
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2001

Dynamics of the "pgmcc" Multicast Congestion Control Protocol Dynamics of the "pgmcc" Multicast Congestion Control Protocol

Chin-ying Wang

Sonia Fahmy
Purdue University, fahmy@cs.purdue.edu

Report Number:
01-015

Wang, Chin-ying and Fahmy, Sonia, "Dynamics of the "pgmcc" Multicast Congestion Control Protocol"
(2001). Department of Computer Science Technical Reports. Paper 1512.
https://docs.lib.purdue.edu/cstech/1512

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

DYNAMICS OF THE "PGMCC" MULTICAST
CONGESTION CONTROL PROTOCOL

Chin-ying Wang
Sonia Fahmy

Depar-tment of Computer- Sciences
Pur-due University

West Lafayette, IN 47907

CSD TR #01-015
September- 2001

Dynamics of the "pgmcc" Multicast Congestion
Control Protocol
Chin-ying Wang and Sonia Fahmy
Department of Computer Sciences
1398 Computer Science Building

Purdue University
West Lafayette, IN 47907-1398

E-mail: {fahmy.chinwang} @cs.purdue.edu

Ab.rlracr-Faimcss 10 current Internet lrunk, particularly Tep, l~ DOC of
the imporllml requirements for deploying multicast protocols. In Ihis pa.
per, we investigate the rairness of the mulliClSI congestion control protocol
"pgmcc," implemented on top urlhe PGM multicast protocol. Pgmcc is one
of the most promising mullicasl congestion control proposals, but it has nol
yd been c:dcIISively slress-tested. in the lileralure. Two sets of experiments
lire conducted in lhis paper. In firsl set of experiments, we e"amine the ef­
feel offccdbackn~tiDnOIl pgmcc. In the semnd set of experiments, we
investigale the performance ofpgmee when eompeling wilh burslyTCP and
UDP Bows in scenario wilh multiple lime-varying bOlllenecks ::Ind round
Irip times. Our results indicate thai pgmcc is robust, bUI may need some
modificalions such us an algorithm for dynamically detcmtining the lime­
oul algorilhm and hnndling switches among receiver rcpresenlati\'CS beller.

KeyworoS-iDulticnst, eongeslion conlrol. pgmcc, fairness. feedback ag­
grq:nlion

I. INTRODUCTION

Mullicasting allows infonnation exchange among multiple
senders and multiple receivers. Popular multiCast applica­
tions include audio/video conferencing, dislance learning, dis­
lributed games, server and replicated database synchronization.
Pgmcc [1] is a single rate representative-based multicast conges­
lion control scheme thai is designed to achieve fairness when
competing with TCP flows. Pgmcc sets its window according
to a represemative called the "acker." The acker is the receiver
with the lowest throughput among all receivers within a group.
A tight control loop is run between the acker and the sender [l].

Although pgmcc is one of the most promising multicast con­
geslion cOnlrol proposals, it has not yet been extensively tested
under stressful conditions in the literature. In this paper, we ex­
aminc the pgmcc protocol implemented according to the stan­
dard being discussed by lhe IETF {2]. In our firsl set of ex­
periments, we demonstrate the feedback aggregation problem
caused by the NAK suppression at network elements and show
its effect on acker selection. In the second set of experiments.
!he perfonnance of pgmcc is evaluated when competing with
Tep and UDP flows in a more realistic scenario. The fairness of
pgmcc to TCP flows is examined with different bottleneck link
bandwidths. Simulation results show pgmcc may achieve higher
throughput than competing TCP flows during acker switching.
especially the first few acker switches. In other cases, pgmcc
perfonnance degrades due to the fixed timeout interval used in
pgmcc. Experiments are perfonned using ns 2.1b5, and pgmcc

-This research is sponsorc:d in pan by Tektronix, and the Sc/JlllmbuRer
Foundation technical menl award.

is implemented on top of the PGM [3] multicast transport pro­
tocol.

The remainder of this paper is organized as follows. Section II
briefly discusses reliable muhicast protocols. specifically PGM
and pgmcc congestion control. Section III examines !he effect
of the feedback aggregation problem. Section IV discusses sim­
ulation results on fairness among pgmcc and TCP. Future work
is discussed in section V.

II. RELATED WORK

This section discusses reliable multicast protocols, including
detailed descriptions of the PGM and pgmcc protocols.

A. Reliable Multicast Protocols

Figure 1 illustrates how reliable multicast protocols work. S
represents the sender. and each R represenlS a receiver in a mul­
ticasl group. S sends a single copy of the dalagram into the
network. As the datagram is forwarded (the boxes in Figure 1
represent network routers). it is replicated when needed and for­
warded via multiple outgoing links of the router. The original
datagram should reach all the receivers in a group. In order to
enforce reliability of the protocol. each receiver has to provide
some form of feedback 10 notify the sender whether the data has
been received. A receiver may send an ACK if it receives data
successfully, or it may send a NAK if a data packet is assumed
to be lost.

odata

I feedback

S)-~O=--~~HO~~~Router Router
I-

II '0
1 1

\
Feedback R
implosion

Fig. 1. Reliable Multiensl Protocots

Two problems with reliable muhicast protocols are shown in
Figure 1 and Figure 2. Since each of the receivers will send
feedback to the sender, the sender may be ovcrwhelmed by the

2

Fig. 2. Determining the multiC<l5l sending flue

implosion of ACKslNAKs when the number of receivers be­
comes very large. Feedback uses bandwidth unnecessarily, and
the sender is burdened with processing alllhe feedback packets.

Determining lhe appropriate sending rale at the multicast
sender is the second problem and is shown in Figure 2. From
figure 2, we note that each of the receivers in a multicast group
may have a different capacity. The problem of determining the
sending ratc to achieve the "optimal" bandwidth usage depends
on lhe application reliability semantics.

C. Pgmcc

One melhod of adjusting the sending rate at the PGM sender
is to pace the sender according to the "slowest" PGM receiver.
This slowest receiver can change at any lime since receivers are
continuously joining and leaving the multicast group. and bot­
tlenecks vary over time. Pgmcc continuously paces lhe sending
rate according to the receiver with the worst throughput, which
serves as lhe group representative. This receiver is called the
"acker."

A tight control loop is run between the acker and the sender.
Only the acker sends ACKs 10 lhe sender to adjust the sender
transmission window and token bucket. Other receivers may
send NAKs when they lose packets. Both the loss rate and the
round trip time (RTf) are needed to calculate the throughput of
each of the receiver. This information is carried in both NAK
and ACK packets. and the sender uses the throughput equation
as specified in [I] to compUle the throughput of each receiver.
The acker is switched from one receiver to another if a receiver
with a lower lhroughput is found. An example of acker swilch­
ing is illustrated in Figure 4.

300kb/s

'­

750kb/s
\ lOOOkb/s

Sookb/s

:---250kb/s

®

current
ackcr

I

300~S ~
==

"-newly joined receiver whose
lhroughput T(I) < T(J)

Fig. 4. Acker selection

500kb/s

?

A window based congestion control scheme similar to thai
used by TCP is run between the acker and the sender. In the
scheme specified in [I], the sender maintains two state variables:
a window W, and a token count T. W represents the number
of packets in flight, while T is used to regulate the generation
of data packets. One token is needed and consumed in order to
transmit one data packet. Initially. both Wand T are initialized
to one. The values of Wand T are updated with every ACK,
NAK, timeout, and packet transmission [I].

,

NAK

" ::<,', , ,,-
RoUfer.

NC
~=

NAK
CF

NAK
NCF
~="l

NAK

B. Pragmatic General Multicast (PGM) Protocol

PGM is a single-sender mullicast protocol. PGM provides
a reliable service by using NAK-based retransmission requests.
The use of feedback suppression at PGM network elements im­
proves lhe scalability of the protocol. The feedback suppression
technique allows PGM network elements to only forward the
first NAK to arrive al the router serving as the rool of a sub­
tree for each missing or corrupted datagram [4]. An example
data/feedback packet flow in PGM is shown in Figure 3.

Fig. 3. PGM Multicast ProIOCO!

Each original data packet Codata) sent from the PGM sender
is replicated at each network element (router) and forwarded to
each of the receivers in a group. If a receiver does not receive
odata, sends a NAK upstream. When the upstream router re­
ceives a NAK, it sends an NCF packet to the receiver indicating
the reception of the NAK, and forwards only one NAK among
all NAKs sem from different receivers in lhe same subtree for
each of the lost/corrupted packets. Eventually, lhe sender will
receive the NAK, and repair of the data (rdata) is transmitted
only to lhe receivers who requested the retransmission.

HI. FEEDBACK AGGREGATION

In this section, we illustrate the effect offeedback aggregation
on pgmcc. Due to the suppression of PGM NAKs containing
RTf and loss rate information needed by the pgmcc sender to se­
lect the acker, incorrect acker switches may occur in some cases.
An example is shown in Figure 5, where one PGM session runs
pgmcc at the sender and each of the six receivers. There are
three PGM network elements, and all the links in this topol­
ogy have the same bandwidth and delay. Among the six PGM
receivers. we are interested in receiver I (PRI) and receiver 2
(PR2). PRI is closer to the sender and has a lower loss rate;

,

40

30

"data" --,
"ack" ----/

"nak1-" of/
"palC~­

"aCke~~~r (]
~qpl(er2" x

~ /~"':;~cker4" A

20F; --,,/+,¥"
10 '*/~'-'

AIEl"
o ""-'.L-J--L--'--L--'---'---'---'---'

o 5 10 15 20 25 30 35 40 45 50
time (second)

50

Fig.7. SimulDtion resulLs for feedback aggregDlion

Feedback Aggregation
60 ,..-,--,-----.---r-,':":"'''':-,-,--,-----,

Router

- .~-

All Jinks are IOMbJs with 500 delay

Fig. 5. Scenario [0 illus!r.:lIC lhe dfcc[of feedback :J.ggregalioll on ACKer se­
lection

PR4
/

PRJP~
Fig. 8. Simulation topology

/
PRI

IV. PGMCC FAIRNESS DYNAMICS

PRS

~ \
\

one possibly sent from PR4 is suppressed. Thus, the acker is
switched back to PR4 again al t.he 8th second. The sender
switches the acker belween PRI and PR4 a number of times.
Unnecessary acker switches occur between PRl and PR4 al­
though the acker should (on a larger time scale) always be PR4
which has a higher loss Tate and higher RTf. Thus the time scale
ofpgmcc may be too fine, and coarser time scales may increase
stability.

In this section, we simulate pgmcc in more complex con­
figurations. The objective of our experiments is to determine
whether pgmcc remains TCP friendly in realistic scenarios more
similar to the Internet.

Figure 8 shows the simulation topology which includes 22
source nodes (s*) and 22 destination nodes (d*). The link be­
tween each node and router has a bandwidth of 150 kbps wit.h
1 ms delay. The link bandwidth and link delay between routers
are specified in Table I. 22 TCP flows run between each pair
of source and destination nodes. TCP NewRello is used be­
cause NewReno and SACK are being deployed in the majority
of web servers to provide better congestion control compared to
other TCP versions [5]. We investigate the performance of t.he

25% loss

We plot the sequence numbers and acker switches inFigure7.
In t.he figure, "data" is sent from the sender to the receivers,
"ack" is the acknowledgment sent from the acker upon receiving
a packet, "nakl" is the NAK sent from PRI, and "nak4" is the
NAK sent from PR4. ''Acker!'' shows that the current acker is
PRJ at the specified time and "acker2" and "acker4" denote PR2
and PR4 are the ackers respectively.

From the simulation resulls, we can see that PR2 is selected
as the acker at the beginning of the simulation. About 4 seconds
later, the sender receives a NAK from PR4, and it switches the
current acker from PR2 to PR4. The acker is switched again
to PRI because the sender receives a NAK from pRI, and the

20% loss

PR2 is further away from the sender and exhibils a higher loss
rate. PR2 has an additional 5% loss over PRI.

Suppose the PGM sender begins to send data to all its re­
ceivers. and bothPRI and PR2lose packet number 5. Due to the
shaner delay to PRI. the router closest to the sender will receive
the NAK from PRI before receiving one from PR2. Hence, the
router forwards the NAK sent from PRI to the sender, and lite
NAK sent from PR2 is suppressed. Since pgmcc needs the infor­
mation of loss rate and RIT carried in NAK packets to perform
acker switching, the sender may select PRI as the acker instead
of PR2 at certain instances, even though PR2 clearly has lower
throughput.

To verify thal this scenario occurs, we simulated a topology
similar to Figure 5, which is shown in Figure 6. The only ditTer·
ence is that we simplify the scenario by including only 4 PGM
receivers and two network elements so that the simulation is
easy to trace and analyze. The simulation is run for 50 seconds.

Alllink.~ "rt: IOMb/s wilh 5ms delay

Fig. 6. Simulation lopology [0 examine feedback aggregation

Fig. 10. PGMfI'CP sender congestinn window in highly congcsted nctwork

o
+

50
45
40

35
30
25
20
15
10

5
o ,.....~L.-'-----'

o 100 200 300 400 500 600 700 800 900
time (second)

Fig. 11. PGM odmalack senl!rccci~ed at the sender in congcsted network

We also investigate why initial acker switches cause steep in­
crease of the window at the PGM sender. Figure 11 illustrates
the time that data packets (represented by the diamond shape)
are sent and the acks are received by the PGM sender in this ex­
periment. Each ack (sent from the current acker) is represented
by a plus sign in the figure. The packet number (modulo 50 to
make the figure more readable) is shown on the y-axis. Allhe
beginning of the simulation, PRI is selected as the acker be­
cause it is closest 10 the sender. After sending packet number
173, the acker switched from PRI to PR4 al time 50.222 sec­
ond (the overlapped diamond and plus sign in Figure 11 at time
76.9 seconds indicates the acker switch). Because the RTf of
PR4 is much longer than PRl, il takes longer for PR4 to receive
data packets sent from the sender than it does for PRI. More­
over, each data packel is marked with the current acker address

1PGM

for this observation becomes obvious from the congestion win­
dows for both PGM and TCP flows shown in Figure 10. The
PGM sender window increases only in the first 50 seconds of
the simulation. The size of the PGM sender window drops to
one several times in the first 100 seconds, and it remains one
till the end of the simulation. On the other hand, the congestion
window at the TCP sender increases slowly due to the slow slart
at the beginning, but the TCP sender is able to send more dala
afterwards compared to the PGM sender due to a larger window
throughout the rest of the simulation.

We first trace how the ackers are switched in this experi­
ment. From the pgmcc implemen!alion, the PGM sender always
chooses the receiver who is closest to it as the acker at the be­
ginning of the simulation (since it is the first receiver it receives
feedback from). Hence, PRl is elected as the acker at the begin­
ning. Later, several packets are dropped at router 4 causing PR4
and PRS to send NAKs for the same lost packets. The NAKs
from PRS are suppressed and only the NAKs sent from PR4 are
forwarded to the sender. Hence, the acker is switched from PRI
to PR4 due to the higher loss rate of PR4 over PRI perceived
by the PGM sender. Finally, more packets are dropped at router
5 causing PRS to send NAKs for the lost packets, so the last
acker switch moves the acker from PR4 to PRS since PR5 has
the longest RTf and the highest loss rate. The receiving rate at
each PGM receiver is shown in the firsl line (labeled "Highly
Congested") in Table II.

--,:
..~.-".-".:....

"pgmccwin"
"tcpwin"

,,~,!''_.~ v_"J--

..._"-"'

1PGMffCP(src4 - dst4)

~.?
"pgmdat '~_~-

" Ck1
' --­

pgmnak" 0
~ --••"pgmacker" +

~~~ "tcpdata"
(fJ "tcpack"
;-'
i+
I,
l<-
i

"

350

300

250

200

150

100

50

o +0=''''00=20.L0-30LO-4-0LO-5-0LO-6-'OLO-7-'0-0-6-'0-'-0-''gOO

lime (second)

Fig. 9. PGMfI'CP throughput in higbly congested nctwork

TCP flow from 8410 D4, which runs across the same links and
nodes as me PGM receiver with the longest RTf. One UDP flow
sending Pareto lfaffic runs across "Link 4" with a 500 ms on/off
interval. All the routers use simple drop tail queues with 120
packet slots each. The PGM sender and receivers are located in
the nodes shown in Figure 8 and labeled "PS" and "PR*." All
the simulations were run for 900 seconds.

In each of the following experiments, we measure the goodput
(as defined in [6]) to show bandwidth achieved at the receiver
excluding duplicate packets. In all the experiments, the goodput
for TCP flows from 87 to D7, from 811 to D11, and from 821
to D21 are almost 2/3 oflhe link bandwidlh because the RTf of
each of them is fairly short [7].

A. Experiment I: Highly Congested Network

In this experiment, we use link bandwidths and delays as
specified in Table I. The throughput (goodput) of the PGM ses­
sion and the TCP session from 84 to D4 is shown in Figure 9,
and the size of the congestion window for both PGM and TCP
is shown in Figure 10.

Figure 9 shows that for the first (about) 50 seconds ofthe sim­
ulation, PGM has a much higher lhroughput than the TCP flow.
After SO seconds, the slopes of the PGM flow and the TCP flow
are similar. Both of the flows have low throughput. This reason



5

TABLE!

LINK BANDWIDTHS AND DELAYS BETWEEN ROUTERS

Link Link 0 Link J Link 2 Link 3 Lillk 4 Li"k 5
Bandwidth (kbps) 50 100 50 150 150 50
Delay (IDS) 20 10 5 5 5 10

TABLE II

RECEI'VINGRATE OF EACH PGM RECEIVER

I PR5I PR4I PR3I PR2I PRJExperiment

Highly Congested 100% 100% 100% 97% 92.5%
Medium Congestion 100% 100% 99.48% 100% 97.14%
Uncongested 100% 99.9% 98.39% 99.9% 98.03%

in pgmcc. Hence, even though an ackee switch occurs early, the
previous ackee (PRl) continues sending ACKs to the sender un­
til reception of packet number 173. As a result, the new acker
(PR4) only sends ACKs after the reception of packeL number
174. In this experiment, PR4 began sending ACKs after 76.9292
seconds even though me ackee switch occurred at Lime 50.222
seconds.

There are lWO consequences of this behavior. First, when an
ackee switch occurs, it means there is a receiver with a lower
throughput lhan the currcntacker. However, as discusscd above,
the previous acker keeps on sending ACKs till the packet num­
ber is equal to the trail of lhe sender window at the time of the
acker switch. For each ACK received at the sender side, lhe
sender increases the token count T by one and increases the
window accordingly. Thus, more data packets are sent by the
sender. This leads to the second consequence which is lhatLhe
network becomes even more congested. We observed the same
behavior when the ackcr switched from PR4 to PRS.

The delay of sending ACKs from lhe new acker observed in
this experimem is one of the causes of the sudden drop of the
window size to one. Because pgmcc uses a fixed timeout in­
terval to detect congestion, if the sender does not receive an
ACK from the acker within the timeout time specified. it drops
Lhe window size W to one and decreases the token count T to
2\.~ [1]. Revisiting Figure 11, we see that the distance between
the last overlapped cross and diamond at time 76.9 and the first
non-overlapping cross indicates the time lhat the sender waits
for the ACK for packet number 174 from Lhe new acker (PR4).
If the distance is longer than the timeout interval. which is true
in this experiment. one or more timeouts occur, degrading PGM
performance.

Another reason for the sudden drop of the window size to one
is that the RTf of the currem acker itself is sometimes simply
IOllger thall rhe rimeout illterval. In this case, the PGM sender
will never be able to receive an ACK within the timeout lime and
will keep timing out, as shown in Figure 10. This problem can
be remedied by implementing a TCP-like retransmission time­
out determination algorithm.

In terms of the goodput. the goodput for each of the PGM
receivers ranges from 3.95 to 4.26 kbps and the goodput for TCP
receiver is 1.39 kbps. It is not surprising that goodput for both
PGM and TCP flows is quite low because the links are congested

and shared among many TCP and UDP flows.

B. Experimellt II: Medil/m Congestioll

In this section, we keep all simulation parameters unchanged
except that we increase the bandwidth of Lhe links between
routers. Many experiments were run with bottleneck link band­
widths ranging between 2.5 and 3.5 times the original band­
widths shown in Table I. The rcsults are similar, so we only
discuss the results using bandwidth of 2.5 times, and 3.5 times
the original bandwidth.

The throughput of both PGM and TCP flows and their win­
dows sizes are shown in Figures 12 and 13 respectively. The
receiving rate of each PGM receiver is shown in the second line
of Table II.

We observe similar behavior to Figure 9 in Figure 12(a).
Fewer timeouts occur (shown in Figure 13(b) in iliis experiment
compared to the highly congested network in the previous sub­
section. This is because we have increased the link bandwidths,
so the time it takes for transmission of ACKs from the acker to
the sender is shorler than that in the previous setting. However.
the timeouts are still frequent. causing the window to drop to I
because the RTI of PRS is greater than the PGM sender time­
out interval. The throughput of the TCP flow, on the other hand,
is better ilian the one in experiment I and has a higher slope.
In terms of the goodput, the goodput of PGM receivers ranges
from 4.77 to 4.91 kbps. and goodput of the TCP receiver is 4.97
kbps.

Figure 12(b) may appear different at first, bUl it is similar to
Figure 12(a) if we had run the simulation longer. The goodput
of each of the PGM receivers ranges belween 22 and 22.4 kbps,
and that of the TCP receiver is 7.24 kbps. The reason for the
higher goodpur for PGM receivers, in addition to the increase
of the bandwidth, is that the acker was switched from PR3 to
PRS several times. As discussed above, acker switches take lime
and the sender window is increased meanwhile. Further, the
two different branches have different throughputs. This effect is
clearly shown in Figure l3(b).

By increasing the bottleneck link bandwidth. the throughput
of both the PGM and TCP flows increases. From this set of
experiments, we conclude that the PGM flow outperforms the
TCP flow during initial acker switching, but the TCP flow has a
higher throughput if the timeoul interval at the sender does not



•

1PGMfTCP(src4 - dst4) PGM cc_window && TCP cc_window

J "pgmccwin"
"tcpwin"i

[

I }, ri A
/'." ",'"'' "

j :: r: ": ":" " ' , ' ,
If::l: /: !l ~
I ' :) :} " : ,1 ,"'"

f :j :~':,' :::) ,:,' U; I:
:t : / : it ,':': !:' \ lI, "''I 'I, ",~., I " ~ ", , " ~:1 ~ v\ J "
, ,1"-----._j~L_-.i~~~

20

18
16
14
12

10
8
6
4
2

o
a 100 200 300 400 500 600 700 800 900

time (second)

"pgmdala" ~.'"

"pgmack:: r • ."k"--.

"pgmna.k""· <:•

"pgmackEir" +
:J:cpaala"

.,..~.. ,,- "[cpack" -----;:.-:
./~.

100 200 300 400 500 600 700 800 900
time (second)

600

~ 500~

u•.e, 400
"m
~

E 300
~
C
ID 200u
C
ID
~
~ 100
ID•

(a) 2.5 X Congested (n) 2,5 x Congested

"pgmccwin"
"Icpwinn

1PGMfTCP(src4 - ds(4)
1800 ,-,----,-,-----,----.-,----.--cJ=-1600 "~data" ~-

f'l'pgmack" ---­
1400 I "pgmnak" 0

1200 ! "pgmacker" +
"tcpdata" ..

1000 J "tcpack"

800 /' /_

600 /' 0' ._•••//

400 ,l' __--------"..----
200 / •.-"k:>--·-------

0--'--'---'---''--"--'--'---'---'
o 100 200 300 400 500 600 700 800 900

time (second)

PGM co_window && TCP cc_window
45

40

35

30 11
25 / ;1

V i
20 ..:

15 I / ,'lVI ",'1 /:
i, 'I" :,~10')1, ,j /l "/ ",

I' "I ,1. " ,l ,'" ' ,

I ,,', .':'-j,', ,\ - ',1, - ~'

5 ",",., , .... " ,1 "I -'''~ '-'o - ( '/-', 'J.,

o 100 200 300 400 500 600 700 800 900
lime (second)

(b) 3,5 x Congesled (b) 3.5 x Congcstcd

Fig. 12. PGMrrCp throughput with medium congestion Fig. 13. PGMfTCP sender windnw size wilh medium congestion

adapt to the increase of the ackee RTI.

C. Experiment Ill: VI/collgested Nenvork

In this section, we relain all the parameter values of previous
experiments hut we increase the bandwidths of the links between
routers. Many experiments were run with various bandwidlhs,
but, since lhe results arc similar, and we only show the results us­
ing bandwidths 10 times, and 80 times the original bandwidths
in Table 1. The lhroughput of both PGM and TCP flows and
their windows sizes are shown in Figure 14 and Figure 15.

From the results in lhis set of experiments, we find that the
ticker switches back and forth between PR3 and PRS due to the
closeness of the throughputs ofPR3 and PRS (the receiving rate
for each of the PGM receivers is shown in lhe third line (labeled
"Uncongested") in Table II). Feedback suppression does not
cause problems here because PR3 and PRS lose different pack­
ets. As expected, the PGM sender window continues to increase
some time after acker switches. In terms of goodput, the good­
put for each of lhe PGM receivers ranges from 74.15 to 76.56
kbps, and for the TCP receivers it is around 7.8 kbps in both

Figure 14(a) and (b).
The reason why PGM outperfonns TCP appears to be lhe se­

lection of PR3 as the acker throughput most of the simulation.
Both the TCP receiver and PGM receiver PRS arc connected to
router 6. PRS is the acker for only 173 seconds while PR3 is the
acker for 736 seconds of the simulation. PR3 has a shan RIT
lind reasonable loss rate. Therefore, even though increasing lhe
link bandwidth will increases the throughput of both PGM and
TCP flows, the PGM flow outperfonns the TCP flow in this case.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the fairness and dynamics
of the pgmcc single-rate multicast congestion control protocol.
Our simulation results show lhat a pgmcc flow initially sends
more than a competing TCP flow due to the rapid opening of lhe
PGM sender window between initial acker switches. If the acker
selection process slabilizes and a PGM receiver with a very long
RIT is selected to be the acker. timeouts severely degrade the
performance of the PGM flow. A TCP-Iike retransmission time­
out compUlation mechanism can remedy this problem. With the



,

-----------

100 200 300 400 500 600 700 aDO 900
time (second)

o
o

35

30

25

20

"pgmccwinl' +----

i; I' ~Ilj IIi"Iii!j
1III1 111/Jlll/llitl i IIIIIII~II'

:: ; )1~V{I! Il'i ilrY-V'I! IJI;)/! 11!!i,!
, , / ' • ,I, ' 1 ,,1' I " , "I II' I, " 'I ." I / ""," " / ,

5 ,,/ " 'W""" ":,' ,'" ~I" /1 'I '., I' "I' ':" I 'I', '. I • ,I ,," ,~'
I r .~, ,.: t!1

PGM cc_window && TCP cc_window

"pgmdala"
"pgmack"
"pgmnak"

"pgmackeJili +
"Icp~a" --- ..

/~aCk""""""

100 200 300 400 500 600 700 800 900
time (second)

7000

6000

5000

4000

3000

2000

1000
-------o"""d===--'_.L-..L----'---'---'

o

1PGMlTCP(src4 - dst4)

(n) 10 x Congested (n) 10 x Congested

",

5

30

10

15

25

20

PGM cc_window && TCP cc_window

0=========:::J
o 100 200 300 400 500 600 700 aoo 900

time (second)

"pgmdala" --y?'
"pgmack"
"pgm

"pg er" +
cpdata"

"tcpack"

------_.

1DO 200 300 400 500 600 700 aDO 900
time (second)

2000

5000

4000

6000

1000

3000

1PGMrrCP(src4 - ds(4)

(b) 80 x Congcsloo (b) 80 x CODgesled

Fig. 14. PGMlTCP Lhrougbpul in;m lIncongl:Sled network Fig. 15. PGMrrCp sender window size in :lJIlIncongcsled network

use of a timeoul interval selected according to the acker RTf,
the PGM sender can distinguish belween situations of real con­
gestion and late ACKs received from an acker with a long RTf.
In an uncongested network, the PGM flow may outperform a
competing TCP flow if frequent acker switches occur between
ackers of different throughputs.

We plan to examine various application reliability semantics
to see how the pgmcc scheme fits in the unreliable (or not fully
reliable) multicast protocol context. In [1], the author states
that the pgmcc can be safely deployed with both reliable and
unreliable multicast applications. The PGM multicast protocol
provides reliability in the transport layer as specified in [3] and
illustrated in Figure 3. On examining the ns pgmcc implemen­
tation, we find that if a PGM receiver lost a data packet, it only
sends a NAK back to the sender once. If the NAK gel lost or
corrupted before it gets to the sender or if the NCF sent to ac­
knowledge the NAK reception is lost or corrupted before it gets
to the receiver, the receiver which originally sent the NAK will
wail for a retransmission timeout. Then, the receiver resched­
ules the retransmission timeout up to ten times waiting for the

repair, instead of resending the NAK. If, after rescheduling the
retransmission limeout for ten times, the repair is nOl received,
the receiver treats the packel as unrecoverable. This essentially
means that this flavor of PGM is not fully reliable. It is not
completely unreliable either because NAKs are sent, and when
a receiver receives the repair from the sender. it does not check
whether the repair is needed or not (e.g., if the repair must be
received within a certain amount of time and it is useless other­
wise). We plan to experiment with various reliability semantics,
and examine their effect on the pgmcc congestion control algo­
rithm, especially on acker selection with insufficient NAKs.

ACKNOWLEDGMENTS

The authors would like to thank Gianluca Iannaccone and
Luigi Rizzo for providing us with their pgmcc implementation
and their help with configuring it.

REFERENCES
[I] L Rizzo, "pgmcc: n lcp-friendly single-mle multicnsl congestion con­

uol scheme;' in Pmceedillg.r of Ille ACM SIGCOMM. August 2000,
http://www.ieLlInipi.itlluigi.



•
121 L. Rizzo, L. Vldsano, M. Handley, and G. Iannaccone, "PGMCC single

mlC multicast CODgesDoll conlrol: Protocol specilic;ltion," Internel Droft,
!Dlcmcl Engineering Thsk Force. Feb. 2001, Work in progress.

(3] D. Farinacci, A. Lin, T. Speakman, and A. l\vccdly. "PGM reliable tr.lII5­

pon protocol specifiCillion," Internel drart, March 2000, Work in progress.
[4] K. Miller, "Mullicasl networking and applications:' Addison Wesley Long­

man, Ine., 1999.
[5] K. Fall and S. Floyd, "Simulation·based comparisons of Tahoe, Reno.

and SACK TCP," in ACM Complller COlIJmwli~Olio1JRl!Yif.'\v, July 1996,
vol. 26, pp. 5-21, flp:llftp.ee.lbLgov/papcrsfsacks.psZ.

[6J S. Aoyl! and K. Fall, "Promoting Ihe use of end-to-end congestion control
in the internel," If.f:ElACM TrmlSaeliolJS 011 NctIVfJrki1lg. August 1999.

[7J J. Padhye, V. Firoiu, D. Towsley, and J. Knrose. "Moldeling TCP
throughput: A simple model and its empirical validation;' in Proceed­
ings of lIre ACM SIGCOMM, September 1998, vol. 28, pp. 303-314,
hllp:llgaia,cs.umass.eduJ.


	Dynamics of the "pgmcc" Multicast Congestion Control Protocol
	Report Number:
	

	tmp.1307986960.pdf.7wrHe

