′(−∞) = f ′′(−∞) = 0. Then for all f ∈ C and all x ∈ E,

Af(x) = −f ′(x) +

∫ ∞
x

e−y(f(y)− f(x)) dy. (2.9)

Furthermore, C is a core for A.
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Proof. Fix f ∈ C. Choose a real number z such that f is constant on [−∞, z]. By (2.8),
for all x ∈ E,

Ptf(x)− f(x)

t
=

(f(x− t)− f(x))e−e
−(x−t)(1−e−t)

t

+
1

t

∫ ∞
x−t

(f(y)− f(x))e−e
−y(1−e−t)e−y(1− e−t) dy. (2.10)

We need to show that the right-hand side of (2.10) converges to the right-hand side of
(2.9) uniformly in x as t→ 0. Because f ′′ is bounded,

f(x− t)− f(x)

t
→ −f ′(x)

uniformly in x as t→ 0. Also,∣∣∣∣f(x− t)− f(x)

t

(
e−e

−(x−t)(1−e−t) − 1
)∣∣∣∣ ≤ ∣∣∣∣f(x− t)− f(x)

t

∣∣∣∣e−(x−t)t ≤ ‖f ′‖tete−z,
which tends to zero uniformly in x as t→ 0. Because∣∣∣∣1− e−e

−y(1−e−t)(1− e−t)
t

∣∣∣∣ ≤ ∣∣1− e−e−y(1−e−t)
∣∣+ e−e

−y(1−e−t)

∣∣∣∣1− 1− e−t

t

∣∣∣∣ ≤ e−yt+
t

2
,

we have∣∣∣∣ ∫ ∞
x

(f(y)− f(x))e−y
(

1− e−e
−y(1−e−t)(1− e−t)

t

)
dy

∣∣∣∣ ≤ ∫ ∞
z

2‖f‖e−y
(
e−yt+

t

2

)
dy,

which tends to zero uniformly in x as t→ 0. Likewise,

1

t

∫ x

x−t
(f(y)− f(x))e−e

−y(1−e−t)e−y(1− e−t) dy

tends to zero uniformly in x as t→ 0. Therefore,

1

t

∫ ∞
x−t

(f(y)− f(x))e−e
−y(1−e−t)e−y(1− e−t) dy →

∫ ∞
x

e−y(f(y)− f(x)) dy

uniformly in x as t→ 0. Equation (2.9) follows.
It remains to show that C is a core for A. It is easy to see that C is dense in C0(E).

Suppose f ∈ C, and choose z so that f is constant on [−∞, z]. For all x ≤ z + t,

Ptf(x) =

∫ ∞
z

f(y)e−e
−y(1−e−t)e−y(1− e−t) dy + f(z)e−e

−z(1−e−t).

Thus, Ptf is constant on [−∞, z + t]. By differentiating the right-hand side of (2.8), we
see that the first and second derivatives of Ptf are continuous and vanish at infinity.
Thus, Ptf ∈ C. It follows from Proposition 3.3 in Chapter 1 of [15] that C is a core for
A.

2.5 Convergence of finite-dimensional distributions

We show here that the finite-dimensional distributions of the processes (Rn(t), t ≥ 0)

defined from random recursive trees in section 2.1 converge as n → ∞ to the finite-
dimensional distributions of (R(t), t ≥ 0).

Let `1(t) < · · · < `n(t) be the labels of the tree Tn(t) defined in section 2.1. For
i = 2, . . . , n, let Hi(t) = j if `j(t) is the parent of `i(t) in the tree Tn(t). Let Gn(t)
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be the σ-field generated by the random variables H2(t), . . . ,Hn(t) and the exponential
random variables assigned to the edges adjacent to the root. Informally, this means
that Gn(t) includes all the information about the tree at time t except for the values
of the exponential random variables assigned to the edges that are not adjacent to
the root. Let Fn(t) be the smallest σ-field containing ∪s∈[0,t]Gn(s). Note that Rn(t) is
Gn(t)-measurable for all t ≥ 0, and thus the process (Rn(t), t ≥ 0) is adapted to the
filtration Fn = (Fn(t), t ≥ 0). Because (Rn(t), t ≥ 0) is right continuous, it follows that
(Rn(t), t ≥ 0) is Fn-progressive (see p. 50 of [15]).

Fix a function f ∈ C. Let εn = n−4 for all n ∈ N. Let

ξn(t) =
1

εn

∫ εn

0

E[f(Rn(t+ s))|Fn(t)] ds

and

ϕn(t) =
1

εn
E[f(Rn(t+ εn))− f(Rn(t))|Fn(t)].

By (1.5), Rn(0) converges in distribution to R(0) as n → ∞. By Theorem 8.2 and parts
(a) and (b) of Remark 8.3 in chapter 4 of [15], to show that the finite-dimensional dis-
tributions of (Rn(t), t ≥ 0) converge to those of (R(t), t ≥ 0), it suffices to show that the
following hold for all t ≥ 0:

sup
n

sup
0≤s≤t

E[|ξn(s)|] <∞, (2.11)

sup
n

sup
0≤s≤t

E[|ϕn(s)|] <∞, (2.12)

lim
n→∞

E[|ξn(t)− f(Rn(t))|] = 0, (2.13)

lim
n→∞

E[|ϕn(t)− (Af)(Rn(t))|] = 0. (2.14)

Note that (2.11) is obvious because |ξn(s)| ≤ ‖f‖ for all s ≥ 0. To show (2.12), choose
z > −∞ such that f is constant on [−∞, z]. For s ≥ 0, let Js be the event that there exists
a time u ∈ [s, s + εn] such that Rn(u) 6= Rn(u−) and Rn(u) > z. Because the process
(Rn(t), t ≥ 0) decreases at speed one between jumps, we have Rn(s + εn) − Rn(s) = εn
if the process does not jump between times s and s+ εn, which implies that

|f(Rn(s+ εn))− f(Rn(s))| ≤ εn‖f ′‖. (2.15)

If the process makes one or more jumps between times s and s + εn but never jumps
above z, then Rn(u) ≤ z+εn for all u ∈ [s, s+εn], and once again (2.15) holds because f
is constant on [−∞, z]. It follows that (2.15) holds on the event Jcs . Because the process
(Rn(t), t ≥ 0) is stationary, we have P (Js) = P (J0) for all s ≥ 0. Therefore, by Lemma
2.2,

E[|ϕn(s)|] ≤ 1

εn
E[|f(Rn(s+ εn))− f(Rn(s))|1Jc

s
] +

1

εn
E[|f(Rn(s+ εn))− f(Rn(s))|1Js ]

≤ ‖f ′‖+
2

εn
‖f‖P (Js)

≤ ‖f ′‖+ (2 + 4e−z)‖f‖,

which proves (2.12).
Next, observe that

|ξn(t)− f(Rn(t))| = 1

εn

∣∣∣∣ ∫ εn

0

E[f(Rn(t+ s))− f(Rn(t))|Fn(t)] ds

∣∣∣∣
≤ εn‖f ′‖+ 2‖f‖P (Jt|Fn(t)). (2.16)
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Thus, by Lemma 2.2, taking expectations of both sides gives

E[|ξn(t)− f(Rn(t))|] ≤ εn‖f ′‖+ 2‖f‖P (Jt) ≤ εn‖f ′‖+ 2εn‖f‖(1 + 2e−z)→ 0

as n→∞, which gives (2.13). It remains only to show (2.14).
When the tree is cut, we call the event a small cut if fewer than n/(log n)1/2 vertices

are removed as a result of the cut, and a large cut otherwise. We define the following
five events. Recall that z has been chosen so that f is constant on [−∞, z].

• Let A1 be the event that between times t and t + εn, there is a small cut at some
edge not adjacent to the root, one of the new edges attaches to the root and is
assigned a label greater than log log n + z, and this is the only edge that attaches
to the root between times t and t+ εn and gets a label greater than log log n+ z.

• Let A2 be the event that between times t and t + εn, there is a large cut during
which one of the new edges attaches to the root and is assigned a label greater
than log log n+ z.

• Let A3 be the event that between times t and t+ εn, there is an event in which the
tree is cut at some edge adjacent to the root, and one of the new edges attaches
to the root and is assigned a label greater than log log n+ z.

• Let A4 be the event that between times t and t+εn, two or more new edges attach
to the root and are assigned labels greater than log log n+ z.

• Let A5 = Ac1 ∩Ac2 ∩Ac3 ∩Ac4.

The next lemma shows that A2, A3, and A4 are unlikely to occur, which means that
jumps of the process Rn between times t and t+εn will occur primarily on the event A1.

Lemma 2.5. We have

lim
n→∞

P (A2 ∪A3 ∪A4)

εn
= 0.

Proof. To bound P (A2), note that an event during which k−1 vertices are removed from
the tree corresponds to a transition in the Bolthausen-Sznitman coalescent in which k

blocks merge into one. Such events happen at rate
(
n
k

)
λn,k = n/[k(k − 1)] by (1.3).

When such an event occurs, the expected number of vertices that reattach to the root is
1/(n− k+ 1) + · · ·+ 1/(n− 1). When a vertex reattaches to the root, the probability that
its label exceeds log log n+ z is e−(log logn+z) = e−z/ log n. Thus, for sufficiently large n,

P (A2) ≤ εn
n∑

k=dn/(logn)1/2+1e

n

k(k − 1)

( n−1∑
j=n−k+1

1

j

)
e−z

log n

≤ εne
−z

log n

( bn/2c+1∑
k=dn/(logn)1/2+1e

n

k(k − 1)
· 2(k − 1)

n
+

n∑
k=bn/2c+2

n

k(k − 1)

( n−1∑
j=n−k+1

1

j

))

≤ εne
−z

log n

(
2

(
log n− log

(
n

(log n)1/2

))
+

4

n

n∑
j=1

n∑
k=n−j+1

1

j

)

=
εne
−z(log log n+ 4)

log n
. (2.17)

To bound P (A3), note that an event in which the tree is cut at some edge adjacent to
the root corresponds to a merger in the Bolthausen-Sznitman coalescent that involves
the block containing the integer 1. By the sampling consistency of the Bolthausen-
Sznitman coalescent, any pair of blocks merges at rate λ2 = 1. Consequently, the
expected number of blocks that are removed from the tree between times t and t + εn
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when the tree is cut at an edge adjacent to the root is εn(n − 1). For sufficiently large
n, provided that fewer than n/(log n)1/2 vertices are removed as a result of the cut, the
probability that a given vertex reattaches to the root is at most 2/n. The probability
that the label on the new edge exceeds log log n + z is e−z/ log n as before. Thus, for
sufficiently large n

P (A3 ∩Ac2) ≤ εn(n− 1) · 2

n
· e
−z

log n
≤ 2e−zεn

log n
. (2.18)

To bound P (A4), note that there are two ways that A4 can occur. Either the tree can
be cut two or more times between times t and t+ εn, or two or more edges can reattach
to the root after a single cut. Because cuts of the tree happen at times of a Poisson
process of rate λn = n− 1, the probability that two or more cuts happen between times
t and t+εn is at most ε2n(n−1)2. If there is an event in which k−1 vertices are removed
from the tree following a cut, there are

(
k−1
2

)
pairs of vertices removed, and A4 will

occur if both vertices in one or more of these pairs reattach to the root. On Ac2, for
sufficiently large n, the chance that two given vertices reattach to the root is at most
4/n2, and each new edge independently has probability e−z/(log n) of having a label
greater than log log n+ z. Thus,

P (A4 ∩Ac2) ≤ ε2n(n− 1)2 + εn

dn/(logn)1/2e∑
k=3

n

k(k − 1)

(
k − 1

2

)
4e−2z

n2(log n)2

≤ ε2n(n− 1)2 +
2e−2zεn

(log n)5/2
. (2.19)

The result follows from (2.17), (2.18), and (2.19).

Lemma 2.6. We have

P (A1) ≤ 2e−zεn

for sufficiently large n. Furthermore,

lim
n→∞

E

[∣∣∣∣ ezεnP (A1|Fn(t))− 1

∣∣∣∣] = 0.

Proof. Recall that in our construction using trees, we labeled the vertices by ordered
pairs (t, i) rather than using the vertex labels 1, . . . , n. However, for the purposes of this
proof, we will arbitrarily number the vertices at time t by the integers 1, . . . , n, with the
root being vertex 1. For k ≥ 2, let dk be the depth of vertex k, which is the number of
edges on the path from the root to k. Let vk be the number of edges along the path from
the root to k that are not adjacent to the root but that have at least n/(log n)1/2 vertices
below them. That is, vk is the number of edges e along this path not adjacent to the root
such that if we cut the tree at the edge e, it would be classified as a large cut. Define
Dn(t) = d2 + · · ·+ dn and Vn(t) = v2 + · · ·+ vn. For each k = 2, . . . , n, we will separately
bound the probability that A1 occurs and that k is the vertex that reattaches to the root
with an edge label of at least log logn+ z.

Note that there are dk − 1 − vk edges not adjacent to the root such that, if the tree
were cut at that edge, the vertex labeled k would be removed from the tree and this
would be a small cut. The probability that one of these edges is cut before time t+ εn is
1−e−εn(dk−1−vk), which is between εn(dk−1−vk)−ε2n(dk−1−vk)2/2 and εn(dk−1−vk).
The probability that the vertex labeled k reattaches to the root is between 1/n and
1/(n − n/

√
log n), and the probability that the new edge label is at least log logn + z is
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e−z/ log n. Therefore,

P (A1|Fn(t)) ≤
n∑
k=2

εn(dk − 1− vk) · 1

n− n/
√

log n
· e
−z

log n

=
εn(Dn(t)− (n− 1)− Vn(t))e−z

n log n

( √
log n√

log n− 1

)
≤ εnDn(t)e−z

n log n

( √
log n√

log n− 1

)
. (2.20)

Because E[Dn(t)] ≤ n log n by Lemma 2.3, it follows that P (A1) ≤ 2e−zεn for all n large
enough that

√
log n/(

√
log n− 1) ≤ 2.

Suppose the vertex k is cut from the tree. The probability that vertex k and some
other vertex both reattach to the root with new edge labels greater than log log n+ z is
at most

(n− 2)

(
1

n− n/
√

log n

)2(
e−z

log n

)2

≤ 2e−2z

n(log n)2

for sufficiently large n. Also, the probability that there are two cuts to the tree before
time t+ εn is at most (n− 1)2ε2n. Combining these observations, we get

P (A1|Fn(t))

≥
n∑
k=2

((
εn(dk − 1− vk)− ε2n(dk − 1− vk)2

2

)(
e−z

n log n
− 2e−2z

n(log n)2

)
− ε2n(n− 1)2

)
≥ εn(Dn(t)− (n− 1)− Vn(t))e−z

n log n
− ε2nDn(t)2e−z

2n log n
− 2εnDn(t)e−2z

n(log n)2
− ε2nn3. (2.21)

Combining (2.20) and (2.21) gives∣∣∣∣ ezεnP (A1|Fn(t))− 1

∣∣∣∣ ≤ ∣∣∣∣ Dn(t)

n log n
− 1

∣∣∣∣+
(n− 1) + Vn(t)

n log n

+
Dn(t)

n log n

(
1√

log n− 1

)
+
εnDn(t)2

2n log n
+

2Dn(t)e−z

n(log n)2
+ εne

zn3.

(2.22)

We need to show that the six terms on the right-hand side of (2.22) tend to zero in
expectation as n→∞. By Lemma 2.3 and the Cauchy-Schwarz Inequality,

E

[∣∣∣∣ Dn(t)

n log n
− 1

∣∣∣∣] ≤ 1

n log n
E
[∣∣Dn(t)− E[Dn(t)]

∣∣]+

∣∣∣∣E[Dn(t)]

n log n
− 1

∣∣∣∣
≤ Var(Dn(t))1/2

n log n
+

∣∣∣∣E[Dn(t)]

n log n
− 1

∣∣∣∣→ 0 (2.23)

as n→∞. Because E[Vn(t)] is at most n times the rate of transitions in the Bolthausen-
Sznitman coalescent that cause at least n/(log n)1/2 blocks to be lost, we have

E[Vn(t)] ≤ n
n∑

k=dn/(logn)1/2+1e

(
n

k

)
λn,k = n

n∑
k=dn/(logn)1/2+1e

n

k(k − 1)
≤ n

√
log n,

from which it follows that the expected value of the second term on the right-hand side
of (2.22) tends to zero as n → ∞. Using Lemma 2.3 and the fact that εn = n−4, it
is easily checked that the expectations of the last four terms on the right-hand side of
(2.22) tend to zero as n→∞.
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Proposition 2.7. The finite-dimensional distributions of the processes (Rn(t), t ≥ 0)

converge as n→∞ to the finite-dimensional distributions of (R(t), t ≥ 0).

Proof. Recall that it remains only to show (2.14), which is equivalent to showing that

lim
n→∞

E

[∣∣∣∣ 1

εn
E[f(Rn(t+ εn))− f(Rn(t))|Fn(t)]

+ f ′(Rn(t))−
∫ ∞
Rn(t)

e−y(f(y)− f(Rn(t))) dy

∣∣∣∣] = 0, (2.24)

where f is an arbitrary function in C which is constant on [−∞, z]. We evaluate the
expression f(Rn(t + εn)) − f(Rn(t)) on the three disjoint events A1, A2 ∪ A3 ∪ A4, and
A5.

By Lemma 2.5,

E

[∣∣∣∣ 1

εn
E[(f(Rn(t+εn))−f(Rn(t)))1A2∪A3∪A4

|Fn(t)]

∣∣∣∣] ≤ 2‖f‖
εn

P (A2∪A3∪A4)→ 0 (2.25)

as n → ∞. Note that f(Rn(t + εn)) = f(Rn(t) − εn) on A5 because either the process
(Rn(t), t ≥ 0) does not jump between times t and t + εn, in which case Rn(t + εn) =

Rn(t) − εn, or else Rn(t + εn) ≤ z, in which case f(Rn(t + εn)) = f(Rn(t) − εn) = f(z).
Therefore, using Lemmas 2.5 and 2.6,

E

[∣∣∣∣ 1

εn
E[(f(Rn(t+ εn))− f(Rn(t)))1A5 |Fn(t)] + f ′(Rn(t))

∣∣∣∣]
= E

[∣∣∣∣E[(f(Rn(t)− εn)− f(Rn(t))

εn
+ f ′(Rn(t))

)
1A5

+ f ′(Rn(t))1Ac
5

∣∣∣∣Fn(t)

]∣∣∣∣]
≤ E

[∣∣∣∣f(Rn(t)− εn)− f(Rn(t))

εn
+ f ′(Rn(t))

∣∣∣∣]+ ‖f ′‖P (Ac5)

= E

[∣∣∣∣ ∫ Rn(t)

Rn(t)−εn

f ′(s)− f ′(Rn(t))

εn
ds

∣∣∣∣]+ ‖f ′‖P (A1 ∪A2 ∪A3 ∪A4)

≤ εn‖f ′′‖+ ‖f ′‖(P (A1) + P (A2) + P (A3) + P (A4))→ 0 (2.26)

as n→∞.
On A1, there is a unique time τ ∈ [t, t+ εn] such that at time τ , a new edge attaches

to the root and is assigned a label greater than log log n + z. Denote by K the value of
this edge label minus log log n, and let J = max{K,Rn(t)}. Conditional on A1 and Fn(t),
the distribution of K has a density given by k(y) = ez−y1{y>z}. Therefore,

E[(f(Rn(t+ εn))− f(Rn(t))1A1
|Fn(t)]

= E[(f(Rn(t+ εn))− f(J))1A1
|Fn(t)] + E[(f(J)− f(Rn(t))1A1

|Fn(t)]

= E[(f(Rn(t+ εn))− f(J))1A1
|Fn(t)] +

(∫ ∞
Rn(t)

ez−y(f(y)− f(Rn(t)) dy

)
P (A1|Fn(t)).

Note that J − εn ≤ Rn(t+ εn) ≤ J on A1, so

|E[f(Rn(t+ εn))− f(J))1A1
|Fn(t)]| ≤ εn‖f ′‖P (A1|Fn(t)).

It follows that

E

[∣∣∣∣ 1

εn
E[f(Rn(t+ εn))− f(Rn(t))1A1

|Fn(t)]−
∫ ∞
Rn(t)

e−y(f(y)− f(Rn(t)) dy

∣∣∣∣]
≤ ‖f ′‖P (A1) + E

[∣∣∣∣( ∫ ∞
Rn(t)

e−y(f(y)− f(Rn(t)) dy

)(
ezP (A1|Fn(t))

εn
− 1

)∣∣∣∣]
≤ ‖f ′‖P (A1) + 2‖f‖e−zE

[∣∣∣∣ ezεnP (A1|Fn(t))− 1

∣∣∣∣]. (2.27)
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It now follows from Lemma 2.6 that the right-hand side of (2.27) tends to zero as n→∞.
The result now follows by combining this observation with (2.25) and (2.26).

2.6 Tightness

Here we show that the sequence of processes (Rn)∞n=1 is relatively compact. By
Theorem 7.8 in Chapter 3 of [15], this result in combination with Proposition 2.7 implies
that the processes (Rn(t), t ≥ 0) converge weakly to (R(t), t ≥ 0).

For δ > 0 and t > 0, let

wn(δ, t) = inf
{ti}

max
i

sup
r,s∈[ti−1,ti)

|Rn(r)−Rn(s)|,

where the infimum is taken over all partitions of the form 0 = t0 < t1 < · · · < tm = t such
that ti − ti−1 > δ for i = 1, . . . ,m. By Corollary 7.4 in Chapter 3 of [15], the sequence
(Rn)∞n=1 is relatively compact provided that for all ε > 0 and t > 0, there exists δ > 0

such that
lim sup
n→∞

P (wn(δ, t) ≥ ε) ≤ ε. (2.28)

Therefore, we can conclude the proof of Theorem 1.2 by showing (2.28).
Fix t > 0. Choose ε ∈ (0, 1), and choose y < 0 such that P (Rn(0) ≤ y+ t) < ε/6. Note

that if Rn(0) > y + t, then Rn(s) > y for all s ∈ [0, t]. Let

δ =
e2yε

36 max{t, 1}
.

Let 0 < τ1,n < τ2,n < . . . denote the jump times of (Rn(s), s ≥ 0). As long as τj,n−τj−1,n >
δ for all j such that τj,n ≤ t and there are no jump times in [0, δ] or [t − δ, t], it is easy
to choose the times t0, . . . , tn such that δ < ti − ti−1 < 2δ for i = 1, . . . , n and for
all j such that τj,n ≤ t, we have τj,n = ti for some i. That is, there is one of the ti
at every jump time of the process. In this case, whenever r, s ∈ [ti−1, ti), we have
|Rn(r)−Rn(s)| = |r − s| ≤ 2δ < ε.

By Lemmas 2.5 and 2.6 with δ in place of εn and y in place of z, we have

lim sup
n→∞

P
(
Rn(s) 6= Rn(s−) for some s ∈ [0, δ] ∪ [t− δ, t]

)
≤ lim sup

n→∞
P (Rn(0) ≤ y + t) + 2e−yδ + 2e−yδ <

ε

3
. (2.29)

Note that if τj,n−τj−1,n ≤ δ for some j such that τj,n ≤ t, then there exists a nonnegative
integer k ≤ t/δ − 1 such that kδ ≤ τj−1,n < τj,n ≤ min{t, (k + 2)δ}. For two jumps of the
process (Rn(s), s ≥ 0) to fall within the interval [kδ,min{t, (k+2)δ}], one of the following
four events must occur:

• We have Rn(s) ≤ y for some s ∈ [0, t].

• Between times kδ and (k + 2)δ, there is a large cut, and one of the new edges
attaches to the root and is assigned a label greater than log logn+ y.

• Between times kδ and (k + 2)δ, more than 3δn log n vertices are removed from the
tree during small cuts.

• Of the first b3δn log nc vertices, after time kδ, that are removed from the tree
during small cuts, two or more reattach to the root with new edge labels greater
than log log n+ y.

We have already bounded the probability of the first event by ε/6. The other three
events depend on k. The probability of the second event tends to zero as n → ∞ by
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(2.17) with 2δ in place of εn and y in place of z. To bound the probability of the third
event, note that mergers in the Bolthausen-Sznitman coalescent in which k − 1 blocks
are lost occur at rate

(
n
k

)
λn,k = n/(k(k − 1)). Therefore, if N denotes the number of

vertices removed during small cuts between times kδ and (k + 2)δ, we have

E[N ] = 2δ

dn/(logn)1/2e∑
k=2

(k − 1) · n

k(k − 1)
= 2δ

dn/(logn)1/2e∑
k=2

n

k
≤ 2δn log n

and

Var(N) = 2δ

dn/(logn)1/2e∑
k=2

(k − 1)2 · n

k(k − 1)
≤ 2δn2.

Therefore, by Chebyshev’s Inequality,

P (N > 3δn log n) ≤ P (|N − E[N ]| > δn log n) ≤ 2δn2

δ2n2(log n)2
→ 0

as n → ∞. Finally, concerning the fourth event, note that when a vertex is reattached
after being removed during a small cut, the probability that it reattaches to the root
is at most 2/n, and the probability that it is assigned a label greater than log log n + y

is e−y/(log n). Therefore, since there are at most (3δn log n)2/2 pairs of vertices to
consider, the probability of the fourth event for a particular k is at most

(3δn log n)2

2
· 4e−2y

(n log n)2
≤ 18δ2e−2y.

Since there are at most t/δ possible values of k to consider, the probability that the
fourth event occurs for some k is at most 18tδe−2y ≤ ε/2. Therefore,

lim sup
n→∞

P (τj,n − τj−1,n ≤ δ for some j such that τj,n ≤ t) ≤
ε

6
+
ε

2
≤ 2ε

3
.

Combining this result with (2.29) gives (2.28) and completes the proof of Theorem 1.2.

3 Proof of Theorem 1.7

We obtain Theorems 1.5 and 1.7 using a very different approach. Rather than using
recursive trees, we couple the population model with a family of stable processes by
constructing both from a Poisson process. We describe this construction in section 3.1.
We then prove Theorem 1.7 in section 3.4, and we prove Theorem 1.5 in section 4.

Throughout the rest of the paper, T > 0 will be an arbitrary positive constant, and

Tn = 2 log log n.

Also,→p will denote convergence in probability as n→∞.

3.1 A Poisson process construction

Fix a positive integer n. Let Ψ be a Poisson point process on R × (0,∞) whose
intensity measure is given by dt× y−2 dy. Then define Θ to be the image of Ψ under the
map (t, y) 7→ (−t/ log n, y/ log n), restricted to R × (0, 1]. That is, if (t, y) is a point of Ψ

with y ≤ log n, then (−t/ log n, y/ log n) is a point of Ψ. We claim that Θ is a Poisson point
process on R× (0, 1] with intensity measure dt×y−2 dy. To see this, observe that if a < b
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and 0 < x < 1, then the expected number of points of Θ in the region [a, b]× [x, 1] is the
expected number of points of Ψ in the region [−b log n,−a log n]× [x log n, log n], which is∫ −a logn

−b logn

∫ logn

x logn

y−2 dy dt = (b− a) log n

(
1

x log n
− 1

log n

)
= (b− a)

(
1

x
− 1

)
=

∫ b

a

∫ 1

x

y−2 dy dt.

We now construct a population model consisting of n individuals labelled 1, . . . , n. We
independently attach to each point (ti, yi) of Θ random variables Ui,1, . . . , Ui,n, which are
independent and have the uniform distribution on (0, 1). If zero or one of the random
variables Ui,1, . . . , Ui,n is less than yi, then there is no change in the population at time
ti. However, if k ≥ 2 of the random variables Ui,1, . . . , Ui,n are less than yi and the k

smallest of these random variables are Ui,j1 < · · · < Ui,jk , then at time ti, the individ-
uals labeled j2, . . . , jk are killed, and the individual labeled j1 gives birth to k − 1 new
offspring, which assume the labels j2, . . . , jk.

To see that this is equivalent to the population model described in the introduction,
note that if (ti, yi) is a point of Θ, the probability that exactly k new offspring are born
at time ti is

(
n
k+1

)
yk+1
i (1 − yi)

n−k−1. Thus, the rate of events in which exactly k new
offspring are born is(

n

k + 1

)∫ 1

0

yk+1(1− y)n−k−1 · y−2 dy =
n

k(k + 1)
,

which matches (1.2) because changes in the population occur at rate n− 1.
For s ∈ R and t ≥ 0, let Nn(s, t) denote the number of individuals in the population

at time (s− t)− who have a descendant alive in the population at time s. That is, Nn(s, t)

is the number of ancestral lines remaining after time t if we trace back the ancestral
lines of the individuals in the population at time s. Note that because we consider the
population at time (s− t)− rather than at time s− t when defining Nn(s, t), the process
(Nn(s, t), t ≥ 0) is right continuous. Also, note that N(s, 0) = n as long as there is no
change in the population at time s, but if k individuals are killed at time s and replaced
by new offspring, then N(s, 0) = n − k. Let Nn(t) = Nn(0, t). Because the genealogy of
this population is given by the Bolthausen-Sznitman coalescent started with n blocks,
the process (Nn(t), t ≥ 0) has the same law as the process defined in the statement of
Theorem 1.7. Let

Ln(s) =

∫ ∞
0

Nn(s, t)1{Nn(s,t)>1} dt. (3.1)

Then Ln(s) is the total branch length for the coalescent tree representing the genealogy
of the population at time s, so (Ln(s), s ≥ 0) has the same law as the process considered
in Theorem 1.5.

Next, we use the Poisson process Ψ to construct, for each s ∈ R, a stable process
(S(s, t), t ≥ 0) with characteristic exponent

E[eiuS(s,t)] = exp

(
− πt

2
|u|+ itu log |u|

)
= exp

(
itu(1− γ)− t

∫ 0

−∞

(
1− eiux + iux1{|x|≤1}

)
x−2 dx

)
, (3.2)

where γ denotes Euler’s constant. Because Ψ has only countably many points, we can
enumerate the points of Ψ as (sj , xj)

∞
j=1. If sj > −s, then the process (S(s, t), t ≥ 0)

will have a jump of size −xj at time sj + s. Also, there is a linear drift. To make this
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construction precise, we use a standard approximation procedure that is described, for
example, in Section I.1 of [4]. Define

εn = e−
√
logn,

which implies that for all a > 0,

lim
n→∞

(log n)aεn = 0

and

lim
n→∞

naεn =∞.

Let Rn(s, t) be the set of all j such that −s < sj ≤ −s+ t and xj > εn. For all s ∈ R and
t ≥ 0, let

Sn(s, t) = t(1− γ − log εn)−
∑

j∈Rn(s,t)

xj . (3.3)

Note that
∫ 0

−∞ x1{εn<|x|≤1} x
−2 dx = log εn. Therefore, for any fixed T > 0 and any

integers m,n > N , the proof of Theorem 1 in Section I.1 of [4] (see the bottom of p. 14)
gives

E

[
sup

0≤t≤T
(Sn(s, t)− Sm(s, t))2

]
≤ 4T

∫ ∞
0

x21{|x|≤εN} x
−2 dx ≤ 4TεN . (3.4)

It follows that for each s ∈ R, there is a limit process (S(s, t), t ≥ 0) satisfying (3.2) such
that for each fixed T > 0,

E

[
sup

0≤t≤T
(Sn(s, t)− S(s, t))2

]
≤ 4Tεn → 0 (3.5)

as n→∞. Let Sn(t) = Sn(0, t) and S(t) = S(0, t) for all t ≥ 0.

3.2 Bounds on stable processes

The three lemmas below collect some bounds on these stable processes that will be
needed later.

Lemma 3.1. Fix ε > 0. Then there exists K > 0 such that

P

(
sup

0≤s≤T
sup
t≥0

e−t|S(s, t)| > K

)
< ε. (3.6)

Additionally, we have

lim
n→∞

P

(
sup

0≤s≤T
sup

0≤t≤Tn+s
|S(s, t)| > 5(log log n)2

)
= 0. (3.7)

Also,

lim
n→∞

P (|S(Tn)| ≤ T 2
n) = 1 (3.8)

and

sup
0≤s≤T

∫ ∞
Tn+s

e−tS(s, t) dt→p 0. (3.9)

Proof. The process (S(t), t ≥ 0) is a stable process of index 1. Therefore, by Proposition
48.10 of [30], we have

lim sup
t→∞

t−α|S(t)| = 0

EJP 17 (2012), paper 91.
Page 23/50

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2378
http://ejp.ejpecp.org/


Evolving Bolthausen-Sznitman coalescent

almost surely for all α > 1. Therefore, there exists a random time U with P (U <∞) = 1

such that |S(t)| ≤ t2 for all t ≥ U . This implies (3.8).
Let L = sup0≤t≤U |S(t)| and M = sup0≤t≤T |S(T, t)|. Note that L < ∞ and M < ∞

almost surely. Suppose 0 ≤ s ≤ T . By the construction, if 0 ≤ t ≤ s then

S(s, t) = S(T, T − s+ t)− S(T, T − s), (3.10)

while if t ≥ s then

S(s, t) = S(s, s) + S(0, t− s) = S(T, T )− S(T, T − s) + S(0, t− s). (3.11)

Therefore,
|S(s, t)| ≤ 2M + L+ t2. (3.12)

Since e−tt2 ≤ 1 for all t ≥ 0, it follows that

sup
0≤s≤T

sup
t≥0

e−t|S(s, t)| ≤ 2M + L+ 1.

Now choose K large enough that P (2M + L+ 1 > K) < ε to obtain (3.6). Furthermore,
(3.12) implies that

sup
0≤s≤T

sup
0≤t≤Tn+s

|S(s, t)| ≤ 2M + L+ (2 log log n+ T )2,

and (3.7) follows because P (2M+L+(2 log log n+T )2 > 5(log log n)2)→ 0 as n→∞. On
the event that 2M + L ≤ T 2

n , which has probability tending to one as n → ∞, equation
(3.12) gives that for 0 ≤ s ≤ T ,∫ ∞

Tn+s

e−t|S(s, t)| dt ≤ 2

∫ ∞
Tn

e−tt2 dt→ 0

as n→∞, which gives (3.9).

Lemma 3.2. We have

sup
0≤s≤T

sup
0≤t≤Tn+s

|Sn(s, t)− S(s, t)| →p 0.

Proof. Suppose 0 ≤ s ≤ T . By (3.10), which holds also with Sn in place of S, if 0 ≤ t ≤ s
then

|Sn(s, t)− S(s, t)| = |Sn(T, T − s+ t)− Sn(T, T − s)− S(T, T − s+ t) + S(T, T − s)|
≤ 2 sup

0≤u≤T
|Sn(T, u)− S(T, u)|.

By (3.11), if s ≤ t ≤ Tn + s, then

|Sn(s, t)− S(s, t)|
= |Sn(T, T )− Sn(T, T − s) + Sn(0, t− s)− S(T, T ) + S(T, T − s)− S(0, t− s)|
≤ 2 sup

0≤u≤T
|Sn(T, u)− S(T, u)|+ sup

0≤u≤Tn

|Sn(0, u)− S(0, u)|.

Using that (a+ b)2 ≤ 2a2 + 2b2 and applying (3.5), we get

E

[(
sup

0≤s≤T
sup

0≤t≤Tn+s
|Sn(s, t)− S(s, t)|

)2]
≤ 32Tεn + 8Tnεn → 0

as n→∞, which implies the result.
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Lemma 3.3. Suppose s ∈ R and (δn)∞n=1 is a sequence of numbers with δn
√

log n → 0

as n → ∞. Let θ > 0, and let A(θ) be the event that there are no points of Ψ in
[−s,−s+ δn]× [θ,∞). Then for sufficiently large n,

P

(
sup

0≤t≤δn
|Sn(s, t)| ≥ θ1/3

∣∣∣∣A(θ)

)
≤ 4δnθ

1/3.

Proof. By (3.3), we have

sup
0≤t≤δn

|Sn(s, t)| ≤ δn(1− γ − log εn) +
∑

j∈Rn(s,t)

xj .

Because | log εn| =
√

log n and δn
√

log n → 0, we have δn(1 − γ − log εn) ≤ θ1/3/4 for
sufficiently large n. Furthermore,

E

[ ∑
j∈Rn(s,t)

xj

∣∣∣∣A(θ)

]
= δn

∫ θ

εn

x · x−2 dx = δn(log θ − log εn)→ 0

as n→∞ and

Var

( ∑
j∈Rn(s,t)

xj

∣∣∣∣A(θ)

)
= δn

∫ θ

εn

x2 · x−2 dx ≤ δnθ.

Therefore, by Chebyshev’s Inequality, for sufficiently large n,

P

(
sup

0≤t≤δn
|Sn(s, t)| ≥ θ1/3

∣∣∣∣A(θ)

)
≤ P

( ∑
j∈Rn(s,t)

xj ≥
3θ1/3

4

∣∣∣∣A(θ)

)

≤ P
(∣∣∣∣ ∑

j∈Rn(s,t)

xj − E
[ ∑
j∈Rn(s,t)

xj

∣∣∣∣A(θ)

]∣∣∣∣ ≥ θ1/3

2

∣∣∣∣A(θ)

)

≤ δnθ
(

4

θ2/3

)
, (3.13)

which gives the result.

3.3 Rate of decrease in the number of blocks

We record here some results about the rate at which the number of blocks decreases
in the Bolthausen-Sznitman coalescent. Recall that the process (Nn(t), t ≥ 0) tracks the
evolution of the number of blocks over time. Because the number of blocks decreases
by k − 1 whenever k blocks merge into one, the rate at which the number of blocks is
decreasing when there are b blocks is

η(b) =

b∑
k=2

(k − 1)

(
b

k

)
λb,k. (3.14)

Considering the process from the perspective of the construction in section 3.1, suppose
there is a point (−t, y) in the Poisson process Θ. If Nn(t−) = b, then Nn(t−) − Nn(t) is
one less than the number out of b independent uniformly distributed random variables
that are less than or equal to y, unless all of the random variables are greater than y in
which case Nn(t−)−Nn(t) = 0. Therefore, the expected decrease in the process Nn at
time t is by − 1 + (1− y)b. It follows that

η(b) =

∫ 1

0

(
by − 1 + (1− y)b

)
y−2 dy.
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We will be interested also in the process obtained by removing from Θ the points
whose second coordinate exceeds εn/ log n. In this case, the genealogy of the popula-
tion is given not by the Bolthausen-Sznitman coalescent but by a different coalescent
process in which the largest merger events are suppressed. In particular, when there
are b blocks, the rate at which k blocks merge into one is given by

λ∗b,k =

∫ εn/ logn

0

xk−2(1− x)b−k dx (3.15)

and the rate at which the number of blocks is decreasing is given by

η∗(b) =

b∑
k=2

(k − 1)

(
b

k

)
λ∗b,k =

∫ εn/ logn

0

(
by − 1 + (1− y)b

)
y−2 dy.

Also, let

v∗(b) =

b∑
k=2

(k − 1)2
(
b

k

)
λ∗b,k. (3.16)

Lemma 3.4. For all positive integers b and n with 2 ≤ b ≤ n, we have∣∣η∗(b)− b(log b− log logn+ log εn + γ − 1)
∣∣ ≤ log n

εn
+ 1, (3.17)

where γ denotes Euler’s constant. Also,

v∗(b) ≤ b2εn
log n

. (3.18)

Proof. Using (3.14) and (1.3), we get

η(b) = b

b∑
k=2

1

k
. (3.19)

Now

lim
b→∞

( b∑
k=2

1

k
− log b

)
= γ − 1

and

0 ≤
(

log b− log(b− 1)
)
− 1

b
=

∫ b

b−1

(
1

x
− 1

b

)
dx ≤ 1

b− 1
− 1

b
.

Therefore, ∣∣∣∣( b∑
k=2

1

k
− log b

)
− (γ − 1)

∣∣∣∣ ≤ ∞∑
k=b+1

(
1

k − 1
− 1

k

)
=

1

b
. (3.20)

By (3.19) and (3.20),

∣∣η(b)− b(log b+ γ − 1)
∣∣ ≤ b∣∣∣∣ b∑

k=2

1

k
− (log b+ γ − 1)

∣∣∣∣ ≤ 1 (3.21)

for all b. It follows that

η∗(b) =

∫ εn/ logn

0

(
by − 1 + (1− y)b

)
y−2 dy.

=

∫ 1

0

(
by − 1 + (1− y)b

)
y−2 dy −

∫ 1

εn/ logn

(
by − 1 + (1− y)b

)
y−2 dy

= η(b) + b log

(
εn

log n

)
+

∫ 1

εn/ logn

(
1− (1− y)b

)
y−2 dy. (3.22)
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Because the last integral is bounded by
∫∞
εn/ logn

y−2 dy = (log n)/εn, the result (3.17)
follows by combining (3.21) and (3.22).

To prove (3.18), note that if (−t, y) is a point of Θ and Nn(t−) = b, then because
(k − 1)2 ≤ 2

(
k
2

)
for k ≥ 2, the expected square of the decrease in the process Nn at

time t is at most twice the expected number of pairs out of b independent uniformly
distributed random variables having the property that both random variables are less
than or equal to y, which is 2

(
b
2

)
y2. Therefore,

v∗(b) ≤
∫ εn/ logn

0

2

(
b

2

)
y2 · y−2 dy ≤ b2εn

log n
,

as claimed.

3.4 The coupling

In this section, we prove Theorem 1.7. We use the construction and notation of
section 3.1. As in the statement of Theorem 1.7, let

Xn(t) =
log n

n

(
Nn

(
t

log n

)
− ne−t − nte−t log log n

log n

)
(3.23)

for all t ≥ 0. Also, let

Yn(t) = e−tSn(t) +
e−tt2

2

and

Y (t) = e−tS(t) +
e−tt2

2
.

We need to show that the processes (Xn(t), t ≥ 0) converge weakly to (Y (t), t ≥ 0).
Because

E

[
sup

0≤t≤Tn

(Yn(t)− Y (t))2
]
≤ 4Tnεn → 0

as n→∞ by (3.5), it suffices to show that

sup
0≤t≤Tn

|Xn(t)− Yn(t)| →p 0. (3.24)

In fact, to prove Theorem 1.7, it would suffice to show (3.24) with the arbitrary fixed
constant T in place of Tn, but it will be helpful for the proof of Theorem 1.5 to control
the difference between Xn and Yn up to time Tn.

Let 0 < τ1 < · · · < τJn < Tn be the jump times of the process (Sn(t), t ≥ 0) before
time Tn. Let τ0 = 0 and τJn+1 = Tn. Note that the τi depend on n even though we do
not record this dependence in the notation. This means that there are points (τi, yi) in
Ψ with yi ≥ εn for i = 1, . . . , Jn. Also, the process Θ, which is used to construct the pop-
ulation process, contains the points (−τi/ log n, yi/ log n) but Θ contains no points in the
regions (−τi+1/ log n,−τi/ log n)× [εn/ log n, 1]. Therefore, conditional on τ1, . . . , τJn , be-
tween times τi/ log n and τi+1/ log n, the process Nn follows the dynamics of the number
of blocks in a coalescent process with transition rates given by (3.15).

For i = 0, 1, . . . , Jn and t ∈ [0, τi+1 − τi), let

Mi,n(t) = Nn

(
τi + t

log n

)
−Nn

(
τi

log n

)
+

∫ (τi+t)/ logn

τi/ logn

η∗(Nn(s)) ds. (3.25)

By standard results about compensators for Markov jump processes (see, for example,
Theorem 9.15 in [21]), the process (Mi,n(t), 0 ≤ t < τi+1 − τi) is a martingale. Note
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also that τi+1 − τi is exponentially distributed with mean εn and is independent of the
evolution of the process Mi,n before time τi+1 − τi. Next, for τj ≤ t < τj+1, let

Mn(t) =

j−1∑
i=0

Mi,n((τi+1 − τi)−) +Mj,n(t− τj). (3.26)

Then the process (Mn(t), 0 ≤ t < Tn) is a martingale.

Lemma 3.5. We have

P

(
log n

n
sup

0≤t≤Tn

|Mn(t)| > 1

log n

)
≤ 4(log n)2Tnεn.

Proof. By standard results about compensated Markov jump processes (see, for exam-
ple, Corollary 9.17 of [21]),

Var(Mn(Tn)) = E

[ ∫ Tn/ logn

0

v∗(Nn(t)) dt

]
,

where v∗ was defined in (3.16). Therefore, by (3.18),

Var(Mn(Tn)) ≤ n2Tnεn
(log n)2

.

By the L2 Maximum Inequality for martingales,

E

[
sup

0≤t≤Tn

Mn(t)2
]
≤ 4n2Tnεn

(log n)2
.

Thus, by Markov’s Inequality,

P

(
log n

n
sup

0≤t≤Tn

|Mn(t)| > 1

log n

)
= P

(
sup

0≤t≤Tn

Mn(t)2 >
n2

(log n)4

)
≤ 4(log n)2Tnεn,

as claimed.

For 0 ≤ t ≤ Tn, let

Zn(t) = Xn(t)− log n

n
Mn(t) =

log n

n

(
Nn

(
t

log n

)
−Mn(t)−ne−t−nte

−t log log n

log n

)
. (3.27)

Lemma 3.5 implies that

sup
0≤t≤Tn

log n

n

∣∣Mn(t)| →p 0

as n→∞. Therefore, to show (3.24), it suffices to compare the processes Zn and Yn.
For s ≥ 0, let (τs1 , y

s
1), (τs2 , y

s
2), . . . , (τsJs

n
, ysn) denote the points of Ψ in [−s, Tn]× [εn,∞),

ranked so that τs1 < · · · < τ sJs
n
. Let τs0 = −s and τsJs

n+1 = Tn. Note that τ0i = τi for

i = 0, 1, . . . , Jn + 1. Also let yi = y0i for i = 1, . . . , Jn. In the next Lemma, we show that
several events hold with high probability. This result will allow us to assume that these
events holds throughout much of the rest of the paper.

Lemma 3.6. Let A1,n be the event that JTn ≤ n1/4. Let A2,n be the event that

JT
n∑

i=1

yTi ≤ (log n)3/4.

Let A3,n be the event that τTi+1− τTi ≤ εn log n for i = 0, 1, . . . , JTn . Let An = A1,n ∩A2,n ∩
A3,n. Then limn→∞ P (An) = 1.
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Proof. Note that

E[JTn ] = (Tn + T )

∫ ∞
εn

y−2 dy =
(Tn + T )

εn
.

It follows from Markov’s Inequality that

lim sup
n→∞

P (Ac1,n) ≤ lim sup
n→∞

(Tn + T )

n1/4εn
= 0,

and thus limn→∞ P (A1,n) = 1.
We have

P

(
max

1≤i≤JT
n

yi > log n

)
≤ (Tn + T )

∫ ∞
logn

y−2 dy =
Tn + T

log n
→ 0

as n→∞. Also,

E

[ JT
n∑

i=1

yTi

∣∣∣∣ max
1≤i≤JT

n

yTi ≤ log n

]
= (Tn + T )

∫ logn

εn

y · y−2 dy = (Tn + T )(log logn− log εn).

Because− log εn = (log n)1/2 and thus (Tn+T )(log logn−log εn)/(log n)3/4 → 0 as n→∞,
it now follows from Markov’s Inequality that limn→∞ P (A2,n) = 1.

To estimate P (A3,n), let ak = −T + (kεn log n)/2 for k = 0, 1, . . . , and let K = min{k :

ak > Tn}. Note that if τTi+1 − τTi > εn log n, then some interval of the form [ak−1, ak] with
1 ≤ k ≤ K must not contain any of the points τTj . The probability that [ak−1, ak] does
not contain any of the τTj is

exp

(
− (ak − ak−1)

∫ ∞
εn

y−2 dy

)
= exp

(
− εn log n

2
· 1

εn

)
= n−1/2.

It follows that for sufficiently large n,

P (Ac3,n) ≤ Kn−1/2 ≤
(

2(Tn + T )

εn log n
+ 1

)
n−1/2 → 0

as n→∞. Therefore, limn→∞ P (A3,n) = 1, which completes the proof.

The next lemma shows that the processes Yn and Zn typically jump by approximately
the same amount at the jump times τi.

Lemma 3.7. We have

P

(
An ∩

{ Jn∑
i=1

∣∣(Zn(τi)− Zn(τi−))− (Yn(τi)− Yn(τi−))
∣∣1{|Xn(τi−)|≤log logn}

>
1

(log n)1/8

})
≤ Tn(log n)3/2

n1/2εn

for sufficiently large n.

Proof. Recall that (τi, yi) is a point of Ψ for i = 1, . . . , Jn. Thus, Sn(τi) − Sn(τi−) = −yi,
so

Yn(τi)− Yn(τi−) = −e−τiyi. (3.28)

Let τi = Tn and yi = 0 on {i > Jn}, and let Gi = σ(τi, Nn((τi/ log n)−), yi). Then on
{i ≤ Jn},

Nn

(
τi

log n

)
−Nn

(
τi

log n
−
)

= min{0, 1−Bi}, (3.29)
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where, conditional on Gi, the distribution of Bi is the binomial distribution with param-
eters Nn((τi/ log n)−) and yi/ log n. Here Bi represents the number of lineages out of
Nn((τi/ log n)−) that merge at time τi/ log n. We have Var(Bi|Gi) ≤ nyi/ log n on {i ≤ Jn},
so by the Cauchy-Schwarz Inequality,

E

[∣∣∣∣Bi −Nn( τi
log n

−
)

yi
log n

∣∣∣∣∣∣Gi] ≤ E[(Bi −Nn( τi
log n

−
)

yi
log n

)2∣∣∣∣Gi]1/2 ≤ ( nyi
log n

)1/2

on {i ≤ Jn}. Multiplying both sides by 1{i≤Jn}1{yi≤logn}, which is Gi-measurable, and
taking expectations gives

E

[∣∣∣∣Bi −Nn( τi
log n

−
)

yi
log n

∣∣∣∣1{i≤Jn}1{yi≤logn}] ≤ n1/2P (i ≤ Jn).

Summing over i and observing that A2,n ∩ {i ≤ Jn} ⊂ {yi ≤ log n} for all i, we get

E

[
1A2,n

Jn∑
i=1

∣∣∣∣Bi −Nn( τi
log n

−
)

yi
log n

∣∣∣∣] ≤ n1/2E[Jn] = n1/2Tn

∫ ∞
εn

y−2 dy =
n1/2Tn
εn

.

Thus,

P

(
A2,n ∩

{
log n

n

Jn∑
i=1

∣∣∣∣Bi −Nn( τi
log n

−
)

yi
log n

∣∣∣∣ > 1

(log n)1/2

})
≤ Tn(log n)3/2

n1/2εn
. (3.30)

Also,∣∣∣∣yin Nn
(

τi
log n

−
)
− e−τiyi

∣∣∣∣ =

∣∣∣∣yin
(

n

log n
Xn(τi−) + ne−τi +

nτie
−τi log log n

log n

)
− e−τiyi

∣∣∣∣
= yi

∣∣∣∣Xn(τi−)

log n
+
τie
−τi log log n

log n

∣∣∣∣,
which on the event {|Xn(τi−)| ≤ log log n} is bounded by 2yi(log log n)/ log n. Thus, on
A2,n,

Jn∑
i=1

∣∣∣∣yin Nn
(

τi
log n

−
)
−e−τiyi

∣∣∣∣1{|Xn(τi−)|≤log logn} ≤
2 log log n

log n

Jn∑
i=1

yi ≤
2 log log n

(log n)1/4
. (3.31)

By (3.29),∣∣∣∣Zn(τi)− Zn(τi−) +
log n

n
Bi

∣∣∣∣ =

∣∣∣∣ log n

n

(
Nn

(
τi

log n

)
−Nn

(
τi

log n
−
)

+Bi

)∣∣∣∣ ≤ log n

n
,

and so on A1,n,
Jn∑
i=1

∣∣∣∣Zn(τi)− Zn(τi−) +
log n

n
Bi

∣∣∣∣ ≤ log n

n3/4
. (3.32)

Combining (3.30), (3.31), and (3.32), we get

P

(
An ∩

{ Jn∑
i=1

∣∣(Zn(τi)− Zn(τi−)) + e−τiyi
∣∣1{|Xn(τi−)|≤log logn}

>
1

(log n)1/2
+

2 log log n

(log n)1/4
+

log n

n3/4

})
≤ Tn(log n)3/2

n1/2εn
. (3.33)

The lemma follows by combining (3.33) with (3.28) and using that

1

(log n)1/2
+

2 log log n

(log n)1/4
+

log n

n3/4
≤ 1

(log n)1/8

for sufficiently large n.
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Evolving Bolthausen-Sznitman coalescent

Lemmas 3.8 and 3.10 below pertain to the behavior of the processes Yn and Zn in
between the jump times τi.

Lemma 3.8. If 0 ≤ h < τi+1 − τi ≤ εn log n and n is sufficiently large, then on {i ≤ Jn},
we have∣∣∣∣Yn(τi +h)−Yn(τi)−he−τi(1− γ− log εn + τi) +

∫ τi+h

τi

Yn(s) ds

∣∣∣∣1{Sn(τi)≤ 1
4 logn} ≤ h2 log n.

Proof. By the construction of the process Sn, we have

Sn(τi + h)− Sn(τi) = h(1− γ − log εn).

Using O(h2) to denote an expression whose absolute value is at most h2, Taylor’s Theo-
rem gives e−(τi+h) = e−τi − he−τi +O(h2) and

1

2
e−(τi+h)(τi + h)2 =

1

2
e−τiτ2i + h

(
τie
−τi − 1

2
τ2i e
−τi
)

+O(h2).

Therefore,

Yn(τi + h)− Yn(τi) = e−(τi+h)Sn(τi + h)− e−τiSn(τi) +
e−(τi+h)(τi + h)2

2
− e−τiτ2i

2

= (e−τi − he−τi +O(h2))(Sn(τi) + h(1− γ − log εn))− e−τiSn(τi)

+ h

(
τie
−τi − 1

2
τ2i e
−τi
)

+O(h2)

= he−τi(1− γ − log εn + τi)− h
(
e−τiSn(τi) +

e−τiτ2i
2

)
+O(h2)

− h2e−τi(1− γ − log εn) +O(h2)(Sn(τi) + h(1− γ − log εn)).

On the event that Sn(τi) ≤ 1
4 log n, for sufficiently large n, the absolute value of the sum

of the first two terms is bounded above by 1
2h log n, while the absolute value of the sum

of the last three terms is bounded above by 1
2h

2 log n. Therefore, for sufficiently large
n, on the event that Sn(τi) ≤ 1

4 log n, we have∣∣∣∣Yn(τi + h)− Yn(τi)− he−τi(1− γ − log εn + τi) + hYn(τi)

∣∣∣∣ ≤ 1

2
h2 log n. (3.34)

Also, for sufficiently large n, if 0 ≤ s ≤ h, then

|Yn(τi + s)− Yn(τi)| ≤
1

2
s log n+

1

2
s2 log n ≤ s log n

on the event that Sn(τi) ≤ 1
4 log n because h ≤ εn log n ≤ 1. Therefore,∣∣∣∣ ∫ τi+h

τi

Yn(s)ds−hYn(τi)

∣∣∣∣ ≤ ∫ h

0

|Yn(τi+s)−Yn(τi)|ds ≤
∫ h

0

s log nds =
1

2
h2 log n. (3.35)

By combining (3.34) and (3.35), we arrive at the statement of the lemma.

Lemma 3.9. Suppose 0 ≤ h < τi+1 − τi ≤ εn log n and τi ≤ s ≤ τi + h. If n is sufficiently
large and |Xn(s)| ≤ log log n, then

Nn

(
s

log n

)∣∣∣∣ logNn

(
s

log n

)
− log(ne−τi)

∣∣∣∣ ≤ 7n(log log n)2

log n
. (3.36)
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Proof. In view of (3.23), if τi ≤ s ≤ τi+h, then, using that h ≤ εn log n ≤ (log log n)/ log n

for sufficiently large n and using the assumption that |Xn(s)| ≤ log log n, we get∣∣∣∣Nn( s

log n

)
− ne−τi

∣∣∣∣ =

∣∣∣∣nXn(s)

log n
+ ne−s +

nse−s log log n

log n
− ne−τi

∣∣∣∣
≤
∣∣ne−s − ne−τi∣∣+

nse−s log log n

log n
+

∣∣∣∣nXn(s)

log n

∣∣∣∣
≤ nh+

n log log n

log n
+
n log log n

log n

≤ 3n log log n

log n
(3.37)

for sufficiently large n.

We consider two cases. First, suppose ne−τi ≥ (3n log log n)/ log n. Because (3.37)
then implies that ne−τi ≥ 1

2Nn(s/ log n), we get, using (3.37) and the fact that d
dx log x =

1/x, ∣∣∣∣ logNn

(
s

log n

)
− log(ne−τi)

∣∣∣∣ ≤ (3n log log n

log n

)(
1

2
Nn

(
s

log n

))−1
.

Therefore,

Nn

(
s

log n

)∣∣∣∣ logNn

(
s

log n

)
− log(ne−τi)

∣∣∣∣ ≤ 6n log log n

log n
.

Next, suppose that ne−τi ≤ (3n log log n)/ log n. To determine the value ofNn(s/ log n)

that maximizes the left-hand side of (3.36), we consider the function f(x) = x(log x −
log a), where a > 0 is a constant. Note that f ′(x) = 1 + log(x/a), which is positive when
x > a/e and negative when x < a/e. Thus, f(x) is negative when x < a and reaches
its minimum when x = a/e, and f(x) is positive and increasing for x > a. Therefore,
(3.36) will hold in general provided that it holds if ne−τi/e or ne−τi + (3n log log n)/ log n

is plugged in for Nn(s/(log n)). Note that by (3.37), we need not consider larger values.
In the former case, the expression that we get is

ne−τi

e

∣∣∣∣ log

(
ne−τi

e

)
− log(ne−τi)

∣∣∣∣ =
ne−τi

e
≤ 3n log log n

e log n
.

In the latter case, since ne−τi ≥ ne−Tn = n/(log n)2, the expression that we get is
bounded above by

6n log log n

log n

(
log

(
6n log log n

log n

)
− log

(
n

(log n)2

))
≤ 6n log log n

log n

(
log 6 + log log log n+ log log n

)
.

Thus, (3.36) holds for sufficiently large n.

Lemma 3.10. If 0 ≤ h < τi+1− τi ≤ εn log n and n is sufficiently large, then on {i ≤ Jn},
we have∣∣∣∣Zn(τi + h)− Zn(τi)− he−τi(1− γ − log εn + τi)

+

∫ τi+h

τi

Xn(t) dt

∣∣∣∣1{|Xn(s)|≤log logn ∀ s∈[τi,τi+h]} ≤ h
2(log n)1/2 +

3h log log n

(log n)1/2
.
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Proof. Throughout the proof, we will work on the event that i ≤ Jn and |Xn(s)| ≤
log log n for all s ∈ [τi, τi + h]. By the definition (3.27) of Zn,

Zn(τi + h)− Zn(τi) =
log n

n

(
Nn

(
τi + h

log n

)
−Nn

(
τi

log n

)
−Mn(τi + h) +Mn(τi)

− ne−(τi+h) + ne−τi − n(τi + h)e−(τi+h) log log n

log n
+
nτie

−τi log log n

log n

)
.

Using the definition of Mn in (3.25) and (3.26), we get

Zn(τi + h)− Zn(τi) = − log n

n

∫ (τi+h)/ logn

τi/ logn

η∗(Nn(t)) dt+ (log n)(e−τi − e−(τi+h))

+ (log log n)(τie
−τi − (τi + h)e−(τi+h)). (3.38)

To estimate the integral, we need to estimate η∗(Nn(t)). Equation (3.17), which
holds for sufficiently large n even when b = 1 if we define η∗(1) = 0, gives∣∣η∗(Nn(t))−Nn(t)(logNn(t)− log log n+ log εn + γ − 1)

∣∣ ≤ log n

εn
+ 1. (3.39)

It follows from (3.39) and Lemma 3.9, after making the substitution t = s/ log n, that if
τi/ log n ≤ t ≤ (τi + h)/ log n, then for sufficiently large n,∣∣η∗(Nn(t))−Nn(t)(log n− log log n+ log εn + γ − 1− τi)

∣∣ ≤ 8n(log log n)2

log n
. (3.40)

Using (3.23), we have∫ (τi+h)/ logn

τi/ logn

Nn(t) dt =
1

log n

∫ τi+h

τi

Nn

(
s

log n

)
ds

=
1

log n

∫ τi+h

τi

ne−s +
nse−s log log n

log n
+
nXn(s)

log n
ds

=
n(e−τi − e−(τi+h))

log n
+
n log logn

(log n)2
(
(τi + 1)e−τi

− (τi + h+ 1)e−(τi+h)
)

+
n

(log n)2

∫ τi+h

τi

Xn(s) ds.

Combining this result with (3.40) and letting ξ denote an expression whose absolute
value is less than 8h(log log n)2/(log n), we get

log n

n

∫ (τi+h)/ logn

τi/ logn

η∗(Nn(t)) dt

=
(log n)(log n− log log n+ log εn + γ − 1− τi)

n

∫ (τi+h)/ logn

τi/ logn

Nn(t) dt+ ξ

= (log n− log log n+ log εn + γ − 1− τi)(e−τi − e−(τi+h))

+ (log log n)
(
(τi + 1)e−τi − (τi + h+ 1)e−(τi+h))

)
+

∫ τi+h

τi

Xn(s) ds

+

(
(− log log n+ log εn + γ − 1− τi)(log log n)

log n

)
×
(
(τi + 1)e−τi − (τi + h+ 1)e−(τi+h)

)
+

(
− log log n+ log εn + γ − 1− τi

log n

)∫ τi+h

τi

Xn(s) ds+ ξ. (3.41)
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Recall that log εn = −(log n)1/2. One can show using calculus that if g(x) = (x + 1)e−x,
then |g′(x)| ≤ 1 for all x > 0. Consequently, we have

|(τi + 1)e−τi − (τi + h+ 1)e−(τi+h))| ≤ h.

Also, because we are assuming |Xn(s)| ≤ log log n for all s ∈ [τi, τi + h], we have

|
∫ τi+h
τi

Xn(s) ds| ≤ h log log n. It follows from these observations that the sum of the

terms on the last two lines of (3.41) is bounded by 3h(log log n)(log n)−1/2 for sufficiently
large n. Therefore,

log n

n

∫ (τi+h)/ logn

τi/ logn

η∗(Nn(t)) dt

= (log n)(e−τi − e−(τi+h)) + (log log n)(τie
−τi − (τi + h)e−(τi+h))

+ (log εn + γ − 1− τi)(e−τi − e−(τi+h)) +

∫ τi+h

τi

Xn(s) ds+ ξ′,

where |ξ′| ≤ 3h(log log n)(log n)−1/2. Combining this result with (3.38), we get

Zn(τi + h)− Zn(τi) = (1− γ − log εn + τi)(e
−τi − e−(τi+h))−

∫ τi+h

τi

Xn(s) ds− ξ′.

Because − log εn = (log n)1/2 and |(e−τi−e−(τi+h))−he−τi | ≤ h2/2, the result follows.

Lemma 3.11. Define the events

B1,n =

{
sup

0≤s≤T
sup
t≥0

e−t|S(s, t)| ≤ 1

2
log log n

}
.

B2,n =

{
sup

0≤s≤T
sup

0≤t≤Tn+s
|S(s, t)| ≤ 5(log log n)2

}
.

B3,n =

{
sup

0≤s≤T
sup

0≤t≤Tn+s
|Sn(s, t)− S(s, t)| ≤ 1

}
.

Let Bn = B1,n ∩B2,n ∩B3,n. Then limn→∞ P (Bn) = 1.

Proof. Note that B1,n is the complement of the event on the right-hand side of (3.6)
with 1

2 log log n in place of K, and B2,n is the complement of the event in (3.7). There-
fore, by Lemma 3.1, we have limn→∞ P (B1,n) = limn→∞ P (B2,n) = 1. We also have
limn→∞ P (B3,n) = 1 by Lemma 3.2.

Recall that the event An was defined in Lemma 3.6. The next lemma shows that
when An and Bn occur, it is unlikely that the processes Xn and Yn are ever far apart
before time Tn. In view of Lemmas 3.6 and 3.11, this result implies (3.24), and therefore
Theorem 1.7.

Lemma 3.12. We have

P

(
An ∩Bn ∩

{
sup

0≤t≤Tn

|Xn(t)− Yn(t)| > 4

(log n)1/16

})
≤ Tn(log n)3/2

n1/2εn
+ 4(log n)2Tnεn

for sufficiently large n.
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Proof. We claim that on the event

An ∩Bn ∩
{

log n

n
sup

0≤t≤Tn

|Mn(t)| ≤ 1

log n

}

∩
{ Jn∑
i=1

∣∣(Zn(τi)− Zn(τi−))− (Yn(τi)− Yn(τi−))
∣∣1{|Xn(τi−)|≤log logn} ≤

1

(log n)1/8

}
,

(3.42)

we have |Zn(t) − Yn(t)| ≤ 3/(log n)1/16 for all t ≤ Tn, and therefore |Xn(t) − Yn(t)| ≤
4/(log n)1/16 for all t ≤ Tn by (3.27). Thus, by Lemmas 3.5 and 3.7, this claim implies
the result.

To prove the claim, let ζ = inf{t ≤ Tn : |Zn(t) − Yn(t)| > 3/(log n)1/16}. We assume
that we are working on the event in (3.42), and we must show that ζ is the infimum of
the empty set, and thus that ζ =∞. On B1,n ∩B3,n, we have

|Yn(t)| ≤ 1

2
log log n+

e−tt2

2
+ |Yn(t)− Y (t)| ≤ 1

2
log log n+ 2

for all t ≤ Tn. Therefore, if t < ζ and n is sufficiently large, then

|Xn(t)| ≤ |Yn(t)|+ |Zn(t)− Yn(t)|+ log n

n
|Mn(t)|

≤ 1

2
log logn+ 2 +

3

(log n)1/16
+

1

log n

≤ log log n. (3.43)

Note also that Sn(t) ≤ 1
4 log n for all t ≤ Tn on B2,n ∩ B3,n for sufficiently large n, and

τi+1 − τi ≤ εn log n for i = 0, 1, . . . , Jn on A3,n. Therefore, Lemmas 3.8 and 3.10 imply
that if τi + h < ζ and h < τi+1 − τi, then∣∣∣∣(Zn(τi + h)− Zn(τi))− (Yn(τi + h)− Yn(τi)) +

∫ τi+h

τi

(Xn(t)− Yn(t)) dt

∣∣∣∣
≤ 3h log log n

(log n)1/2
+ h2(log n)1/2 + h2 log n.

Since ∫ τi+h

τi

|Xn(t)− Zn(t)| dy =

∫ τi+h

τi

log n

n
|Mn(t)| ≤ h

log n
,

it follows that∣∣∣∣(Zn(τi+h)−Zn(τi))−(Yn(τi+h)−Yn(τi))+

∫ τi+h

τi

(Zn(t)−Yn(t))dt

∣∣∣∣ ≤ 4h log log n

(log n)1/2
(3.44)

for sufficiently large n.
Define the sets

I1 =

{
i ∈ {0, 1, . . . , Jn + 1} : |Zn(τi)− Yn(τi)| ≤

1

(log n)1/16

}
,

I2 =

{
i ∈ {0, 1, . . . , Jn + 1} : Zn(τi)− Yn(τi) >

1

(log n)1/16

}
,

I3 =

{
i ∈ {0, 1, . . . , Jn + 1} : Zn(τi)− Yn(τi) < −

1

(log n)1/16

}
.
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Clearly, we have I1 ∪ I2 ∪ I3 = {0, 1, . . . , Jn + 1}. By right continuity and the fact that
Zn(0) = Yn(0) = 0, we have ζ > 0 = τ0. Suppose that ζ ∈ (τi, τi+1) for some i ∈ I1. Then,
by (3.44) and the fact that τi+1 − τi ≤ εn log n,

|Zn(ζ)− Yn(ζ)| ≤ |Zn(τi)− Yn(τi)|+
∫ ζ

τi

|Zn(t)− Yn(t)| dt+
4(ζ − τi) log log n

(log n)1/2

≤ 1

(log n)1/16
+ εn log n · 3

(log n)1/16
+ 4εn(log n)1/2 log log n, (3.45)

a contradiction for sufficiently large n because |Zn(ζ) − Yn(ζ)| ≥ 3/(log n)1/16 by right
continuity. Thus, if i ∈ I1, then ζ ≥ τi+1. Therefore, if i ∈ I1, then reasoning as in (3.45)
and using the fact that we are working on the event (3.42), we get

|Zn(τi+1)− Yn(τi+1)| ≤ |Zn(τi)− Yn(τi)|+
∫ τi+1

τi

|Zn(t)− Yn(t)| dt+
4(τi+1 − τi) log log n

(log n)1/2

+ |(Zn(τi+1)− Zn(τi+1−))− (Yn(τi+1)− Yn(τi+1−))|

≤ 1

(log n)1/16
+ εn log n · 3

(log n)1/16

+ 4εn(log n)1/2 log log n+
1

(log n)1/8

≤ 2

(log n)1/16
(3.46)

for sufficiently large n, which implies that ζ 6= τi+1.
Next, suppose that i ∈ I2. Let ρ = inf{t > τi : Zn(t) ≤ Yn(t)}. Suppose ρ ≤

min{ζ, τi+1}. Then 0 ≤ Zn(s)− Yn(s) ≤ 3/(log n)1/16 for all s < ρ. Therefore by (3.44),

Zn(ρ)− Yn(ρ) ≥ Zn(τi)− Yn(τi)−
∫ ρ

τi

(Zn(t)− Yn(t)) dt− 4(ρ− τi) log log n

(log n)1/2
− 1

(log n)1/8

≥ 1

(log n)1/16
− εn log n · 3

(log n)1/16
− 4εn(log n)1/2 log log n− 1

(log n)1/8
,

(3.47)

which is positive for sufficiently large n, a contradiction. Therefore, for sufficiently large
n, if i ∈ I2, then Zn must stay greater than Yn from time τi until after time min{ζ, τi+1}.
In particular, if i ∈ I2 and ζ ≥ τi+1, then i+ 1 ∈ I1 ∪ I2. By the same argument with the
roles of Yn and Zn reversed, if i ∈ I3 and ζ ≥ τi+1, then i + 1 ∈ I1 ∪ I3. It follows from
these observations and (3.46) that the only way we could have ζ ∈ (τi, τi+1] with i ∈ I2
is if there exists j < i such that j ∈ I1, j + 1, j + 2, . . . , i ∈ I2, and

Zn(ζ)− Yn(ζ) > Zn(τj+1)− Yn(τj+1) +
1

(log n)1/16
.

However, if this is true, then Zn(t) > Yn(t) for all t ∈ [τj+1, ζ]. Therefore, using equations
(3.43) and (3.44) and the fact that we are working on the event in (3.42), we have

Zn(ζ)− Yn(ζ) ≤ Zn(τj+1)− Yn(τj+1) +

i+1∑
k=j+2

∣∣(Zn(τk)− Zn(τk−))− (Yn(τk)− Yn(τk−))
∣∣

+
4(ζ − τj+1)(log log n)

(log n)1/2

≤ Zn(τj+1)− Yn(τj+1) +
1

(log n)1/8
+

4Tn(log log n)

(log n)1/2
.
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For sufficiently large n, the sum of the last two terms on the right-hand side is less than
1/(log n)1/16, a contradiction. Hence, we can not have ζ ∈ (τi, τi+1] for i ∈ I2, and the
same argument with the roles of Yn and Zn reversed establishes that we can not have
ζ ∈ (τi, τi+1] with i ∈ I3. We conclude that ζ =∞, which completes the proof.

3.5 Extension to arbitrary starting times

The result (3.24) pertains to the evolution of the number of lineages when we trace
back the ancestral lines of the individuals in the population at time zero. Of course, by
stationarity, the analogous result holds if we instead trace back the ancestral lines of
the individuals in the population at some other time s ≥ 0. However, to help with the
proof of Theorem 1.5 in the next section, we will need a stronger version of this result
that will make it possible to show that the approximation works well simultaneously at
many times. The key to this result is that the events An and Bn were defined so that
the bounds that hold on these events are valid simultaneously for all s ∈ [0, T ].

Recall that Nn(s, t) denotes the number of individuals at time (s− t)− with a descen-
dant alive in the population at time s. Let Ñn(s, t) = Nn(s, t)1{N(s,t)>1}, which will be
convenient because

Ln(s) =

∫ ∞
0

Ñn(s, t) dt. (3.48)

Let

Xn(s, t) =
log n

n

(
Ñn

(
s

log n
,

t

log n

)
− ne−t − nte−t log log n

log n

)
.

Also, let

Yn(s, t) = e−tSn(s, t) +
e−tt2

2
.

Note that Xn(0, t) = Xn(t) for all t ≤ (log n) inf{s : Nn(s) = 1} and Yn(0, t) = Yn(t) for all
t ≥ 0.

We have the following extension of Lemma 3.12. The result follows from the same
argument that gives Lemma 3.12. We have replaced 4/(log n)1/16 by 5/(log n)1/16 to
account for the error in replacing Nn(s, t) by Ñn(s, t). Indeed, it would be possible to
use 4/(log n)1/16 +(log n)/n because |Nn(s, t)− Ñn(s, t)| ≤ 1 for all s and t. Also, because
an interval of time Tn+s rather than Tn must be considered when adapting the proofs of
Lemmas 3.5 and 3.7, the bounds involving Tn have been replaced by bounds involving
Tn + T .

Lemma 3.13. For sufficiently large n, we have

P

(
An ∩Bn ∩

{
sup

0≤t≤Tn+s
|Xn(s, t)− Yn(s, t)| > 5

(log n)1/16

})
≤ (Tn + T )(log n)3/2

n1/2εn
+ 4(log n)2(Tn + T )εn

for each fixed s ∈ [0, T ].

4 Proof of Theorem 1.5

Recall that for each s ∈ R, a process (S(s, t), t ≥ 0) was defined in section 3.1. Let
J(s) = y if (−s, y) is a point of Ψ, and let J(s) = 0 otherwise. For each s ∈ R and t ≥ 0,
let

Y (s, t) = e−tS(s, t) +
e−tt2

2
,
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and then let

L(s) = −J(s) +

∫ ∞
0

Y (s, t) dt.

Note that P (J(s) = 0) = 1 for each s ≥ 0, but the −J(s) term keeps the process
(L(s), s ≥ 0) right continuous at the jump times and thus ensures that (L(s), s ≥ 0) has
paths that are almost surely right continuous with left limits. To see this, note that if
(−s, y) is a point of Ψ, then S(s+, t) = S(s, t) − y and thus Y (s+, t) = Y (s, t) − e−ty for
all t > 0. Therefore, ∫ ∞

0

Y (s+, t) dt =

∫ ∞
0

Y (s, t) dt− y.

The next result shows that (L(s), s ≥ 0) has the same law as the process defined in the
statement of Theorem 1.5.

Proposition 4.1. Let ν be the measure on R whose density with respect to Lebesgue
measure is given by x−21(−∞,0)(x). The process (L(s), s ≥ 0) is a process of Ornstein-
Uhlenbeck type generated by (2− γ, 0, ν, 1).

Proof. Fix t ≥ 0. Note that if 0 ≤ s ≤ t and u ≥ 0, then S(s, u) = S(t, t−s+u)−S(t, t−s).
We use the notation

∫∞
0
f(x)dSt(x) to denote the stochastic integral of f(x) with respect

to the stable process (S(t, x), x ≥ 0). If 0 ≤ s ≤ t, then

L(s) = 1− J(s) +

∫ ∞
0

e−uS(s, u) du

= 1− J(s) +

∫ ∞
0

e−u
(∫ t−s+u

t−s
dSt(x)

)
du

= 1− J(s) +

∫ ∞
t−s

(∫ ∞
x−t+s

e−u du

)
dSt(x)

= 1− J(s) +

∫ ∞
t−s

e−(x−t+s) dSt(x), (4.1)

where in the next-to-last step we used Fubini’s Theorem for general stochastic integrals
(see, for example, Theorem 45 in Part IV of [27] and the remark on p. 161 in [27] that
the measure µ in that theorem can be taken to be σ-finite rather than finite). Note
that J(0) = 0 almost surely, and almost surely

∫ t
0
J(s) ds = 0 for all t. Therefore, using

Fubini’s Theorem again and (4.1), we get

L(t)− L(0) +

∫ t

0

L(s) ds = t− J(t) +

∫ ∞
0

e−x dSt(x)−
∫ ∞
t

e−(x−t) dSt(x)

+

∫ t

0

∫ ∞
t−s

e−(x−t+s) dSt(x) ds

= t− J(t) +

∫ ∞
0

e−x dSt(x)−
∫ ∞
t

e−(x−t) dSt(x)

+

∫ ∞
0

∫ t

max{0,t−x}
e−(x−t+s) ds dSt(x)

= t− J(t) +

∫ t

0

(
e−x +

∫ t

t−x
e−(x−t+s) ds

)
dSt(x)

+

∫ ∞
t

(
e−x − e−(x−t) +

∫ t

0

e−(x−t+s) ds

)
dSt(x)

(4.2)
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for all t ≥ 0 almost surely. Because

e−x +

∫ t

t−x
e−(x−t+s) ds = 1

and

e−x − e−(x−t) +

∫ t

0

e−(x−t+s) ds = 0,

it follows that

L(t)− L(0) +

∫ t

0

L(s) ds = t− J(t) +

∫ t

0

dSt(x) = t− J(t) + S(t, t)

for all t ≥ 0 almost surely. Therefore, if we define Z(t) = S(t, t) + t − J(t) for all t ≥ 0,
then

L(t) = L(0) + Z(t)−
∫ t

0

L(s) ds, (4.3)

which is exactly (1.9) with c = 1 and L in place of X.
By the symmetry of the construction in section 3.1, the processes (S(0, t), t ≥ 0)

and (S(t, t) − J(t), t ≥ 0) have the same law. Indeed, if one reflects the points of the
Poisson process about the vertical axis, so that a point at (t, x) is moved to (−t, x), and
then follows the procedure used to construct (S(0, t), t ≥ 0), one obtains the process
(S(t, t)− J(t), t ≥ 0) provided that J(0) = 0. Therefore, the process (S(t, t)− J(t), t ≥ 0)

is a stable process whose characteristic exponent is given by the expression in (3.2).
Since (Z(t), t ≥ 0) differs from (S(t, t)− J(t), t ≥ 0) only by the addition of a linear drift
of rate 1, it follows that (Z(t), t ≥ 0) is a stable process whose characteristic exponent is
obtained by replacing 1− γ with 2− γ on the right-hand side of (3.2). This observation,
combined with (4.3), implies the result.

Remark 4.2. The process (L(s), s ≥ 0) is clearly stationary by construction. Thus, it
follows from Propositon 4.1 and the theory of processes of Ornstein-Uhlenbeck type
reviewed in the introduction that the distribution of L(0), and therefore the distribution
of L(s) for any fixed s ≥ 0, has a characteristic function given by the right-hand side of
(1.8). To observe this result more directly, use the Integration by Parts Formula (see,
for example, Corollary 8.7 of [21]) to write that almost surely

L(0) =

∫ ∞
0

Y (t) dt = 1 +

∫ ∞
0

e−tS(t) dt = 1 +

∫ ∞
0

e−tdS(t). (4.4)

The distribution of the stable integral on the right-hand side of (4.4) can be evaluated
using the theory developed in Chapter 3 of [29]. In this case, we apply Proposition 3.4.1
of [29] with m being π/2 times Lebesgue measure, E = [0,∞), σ = π/2, µ = 0, β = −1,
and f(t) = e−t. We get σf = π/2, βf = −1, and µf = −

∫∞
0
te−t dt = −1 to recover the

result.

By (3.48), we have

(log n)2

n

(
Ln

(
s

log n

)
− n

log n
− n log log n

(log n)2

)
=

(log n)2

n

∫ ∞
0

1

log n
Ñn

(
s

log n
,

t

log n

)
− ne−t

log n
− nte−t log log n

(log n)2
dt =

∫ ∞
0

Xn(s, t) dt.

Consequently, the following proposition will imply Theorem 1.5.
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Proposition 4.3. We have

sup
0≤s≤T

∣∣∣∣ ∫ ∞
0

Xn(s, t) dt− L(s)

∣∣∣∣→p 0.

To prove Proposition 4.3, we need to compare
∫∞
0
Xn(s, t) dt and

∫∞
0
Y (s, t) dt. Lem-

mas 4.4 and 4.6 below will show that it suffices to consider the integrals of Xn and Y

up to time Tn + s, and Lemma 4.7 will allow us to replace Y by Yn.

Lemma 4.4. We have

sup
0≤s≤T

∫ ∞
Tn+s

Y (s, t) dt→p 0.

Proof. We have

sup
0≤s≤T

∫ ∞
Tn+s

e−tS(s, t) dt→p 0

by (3.9). Also, it is clear that

lim
n→∞

∫ ∞
Tn+s

e−tt2

2
dt = 0.

The result is immediate.

Lemma 4.5. For all ε > 0, there exists a positive constant C such that

lim inf
n→∞

P

(
Nn

(
Tn

log n

)
≤ Cn

(log n)2

)
> 1− ε.

Proof. Let (Πn(t), t ≥ 0) be a Bolthausen-Sznitman coalescent started with n blocks.
There is a well-known method for constructing a random partition having the same
distribution as Πn(t). Let α = e−t. Then let J1 ≥ J2 ≥ . . . denote the points of a Poisson
point process on (0,∞) whose intensity measure is given by x−1−α dx. Let S =

∑∞
i=1 Ji,

and divide the interval [0, 1] into disjoint subintervals of lengths J1/S, J2/S, . . . . Let
U1, U2, . . . be i.i.d. random variables having the uniform distribution on [0, 1]. Then
Πn(t) has the same distribution as the partition of {1, . . . , n} such that i and j are in the
same block if and only if Ui and Uj land in the same subinterval of [0, 1]; see, for example,
section 4 of [5] or section 2.4 of [25]. Therefore, Nn(t) has the same distribution as the
number of blocks of Πn(t). Thus, by (3.13) of [26],

E[Nn(t)] =
Γ(n+ α)

αΓ(α)Γ(n)
.

Therefore, by Stirling’s Formula, there exist positive constants C1 and C2 such that for
all n ≥ 2 and t ≥ 0,

E[Nn(t)] ≤ C1(n− 1 + α)n+α−1/2e−(n−1+α)

αΓ(α)(n− 1)n−1/2e−(n−1)
≤ C2

αΓ(α)
nα. (4.5)

Now, take t = Tn/(log n), so that α = e−Tn/(logn). Because

α ≤ 1− Tn
log n

+
T 2
n

2(log n)2
,

we have

nα ≤ ne−Tn+T
2
n/2 logn ≤ C3n

(log n)2
(4.6)

for some positive constant C3. Combining (4.5) and (4.6), we get that

E

[
Nn

(
Tn

log n

)]
≤ C4n

(log n)2

for some positive constant C4. The result now follows from Markov’s Inequality.
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Lemma 4.6. We have

sup
0≤s≤T

∫ ∞
Tn+s

Xn(s, t) dt→p 0.

Proof. It is easy to check that

lim
n→∞

log n

n

∫ ∞
Tn

(
ne−t +

nte−t log log n

log n

)
dt = 0.

Therefore, it suffices to show that

sup
0≤s≤T

log n

n

∫ ∞
Tn+s

Ñn

(
s

log n
,

t

log n

)
dt→p 0.

Note that

Nn

(
s

log n
,

t

log n

)
≤ Nn

(
0,
t− s
log n

)
because the number of individuals in the population at time ((s − t)/ log n)− who have
descendants in the population at time 0 will be at least as large as the number of individ-
uals in the population at time ((s − t)/ log n)− who have descendants in the population
at the later time s/(log n). It follows that

sup
0≤s≤T

log n

n

∫ ∞
Tn+s

Ñn

(
s

log n
,

t

log n

)
dt ≤ sup

0≤s≤T

log n

n

∫ ∞
Tn+s

Ñn

(
0,
t− s
log n

)
dt

=
log n

n

∫ ∞
Tn

Ñn

(
0,

t

log n

)
dt

=
(log n)2

n

∫ ∞
Tn/ logn

Ñn(0, t) dt. (4.7)

Conditional on Nn(0, Tn/ log n) = m ≥ 2, the distribution of
∫∞
Tn/ logn

Ñn(0, t) dt is the

same as the distribution of Lm(0). Let ε > 0. By Lemma 4.5, there is a positive constant
C such that P (Nn(0, Tn/ log n) ≤ Cn/(log n)2) > 1−ε for sufficiently large n. Conditional
on the event that Nn(0, Tn/ log n) ≤ Cn/(log n)2, the distribution of

∫∞
Tn/ logn

Ñn(0, t) dt is

stochastically dominated by the distribution of Lm(0) for m = bCn/(log n)2c. Thus, by
(1.7), there is a positive constant K such that

P

(∫ ∞
Tn/ logn

Nn(0, t) dt ≤ Kn

(log n)3

)
> 1− 2ε

for sufficiently large n. Hence, the right-hand side of (4.7) converges in probability to
zero, which gives the result.

Lemma 4.7. We have

sup
0≤s≤T

∫ Tn+s

0

|Yn(s, t)− Y (s, t)| dt→p 0.

Proof. Note that∫ Tn+s

0

|Yn(s, t)− Y (s, t)| dt =

∫ Tn+s

0

e−t|Sn(s, t)− S(s, t)| dt

≤ sup
0≤t≤Tn+s

|Sn(s, t)− S(s, t)|. (4.8)

Therefore,

sup
0≤s≤T

∫ Tn+s

0

|Yn(s, t)− Y (s, t)| dt ≤ sup
0≤s≤T

sup
0≤t≤Tn+s

|Sn(s, t)− S(s, t)| →p 0

by Lemma 3.2.
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Choose fixed times 0 = s0 < s1 < · · · < sm = T such that 1/(log n)2 ≤ si+1 − si ≤
2/(log n)2 for i = 0, 1, . . . ,m − 1. This is clearly possible for sufficiently large n, and
m ≤ T (log n)2. Let ε > 0, and let (−u1, y1), . . . , (−uk, yk) denote the points of Ψ in the
region [−T, 0] × [ε3,∞). Note that with probability one, there are only finitely many
points of Ψ in this region. For i = 0, 1, . . . ,m− 1, let Gi be the event that none of the uj
falls in [si, si+1], and let Hi be the event that exactly one of the uj falls in [si, si+1] and
that this point uj is in (si, si+1). Note that almost surely none of the uj land on one of
the points s0, . . . , sm, and with probability tending to one as n→∞, no two of the points
uj fall in the same interval [si, si+1]. Consequently, we have

lim
n→∞

P

(m−1⋂
i=0

(Gi ∪Hi)

)
= 1. (4.9)

On Hi, let j(i) be the value of j such that uj ∈ (si, si+1).

Lemma 4.8. We have

lim sup
n→∞

P

(
sup

0≤i≤m−1
sup

s∈[si,si+1]

∣∣∣∣ ∫ Tn+s

0

Yn(s, t)dt−
∫ Tn+si+1

0

Yn(si+1, t)dt

∣∣∣∣1Gi
≥ 4ε

)
≤ 4Tε.

Proof. If si ≤ s ≤ si+1 and t ≥ 0, then

Sn(s, t) = Sn(si+1, t+ si+1 − s)− Sn(si+1, si+1 − s).

Therefore,

∫ Tn+s

0

Yn(s, t) dt =

∫ Tn+s

0

e−tSn(si+1, t+ si+1 − s) dt

−
∫ Tn+s

0

e−tSn(si+1, si+1 − s) dt+

∫ Tn+s

0

e−tt2

2
dt

= esi+1−s
∫ Tn+si+1

0

e−tSn(si+1, t) dt− esi+1−s
∫ si+1−s

0

e−tSn(si+1, t) dt

−
∫ Tn+s

0

e−tSn(si+1, si+1 − s) dt+

∫ Tn+s

0

e−tt2

2
dt

=

∫ Tn+si+1

0

Yn(si+1, t) dt+ (esi+1−s − 1)

∫ Tn+si+1

0

e−tSn(si+1, t) dt

− esi+1−s
∫ si+1−s

0

e−tSn(si+1, t) dt

−
∫ Tn+s

0

e−tSn(si+1, si+1 − s) dt−
∫ Tn+si+1

Tn+s

e−tt2

2
dt. (4.10)

We must bound the last four terms on the right-hand side of (4.10). Observe that
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esi+1−si − 1 ≤ 3/(log n)2 for sufficiently large n, so∣∣∣∣(esi+1−s − 1)

∫ Tn+si+1

0

e−tSn(si+1, t) dt

∣∣∣∣
≤ 3

(log n)2

(
1 +

∣∣∣∣ ∫ Tn+si+1

0

Yn(si+1, t) dt

∣∣∣∣)
≤ 3

(log n)2

(
1 +

∫ Tn+si+1

0

|Yn(si+1, t)− Y (si+1, t)| dt

+

∣∣∣∣ ∫ ∞
Tn+si+1

Y (si+1, t) dt

∣∣∣∣+

∣∣∣∣ ∫ ∞
0

Y (si+1, t) dt

∣∣∣∣)
≤ 3

(log n)2

(
1 + sup

0≤s≤T

∫ Tn+s

0

|Yn(s, t)− Y (s, t)| dt

+ sup
0≤s≤T

∣∣∣∣ ∫ ∞
Tn+s

Y (s, t) dt

∣∣∣∣+ sup
0≤s≤T

|L(s)|+ sup
0≤s≤T

|J(s)|
)
. (4.11)

Also, esi+1−s ≤ 2 for sufficiently large n, which means∣∣∣∣esi+1−s
∫ si+1−s

0

e−tSn(si+1, t) dt

∣∣∣∣ ≤ 2(si+1 − si) sup
0≤t≤si+1−si

|Sn(si+1, t)|

≤ 4

(log n)2
sup

0≤t≤si+1−si
|Sn(si+1, t)|. (4.12)

Likewise, ∣∣∣∣ ∫ Tn+s

0

e−tSn(si+1, si+1 − s) dt
∣∣∣∣ ≤ sup

0≤t≤si+1−si
|Sn(si+1, t)|. (4.13)

Finally, ∣∣∣∣ ∫ Tn+si+1

Tn+s

e−tt2

2
dt

∣∣∣∣ ≤ 1

(log n)2
(4.14)

for sufficiently large n. Combining (4.11), (4.12), (4.13), and (4.14) with (4.10), we get
that for sufficiently large n,

sup
0≤i≤m−1

sup
s∈[si,si+1]

∣∣∣∣ ∫ Tn+s

0

Yn(s, t) dt−
∫ Tn+si+1

0

Yn(si+1, t) dt

∣∣∣∣
≤ 4

(log n)2
+ 2 sup

0≤i≤m−1
sup

0≤t≤si+1−si
|Sn(si+1, t)|

+
3

(log n)2

(
sup

0≤s≤T

∫ Tn+s

0

|Yn(s, t)− Y (s, t)| dt

+ sup
0≤s≤T

∣∣∣∣ ∫ ∞
Tn+s

Y (s, t) dt

∣∣∣∣+ sup
0≤s≤T

|L(s)|+ sup
0≤s≤T

|J(s)|
)
. (4.15)

Note that sup0≤s≤T |J(s)| is almost surely finite by properties of the Poisson process Ψ,
and sup0≤s≤T |L(s)| is almost surely finite by Proposition 4.1. Combining these observa-
tions with Lemmas 4.4 and 4.7, we see that the probability that the third term on the
right-hand side of (4.15) is less than ε tends to zero as n→∞. Clearly 4/(log n)2 < ε for
sufficiently large n. To control the second term, apply Lemma 3.3 with δn = si+1 − si
and θ = ε3 to get

P

(
sup

0≤t≤si+1−si
|Sn(si+1, t)|1Gi

> ε

)
≤ P

(
sup

0≤t≤si+1−si
|Sn(si+1, t)| > ε

∣∣∣∣Gi) ≤ 4(si+1−si)ε,
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and thus

P

(
2 sup
0≤i≤m−1

sup
0≤t≤si+1−si

|Sn(si+1, t)|1Gi > 2ε

)
≤ 4ε

m−1∑
i=0

(si+1 − si) = 4Tε.

Combining these bounds with (4.15) gives the result.

Lemma 4.9. We have

lim
n→∞

P

(
sup

0≤i≤m−1
sup

s∈[si,si+1]

∣∣∣∣ ∫ Tn+s

0

Yn(s, t) dt− J(uj(i))1{s≤uj(i)}

−
∫ Tn+si+1

0

Yn(si+1, t) dt

∣∣∣∣1Hi
≥ 5ε

)
= 0.

Proof. Note that (4.10) still holds in this setting. Consequently, if si ≤ s ≤ si+1, then on
the event Hi, we have∣∣∣∣ ∫ Tn+s

0

Yn(s, t) dt− J(uj(i))1{s≤uj(i)} −
∫ Tn+si+1

0

Yn(si+1, t) dt

∣∣∣∣
≤
∣∣∣∣(esi+1−s − 1)

∫ Tn+si+1

0

e−tSn(si+1, t) dt

∣∣∣∣+

∣∣∣∣esi+1−s
∫ si+1−s

0

e−tSn(si+1, t) dt

∣∣∣∣
+

∣∣∣∣ ∫ Tn+s

0

e−tSn(si+1, si+1 − s) dt+ J(uj(i))1{s≤uj(i)}

∣∣∣∣+

∣∣∣∣ ∫ Tn+si+1

Tn+s

e−tt2

2
dt

∣∣∣∣.
(4.16)

The bounds (4.11), (4.12), and (4.14) also hold. In place of (4.13), observe that if si ≤
s ≤ si+1, then on the event Hi,∣∣∣∣ ∫ Tn+s

0

e−tSn(si+1, si+1 − s) dt+ J(uj(i))1{s≤uj(i)}

∣∣∣∣
=

∣∣∣∣Sn(si+1, si+1 − s)
(

1−
∫ ∞
Tn+s

e−t dt

)
+ J(uj(i))1{s≤uj(i)}

∣∣∣∣
≤
∣∣Sn(si+1, si+1 − s) + J(uj(i))1{s≤uj(i)}

∣∣+
∣∣Sn(si+1, si+1 − s)e−(Tn+s)

∣∣
≤ sup

0≤t≤si+1−si

∣∣Sn(si+1, t) + J(uj(i))1{t≥si+1−uj(i)}
∣∣+

1

(log n)2
sup

0≤t≤si+1−si
|Sn(si+1, t)|.

(4.17)

Also, on the event Hi,

sup
0≤t≤si+1−si

|Sn(si+1, t)| ≤ |J(uj(i))|+ sup
0≤t≤si+1−si

∣∣Sn(si+1, t)− J(uj(i))1{t≥si+1−uj(i)}
∣∣.

(4.18)
Thus, on the event Hi, by (4.16), (4.17), (4.18), (4.11), (4.12), and (4.14), we have

sup
0≤i≤m−1

sup
s∈[si,si+1]

∣∣∣∣ ∫ Tn+s

0

Yn(s, t) dt− J(uj(i))1{s≤uj(i)} −
∫ Tn+si+1

0

Yn(si+1, t) dt

∣∣∣∣
≤ 4

(log n)2
+

5

(log n)2
sup

0≤s≤T
|J(s)|

+

(
1 +

5

(log n)2

)
sup

0≤i≤m−1
sup

0≤t≤si+1−si

∣∣Sn(si+1, t) + J(uj(i))1{t≥si+1−uj(i)}
∣∣

+
3

(log n)2

(
sup

0≤s≤T

∫ Tn+s

0

|Yn(s, t)− Y (s, t)| dt

+ sup
0≤s≤T

∣∣∣∣ ∫ ∞
Tn+s

Y (s, t) dt

∣∣∣∣+ sup
0≤s≤T

|L(s)|+ sup
0≤s≤T

|J(s)|
)
. (4.19)
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By Lemmas 4.4 and 4.7, and the fact that sup0≤s≤T |L(s)| and sup0≤s≤T |J(s)| are finite
almost surely, the probability that the first, second, or fourth term on the right-hand
side of (4.19) is greater than ε tends to zero as n → ∞. To bound the third term, we
apply Lemma 3.3. Observe that the conditional distribution of

sup
0≤t≤si+1−si

∣∣Sn(si+1, t) + J(uj(i))1{t≥si+1−uj(i)}
∣∣

given Hi is the same as the conditional distribution of sup0≤t≤δn |Sn(s, t)| given A(θ) in
Lemma 3.3 if we take δn = si+1 − si and θ = ε3. Because

P (Hi) ≤ (si+1 − si)
∫ ∞
ε3

x−2 dx ≤ 2

ε3(log n)2
, (4.20)

it follows from Lemma 3.3 that

P

(
2 sup
0≤i≤m−1

sup
0≤t≤si+1−si

∣∣Sn(si+1, t) + J(uj(i))1{t≥si+1−uj(i)}
∣∣1Hi

> 2ε

)

≤
m−1∑
i=0

P (Hi) · 4(si+1 − si)ε ≤
8T

ε2(log n)2
,

which tends to zero as n→∞. The result follows.

Lemma 4.10. If s ≥ 0 and h ≥ 0 with 0 ≤ s+ h ≤ T , then∫ Tn+s+h

0

Xn(s+ h, t) dt ≤
∫ Tn+s

0

Xn(s, t) dt+ h log n (4.21)

and for sufficiently large n,∫ Tn+s+h

0

Xn(s+ h, t) dt

≥
∫ Tn+s

0

Xn(s, t) dt− 2h

log n
− (log n)(Tn + s)

n

(
n−Nn

(
s+ h

log n
,

h

log n

)
+ 1

)
. (4.22)

Proof. We have∫ Tn+s+h

0

Xn(s+ h, t) dt =
log n

n

∫ Tn+s+h

0

Ñn

(
s+ h

log n
,

t

log n

)
− ne−t − nte−t log log n

log n
dt

=
log n

n

∫ Tn+s

0

Ñn

(
s

log n
,

t

log n

)
− ne−t − nte−t log log n

log n
dt

− log n

n

∫ Tn+s+h

Tn+s

(
ne−t +

nte−t log log n

log n

)
dt

+
log n

n

∫ Tn+s+h

0

Ñn

(
s+ h

log n
,

t

log n

)
dt

− log n

n

∫ Tn+s

0

Ñn

(
s

log n
,

t

log n

)
dt

=

∫ Tn+s

0

Xn(s, t) dt− log n

n

∫ Tn+s+h

Tn+s

(
ne−t +

nte−t log log n

log n

)
dt

+
log n

n

∫ h

0

Ñn

(
s+ h

log n
,

t

log n

)
dt

+
log n

n

∫ Tn+s

0

Ñn

(
s+ h

log n
,
t+ h

log n

)
− Ñn

(
s

log n
,

t

log n

)
dt.

(4.23)
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Because Nn(s, t) ≤ n for all s, t ≥ 0, the integral in the third term on the right-hand side
of (4.23) is bounded by hn, so the term is bounded by h log n. Also, for all s, t, h ≥ 0,
we have N(s + h, t + h) ≤ N(s, t) because the number of individuals in the population
at time ((s + h) − (t + h))− = (s − t)− with descendants alive in the population at time
s+h is less than or equal to the number of individuals in the population at time (s− t)−
with descendants alive in the population at time s. Therefore, the fourth term in the
right-hand side of (4.23) is nonpositive. Equation (4.21) follows.

Next, we claim that for all s, t, h ≥ 0, we have

Nn(s, t)−Nn(s+ h, t+ h) ≤ n−Nn(s+ h, h).

To see this, note that Nn(s, t) − Nn(s + h, t + h) is the number of individuals in the
population at time (s − t)− with descendants alive in the population at time s but not
at time s + h. This is at most the number of individuals in the population at time s

that do not have descendants alive in the population at time s + h, which is at most
n−Nn(s+ h, h). Therefore, Ñn(s, t)− Ñn(s+ h, t+ h) ≤ n−Nn(s+ h, h) + 1. The result
(4.22) follows from this observation and (4.23) because

log n

n

∫ Tn+s+h

Tn+s

(
ne−t +

nte−t log log n

log n

)
dt ≤ (h log n) sup

t≥Tn

(
e−t +

te−t log log n

log n

)
≤ 2h

log n

for sufficiently large n.

Proof of Proposition 4.3. By Lemmas 4.4, 4.6, and 4.7, it suffices to show that

sup
0≤s≤T

∣∣∣∣ ∫ Tn+s

0

Xn(s, t) dt+ J(s)−
∫ Tn+s

0

Yn(s, t) dt

∣∣∣∣→p 0. (4.24)

By Lemmas 3.6, 3.11, and 3.13, we have

lim sup
n→∞

P

(∫ Tn+si

0

|Xn(si, t)− Yn(si, t)| dt ≥
5(Tn + si)

(log n)1/16
for some i = 0, 1, . . . ,m

)
≤ lim sup

n→∞

(
P (Acn) + P (Bcn)

+ (1 + T (log n)2)

(
(Tn + T )(log n)3/2

n1/2εn
+ 4(log n)2(Tn + T )εn

))
= 0.

Therefore, for all ε > 0, we have

lim
n→∞

P

(
sup

0≤i≤m

∣∣∣∣ ∫ Tn+si

0

Xn(si, t) dt−
∫ Tn+si

0

Yn(si, t) dt

∣∣∣∣ ≥ ε) = 0. (4.25)

We first consider the case in which Gi occurs. If s ∈ [si, si+1], then by (4.21),∫ Tn+s

0

Xn(s, t) ≤
∫ Tn+si

0

Xn(si, t) dt+ (s− si) log n, (4.26)

and therefore∫ Tn+s

0

Xn(s, t) ≤
∫ Tn+s

0

Yn(s, t) dt+

∣∣∣∣ ∫ Tn+si

0

Xn(si, t) dt−
∫ Tn+si

0

Yn(si, t) dt

∣∣∣∣
+

∣∣∣∣ ∫ Tn+si

0

Yn(si, t) dt−
∫ Tn+si+1

0

Yn(si+1, t) dt

∣∣∣∣
+

∣∣∣∣ ∫ Tn+si+1

0

Yn(si+1, t) dt−
∫ Tn+s

0

Yn(s, t) dt

∣∣∣∣+ (s− si) log n. (4.27)
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Likewise, ∫ Tn+s

0

Xn(s, t) ≥
∫ Tn+si+1

0

Xn(si+1, t) dt− (si+1 − s) log n, (4.28)

and so∫ Tn+s

0

Xn(s, t) ≥
∫ Tn+s

0

Yn(s, t) dt−
∣∣∣∣ ∫ Tn+si+1

0

Xn(si+1, t) dt−
∫ Tn+si+1

0

Yn(si+1, t) dt

∣∣∣∣
−
∣∣∣∣ ∫ Tn+si+1

0

Yn(si+1, t) dt−
∫ Tn+s

0

Yn(s, t) dt

∣∣∣∣− (si+1 − s) log n. (4.29)

Since si+1 − si ≤ 2/(log n)2 for i = 0, 1, . . . ,m− 1, it follows that

sup
0≤i≤m−1

sup
s∈[si,si+1]

∣∣∣∣ ∫ T+s

0

Xn(s, t) dt−
∫ T+s

0

Yn(s, t) dt

∣∣∣∣
≤ 2

log n
+ sup

0≤i≤m

∣∣∣∣ ∫ Tn+si

0

Xn(si, t) dt−
∫ Tn+si

0

Yn(si, t) dt

∣∣∣∣
+ 2 sup

0≤i≤m−1
sup

s∈[si,si+1]

∣∣∣∣ ∫ Tn+s

0

Yn(s, t) dt−
∫ Tn+si+1

0

Yn(si+1, t) dt

∣∣∣∣.
Clearly 2/ log n < ε for sufficiently large n. Therefore, by (4.25) and Lemma 4.8,

lim sup
n→∞

P

(
sup

0≤i≤m−1
sup

s∈[si,si+1]

∣∣∣∣ ∫ T+s

0

Xn(s, t) dt−
∫ T+s

0

Yn(s, t) dt

∣∣∣∣1Gi > 10ε

)
≤ 4Tε.

(4.30)
We next consider the case in which Hi occurs. Recall that uj(i) ∈ (si, si+1) on Hi. Let

Ri = lim
s↑uj(i)

Nn

(
s

log n
,
s− si
log n

)
.

That is, Ri is the number of individuals in the population at time (si/ log n)− with de-
scendants in the population at least until time (uj(i)/ log n)−. Note that

Nn(s/ log n, (s− si)/ log n) ≥ Ri
for all s ∈ [si, uj(i)). Therefore, by (4.22), for s ∈ [si, uj(i)) we have∫ Tn+s

0

Xn(s, t) dt ≥
∫ Tn+si

0

Xn(si, t) dt−
2(s− si)

log n
− (log n)(Tn + T )(n−Ri + 1)

n
.

Combining this result with (4.26) and the fact that si+1 − si ≤ 2/(log n)2 gives∣∣∣∣ ∫ Tn+s

0

Xn(s, t) dt−
∫ Tn+si

0

Xn(si, t) dt

∣∣∣∣ ≤ 2

log n
+

4

(log n)3
+

(log n)(Tn + T )(n−Ri + 1)

n
.

It follows that if s ∈ [si, uj(i)), then∣∣∣∣ ∫ Tn+s

0

Xn(s, t) dt−
∫ Tn+s

0

Yn(s, t) dt

∣∣∣∣
≤ 2

log n
+

4

(log n)3
+

(log n)(Tn + T )(n−Ri + 1)

n

+

∣∣∣∣ ∫ Tn+si

0

Xn(si, t) dt−
∫ Tn+si

0

Yn(si, t) dt

∣∣∣∣
+

∣∣∣∣ ∫ Tn+si

0

Yn(si, t) dt− J(uj(i))−
∫ Tn+si+1

0

Yn(si+1, t) dt

∣∣∣∣
+

∣∣∣∣ ∫ Tn+s

0

Yn(s, t) dt− J(uj(i))−
∫ Tn+si+1

0

Yn(si+1, t) dt

∣∣∣∣. (4.31)
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Likewise, let

Si = Nn

(
si+1

log n
,
si+1 − uj(i)

log n
−
)
,

and note that Nn(si+1/ log n, (si+1 − s)/ log n) ≥ Si for all s ∈ (uj(i), si+1]. Therefore, if
s ∈ (uj(i), si+1], then (4.22) gives∫ Tn+s

0

Xn(s, t) dt ≤
∫ Tn+si+1

0

Xn(si+1, t) dt+
2(si+1 − s)

log n
+

(log n)(Tn + T )(n− Si + 1)

n
.

(4.32)
Because Xn(uj(i), t) = lims↓uj(i)

Xn(s, t) for Lebesgue almost all t > 0, equation (4.32)
holds for all s ∈ [uj(i), si+1]. Combining this result with (4.28) gives∣∣∣∣ ∫ Tn+s

0

Xn(s, t) dt−
∫ Tn+si+1

0

Xn(si+1, t) dt

∣∣∣∣
≤ 2

log n
+

4

(log n)3
+

(log n)(Tn + T )(n− Si + 1)

n
.

Therefore, if s ∈ [uj(i), si+1], then∣∣∣∣ ∫ Tn+s

0

Xn(s, t) dt+ J(s)−
∫ Tn+s

0

Yn(s, t) dt

∣∣∣∣
≤ 2

log n
+

4

(log n)3
+

(log n)(Tn + T )(n− Si + 1)

n

+

∣∣∣∣ ∫ Tn+si+1

0

Xn(si+1, t) dt−
∫ Tn+si+1

0

Yn(si+1, t) dt

∣∣∣∣
+

∣∣∣∣ ∫ Tn+s

0

Yn(s, t)− J(s)−
∫ Tn+si+1

0

Yn(si+1, t) dt

∣∣∣∣. (4.33)

By (4.31) and (4.33), and the fact that J(s) = 0 if s ∈ [si, uj(i)) ∪ (uj(i), si+1],

sup
0≤i≤m−1

sup
s∈[si,si+1]

∣∣∣∣ ∫ T+s

0

Xn(s, t) dt+ J(s)−
∫ Tn+s

0

Yn(s, t) dt

∣∣∣∣1Hi

≤ 2

log n
+

4

(log n)3
+ sup

0≤i≤m−1

(log n)(Tn + T )(2n−Ri − Si + 2)1Hi

n

+ sup
0≤i≤m

∣∣∣∣ ∫ Tn+si

0

Xn(si, t) dt−
∫ Tn+si

0

Yn(si, t) dt

∣∣∣∣
+ 2 sup

0≤i≤m−1
sup

s∈[si,si+1]

∣∣∣∣ ∫ Tn+s

0

Yn(s, t)− J(uj(i))1{s≤uj(i)}

−
∫ Tn+si+1

0

Yn(si+1, t) dt

∣∣∣∣1Hi
. (4.34)

We claim that the conditional distributions of n − Ri and n − Si given Hi are each
stochastically dominated by the distribution of n−Nn(0, 2/(log n)3), which is the number
of blocks lost by time 2/(log n)3 in a Bolthausen-Sznitman coalescent started with n

blocks. To see this, note that n − Si is the number of blocks that are lost by time
(si+1 − uj(i))/ log n ≤ 2/(log n)3 in a Bolthausen-Sznitman coalescent. Likewise n − Ri
is the number of blocks lost by time (uj(i) − si)/(log n) ≤ 2/(log n)3 in a Bolthausen-
Sznitman coalescent started with n lineages, if we disallow the instantaneous merger
caused by the birth event at time uj(i). Because Hi requires that exactly one of the uk
falls in (si, si+1), the effect of conditioning on Hi is the same as suppressing all mergers
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in which each lineage participates with probability greater than ε3. This can only reduce
the number of blocks lost. Thus, we have

E[n−Ri|Hi] ≤
2ηn

(log n)3
≤ 2n

(log n)2

by (2.2). By the same argument, E[n − Si|Hi] ≤ 2n/(log n)2. Thus, using (4.20) and the
fact that m ≤ T (log n)2,

E

[
sup

0≤i≤m−1

(log n)(Tn + T )(2n−Ri − Si + 2)1Hi

n

]

≤ (log n)(Tn + T )

n

m−1∑
i=0

P (Hi)

(
4n

(log n)2
+ 2

)
≤ 2(log n)(Tn + T )m

ε3n(log n)2

(
4n

(log n)2
+ 2

)
→ 0

as n→∞. Hence, by Markov’s Inequality,

2

log n
+

4

(log n)3
+ sup

0≤i≤m−1

(log n)(Tn + T )(2n−Ri − Si + 2)1Hi

n
→p 0.

Combining this result with (4.34), (4.25), and Lemma 4.9, we get

lim sup
n→∞

P

(
sup

0≤i≤m−1
sup

s∈[si,si+1]

∣∣∣∣ ∫ T+s

0

Xn(s, t) dt+ J(s)−
∫ T+s

0

Yn(s, t) dt

∣∣∣∣1Hi
> 12ε

)
= 0.

(4.35)
The result (4.24) follows from (4.30), (4.35), and the fact that with probability tending
to 1 as n→∞, we have Gi ∪Hi for i = 0, 1, . . . ,m− 1 by (4.9).
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