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Abstract – In this paper we propose a modified version of the 

classical unforced Van der Pol oscillator that occurs when 

introducing a fractional-order time derivative in the state 

space equations that describes its dynamics. The resulting 

fractional-order Van der Pol oscillator is analyzed in the time 

and frequency domains, for several values of order’s 

fractional derivative and, consequently, of the total system 

order. It is shown that the system can exhibit different output 

behavior depending on the total system order. Several 

numerical simulations and performance indices illustrate the 

fractional dynamics. 
 

I. INTRODUCTION 

 

The study of nonlinear oscillators has been important in 

the development of the theory of dynamical systems. The 

Van der Pol oscillator (VPO) represents a nonlinear system 

with an interesting behavior that arises naturally in several 

applications. It has been used for study and design of many 

models/systems including biological phenomena, such as 

the heartbeat or the generation of action potentials by 

neurons, acoustic models, radiation of mobile phones, and 

as model of electrical oscillators. 

The VPO was used by Van der Pol in the 1920’s to 

study oscillations in vacuum tube circuits (part of early 

radios). In the standard form, it is given by a second-order 

nonlinear differential equation of type: 

( )2 1 0y y y y+ ε − + =  (1) 

where ε is the control parameter and y and y  are 

correspondingly the first and second derivatives of y with 

respect to time t. It can be regarded as describing an RLC 

electrical circuit with a nonlinear resistor. The equivalent 

state space formulation has the form (y = y1, y = y2): 

( )

1
2

22
1 1 21

dy
y

dt

dy
y y y

dt

=

= − − ε −
 (2) 

This is an example of a system, with nonlinear damping, 

that typically possesses limit cycles (a periodic attractor). 

Limit cycles represent an important phenomenon in 

nonlinear systems. They can be found in many areas of 

engineering and nature. The parameter ε reflects the 

nonlinear behaviour of the system. At ε = 0 the system 

reduces to a simple harmonic oscillator. For positive ε the 

VPO exhibits a stable limit cycle and, as ε grows up the 

system becomes more nonlinear. 

A modified version of the classical VPO is now 

proposed by introducing a fractional time derivative of 

order α in state space equations (2), yielding: 

( )

1
2

22
1 1 21

dy
y

dt

dy
y y y

dt

α

α
=

= − − ε −

 (3) 

In this work we take 0 < α < 1 and ε > 0. A similar 

approach was performed in [11−14]. Note that the resulting 

fractional-order Van der Pol oscillator (FrVPO) reduces to 

the classical VPO (2) when α = 1. Also, the total system 

order is changed from the integer value 2 (for the VPO) to 

the fractional value α+1 < 2 (for the FrVPO). 

In this paper we analyse and present simulation results 

of the dynamics produced from the FrVPO system as the 

α-order derivative of state equations (3) is varied in the 

range 0 < α < 1. We show that α has a large influence 

upon the overall system dynamics. 

The article is organized as follows. Section II gives a 

brief introduction to the fundamental aspects of fractional-

order derivatives. In Section III we propose a simulation 

scheme for the unforced FrVPO system. Also, we describe 

a method for obtaining approximated integer-order rational 

functions to fractional-order systems. Section IV presents 

the simulation results. Finally, Section V addresses the 

main conclusions and perspectives of future work. 

 

II. BASICS OF FRACTIONAL-ORDER DERIVATIVES 

 

There are various definitions of fractional-order 

derivatives that can be adopted for the operator 

Dαy(t) ≡ dαy(t)/dtα [1−4]. The two most commonly used 

are the Riemann-Liouville and the Grünwald-Letnikov 

definitions [1, 3]. In all that follows, we consider y(t) being 

a causal function of t, that is, y(t) = 0 for t < 0. 

The Riemann-Liouville definition of the fractional-order 

derivative is: 

( ) ( )
n

n

n

d
D y t D y t

dt

α α−=  

               ( ) ( )1

0

1

( )

tn
nd

t y d
n dt

−α− = − τ τ τ Γ − α   ∫  (4) 

where n is an integer such that n−1 < α < n and Γ is the 

well known Gamma function. 

The Grünwald-Letnikov definition is: 

( )
( )

( )
( ) ( )

0
0

1
lim

1

t
h

h
j

j
D y t y t jh

jh

 
 

α
α→

=

 
Γ − α = − 
Γ +Γ −α 

 
∑  (5) 

where h is the time step and [x] means the integer part of x. 
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For a wide class of functions, important for applications, 

both definitions are equivalent [1−3]. This allows one to 

use the Riemann-Liouville definition during problem 

formulation, and then turn to the Grünwald-Letnikov 

definition for obtaining the numerical solution. 

An important fact revealed by both definitions is that the 

evaluation of fractional-order derivatives in any instant t 

requires the whole history of y(t) from t ∈ [0, t]. This 

means that fractional-order derivatives are “global” 

operators having a memory of the entire past in opposition 

with the integer-order derivatives that are “local” 

operators. While this brings a fresh view in many areas of 

science and engineering, it poses, however, evaluation 

problems due to the unlimited memory imposed for their 

computation (e.g., for large values of t). To overcome this, 

Podlubny [3] suggested the use of the “short memory” 

principle, which it takes into account the behaviour of y(t) 

only in the “recent past”, i.e. in the interval [t−L, t], where 

L is the “memory length” and, consequently, maximizing 

the amount of computation to L seconds. This method was 

applied successfully for the numerical solution of linear 

ordinary fractional-order differential equations with 

constant and non-constant coefficients and non-linear 

ordinary fractional-order differential equations [3]. 

Another usual definition of fractional-order derivatives 

is given through the Laplace transform method. This useful 

tool is widely used by the control engineering community 

in the analysis and control of dynamic systems. 

Considering vanishing initial conditions, it is given by the 

simple form: 

( ) ( ){ }1 ,D y t L s Y sα − α= α ∈  (6) 

where L denotes the Laplace operator and Y(s) = L{y(t)}. 

This expression reveals a straightforward adaptation of the 

classical frequency-based methods to fractional-order 

systems. The known interpretation of the integer-order 

derivatives (and integrals) in the frequency s−domain is 

easily translated to the fractional-order case. In fact, the 

Bode diagrams of amplitude and phase of (6) are given by 

straight lines of 20αdB/dec and απ/2 rad (α ∈ ) in all 

frequency domain, respectively. 

 

III. SIMULATION SCHEME 

 

In section II we show several ways of leading with 

fractional-order derivatives. Among them, the most 

intuitive is undoubtedly the one that adopts the frequency 

domain given by expression (6). The application of the 

fractional calculus concepts to control theory, in the 

frequency domain, are well established and studied on a 

more systematic approach only in the last three decades 

(for example, see published books in the matter by 

Oustaloup [5−6] and Podlubny [3]). Besides the effort that 

has been dedicated, in the recent years, to the study of 

fractional-order systems in the time domain, much more 

investigation is needed in this area to produce a more 

consistent theory and reliable algorithms [3, 10]. In this 

paper we adopt the frequency domain approach to the 

study of fractional-order systems. 

In this line of thought, Fig. 1 illustrates the block 

diagram of the unforced FrVPO system. Note that α = 1 is 

the classical VPO system, both in state space formulation 

(3) and block diagram representation (Fig. 1). 

As can be seen from Fig. 1, the unforced FrVPO system 

is implemented by using an integer integrator 1/s, an 

fractional integrator 1/sα of order 0 < α < 1, and the block 

ε f(y1, y2) that models the nonlinearity. Here, the unusual 

element is given by the fractional-order integrator that is an 

irrational transfer function in the Laplace s-variable. This 

type of systems has an unlimited memory which precludes 

its direct utilization in time-domain simulations. Therefore, 

the usual approach is the development of integer-order 

approximations that approximate (up to a given degree of 

accuracy) the fractional-order operators. So, in order to 

effectively analyze the fractional-order system of Fig. 1, 

we develop rational approximations for the fractional-order 

integrator 1/sα. In this perspective, we adopt the 

approximation frequency method described by Charef et 

al. [15], known as “Singularity Function Method”. A 

survey of both continuous and discrete approximations to 

fractional-order operators can be found in [7−9]. 

The singularity function method is based on the transfer 

function of a single-fractional power pole 1/(1+s/pT)α that 

models a single-fractal system [15], where 1/pT is the 

relaxation time constant and 0 < α < 1. The Bode diagram 

of magnitude of this system has a constant slope of 

−20α dB/dec (for ω >> pT) and, therefore, the basic idea is 

to approximate this slope with an alternative succession of 

zeros and poles with slopes of 0 dB/dec and −20 dB/dec, 

respectively, over the required range of frequency, 

yielding: 

1

0
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1
1 1

11

N

ii

N

iT i

s

z

s ss

pp

−

=
α α

=

 
+ 
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++   

  

∏

∏
 (7) 

where the parameters pi, zi and N are chosen according to 

the desired order α and frequency bandwidth. 

 

1

s

− y
1 

≡ yy
2

− 1

sαε f(y
1
, y

2
)

 
 

Fig. 1. Block diagram of the unforced FrVPO system; α = 1 is the classical VPO system. 

374



 

Hence, given the order α, the fractional-order pole pT 

and the desired maximum discrepancy ∆ (in dB) between 

the actual and the approximate asymptotes of the 

magnitude Bode plots, the parameters (pi, zi, N) of the 

approximation are obtained as follows: i) the first pole is 

p0 = pT10(∆/20α), ii) defining a = 10[∆/10(1−α)], b = 10(∆/10α), 

ab = 10[∆/10α(1−α)], the remaining poles pi and zeros zi are 

calculated from the first pole p0 using the following 

algorithm as: 

( ) 0

i

ip ab p=  (8) 

( ) 0

i

iz ab ap=  (9) 

and iii) the number of poles N is determined through the 

frequency bandwidth ωmax and of relations (8) and (9), 

assuming that pN−1 < ωmax < pN, yielding: 

( )

max

0

log

1
log

p
N Integer

ab

  ω
  
  = + 
 
 
 

 (10) 

In the study that follows we use approximations of type 

(7) for the fractional-order integrator 1/sα with α ∈ ]0, 1[. 

These were obtained for pT = 0.01, ωmax = 100 rad s−1 and a 

maximum discrepancy of ∆ = 2 dB. Such kind of 

approximations can also be found in [13, 14] following the 

same method described here. 

 

IV. SIMULATION RESULTS 

 

In this section we study the effects of fractional 

dynamics in the proposed FrVPO model both in the time 

and frequency domains. We show that the two perspectives 

are essential for a complete understanding of system 

dynamics. 

The FrVPO system of Fig. 1 is simulated over a time-

period of ts = 1000 s with a time step of h = 0.01 s while 

adopting a Runge-Kutta integration scheme using the 

MATLAB/SIMULINK software package and initial 

conditions y1(0) = 0 and y2(0) = 1.0. 

Fig. 2 illustrates the phase plane (y1, y2) plot for the 

FrVPO when varying the fractional-order α = {0.4, 0.6, 

0.7, 0.8, 0.9, 1.0} for a fixed value of the control parameter 

ε = 1. Alternatively, Fig. 3 shows the phase plane plot for 

ε = {0.5, 1, 2, 4, 8, 16} and α = 0.8. In both cases, we 

verify large variations on the limit cycle generation. It 

reveals that the α-order derivative has a large impact upon 

the system dynamics, namely in the amplitude and the 

period of the output oscillation. On the other hand, and as 

expected, the higher the value of ε the more nonlinear the 

system becomes. 

Fig. 4 shows the period T and the amplitude A of the 

output oscillation for 0.3 ≤ α ≤ 1 and εmin(α) ≤ ε ≤ 10, 

where εmin(α) is the minimum value of the control 

parameter for which the system oscillates. This limit 

depends on fractional-order α and its evolution is 

illustrated in Fig. 5 for 0.3 ≤ α ≤ 1. 

Once again, we observe large variations in the limit 

cycle, particularly in the period of the output oscillation. In 

fact, the period T increases significantly for small values of 

α and for α near 1. The amplitude A varies also with α 

being more sensitive for small values of ε. 

Fig. 6 illustrates the steady-state time responses of the 

output signal y(t) (for 500 ≤ t ≤ 530 s) and the 

corresponding Fourier spectra for the FrVPO system with 

fractional-order α = {0.4, 0.6, 0.8, 1.0} and control 

parameter ε = 1. 
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Fig. 2. Phase plane (y1, y2) plot for the FrVPO system with fractional-order α = {0.4, 0.6, 0.7, 0.8, 0.9, 1.0} and control parameter ε = 1. 
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Fig. 5. Minimum value of the control parameter as function of α, 

εmin(α), for 0.3 ≤ α ≤ 1. 

For the evaluation of the Fourier spectrum we use the 

Discrete Fourier Transform (DFT) implemented through 

the Fast Fourier Transform (FFT) algorithm. Hence, 

assuming that we take a set of N points from the signal 

output y(t), y(nh) for n = 0, …, N−1, the DFT yields the 

frequency spectrum at N points by the 

formula:

( )
21

0

1
, 0, ..., 1

i nkN

N
k

n

k
c c y nh e k N

Nh N

− π−

=

 = = = − 
  ∑  (11) 

Thus, it is obtained a frequency range from 

f = 0, …, (N−1) ∆f, with the resolution ∆f = 1/(Nh) Hz. In 

the experiments, the FFT is evaluated for N = 215 points 

after elapsing the initial transient up to T0 = 100 s of the 

output signal y(t). The graphs show the amplitude Fourier 

spectra (properly scaled) for 0 ≤ ω ≤ 20 rad s−1 (ω = 2πf). 
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Fig. 3. Phase plane (y1, y2) plot for the FrVPO system with fractional-order α = 0.8 and control parameter ε = {0.5, 1, 2, 4, 8, 16}. 
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Fig. 4. Period T (left) and amplitude A (right) of limit cycle for εmin(α) ≤ ε ≤ 10 and 0.3 ≤ α ≤ 1. 

 

376



 

From the time responses of Fig. 6, it is clear that the 

period T and amplitude A of the limit cycle vary 

significantly with fractional-order α. In fact, the amplitude 

gets smaller as α is decreased until, eventually, the system 

stops oscillating. The oscillation limit occurs when 

α = 0.37 (with ε = 1). We also note variations in the period 

of the output oscillation. 

On the other hand, from the Fourier spectra, we verify 

that the amplitude have several peaks. The multiple peaks 

are typical of nonlinear systems and are due to the 

presence of the nonlinearity. We also notice that the 

higher-order harmonics are integer-odd multiples of the 

fundamental component (i.e., on the first peak seen in 

Fourier spectrum). By other words, if Y1 denotes the 

amplitude of the fundamental harmonic, then the higher-

order odd harmonics are Yk for k = 3, 5…. Moreover, the 

multiplicity and amplitude of these peaks varies with the 

order α, which is in accordance with the time responses. 

At first glance, by varying the order α we can shape the 

output signal y(t) to resembles an almost sinusoidal 

(“pure”) signal but, in fact, this is not necessarily true. The 

energy of the signal is, not only concentrated in the peaks, 

but distributed along all frequency domain. This fact is 

characteristic of chaotic systems showing that the FrVPO 

presents chaotic limit cycles (like in the classical VPO 

[16]). Furthermore, the amplitude spectrum shows a long-

term behaviour of type C(α) ω−1 indicating different 

amplitude decays depending on α. 

To further illustrate this fact, we develop a percentage 

ratio criterion η that relates the power concentrated in the 

harmonics Ph (i.e., in the peaks of the amplitude spectrum) 

over the total power Pt of the output signal y(t), that is: 

Power in Harmonics
100% 100%

Total Power

h

t

P

P
η = × = ×  (12) 

A relationship between the signal power in the time and 

frequency domains is established by Parseval’s theorem, 

which states that they must be the same in the two cases. 

Thus, for the (periodic) output signal y(t) with period T, the 

total power Pt is given by: 

( )
0

0

1
2 2

0

1
Nt T

t k
t

k

P y t dt c
T

−+

=

 = =  ∑∫  (13) 

where ck are the coefficients of the DFT evaluated through 

expression (11). If we select a finite number of amplitude 

peaks p (i.e., p << N), the power of harmonics Ph is then 

given by: 

2

1

p

h k

k

P c

=

= ∑  (14) 
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Fig. 6. Time responses of output y(t) (left) and corresponding Fourier spectra (right) for the FrVPO system with fractional-order α = {0.4, 0.6, 0.8, 

1.0} and control parameter ε = 1. 
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where the coefficients ck now correspond to the 

frequencies when the amplitude peaks occur. The 

relationship Ph < Pt is verified and, consequently, the index 

η yields 0 < η < 100%. 

Fig. 7 depicts the plot of the index η (%) for the FrVPO 

system with 0 < α ≤ 1 and ε = 1. It shows two different 

regions: i) for 0 < α < 0.37, where no oscillation occurs, 

and ii) for 0.37 ≤ α ≤ 1, where the system oscillates. Once 

more, we verify that the signal energy is distributed along 

all frequency domain, depending on fractional-order α. 

However, for some values of α (e.g., α ≈ {0.37, 0.6, 0.95, 

1.0}) we have η ≈ 100% indicating that all the energy of 

the system is in the harmonics. In these cases, the major 

part of the signal energy is concentrated in the first 

(fundamental) harmonic. 

In conclusion, the introduction of a α-order derivative in 

the classical VPO reveals some interesting characteristics 

that can be more clearly distinguished in the frequency 

domain. One gets different regime outputs from those 

obtained with the classical VPO that may be useful for a 

better understanding and control of such systems. 

 

V. CONCLUSIONS 

 

In this paper we have introduced a modified version of 

the classical VPO by inserting a fractional derivative of 

order α on the state equations that describes its dynamics. 

The resulting FrVPO system presents characteristics that 

can be very different from the classical one depending on 

the α-order derivative. In fact, with the FrVPO system we 

can distinguish different behaviours of the output going 

from the oscillator to the non-oscillator regimes. 

The additional degree of freedom introduced by the 

order α as great influence on the system behaviour and 

deserves a deeper investigation to clarify its implications.  

Further developments of this work can be outlined, 

namely to study the influence of α for a broader range of 

the control parameter ε (both in the time and frequency 

domains) and to analyse the system for values of 

fractional-order α > 1. Moreover, the study presented here 

can be extended to the forced Van der Pol oscillator which 

may reveal more interesting results. 
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Fig. 7. Power percentage ratio η (%) for 0 < α ≤ 1 and ε = 1. 
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