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Abstract

Dynamically stable periodic rotations of a driven pendulum provide a unique mechanism for generating a

uniform rotation from bounded excitations. This paper studies the effects of a small ellipticity of the driving,

perturbing the classical parametric pendulum. The first finding is that the region in the parameter plane

of amplitude and frequency of excitation where rotations are possible increases with the ellipticity. Second,

the resonance tongues, which are the most characteristic feature of the classical bifurcation scenario of a

parametrically driven pendulum, merge into a single region of instability.
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1. Introduction

The driven pendulum is a generic model used for studying nonlinear dynamics in mechanics [1] and

beyond [2, 3, 4, 5, 6]. Its geometric nonlinearity can be modeled reliably (in contrast to other nonlinear

effects such as friction), and mechanical pendula are amenable to experimental investigations. The dynamical

properties of the classical parametrically driven pendulum, such as resonances, escape from potential well,

symmetry-breaking, and periodic and chaotic attractors, have been explored in detail experimentally [1, 7,

8, 9, 10, 11] and theoretically [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

This paper studies what happens to the well-studied bifurcation scenarios of the parametrically excited

pendulum if the driving of the pivot of the pendulum follows a narrow upright ellipse; see figure 1. One

motivation for studying elliptic excitation is that only the elliptic component of an arbitrarily shaped pe-

riodic excitation has an effect on a rotating pendulum for large excitation frequencies; see section 2 for

an explanation. Moreover, elliptic excitation is typical if the pendulum base is floating on water waves: a

small freely floating body moves along an ellipse. This effect is similar to the elliptic motion of an off-center

surface point of a plate excited by a circular traveling bending wave (a principle that is exploited in rotary

ultrasonic motors [28, 29]).
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We say that the pendulum rotates if the long-time average of the angular velocity is non-zero. Stable

periodic rotations occur naturally over a large range of excitation parameters in the parametrically driven

pendulum [12]. Thus, a rotating pendulum provides a unique mechanism for generating a uniformly one-

directional rotation from a bounded excitation. This is a potential physical principle for harnessing the

energy of vibrations, which are not necessarily purely in the vertical direction. The other motivation for

focusing on rotating attractors is that the rotating pendulum is ideal for developing and testing non-invasive

bifurcation and chaos control methods [30, 31] in a real experiment: periodic rotations are reliably control-

lable by superimposing feedback control onto the excitation without changing the shape of the excitation.

This is not true in general for small-amplitude oscillations around the hanging-down position [32].

The dimensionless equation of motion for the elliptically excited pendulum is

θ̈ + γθ̇ + (1 + p cos (ωt)) sin θ + ep sin(ωt) cos θ = 0 (1)

where γ is the dimensionless viscous damping coefficient, p is the scaled excitation amplitude, ω the rescaled

excitation frequency, and e is the ratio between the horizontal and the vertical diameter of the upright ellipse

traced out by the pivot during each period (see figure 1). The classical parametrically excited pendulum

corresponds to the setting e = 0.

The two main effects of a small non-zero ellipticity e of the excitation are:

1. The classical resonance tongues for the 1:2 and the 1:1 resonance of the parametrically excited pendulum

[12] merge into a single region of instability of the small-amplitude period-one libration around the

hanging-down position of the pendulum.

2. If the ellipticity e is non-zero the pendulum is no longer symmetric with respect to reflection θ 7→
−θ, which causes a preference for rotations that have the same direction as the motion of the pivot.

Effectively, the range of possible excitation frequencies and amplitudes where rotations are supported

increases for increasing ellipticity. The preferred direction of rotation has the same orientation as the

motion of the base around the ellipse (for example, clockwise rotation is preferred if the pivot moves

clockwise around the ellipse) because this rotation picks up energy from the additional excitation in the

horizontal direction.

These two observations are, in short, the key findings of the paper. Point 2 is, for large frequencies, universal

for all shapes of excitation that have a dominant vertical component. This will be shown in section 2 by

averaging the equation of motion for a pendulum with arbitrary periodic excitation. Section 2 also gives

an approximate expression for the onset of rotations that is valid for all shapes of excitation if the forcing

frequency ω is large. Section 3 shows how the non-dimensionalized equation of motion (1) is related to the

original equation of motion describing a physical pendulum driven by a slider along an ellipse. Section 4.1

and section 4.2 give two-parameter overviews of changes to the classical structure of resonance tongues and
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to the existence regions of rotations. Section 4.3 shows one-parameter bifurcation diagrams (for increasing

forcing amplitude) to illustrate how the different attractors are connected by the bifurcations shown in the

figures 2 and 3.

2. Rotations in the high-frequency forcing regime

Let us assume that the pivot of the pendulum is driven periodically with high frequency along an arbitrary

path. Then the inclination angle θ of the pendulum is governed by the equation of motion

θ̈ + γθ̇ + ωfy(t) sin θ + ωfx(t) cos θ = 0, (2)

where the two coordinates of the force on the pendulum bob caused by the displacement of the pivot and by

gravity, ωfx(t) and ωfy(t), have period 2π/ω. The high-frequency regime is the parameter range where the

frequency ω is large. The effect of high-frequency elliptic excitation on small amplitude oscillations has been

studied analytically recently using averaging techniques [33]. In the high-frequency regime the excitation

forces are typically large, even if the excitation amplitude of the pivot (for example, the size of the ellipse

in figure 1) is small. Thus, we have put the scaling factor ω expressly in front of fx and fy, and assume

that γ, |fx(t)| and |fy(t)| are of order 1 (this corresponds to an excitation amplitude of order ω−1 for the

pivot). Rotations of the pendulum in the positive direction with a frequency close to the forcing frequency

are solutions of (2) for which the quantity φ(t) = θ(t) − ωt is bounded for all times. We insert φ into

equation (2) and average (2) to second order over one period. The second-order averaged equation for φ is

valid on the slow time scale
√

ωt (which is faster than the original time scale t of (2) but slower than the

time scale of the forcing ωt):

φ̈ +
γ√
ω

φ̇ + γ +
1

2

[

fc
y − fs

x

]

sinφ +
1

2

[

fs
y + fc

x

]

cos φ = 0 (3)

where

fc
x,y =

ω

π

∫ 2π/ω

0

fx,y(s) cos(ωs) ds,

fs
x,y =

ω

π

∫ 2π/ω

0

fx,y(s) sin(ωs) ds (4)

are the coefficients of the first Fourier modes of fx and fy. All coefficients in (3) are at most of order 1,

and the periodic terms that have been dropped in the averaging procedure are of order ω−1. Thus, for a

large frequency ω, only the first Fourier coefficients of the excitation, fc,s
x,y, have an influence at the leading

order. We can assume that one of the four leading Fourier coefficients is zero without loss of generality (we

can shift time to make, for example, fs
y = 0), and introduce three parameters to describe the other three

coefficients:

ωf c
y = p, fs

y = 0, ωf c
x = ep cos α, ωfs

x = ep sinα. (5)
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where p > 0 can be large (of order ω) and α ∈ [0, 2π]. The parameter |e| is the ratio between
√

(fc
x)2 + (fs

x)2

and fc
y , and the parameter α describes the phase shift between the horizontal and the vertical component

of the first harmonic of the forcing. Using these parameters the averaged equation (3) for φ becomes

φ̈ +
γ√
ω

φ̇ + γ +
p

2ω
[(1 − e sinα) sinφ + e cos α cos φ] = 0. (6)

Positively directed rotations of period 2π/ω correspond approximately to equilibria of (6) in the following

sense: if γ, e and p/ω are at most of order one, and the averaged equation (6) has an equilibrium φ0 then

the original forced equation (2) has a solution θ satisfying for all times t

θ(t) − ωt = φ0 + r(t) (7)

where |r(t)| ≪ 1 and r has period 2π/ω. The stability properties of the equilibrium φ0 also transfer to the

rotation θ: if φ0 is stable then θ is stable, if φ0 is a saddle then θ is a rotation of saddle-type. Moreover,

bifurcations of the equilibria of (6) are also transferred: since (6) is dissipative, only saddle-node bifurcations

can occur. Indeed, if 2γω = p
√

1 + e2 − 2e sinα then the averaged equation (6) has a saddle-node bifurcation,

which implies that the original system (2) has a saddle-node bifurcation of rotations at parameters nearby.

If we replace α by −α in (6) then the equilibria of (6) correspond to periodic rotations in the negative

direction (that is, to solutions θ of (2) satisfying θ(t + 2π/ω) = θ(t) − 2π for all t), and the sign in front of

2e sinα changes to + in the condition for the saddle-node bifurcation. Thus, for large frequency ω, periodic

rotations of (2) satisfying θ(t+2π/ω) = θ(t)±2π are born in a saddle-node bifurcation defined (up to terms

of order ω−1 by

2γ =
p

ω

√

1 + e2 ∓ 2e sin α (8)

if γ and e are of order 1 and p is of order ω. One of the rotations emerging from the saddle-node is stable

and remains stable for arbitrarily large p as long as the averaging approximation is valid. This implies that

the curve of period doublings of rotations which we observed numerically (see figure 3 in section 4) has to

grow super-linearly in p for increasing ω. In summary, for large frequency ω, we have:

1. If the force amplitude is at most of order ω then the existence and stability of rotations is entirely

determined by the first Fourier mode of the excitation.

2. A stable and a saddle-type periodic rotation satisfying θ(t + 2π/ω) = θ(t) ± 2π are born in a saddle-

node bifurcation near parameter values given by (8) where p, e and α define the amplitudes of the first

Fourier mode as given in (5).

3. The stable rotation remains stable for increasing p over a large region of parameter values of p (as long

as p is of similar magnitude to ω and the averaged equation is a valid approximation).

4. The difference between the positive and negative directions of rotation is maximal for α = ±π/2 in

expression (8) for the onset of rotations. This corresponds to the case where the first harmonics form

an upright ellipse.
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We note that one can extend the averaging technique to frequencies ω of order 1: for small damping γ and

small forcing p (and ep) one can average along the integral curves of the unforced and undamped pendulum.

This technique was used in [16] for the model of a parametrically driven pendulum (e = 0) and can be applied

also for a forcing of general harmonic shape (such as the elliptically driven pendulum). Using this refined

averaging we found that for small damping (γ = 0.1) the expression (8) for the saddle-node bifurcation of

rotations is a good approximation for ω > 1.5 (if all quantities refer to the non-dimensionalized equation

(1) where α = π/2).

3. Modelling of the elliptically driven pendulum

The numerical results in section 4 discuss what happens if the forcing of the pendulum deviates from

the classical parametrically driven pendulum and the forcing frequency is near the main resonance tongues

known from the parametric case. We excite the pendulum harmonically along a narrow ellipse. This

corresponds to a choice of

ωfx(t) = ep cos(ωt − α), ωfy(t) = p cos(ωt) + 1 (9)

in (2). In (1) and (9) we use the convention that the angle θ = 0 corresponds to the hanging-down position

of the pendulum such that the force due to gravity contributes a positive constant term to the coefficient

ωfy in front of sin θ but nothing to ωfx. If we assume that the vertical component of the forcing is dominant

then |e| is significantly less than 1 such that the overall forcing amplitude p
√

1 + e2 is controlled to first

order of e by p only ( d
de

[√
1 + e2

]

e=0
= 0), and e controls the ellipticity.

The parameter α controls the inclination of the ellipses ranging between excitation along a straight line

(α = 0) and the family of upright ellipses (α = ±π/2). Note, however, that α is not identical to the

inclination angle of the ellipse: for example, for α = 0 the inclination of the straight line is determined by

e.

The extreme case of parametric excitation corresponds to (e, α) = (0, 0). The other extreme case of

horizontal excitation, which would be singular (e → ∞) with our choice of parameters, has been studied

theoretically in [34, 35].

The approximate expression (8) for the onset of rotations shows that the difference betwen both directions

of rotation is most prominent if the parametric excitation is perturbed into an upright ellipse (α = π/2 in (9)).

Thus, we restrict our numerical study in section 4 to the specific model (1), which corresponds to α = π/2.

This gives rise to equation (1) for the elliptically excited pendulum as proposed in the introduction.

Figure 1 shows a mechanical representation of this model: a pendulum having mass m and length l is

driven by a slider on an elliptic kinematic constraint. The slider is connected to the pendulum rod via a pin

joint. The non-dimensional parameters and the non-dimensional time of model (1) can be obtained from
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the corresponding quantities of the mechanical representation by the scaling

γ =
c

ω0ml2
, ω =

Ω

ω0

, tscaled = ω0 tphysical,

ω0 =

√

g

l
, p =

aΩ2

g
, ep =

bΩ2

g
.

(10)

In (10) a is the amplitude of the vertical displacement excitation a cos(Ωt), b is the amplitude of the horizontal

displacement excitation b sin(Ωt), Ω is the driving frequency, g is the acceleration due to gravity, ω0 is the

linear natural frequency of the pendulum at the hanging-down angle θ = 0, l is the length of the (mass-less)

pendulor arm, m is the mass of the pendulum bob, and c is the viscous damping coefficient in the mechanical

representation shown in figure 1.

4. Resonance Structure

In this section we analyse how the introduction of a nonzero ellipticity e changes the resonance structure

by constructing two-parameter bifurcation diagrams in the (ω, p)-plane. We also use cross-sections of these

diagrams (one-parameter bifurcation diagrams) at constant frequencies ω to make the connection between

the different dynamical regimes visible. Throughout our study the bifurcation parameters are the excitation

frequency ω, the excitation amplitude p and the ellipticity e of the excitation. The parameter e perturbs the

reflection symmetry of the parametrically driven pendulum in the following way: if (θ(t), θ̇(t)) is a solution

for e then (−θ(t),−θ̇(t)) is a solution for −e. Thus, for any ellipticity e the bifurcations obtained for e are

identical to those obtained for −e. This implies that we can restrict our attention to e ≥ 0.

We slice the three-dimensional (ω, p, e)-space along three two-dimensional planes by constructing three

two parameter bifurcation diagrams in the (ω, p)-plane for three different values of e: e = 0, e = 0.1 and

e = 0.5. The case e = 0 is the classical parametrically driven pendulum as studied in [12, 21, 15]. The case

e = 0.1 shows how a small perturbation of the reflection symmetry affects the classical bifurcation scenario

and e = 0.5 provides a picture of how the bifurcation scenario changes as the system deviates further from

the parametric pendulum case towards a circular excitation.

The only remaining parameter in the non-dimensionalized equation (1) is the dimensionless viscous

damping γ. We choose γ = 0.1 to make our results comparable with the results of the previous studies

[12, 21, 15].

In the following we will discuss the bifurcations of oscillations and rotations separately. Oscillations are

periodic orbits that stay in the potential well of the undriven conservative pendulum around the hanging-

down position θ = 0. The average of the angular velocity over one period of an oscillation is zero. Rotations

leave this potential well and have a non-zero average angular velocity along one period (for period-one

rotations the average angular velocity is ±ω). We will present rotations and oscillations always in separate
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figures because they coexist over large parameter ranges and there is no local bifurcation linking the two

types of periodic orbits.

4.1. Overview of oscillations in the (ω,p) plane

Figure 2 shows the two-parameter bifurcation diagrams in the (ω, p)-plane for oscillations. Panel (a)

shows the classical diagram for e = 0, panel (b) presents the diagram for e = 0.1, and panel (c) presents

the diagram for e = 0.5. The symbols between bifurcation curves in figure 2 indicate which attractors are

observable in the different regions. The most prominent features of the classical diagram 2(a) are the two

main resonance tongues where the hanging-down position θ = 0 loses its stability: the 1:2 resonance at

ω ≈ 2 and the 1:1 resonance at ω ≈ 1. The 1:2 resonance tongue is bounded by the blue period doubling

curve H, and the 1:1 resonance tongue, which starts at a larger value of forcing (p ≈ 0.7), is bounded by a

pitchfork bifurcation curve (light green curves K1,2 in figure 2(a)). Both tongues are separated by a region

of stability of θ = 0 between the curves K2 and H in figure 2(a). The period doubling H bounding the 1:2

resonance has a degeneracy at the point C: it is supercritical to the right of C and subcritical to the left of

C.

The most significant change for nonzero ellipticity e is that the two resonance tongues merge into a single

region of instability. The period doubling curve H merges with one of the non-symmetric period doubling

curves L of the 1:1 tongue. This period doubling (still called H in figures 2(b) and 2(c)) and the fold curve

K1 form the stability boundary for the small-amplitude libration of period one around θ = 0, which is a

perturbation of order e of the hanging-down equilibrium position θ = 0 of the classical parametrically driven

pendulum (e = 0). The period doubling is subcritical between the points C1 and C2 along the curve H.

The one-parameter bifurcation diagrams along the parameter paths marked as dashed lines in figure 2(a)

and (b) are discussed in detail in section 4.3. They show how the other bifurcation curves in figure 2 form

the stability boundaries for the more complex oscillations. The values ω = 1.8 and ω = 0.87 for these

parameter paths are representative for the 1:2 and the 1:1 resonance, respectively. They are the same as in

[21], which studied the parametric case e = 0.

4.2. Overview of rotations in the (ω,p) plane

Figure 3 shows the bifurcations of period-one rotations for e = 0.1 (figure 3(a)) and e = 0.5 (figure 3(b)).

The bifurcations of rotations in the parametric case e = 0 are included (J and G, in black and grey) in both

panels to show the effect of the nonzero ellipticity e. In all cases the stable period-one rotations are born,

for increasing forcing p, in a fold bifurcation (curves J, Jp and Jn in figure 3) and lose their stability in a

period doubling bifurcation (curves G, Gp and Gn in figure 3) as p increases further. For even higher forcing

the period-one rotation regains its stability (in the period doublings E, Ep and En).
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The most notable effect of the nonzero ellipticity is that all bifurcations are shifted toward lower forcing

for rotations in the negative direction (that is, in the same direction as the motion of the base along the

ellipse). The bifurcations of rotations in the positive direction are shifted upward. Approximation (8)

estimates this effect in the limit of high frequency.

According to figure 1 the rotation in the negative direction (θ̇ < 0) rotates in the same direction as the

base of the pendulum, corresponding to α = −π/2 in (8). Thus, for e > 0 the curve Jn is shifted downwards

from J by 2γωe/(1 + e) and the curve Jp is shifted upwards from J by 2γωe/(1 − e) in the limit ω → ∞.

The equilibria of the averaged equation (6) show that negative rotations (α = −π/2) pick up energy from

the horizontal component of the forcing on average (that is, the factor in front of sinφ is larger than one)

whereas the positive rotations lose energy.

4.3. One-parameter diagrams for varying forcing amplitude

Figure 4 shows a series of four one-parameter bifurcation diagrams for varying forcing amplitude p. We

pick two values for the frequency (the same as in [21]): ω = 1.8 (panel (a) and (b)), which is in the 1:2

resonance tongue, and ω = 0.87 (panel (c) and (d)), which is in the 1:1 resonance tongue, and two values for

the ellipticity: e = 0 (panel (a) and (c)) and e = 0.1 (panel (b) and (d)). The vertical axis of all panels shows

the coordinate θ of the stroboscopic map of (1). Stable oscillations and rotations are dark green thick lines,

unstable oscillations and rotations are bright red thin lines. All bifurcation curves in the two-parameter

diagrams figure 2 and figure 3 have been constructed by continuing the bifurcations shown as dark circles in

figure 4. We have shifted the value of θ by 2π for all rotations to avoid curves associated with rotations and

oscillations obscuring one another. The underlying black dots show the long-time behavior from the initial

conditions (θ0, θ̇0) = (0.01π, 0) (and (θ0, θ̇0) = (2π + 0.01π, 0)) after waiting for a transient of 1000 periods

of excitation, computed with Dynamics [38].

The main feature of the transition from e = 0 to nonzero e is the perturbation of the reflection symmetry.

The symmetric system (with e = 0) has the pitchfork bifurcations A (for period two in Figure 4(a)) and K1

(for period one in Figure 4(c)) linking families of symmetric and nonsymmetric oscillations. These pitchfork

bifurcations are perturbed into fold bifurcations (also named A and K1 in the figures 4(b) and (d)).

The rotations (which are nonsymmetric orbits) and the nonsymmetric oscillations come in pairs of orbits

symmetric to each other and lying on top of each other for e = 0 in figures 4(a) and (c). The same applies

to the bifurcations of the nonsymmetric orbits: the fold J and the period doubling G of the rotations,

and the period doublings F and L for the nonsymmetric oscillations (starting rapidly accumulating period

doubling cascades) are symmetric pairs of bifurcations, occuring simultaneously. This symmetry is broken

by the increase of e such that the formerly symmetric branches are now different: rotations in the negative

direction emerging from the fold Jn already exist for smaller forcing p than the rotations in the positive

direction emerging from Jp, which are shifted toward larger forcing p. Similarly, the formerly symmetric
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pairs of nonsymmetric oscillations lose their symmetry: one family is always shifted toward larger p (born

at the fold F2 in Figure 4 (b), and K2 in Figure 4 (d)), the other family becomes a continuous extension of

the formerly symmetric oscillation.

For ω = 1.8 the visibility of chaotic attractors (bands of small black dots in figure 4) is shifted toward

larger p by the symmetry breaking because stable periodic rotations exist for larger p (up to p ≈ 1.35). At

ω = 0.87 the simulation also showed period-two oscillations jumping between two potential wells for larger

p in the simulation results (black lines evident after the chaotic bands in panels (c) and (d)).

Figure 5 shows how the basins of attraction lose their symmetry when one increases e from 0 to 0.1. The

colour coding of each point in the (θ, θ̇)-plane is chosen according to the attractor which the stroboscopic

map reaches starting from this point. The forcing is p = 0.5 in figure 5 (a) and (d), p = 1 in panels (b) and

(e), and p = 1.4 in panels (c) and (f). The periodic attractors (shown as dots) with θ̇-coordinates ≈ ±2

correspond to periodic rotations. The panels (d) and (e) show that for small p (p = 0.5 and p = 1) one

direction of rotation (negative) has a visibly larger basin of attraction than the other. At p = 1.4 the change

of e caused a crisis of the chaotic attractor in panel (c), creating a period-three rotation.

For further increase of e the effect that one attractor of the formerly symmetric pair of nonsymmetric

periodic orbits is shifted toward higher values of forcing becomes more pronounced (as shown in the the

two-parameter diagrams in figure 2(c) and figure 3(b)). This shift depends strongly and nonlinearly on e:

for example, formula (8) already underestimates this shift for Jp by 20% for e = 0.5, which still corresponds

to a narrow ellipse.

5. Conclusions

Introducing a horizontal component into the excitation of the classical parametrically excited pendulum

results in a symmetry breaking scenario. The excitation changes from a purely vertical motion to a motion

on an ellipse. The main effects of this ellipticity are twofold: first, the well-known 1:2 and 1:1 resonance

tongues of the classical parametric pendulum merge into a single region of instability, bounded by a period

doubling and a fold (saddle-node) bifurcation of the small amplitude oscillation. Second, rotations of the

pendulum that have the same direction as the base motion pick up energy from the horizontal excitation

such that they are present at lower overall forcing amplitudes. For example, clockwise motion of the pivot

around the ellipse results in a preference for clockwise rotations of the pendulum.

Both effects of ellipticity are favorable for rotation: the first effect implies that small-amplitude oscilla-

tions around the hanging-down position, which are attractors competing with rotations, lose their stability

for smaller forcing compared with the e = 0 case. The second effect means that the parameter region in the

frequency-amplitude plane where rotations are supported increases with increasing ellipticity. The excita-

tion amplitude necessary to sustain rotations in both directions also increases with increasing e because of
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the increasing imperfection of the symmetry.

A comparison between the bifurcation scenarios of the model and an actual experiment is still outstand-

ing. Direct bifurcation analysis for experiments is a challenging task that may require the development of

entirely new experimental methods. Apart from this lack of experimental verification, other open questions

are: the high-frequency approximation (8) suggests that for a circular excitation (e = 1, α = π/4) rotations

against the base excitation are impossible regardless of the level of forcing and damping. This is not true in

general for lower frequency and sufficiently small damping. Thus, we expect that, depending on the shape of

the excitation, there must be a critical damping level below which rotations against the excitation direction

become possible for a suitable range of the excitation amplitudes and frequencies.

The small dissipation restricts the type of bifurcations and regimes encountered in the system (for

example, torus bifurcations are impossible). We expect that even a small amount of interaction between the

pendulum and the base ([11]) will lead to large regions in the frequency-forcing plane where one can observe

quasi-periodicity. Escape from a potential well tends to lead to indeterminacy as introduced in [39]. The

precise sequence of heteroclinic tangencies leading to escape from the potential well is still largely unknown

even for the parametrically excited pendulum.
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[25] R. Kobes, J. Lui, S. Peleš, Analysis of a parametrically driven pendulum, Physical Review E 63 (2000) 036219–17.

[26] S. Y. Kim, K. Lee, Multiple transitions to chaos in a damped parametrically forced pendulum, Physical Review E 53

(1995) 1579–1586.

[27] S. R. Bishop, A. Sofroniou, P. Shi, Symmetry-breaking in the response of the parametrically excited pendulum model,

Chaos, Solitons and Fractals 25 (2) (2005) 257–264.

[28] P. Hagedorn, J. Wallaschek, Travelling wave ultrasonic motors, Part I: Working principle and mathematical modelling of

the stator, Journal of Sound and Vibration 155 (1) (1992) 31–46.

[29] N. W. Hagood IV, A. J. McFarland, Modeling of a piezoelectric rotary ultrasonic motor, IEEE Transactions on Ultrasonics,

Ferroelectrics and Frequency Control 42 (2) (1995) 210–224.

[30] E. Ott, C. Grebogi, J. Yorke, Controlling chaos, Phys. Rev. Lett. 64 (1990) 1196–1199.

[31] K. Pyragas, Continuous control of chaos by self-controlling feedback, Physics Letters A 170 (1992) 421–428.

[32] W. van de Water, J. de Weger, Failure of chaos control, Phys. Rev. E 62 (5) (2000) 6398–6408.

[33] A. Fidlin, J. T. Thomsen, Non-trivial effects of high-frequency excitation for strongly damped mechanical systems, Int. J.

11



Nonlinear Mechanics 43 (2008) 569–578.

[34] R. V. Dooren, Chaos in a pendulum with forced horizontal support motion: a tutorial, Chaos, Solitons and Fractals 7

(1996) 77–90.

[35] O. V. Kholostova, Some problems of the motion of a pendulum when there are horizontal vibrations of the point of

suspension, Journal of Applied Mathematics and Mechanics 59 (1995) 553–561.

[36] E. J. Doedel, T. F. Fairgrieve, B. Sandstede, X. Wang, Y. A. Kuznetsov, A. R. Champneys, Auto 97: Continuation and

bifurcation software for ordinary differential equations (1998).

[37] F. Schilder, RAUTO: running AUTO more efficiently, http://www.dynamicalsystems.org/sw/sw/ (2007).

[38] H. E. Nusse, J. A. Yorke, Dynamics: Numerical explorations, volume 101 of Applied Mathematical Sciences. Springer-

Verlag New York, Inc., second, revised and enlarged edition, 1998.

[39] J. M. T. Thompson, Chaotic phenomena triggering the escape from a potential well, Proc. Roy. Soc. Lond. A 421 (1862)

(1989) 195–225.

12



Figure 1: Schematic of an elliptically excited mechanical pendulum.
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Figure 2: (colour online) Bifurcation diagrams in the (ω, p)-plane for (a) e = 0, (b) e = 0.1, (c) e = 0.5, computed with

(R)AUTO [36, 37]. The figure 4 shows the one-parameter bifurcation diagrams along the dashed lines in (a) and (b) for

ω = 0.87 and ω = 1.8, respectively. The damping γ is 0.1.
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e = 0.1 (panel(a)) and e = 0.5 (panel (b)) with the classical case e = 0, computed with (R)AUTO [36, 37]. The figure 4 shows

the one-parameter bifurcation diagrams along the dashed lines in (a) for ω = 0.87 and ω = 1.8, respectively. The damping γ
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Figure 4: (colour online) One parameter bifurcation diagrams for the stroboscopic map of (1) for different values of ω, varying

the scaled forcing amplitude p as the bifurcation parameter. The other parameters are e = 0, ω = 1.8 in panel (a), e = 0.1,

ω = 1.8 in panel (b), e = 0, ω = 0.87 in panel (c), and e = 0.1, ω = 0.87 in panel (d). Black dots are the attractors computed

for the initial condition θ0 = 0.01π, θ̇0 = 0 with Dynamics [38]. The stable (thick dark green) and unstable (thin light red)

periodic orbits, computed with (R)AUTO [36, 37], are superimposed. Oscillations are shown in the θ-range of [−π, π], rotations

are shown in the θ-range [π, 3π]. The damping γ is 0.1. The basins of attraction shown in figure 5 have been computed at

p = 0.5, p = 1, p = 1.4 (see vertical dashed lines in panel (a) and (b)).
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Figure 5: (colour online) Basins of attraction for different values of the forcing amplitude, p, and ellipticity e, computed with

Dynamics [38]. Panel (a): e = 0, p = 0.5, (b): e = 0, p = 1, (c): e = 0, p = 1.4, (d): e = 0.1, p = 0.5, (e): e = 0.1, p = 1, (f)

e = 0, p = 1.4. The other parameters are γ = 0.1 and ω = 1.8. Stable periodic orbits are shown as large dots (their colour is

chosen to give a contrast to their own basin of attraction).
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