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Dynamics of the Global Wheat 
Trade Network and Resilience to 
Shocks
Kathyrn R. Fair1,2, Chris T. Bauch1 & Madhur Anand2

Agri-food trade networks are increasingly vital to human well-being in a globalising world. Models 

can help us gain insights into trade network dynamics and predict how they might respond to future 

disturbances such as extreme weather events. Here we develop a preferential attachment (PA) network 

model of the global wheat trade network. We find that the PA model can replicate the time evolution 
of crucial wheat trade network metrics from 1986 to 2011. We use the calibrated PA model to predict 
the response of wheat trade network metrics to shocks of differing length and severity, including both 
attacks (outward edge removal on high degree nodes) and errors (outward edge removal on randomly 

selected nodes). We predict that the network will become less vulnerable to attacks but will continue 

to exhibit low resilience until 2050. Even short-term shocks strongly increase link diversity and cause 
long-term structural changes that influence the network’s response to subsequent shocks. Attacks have 
a greater impact than errors. However, with repeated attacks, each attack has a lesser impact than 
the previous attack. We conclude that dynamic models of multi-annual, commodity-specific networks 
should be further developed to gain insight into possible futures of global agri-food trade networks.

As nations become more interconnected in the era of globalisation, trade networks play an increasingly signi�-
cant role in the well-being of nation states. �e ways in which countries select trading partners; the global impact 
of local economic crises due to globalisation; and how country-level characteristics are a�ected by network 
metrics can be explored by analyzing these trade networks1. A signi�cant amount of research has characterized 
trade networks and described how they change over time. However, a crucial subset of these networks–trade in 
agri-food commodities–has not been explored in as much depth. Trade in agri-food products will become more 
crucial as global population growth, urbanization, and shi�ing consumption patterns decrease land resource 
availability2. Global food exports began increasing exponentially a�er the 1960s and are growing more rapidly 
than food production3. �is upswing in exports, along with the 50% increase in food demand predicted to occur 
by 2030, indicates that agri-food trade will only increase in political and economic importance4.

Potential risks to the agri-food network are abundant, with more emerging due to a variety of factors. In 
trade networks shocks generally manifest as the sudden inability of countries to export due to a negative supply 
shock that alters network structure5–8. A myriad of triggers can cause these shocks. �e globalisation of agri-food 
trade has led to the threat of contaminants spreading across international borders, forcing countries to close 
their borders to trade and a�ecting billions of people9–11. Reductions in availability and quality of cereal crops 
due to extreme weather conditions impacting major agricultural producers will only be worsened by climate 
change12–14. Food crops being utilised in fuel production and higher demand for meat in low-income nations 
results in increased pressure on global stocks of vegetable and cereal crops12. Other shocks that could impact 
global food supply include agro-terrorism, crop pests, and epidemics13, 15–18. During food shortages countries 
o�en cease exporting agri-food commodities13, 19–29. For example, as a result of the global food crisis in 2008 trade 
restrictions were imposed by 6 of the top 17 wheat exporters and 4 of the top 9 rice exporters13, 20. �ese export 
restrictions caused increased global prices and led to other countries imposing export restrictions, resulting in 
even higher global prices in what has been dubbed a “multiplier e�ect”30. As network connectivity increases these 
disturbances could severely impact low-income countries which depend greatly on imports of staple foods during 
shortages and are heavily burdened by the resulting price shocks13, 31.
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Previous network analyses of the agri-food trade network as a whole3, 32: the virtual water trade network5, 6, 33–36;  
and commodity-speci�c trade networks7, 8, 11–13, 37 have been undertaken with some consideration of shocks in 
relation to food security3, 5–8, 12, 13, 38. �ese studies have led to con�icting views on how globalisation has impacted 
global food security in these networks. Several reference the heterogeneous degree distributions of these networks 
or their clustering as sources of vulnerability3, 11, 32, 33, 35, 38, while others state that the globalisation of trade has had 
little negative e�ect on global food security6. Network vulnerability, measured using the magnitude of damage to 
network structure resulting from shocks, is one aspect of network resilience. De�nitions of resilience encompass 
not only the robustness of a network to damage resulting from shocks but also the speed at which it recovers from 
shocks39. Further research, especially regarding the resilience of trade networks for globally important staple 
foods, could provide useful insights and guide the development of food security policy.

While static or descriptive analyses of network structures can be helpful, models that examine the network 
formation processes may be useful for understanding mechanisms that determine network structure40. By mod-
elling a trade network it becomes possible to perform experiments in silco to gain insights into network dynamics, 
both in terms of future growth and response to shocks that might be experienced under di�erent possible future 
scenarios. �is can help ensure that policy is pro-active instead of reactive13.

A review of the literature reveals that most trade network models focus either on network formation or on 
simulating shocks. Network formation models generate a network according to growth rules and then treat the 
�nal network as a static, single-year “snapshot” of the empirical network with di�erent model parametrisations 
for each snapshot. Shock simulation models generally do not include growth mechanisms, meaning that the 
interaction between network growth and response to shocks is not considered5, 8, 13. �ese approaches do not 
permit an examination of the concurrent multi-year e�ects of temporal network evolution and shocks on these 
networks–areas we propose to explore here.

Additionally, network formation models have been formulated only the network of all globally traded goods 
(WTN: the world trade network)38, 41–45 and the virtual water trade network (VWTN)46, to our knowledge. 
Because networks for individual commodities o�en have structural di�erences compared to the entire WTN, 
models describing their evolution could di�er in important ways from those created to represent the entire WTN. 
�erefore models of individual commodity networks should be further studied since they may yield unique 
insights37.

To gain insight into these complex and important networks, an understanding of how they form and grow 
is critical. Two main theories as to how trade networks evolve over time have been proposed. In an analysis of 
“rich get richer” preferential attachment (PA) models and homophily models of political and economic net-
works, Maoz found that partnerships in the WTN form according to preferential attachment based on the total 
degree centrality of nodes40. Preferential attachment captures the fact that nation states that already have a high 
node degree or centrality are o�en more desirable as potential trade partners40, 47. Alternatively, Garlaschelli and 
Lo�redo assert that the mechanism driving the growth of the WTN is a “good get richer” system, represented by 
a model based on the hidden variable hypothesis (HVH). In this case, each node has an intrinsic �tness that will 
impact the probability of connection. �ey identi�ed the hidden variable (�tness) for the WTN as annual GDP 
and used this to model the growth of the WTN in speci�c years41, 42.

While the HVH requires knowledge of economic data such as annual GDP, the PA model can be implemented 
without such data. Hence, its relative simplicity and fewer data requirements, together with the current knowledge 
gap on applying PA models for such problems, make it an attractive prospect for modelling dynamics of single 
commodity agri-food networks. Based on this review of the literature, we formulated 2 questions to motivate our 
work. First, can a preferential attachment model describe the growth of a trade network for a speci�c commodity 
over many years? Second, if a PA model can describe such a network, how does that model predict the network 
will respond to shocks? Our corresponding objectives were twofold: to �t a PA model for a commodity-speci�c 
network using empirical data, and to use that model to predict the response of that network to shocks.

To this end, we constructed a dynamic model of the global wheat trade network that builds on previous work 
by considering the temporal evolution of the network and how shocks impact it over time. �e PA model was 
calibrated to describe the time evolution of the empirical network. We carried out a vulnerability analysis of both 
empirical and model networks to ascertain potential weaknesses, and to determine whether the network is evolv-
ing over time to become more or less resilient in the face of shocks.

�e global wheat trade network (Fig. 1a) was chosen for analysis due to its global importance. From 1986–
2010 wheat was the highest traded agri-food commodity by volume, and in the top 10% of agri-food commod-
ities both in regard to number of countries trading and the number of trades48. Shocks impacting this network 
have had signi�cant impacts on global food security, most recently during the 2007–08 world food crisis and in 
2010–11 when several major producers imposed export restrictions13, 21–25, 27, 29, 49. An additional cause for con-
cern is that shocks impacting global agri-food trade, and the wheat trade network speci�cally, are expected to 
occur more frequently as we move further into the 21st century50, 51.

Methods
Definition of Empirical Network. We began by de�ning the network we sought to model as a subset of the 
entire global wheat trade network. To de�ne a network we followed an approach similar to the existing practice 
of creating a “backbone” network. �ese networks include only those edges corresponding to the largest trades by 
volume and together accounting for 80% of total trade volume. �is method is used to simplify analysis of trade 
networks while also retaining salient aspects of network structure3, 13, 33, 46, 52.

Previous research de�nes a backbone network for static networks and o�en over a single year only. In contrast, 
we de�ned a “continuous wheat trade network” by including only edges where trade was sustained over at least 
3 years (see Supplementary Information). We therefore simpli�ed the model by avoiding having to determine 
when and how edges should be deleted. Also, using 3 years instead of 1 year increases the chance that our network 
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re�ects the long-term features of network structure. We also assume that countries connected by a trade link 
persisting over multiple years have a higher probability of being impacted by a shock than countries that are only 
infrequently part of the network. �us, continuous trade networks are of interest when modelling long-term 
dynamics and the long-term impact of shocks on the biggest traders.

While our network is not de�ned in the same way as a conventional backbone network, it accounts for 66% 
of total trade volume despite containing only 30% of the trades, on average (see Supplementary Fig. S7). By 2013, 
there were 108 countries engaged in 363 continuous trade partnerships in this network48. �e correlation between 
a country’s total degree in the continuous trade network and its total trade volume in the empirical network is 
positive and signi�cant at the 5% level (see Supplementary Fig. S8). �is suggests that countries that are important 
to our continuous trade network are also important in a conventionally-de�ned backbone network. �e charac-
teristics of the empirical network are further described in the last subsection of Methods.

Overview of Model Network. We developed a preferential attachment (PA) model in order to mechanis-
tically describe the empirical network. �e PA theory of trade network formation operates on the premise that 
well-connected countries (namely, countries with high total degree centrality) are more appealing to prospective 
trading partners40, 47. As already noted in the Introduction, PA theory has not been applied to trade networks for 
speci�c commodities, to our knowledge. Additionally, using a PA model does not require annual GDP as input 

Figure 1. Comparison of empirical and model continuous wheat trade networks, 2013. (a) Empirical network. 
(b) Exemplar model network. (c) Comparison of degree distributions for empirical and exemplar model 
networks. All sub-�gures are for the network at the end of the year 2013. For (a) and (b), nodes are arranged 
clockwise, and in size and colour, by total degree. In (a) node labels correspond to the ISO 3166–1 alpha-3 codes 
for the countries they represent.

http://S7
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data, in contrast to the Hidden Variable Hypothesis (HVH) model, and therefore o�ers the possibility of a more 
parsimonious theoretical model.

However, to create our PA model, we built on certain aspects of the HVH model of trade network formation 
proposed by Garlaschelli et al. (see following subsections for details)41, 42. For a PA model to describe a commod-
ity network, the number of nodes in the network must grow over time, and new nodes must initiate trades with 
highly-connected pre-existing nodes (i.e. the network must be disassortative). �ese characteristics are observed 
in the continuous wheat trade network we wish to model (Supplementary Fig. S4).

Our model of the wheat trade network (Fig. 1) contains m directed, unweighted edges and is represented 
by an N × N matrix A where N is the total number of countries in the world. �e (i, j)th element of the matrix 
contains information on import from country j to country i (A(i, j) = 1 if i imports from j, and A(i, j) = 0 other-
wise). �e way in which trade partnerships are formed to populate this matrix is discussed in Trade Probability 
Calculations. �e rate of network growth, in terms of number of edges, was estimated by extrapolating 26 years 
of data from the United Nations Food and Agriculture Organization (FAO) (see Supplementary Information)48. 
As we considered a directed network, imports and exports between countries i and j were represented as separate 
partnerships: if these countries engage in reciprocal trade, they will possess 2 partnerships. All simulations were 
run in Matlab R2014b53. Network analysis was conducted using the igraph package (version 1.0.1)54 for Rstudio 
(version 3.2.2)55. Network visualization was conducted using Gephi (version 0.8.2)56.

Trade Probability Calculations in Network Model. �e probability of a trade (import or export) occur-
ring depends on the �tness of both countries involved in the potential trade. For the PA model, a country’s trade 
�tness depends on their total degree centrality40, 47. We de�ned the probability Pt[xi(m), xj(m)] of a trade between 
countries i and j when there are m directed edges in the network as

α ε

β
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+

+
P x m x m

x m x m

x m x m
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( ) ( )
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where xi(m) and xj(m) are the �tness for country i and country j when there are m directed edges in the network, 
and ε  1 is some small probability of the formation of an edge between countries i and j when one or both has 
zero �tness (i.e. one or both are not yet engaged in any trade partnerships). α and β are free parameters that we �t 
to match characteristics of the empirical network (see Comparison of Empirical and Model Networks)42. α scales 
the overall probability of connection whereas β controls how strongly the probability of connection depends on 
fitness. For example, a very small β-value (  1β ) would allow approximating equation (1) by 

α ε≈ +P x m x m x m x m[ ( ), ( )] ( ) ( )t i j i j , and the product x m x m( ) ( )i j  would have a large impact on the overall 
probability.

It could be argued that a country with high export �tness would tend not to have high import �tness. In this 
case, separate probabilities of import and export should be calculated based on import and export �tness values 
for each country. However, we do not believe this to be necessary. We examined the top 20 wheat importing and 
exporting countries by year for 1961–2011, determining that 25% of countries were in the top 20 for both import 
and export volume each year48. Similar results have been found for the maize network from 2000–200911. �is 
overlap between the largest importers and exporters suggests that there is considerable overlap between import 
and export �tness.

We de�ned the �tness of country i, when there are m directed edges in the network, as

=x m
l m

m
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( )
,
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where li(m) is number of edges connected to country i when there are m directed edges in the network (the coun-
try’s total degree). �e degree of each node (country) is recalculated every time a new edge is added to the net-
work. �us, a country’s �tness is dictated by the fraction of total trades it is involved in, and is a unit-less quantity. 
Both the trade probability and �tness equations are adapted from previous research42.

Model Network Formation. At each time-step a series of events occur that may lead to a new edge being 
added to the network (see Supplementary Fig. S9). �e likelihood of a new edge being formed increases with 
the �tness values of the countries involved in the potential trade. Our model permits reciprocal trades, where a 
country both imports and exports the same good with the same partner country. We allow for this as our analysis 
shows reciprocal trade within the continuous wheat trade network (see Supplementary Fig. S4), and Shutters and 
Muneepeerakul note the existence of reciprocal trades within agricultural trade networks57. However, self-loops, 
where a country attempts to trade with itself, are excluded.

Initial attempts to emulate the observed characteristics of the empirical network, as described in Comparison 
of Empirical and Model Networks, revealed that our model networks were not as disassortative as the empirical 
network. To address this, we introduced a step of rewiring the network a�er the addition of each new edge using 
the Maslov-Sneppen rewiring algorithm (MSRA), which has been shown to increase disassortativity. �is algo-
rithm ensures that node degree is not impacted by rewiring and edges are uniquely de�ned58, 59. Our rewiring led 
to a better �t of model to empirical network in terms of assortativity (see Supplementary Fig. S5)59. �e number 
of attempts to rewire the network (R(m)) decays exponentially as the number of directed edges (m) in the network 
increases:

= .
λ−R m Ce( ) (3)m
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�is functional form was chosen as it results in a good �t to the increases in assortativity over time in the 
empirical network. Rewiring acts as a random assignment of trade partnerships for countries that are already 
engaging in trade. �e good �t to the empirical network provided by an exponentially decaying number of rewir-
ing attempts indicates that as the network grows, the PA mechanism becomes increasingly dominant over these 
random partnership assignments.

Comparison of Model and Empirical Networks. We utilised a grid sweep to calibrate values of α, β, and 
ε from equation (1) as well as C and λ from equation (3). �is generated approximately 5000 possible parameter 
sets (see Supplementary Information). Previous analysis has calculated α and β for an HVH model of the WTN 
in individual years42. However, we wanted a single set of parameters that would replicate the characteristics of the 
empirical wheat trade network over multiple years. �us, we carried out a parameter �tting instead of calculating 
parameter values corresponding to speci�c years. �e parameter �tting sought a parameter set with a good �t 
to the number of nodes, reciprocity, and assortativity coe�cient of the empirical network for 1986–2011. �e 
number of nodes and reciprocity were chosen as �tting metrics because the functional forms for trade probabil-
ities taken from Garlaschelli et al. are related to the number of nodes and network reciprocity41, 42. �e require-
ment on assortativity arises because an assortative network responds di�erently to shocks than a disassortative 
network60–62.

To determine the best parameter sets, 25 networks were generated for each parameter set and network metrics 
were averaged over these networks. �e mean squared error (MSE) from 1986–2011 between the model and 
empirical networks for assortativity, number of nodes and reciprocity was calculated for each parameter set. For 
each metric the MSE values were normalized, and then a combined normalized MSE over these metrics was gen-
erated. Parameter sets were ranked according to their combined normalized MSE, and the 100 “best” sets with the 
lowest MSE were used for all subsequent analysis.

We focused on a subset of network metrics to simplify the analysis of predicted dynamics of the model net-
work and its response to shocks under di�erent scenarios. To pick these metrics we examined a wide range 
of metrics for empirical agri-food commodity trade networks48. This analysis revealed strong correlations 
between many metrics, allowing us to reduce the number of measures needed to describe a network fully (see 
Supplementary Information). Average path length, assortativity, and average clustering coe�cient were thereby 
chosen as network metrics. �e average path length is the average of the all the shortest paths between pairs of 
nodes; assortativity, by degree, is a measure of the extent to which nodes of a similar degree tend to connect to 
each other; the average clustering coe�cient describes the degree to which a node’s neighbours are themselves 
linked, averaged over the entire network63.

We also included the sizes of the giant strong component (GSC) and giant weak component (GWC) because of 
their relevance to network vulnerability analysis15–18, 64–70. �e GSC and GWC are de�ned as the largest strongly- 
and weakly- connected components within the network, respectively17. �e size of a component – a collection of 
connected nodes – is given by the number of nodes it contains15, 16, 18. In a directed network, a strongly-connected 
component contains nodes which can all reach each other. A weakly-connected component contains all nodes in 
the strongly connected component, as well as any nodes that could reach all other nodes in the component if the 
network were undirected17.

In addition to metrics of the vulnerability of networks to shocks we included 3 others that are thought 
to impact network resilience: density, symmetry, and heterogeneity (the latter 2 in terms of node in- and 
out-degree)71. Network density is the fraction of the maximum possible number of links that are present in the 
network72. Symmetry, in terms of node in- and out-degree, describes the extent to which nodes with a high 
in-degree also tend to have high out-degree. Degree heterogeneity measures the heterogeneity in the in- and 
out-degree distributions of the network71. Network analysis o�en includes a consideration of whether the degree 
distribution of the network follows a power-law. �e presence of a power-law distribution can can be determined 
using the Kolmogorov-Smirnov (KS) statistic. However, the KS statistic is not accurate for networks containing 
small numbers of nodes (approximately 100 or fewer nodes)73. �us, the KS statistic was only used to determine 
the shape of the degree distribution in networks containing more than 100 nodes. For all other metrics, a network 
was generated for each of the 100 best parameter sets, and metrics were averaged across these 100 networks for 
comparison to the empirical network.

Shock Simulation. To ascertain the resilience of the wheat trade network and its response to shocks we 
simulated shocks to the model networks and compared the e�ects of di�erent types of shocks on model network 
structure. �roughout the shock analysis 1 network was generated for each of the 100 best parameter sets, and 
metrics were averaged across these 100 networks. Shocks to agri-food trade networks generally result in coun-
tries imposing export restrictions, while continuing to import13, 21–27, 29, 38, 49, 74. �us, we implemented shocks that 
result in nodes having their outgoing (export) edges removed13, 38, 74.

Studies have considered 2 types of shocks to a network: errors and attacks13, 15, 65, 75, 76. In the case of an error we 
removed the outgoing edges of randomly selected nodes to test the network’s error tolerance65, 75, 76. For an attack, 
nodes with the highest connectivity are targeted, as these are assumed to be the most important nodes in the 
network65, 77. We de�ned connectivity in terms of total degree centrality, meaning the nodes with the most trade 
partners were targeted for outward edge removal. �e total degree metric was not recalculated between removals; 
we used a simultaneous attack that assumes all countries targeted would be impacted at roughly the same time, 
as this reduces computational time64, 77. In addition to single shocks, we experimented with introducing multiple 
shocks to the networks.

We also explored variations. Attacks with removals based on out-degree centrality (removal of the countries 
with the most export links) were simulated76. A sequential attack was considered, as it may not be realistic to 
assume that cessation of exports in multiple countries occurs simultaneously, and 1 country’s change in trade 
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status will impact the centrality of other countries in the network77. Details of how shocks were implemented 
appear in Supplementary Information.

We use empirical data to determine approximate ranges for the number of countries a�ected by a shock 
(1–15 countries) and the number of years in which a shock would impact a country’s exports (1–5 years) 
(Supplementary Information). Hence we classi�ed the types of shocks by severity–low (3 countries cease exports) 
or high (15 countries cease exports)–as well as by duration–short (1 year) or long (5 years). Additionally, in the 
case of multiple shocks, a gap of 2 years occurs between shocks13, 21–27, 29, 49, 78.

Previous analysis has most o�en considered the e�ect of a shock on a static network where nodes are removed, 
and an evaluation of the shock impact immediately a�erward is carried out15, 65, 75, 76, 79. However, our focus was 
on the e�ect of shocks on the wheat trade network as it evolves in time, to ascertain the impact of shocks over 
a larger time frame. In some cases, the impact of shocks on trade networks has been measured by dynamically 
redistributing volumes of trade1, 13, 38, 76. As we have the simpler case of an unweighted network, no trade volume 
redistribution was considered. �e e�ect of exogenous disturbances to our networks was ascertained by intro-
ducing shocks of di�erent duration and severity during the process of network formation and evaluating their 
impact on network metrics.

Several metrics were used to determine network vulnerability and resilience, as well as the extent to which a 
shock has impacted a network. Average path length indicates the speed at which a shock will disseminate through 
a network, with a small average path length indicating quick spread, as most nodes in the network will tend to 
be near each other3, 80. �e robustness to errors and vulnerability to attacks displayed by disassortative networks 
necessitates measurement of the assortativity coe�cient60–62. �e average clustering coe�cient is a measure of 
cliquishness within networks, with clustering reducing network e�ciency and resulting in increased vulnerability 
to attacks61, 64, 66, 70. �e sizes of the GSC and GWC are respectively lower and upper bounds on the maximum size 
of a shock, given that the shock begins in the giant component17.

When networks have a positive symmetry metric, high symmetry, heterogeneity, and density contribute to 
network resilience71. Networks with power-law degree distributions are “scale-free,” and are robust where errors 
are concerned but are extremely fragile with regards to attacks65, 66. �is is because their high degree heterogeneity 
means removing highly connected nodes results in rapid increases in network diameter and eventual network 
fragmentation65.

Results
Comparison of Empirical and Model Networks. Fitting a PA model to an empirical network evolv-
ing over several decades while using as few parameters as possible to avoid over-�tting the data is challeng-
ing. Nevertheless, the 100 best parameter sets provide a reasonable �t to the empirical network metrics (see 
Supplementary Fig. S5), as well as to the rest of the measured metrics (Fig. 2), from 1986–2011 both qualitatively 
and quantitatively. For the majority of metrics the empirical data falls within 2 standard deviations of the mean 
of the model networks. �e GSC size and symmetry for model networks, while not displaying a good �t quanti-
tatively, nevertheless display similar trends to those for the empirical network (Fig. 2c,g). From 1986–2011, the 
global wheat trade network experienced several shocks13, 20–27, 29, 49. �us, discrepancies between metrics in the 
empirical and model networks may be impacted by the fact that our network simulations did not include shocks 

Figure 2. Selected empirical and model network metrics, 1986–2011. Red lines represent the mean metrics for 
model networks generated using the top 100 parameter sets ranked by least MSE normalized over assortativity, 
number of nodes, and reciprocity. �e envelopes represents a range of ±2 standard deviations from the mean 
metrics for the model networks. Black lines represent the metrics of the empirical network.

http://S5


www.nature.com/scientificreports/

7SCIENTIFIC REPORTS | 7: 7177 | DOI:10.1038/s41598-017-07202-y

during calibration. Due to the in�uence of the assortativity coe�cient on network vulnerabilities we also �tted the 
model using only assortativity as a measure of goodness-of-�t in an attempt to more closely match the metric in 
the empirical network. While this led to a better quantitative �t to the assortativity coe�cient the increasing trend 
was lost (see Supplementary Fig. S10) so we proceeded with the best parameter sets ranked by the normalized 
MSE.

�e addition of network rewiring steps that decay in number over time (Fig. 2) suggests that preferential 
attachment with an additional random component drives network formation. �e fact that a decaying number 
of rewiring attempts leads to a good �t regarding network assortativity (Fig. 2b) suggests that as the size of the 
network increases, �tness plays a larger role in how edges are formed, as compared to random chance.

Calculation of the Kolmogorov-Smirnov statistic revealed that we should reject the hypothesis that the degree 
distributions for our empirical and model networks containing more than 100 nodes �t a power-law distribution 
(KS statistic calculated at the 5% signi�cance level for each year in which number of nodes exceeded 100). As 
Konar et al. found that the degree distribution of the global VWTN was �t well by an exponential decay distri-
bution with the decay coe�cient given by the average degree of the network, we re-calculated the KS statistic to 
determine whether the same was true of our networks33. �ese calculations revealed that the exponential decay 
distribution provided a good �t to our network’s degree distributions at 5% signi�cance, measured yearly. As a 
result, we cannot draw conclusions about network vulnerability using the scale-free property. However, because 
exponential networks also have a highly skewed node degree distribution, other network metrics can be utilised 
to make many of the same judgments, as we will subsequently show.

To illustrate the similarities between the model and empirical network, we visualized a single-year snapshot of 
the empirical continuous wheat trade network (Fig. 1a) and an exemplar model network (Fig. 1b) for 2013. �ese 
networks show several similarities including complex structure and heterogeneous degree distributions (Fig. 1c).

Shocks and Model Network Growth. Notably, even shocks with low duration and severity that result in 
1-year export bans for <2% of nodes have substantial and long-lasting e�ects on model network metrics (Fig. 3, 
Fig. 4). �ese impacts are especially heightened when networks experience attacks (Fig. 4). In the short term, 
networks a�ected by shocks will experience slower spread of subsequent shocks due to increased average path 
length (Figs 3a and 4a). �ey will also have a broader range of maximum shock sizes (higher maximum and lower 
minimum bounds due to changes in GWC and GSC size) (Figs 3c,d and 4c,d). Additionally, these networks will 
be more heterogeneous, and less dense and symmetric, resulting in short-term changes in network resilience 
(Figs 3f,g,h and 4f,g,h).

Increasing the severity or duration of a shock will increase its impact on network metrics. For errors, increas-
ing the duration of a shock by 500% was more e�ective than increasing its severity by the same factor, with regards 
to changes in network metrics (Fig. 3). For attacks, the opposite was generally true: a severe shock had more 
in�uence on network metrics than a longer duration shock (Fig. 4). An exception to these trends is assortativity. 
While the error scenario leads to increases in assortativity for short duration shocks, long shocks result in an over-
all decrease this metric (Fig. 3b). Under an attack scenario, low-severity shocks cause a decrease in assortativity, 
while high severity shocks result in an increase (Fig. 4b). �e long-term impacts of shocks on assortativity are 
much more durable for low-severity attacks than for high-severity attacks or errors of any severity and increased 
duration leads to a larger impact (Figs 3b and 4b).

�e long-lasting e�ects of shocks on network resilience are minimal under an error scenario: by 2050 net-
work heterogeneity, symmetry and density are approximately the same for shocked and unshocked networks 
(Fig. 3f–h). Similar trends in density and heterogeneity exist when a network is attacked (Fig. 4g,h). However, 
the long-term resilience of the network under attacks will be lowered due to the considerable and long-lasting 
decreases in symmetry (Fig. 4f). Shock type does not impact the upper bound on maximum shock size (by 
increasing the GWC size) in the long term, though attacks will result in a larger lower bound on shock size (larger 
GSC size) (Fig. 3c,d and 4c,d).

Interpreting the meaning of changes in assortativity and average clustering coe�cients (ACC) lead us to a 
contradiction. Networks that have experienced attacks, and are thus more disassortative than networks that have 
experienced an error or are unshocked, should be the most vulnerable to any subsequent attack. However, based 
on ACC, attacks will result in networks that are the least vulnerable to subsequent attacks due to their low cluster-
ing (Figs 3b and 4b). It is unclear whether the lowered ACC or the increased disassortativity will have the domi-
nant impact on vulnerability. �is discrepancy is discussed further in the subsection: Consequences of Repeated 
Shocks.

As the network evolves it approaches a constant low level of assortativity and clustering, suggesting that the 
network is evolving to be less vulnerable to attacks (Figs 3b,e and 4b,e). As a result, the network’s resilience varies 
over time: symmetry increases and density and heterogeneity decrease, on the whole (Figs 3f–h and 4f–h). Low 
levels of network heterogeneity and density may indicate that poor network resilience will persist as we approach 
2050 (Figs 3f–h and 4f–h). For both errors and attacks, networks show some long-term resilience (Figs 3a,g,h and 
4a,g,h). Regardless of whether a shock has been introduced to the network, the majority of the 244 countries in 
the world are included in the GWC by the year 2050, though shocks increase the size of this component, as well 
as of the GSC (Figs 3c,d and 4c,d). As the giant strong component grows to include all countries in the world, a 
larger number of countries will have the potential to be impacted by shocks. Additionally, all shock types produce 
long-lasting reductions in network clustering, creating a less cliquish trade network (Figs 3e and 4e).

While the mean changes in network metrics are unique for each combination of shock type, duration, and 
severity, variability in the impact of a speci�c shock on the network means that a variety of di�erent shocks can 
result in similar outcomes. �is is especially clear for long-term predictions of the in�uence of errors: by 2050 
there is a large overlap between the potential e�ects of all 3 error scenarios considered (Fig. 3).

http://S10
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Consequences of Repeated Shocks. We simulated the e�ect of repeated shocks, considering multiple 
shocks of the same type and sets of shocks in which both errors and attacks occurred. All shocks had the same 
duration. With respect to most of metrics, a previous attack reduces the short-term impact of subsequent attacks: 
each additional attack has a lesser impact on network metrics than the preceding attack (Fig. 5). �is observation 

Figure 3. Impact of future errors on model network metrics. Shocks occurred in 2017–18. Coloured lines 
represent the mean metrics for model networks generated using the top 100 parameter sets ranked by least MSE 
normalized over assortativity, number of nodes, and reciprocity. �e envelopes represent a range of ±2 standard 
deviations from the mean metrics for the model networks. Black lines represent the metrics of the empirical 
network using data from 1986 to 2011.



www.nature.com/scientificreports/

9SCIENTIFIC REPORTS | 7: 7177 | DOI:10.1038/s41598-017-07202-y

helps to resolve the contradiction described in the previous section–our results indicate that in the short term, 
for a network that has experienced an attack, decreased vulnerability to attacks resulting from lowered ACC out-
weighs increased vulnerability to attacks due to increased disassortativity. An exception to this trend is the giant 
strong component size which decreases by a larger amount with every subsequent attack (Fig. 5d).

Figure 4. Impact of future attacks on model network metrics. Shocks occurred in 2017–18. Coloured lines 
represent the mean metrics for model networks generated using the top 100 parameter sets ranked by least MSE 
normalized over assortativity, number of nodes, and reciprocity. �e envelopes represent a range of ±2 standard 
deviations from the mean metrics for the model networks. Targets with largest total degree are selected for 
attacks. Black lines represent the metrics of the empirical network using data from 1986 to 2011.
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Sequences of shocks that include the largest number of attacks will have the most substantial long-term e�ects 
on the network, leading to lasting changes across a broad range of metrics. For most metrics the type and occur-
rence of the �rst shock, as well as the type of the second shock, in�uence long-term outcomes (see Supplementary 
Fig. S11 and Supplementary Fig. S12). Average path length, heterogeneity, and density metrics show remarkable 
resilience. Regardless of the number, type, magnitude, and duration of shocks, by 2050, a shocked network be 
similar to an unshocked network in regards to these metrics (Figs 3a and 4a, see Supplementary Fig. S11 and 
Supplementary Fig. S12). As with the single shock scenarios, variation in the outcome of di�erent types and 
combinations of shocks means that disparate shock scenarios may have comparable outcomes. For example, both 
double shocked networks that were initially attacked, regardless of the type of the second shock, show similar 
metrics as we approach 2050 (see Supplementary Fig. S12). Due to the short time between shocks (2 years), the 
natural growth process of the network does not signi�cantly impact responses to shocks.

Comparison of Attack Strategies. For attacks on our model networks the use of a sequential versus 
simultaneous attack does not lead to noticeably di�erent outcomes on any time-scale in the duration/severity 
scenarios (see Supplementary Fig. S13). We also considered whether attacks that targeted the countries with 
the largest number of export links, instead of those with the largest number of trade links, would result in more 
damage to the network. However, for all duration and severity levels, targeting countries based on total degree 
and out-degree are equally damaging (Fig. 4, see Supplementary Fig. S14). �is result suggests that countries 
highly ranked in terms of total degree will also be highly ranked by out-degree in our network, in general. �is 
is true of the empirical network where there is a signi�cant correlation between total degree and out-degree (see 
Supplementary Fig. S15).

Figure 5. Impact of multiple attacks on model network metrics. All attacks are low severity/short duration, 
with a gap of 2 years between every attack. Bars represent the mean change in metrics for model networks 
generated using the top 100 parameter sets ranked by least MSE normalized over assortativity, number of 
nodes, and reciprocity. Bars are only shown for years where an attack occurred; changes caused by the temporal 
evolution of the network in unshocked years are not included.
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Discussion
We developed a dynamic model for the time evolution of the global agri-food wheat trade network to explore 
the impact of shocks on its structure and its response to subsequent shocks. In order to �t the model, we also 
constructed an empirical global wheat trade network consisting of continuous trade partnerships and analysed 
its network metrics. It was found that a preferential attachment model with network rewiring was able to repli-
cate the temporal evolution of crucial metrics in the empirical network in many respects, despite not requiring 
country-level data such a GDP. Based on analysing time evolution of historical metrics in the empirical network 
and network model predictions of future trends, we predict that the network is evolving to be less vulnerable 
to attacks, though its resilience may remain low for the next few decades. We also experimented with applying 
shocks to the model network to determine the e�ect of factors such as extreme weather events or agro-terrorism 
on its dynamics. We found that even short-term shocks (1-year duration) have substantial and long-lasting e�ects 
on its structure, increasing the diversity of links as well as determining its response to subsequent shocks. While 
attacks have the largest impact on networks, for repeated attacks the damage from each subsequent shock will be 
smaller than from the last. Di�erent network metrics are a�ected in di�erent ways by attacks, but on the whole, 
attacks make the network less vulnerable to subsequent shocks.

Previous analyses of global trade networks have led to con�icting predictions regarding the food security 
risks associated with the globalisation of trade, and the potential for the disruption of trade. Global wheat and 
rice trade networks have been shown to be transitioning to a “robust yet fragile” state where they are vulnerable 
to attacks but robust against errors13, 38. Conversely, Sartori & Schiavo found that the world trade network’s time 
evolution, while resulting in increased connectivity, has not led to higher levels of instability6. Our predictions 
regarding the future of the continuous wheat trade network show a transition towards a more stable network con-
�guration where countries maintain trade links with a diverse group of partners. �is pattern of growth suggests 
that the network is evolving to be less vulnerable to attacks, in agreement with Puma et al., although attacks still 
have the potential to damage the network severely13. However, the network is vulnerable to errors, due to low 
levels of cliquishness and slight assortativity. Extreme climate events, such as �oods, droughts, and heat stress, 
are predicted to increase in frequency, both globally and in regions of Europe where most of the world’s wheat is 
produced, over the remainder of the 21st century50, 51. �us, strategies for lessening the impact of shocks on the 
network will become increasingly crucial to global food security and are an important area for future research.

�e time evolution of the continuous wheat trade network’s resilience is less clear than the time evolution of 
vulnerability due to opposing trends in resilience-related metrics. Network density is predicted to decrease over 
the next decade but will begin to increase beyond this time period and contribute to higher levels of resilience. 
�is increase in density will result from new links being added to the network much more frequently than new 
nodes. Despite high symmetry, low levels of network density and heterogeneity indicate that network resilience 
may be poor for a considerable portion of the next century. �ere is some debate as to whether the methods 
used to arrive at these metrics as universal measures of network resilience are as broadly applicable as has been 
asserted81. However, most of our conclusions do not depend on the interpretation of these metrics.

�e network was predicted to respond di�erently to changes in duration and severity of shocks for attacks 
versus errors. �is discrepancy may indicate that strategies for dealing with them should di�er. For example, 
containing the spread of a shock should be a higher priority than facilitating recovery of impacted nodes when the 
network is a�ected by an attack, whereas in the case of an error, recovery should be the higher priority. However, 
the variability in the impact of a speci�c shock means that shocks of di�erent type, severity, and duration may 
have similar impacts on network evolution. Attacks reduce network vulnerability to future shocks of the same 
type. While it would be preferable for the network to remain attack-free, any attack will create a positive exter-
nality by reducing the impact of a subsequent attack that occurs while the network is recovering. Longer gaps 
between shocks, allowing more time for network recovery, would reduce the overall impact of shocks. However, 
the frequency of shocks impacting agri-food trade networks is expected to increase during the 21st century, 
meaning that short gaps between shocks are a reasonable assumption50, 51.

�e choice of sequential or simultaneous attacks did not signi�cantly impact the e�ectiveness of an attack. 
However, this result is likely dependent on our network and the severity of attacks. Sequential attacks and attacks 
based on other centrality measures should be explored in future, as previous work has shown that these varia-
tions on the attack strategy can be substantially more damaging than simultaneous attacks, and those based on 
total degree centrality, for both simulated and empirical networks64, 77. As well, model extensions could provide 
further insight into mechanisms of network growth. For example, established exporters of a speci�c commodity 
are more attractive to potential importers, suggesting that preferential attachment based on out-degree should 
be considered74, 82.

While there appears to be a lack of analyses of the network e�ects of shocks on agri-food trade networks, 
analyses of shocks on �nancial networks are consistent with our simulations. Reductions in network density and 
symmetry following a shock are evident both in our model networks and in international �nancial networks 
following the 2008 �nancial crisis83. �e global banking network also exhibited a reduction in density following 
the �nancial crisis, and showed signi�cant changes in several network metrics up to 4 years a�er the crisis, sug-
gesting protracted e�ects from shocks84. In addition to these global e�ects of shocks, the impact of export bans 
can have long-lasting e�ects for individual countries. For example, the 1997 outbreak of foot and mouth disease in 
Taiwan led to export bans and severely reduced the country’s pork export85. As of 2013, the average yearly export 
volume since 1997 was 0.02% of the average volume in the 8 years preceding the outbreak48. Additionally, Japan 
(one of the largest importers of Taiwanese pork pre-outbreak) was forced to seek alternative trade partnerships 
as a result of the shock. In 1996, Japan’s largest source of pork was Taiwan, but by 2005 they had ceased importing 
from Taiwan and had increased the volume of their imports from the United States, Denmark, and Canada. Japan 
showed similar shi�s in trade partnerships in response to the outbreak of Avian In�uenza in Southeast Asia in 
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2003–200485. In addition to illustrating the long-term e�ects of shocks, these case studies provide support for our 
assumed mechanism of network restructuring following a shock.

As noted in the model description, the number of nodes in the network must grow over time and the network 
must be disassortative for a preferential attachment model to be appropriate for describing network evolution. 
Some of our model networks become slightly assortative as we approach 2050. �is may suggest that PA will 
decrease in importance as a driver of network growth, and models used for more long-term predictions should 
consider di�erent mechanisms of network growth. Our work has focused on the wheat trade network, meaning 
that the impact of a shock that originated in another commodity network and spread to the wheat network, or 
vice versa, cannot be evaluated. One extension of this work could be to consider a multi-network model where the 
impact of a such a shock could be quanti�ed. Additionally, it is important to note that the continuous network we 
have modelled does not include countries that only infrequently engage in wheat trade. As a result, we are unable 
to quantify the impact of shocks on these countries. However, our predictions indicate that the number of nodes 
in our network is approaching the number of countries in the world, thus decreasing the number of countries 
excluded from our model.

Finally, we suggest that a useful continuation of this work would be extending the model to include edge 
weights using methods from previous research43, 46, 86. �is would give us a more complete picture of wheat trade 
network dynamics as we move toward 2050. As well, it would allow for more realistic predictions of shock out-
comes. Not all trade partnerships would have the same volume and thus shocks impacting higher volume part-
nerships would have a larger impact on global trade than those impacting low-volume trades8.

�is work demonstrates that the multi-year time evolution of speci�c commodity networks and the shocks 
that a�ict them can be mechanistically modelled to provide insight into dynamics and response to future shocks 
under various possible scenarios. Future research should continue developing these models for the trade net-
works of other major agri-food commodities so their dynamics can be compared and contrasted to gain greater 
insights into the dynamics of empirical networks.

Data Availability
�e datasets used to inform our model �tting and analysis are available in the FAOSTAT repository, http://www.
fao.org/faostat/en/#data/TM. �e datasets we generated are available from the corresponding author on request.
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