Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

2001

Dynamics of the "pgmcc" Multicast Congestion Control Protocol

Chin-ying Wang

Sonia Fahmy
Purdue University, fahmy@cs.purdue.edu

Report Number:
01-015

Wang, Chin-ying and Fahmy, Sonia, "Dynamics of the "pgmcc" Multicast Congestion Control Protocol"
(2001). Department of Computer Science Technical Reports. Paper 1512.
https://docs.lib.purdue.edu/cstech/1512

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

DYNAMICS OF THE "PGMCC" MULTICAST
CONGESTION CONTROL PROTOCOL

Chin-ying Wang
Sonia Fahmy

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

CSD TR #01-015
Seplember 2001

Dynamics of the “pgmcc” Multicast Congestion
Control Protocol

Chin-ying Wang and Sonia Fahmy
Department of Computer Sciences
1398 Computer Science Building
Purdue University
West Lafayette, IN 47907-1398
E-mail: {fahmy,chinwang} @cs.purdue.edu

Absiraci—Fairness lo current Inlernet iraffic, particularly TCP, is one of
the important requirements for deploying mnlticast protocols. In this pa-
per, we invesligate the lairness of the mullicast congestion control protocol
“pgmec,’ implemenied on top of the PGM multicast protocol. Pgntcc is enc
of the most promising mullicasi congeslion control proposals, bul it has nol
yct been extensively siress-tested in the filerature. Two sets of experiments
are conducted in this paper. In first set of experiments, we examinge the ei-
fect of feedbuck apgregation on pgmec. In the second set of experiments, we
investigale the performance of pgmce when competing with bursty TCP and
UDP fows in scenario with multiple time-varying botllenecks and round
irip times. Our results indicate thal pgmec is robust, bul may need some
madifications such as an algarithm [or dynamically determining the time-
oul algorithm and handling switches among receiver represeniatives better.

Keywords—multicast, congestion coniral, pgmcc, fairness, fecdback ag-
gregalion

I. INTRODUCTION

Mullicasting allows information exchange among muliiple
senders and multiple receivers. Popular multicast applica-
lions include audio/video conferencing, distance learning, dis-
tributed games, server and replicated database synchronization.
Pgmcc [1] is a single rate representative-based multicast conges-
lion control scheme that is designed to achieve fairess when
competing with TCP Alows. Pgmce sels its window according
to a representative called the “acker” The acker is the receiver
with the lowest throughput among ali receivers within a group.
A tight control loop is run between the acker and the sender [1].

Although pgmce is one of the most promising multicast con-
gestion conurol proposals, it has not yet been extensively tested
under stressful conditions in the literature. In this paper, we ex-
amine the pgmee protocol implemented according to the stan-
dard being discussed by the IETF [2]. In our first set of ex-
periments, we demonstrate the feedback aggregation problem
caused by the NAK suppression al network elements and show
its effect on acker selection. In the second set of experiments,
the performance of pgmcc is evaluated when competing with
TCP and UDP flows in a more realistic scenario. The faimess of
pemcc to TCP flows is examined with different bottleneck link
bandwidths. Simulation results show pgince may achieve higher
throughput than competing TCP flows during acker switching,
especially the first few acker switches. In other cases, pgmee
performance degrades due to the fixed timeout interval used in
pgmce. Experiments are performed using ns 2.1b5, and pgmcc

—This research is sponsored in part by Tektronix, and the Schinmberger
Fourdation technical merit award.

is implemented on top of the PGM [3] multicast transport pro-
tacol.

The remainder of this paper is organized as follows. Section I
briefly discusses reliable multicast protocols, specifically PGM
and pgmcc congestion control. Section 111 examines the effect
of the feedback aggregation problem. Section IV discusses sim-
ulation results on fairness among pgmcec and TCP. Future work
is discussed in sectjon V.

1I. RELATED WORK

This section discusses reliable multicast protocols, including
detailed descriptions of the PGM and pgmce protocols.

A. Reliabie Multicast Protocols

Figure | illustrates how reliable multicast protocols work. S
represents the sender, and each R represents a receiver in a mul-
licast group. S sends a single copy of the datagram into the
network. As the datagram is forwarded (the boxes in Figure 1
represent network routlers), it is replicated when needed and for-
warded via multiple oulgoing links of the router. The original
datagram should reach all the receivers in a group. In order to
enforce reliability of the protacol, each receiver has to provide
some form of feedback 10 notify the sender whether the data has
been received. A receiver may send an ACK if it receives data
successfully, or it may send a NAK if a data packet is assumed
to be lost.

Udata
| feedback
I -
0_- [_.
—1 Router - Router /‘;E
11\ ~
I\ [
_IJ A\
Feedback
implosion

Fig. 1. Reliable Multicast Prolocols

Two problems with reliable multicast protocols are shown in
Figure | and Figure 2. Since each of the receivers will send
feedback to the sender, the sender may be overwhelmed by the

[%]

implosion of ACKs/NAKs when the number of receivers be-
comes very large. Feedback uses bandwidth unnecessarily, and
the sender is burdened with processing all the feedback packets.

300kb/s
(:)} — LRouter. |—— | Router”:
500kb/s ~

' \ 1000kb/s —
500kbis

750kb/s

Fip. 2. Deiermining the multicast sending male

Determining the appropriate sending rate at the multicast
sender is the second problem and is shown in Figure 2. From
figure 2, we note that each of the receivers in a multicast group
may have a different capacity. The problem of determining the
sending rate to achieve the “optimal” bandwidth usage depends
on the application reliability semantics.

B. Pragmatic General Multicast (PGM) Protocol

PGM is a single-sender mullicast protocol. PGM provides
a reliable service by using NAK-based retransmission requests.
The use of feedback suppression at PGM network elements im-
proves the scalability of the protocol. The feedback suppression
technique allows PGM network elements to only forward the
first NAK to arrive at the router serving as the rool of a sub-
tree for each missing or corrupted datagram [4]. An example
data/feedback packet flow in PGM is shown in Figure 3.

NCF
ODATA

ATAF 2
S == Router:.
NAK N T R S

Fig. 3. PGM Multicast Protocol

Each original dala packet (odata) sent from the PGM sender
is replicated at each network element (router) and forwarded (o
each of the receivers in a group. If a receiver does not receive
odata, sends a NAK upstream. When the upstream router re-
ceives a NAK, it sends an NCF packet to the receiver indicating
the reception of the NAK,, and forwards only one NAK among
all NAKSs sent from different receivers in the same subtree for
each of the [ost/corrupled packets. Eventually, the sender will
receive the NAK, and repair of the data (rdata) is transmitted
only to the receivers who requesied the retransmission.

C. Pgmicc

One method of adjusting the sending rate at the PGM sender
is to pace the sender according (o the “slowest”™ PGM receiver.
This slowest receiver can change at any lime since receivers are
continuously joining and leaving the multicast group, and bot-
tlenecks vary over time. Pgmcc continuously paces the sending
rate according to the receiver with the worst throughput, which
serves as the group representative. This receiver is called the
“acker.”

A tight control loop is run between the acker and the sender.
Only the acker sends ACKs 1o the sender 1o adjust the sender
transmission window and token bucket. Other receivers may
send NAKs when they lose packets. Both the loss rate and the
round trip time (RTT) are needed to calculate the throughput of
each of the receiver. This information is carried in both NAK
and ACK packets, and the sender uses the throughput equation
as specified in [1] to compute the throughput of each receiver.
The acker is switched from one receiver to another if a receiver
with a Iower throughput is found. An example of acker swilch-
ing is illustrated in Figure 4.

currenl
ackcr

300kb!s .

\',-“j[]kbfs

r ot e .-

Router

?
() ={Rouer”

500xb/s

1000kb/s

\
newly joined receiver whose

throughput T(I) < T(J)

Fig. 4. Acker sclection

500kb/s

A window based congestion control scheme similar to that
used by TCP is run between the acker and the sender. In the
scheme specified in [1], the sender maintains two state variables:
a window W, and a token count T'. W represents the number
of packets in flight, while T is used to regulate the generation
of data packets. One token is needed and consumed in order to
transmit one data packet. Initially, both W and T are initialized
to one. The values of W and T are updated with every ACK,
NAK, timeout, and packet transmission [1].

ITI. FEEDBACK AGGREGATION

In this section, we illustrate the effect of feedback aggregation
on pgmee. Due to the suppression of PGM NAKSs conlaining
RTT and loss rate information needed by the pgmec sender o se-
lect the acker, incorrect acker switches may occur in some cases.
An example is shown in Figure 5, where one PGM session runs
pgmecc at the sender and each of the six receivers. There are
three PGM network elements, and all the links in this topol-
ogy have the same bandwidth and delay. Among the six PGM
receivers, we are interested in receiver 1 (PR1) and receiver 2
(PR2). PRI is closer to the sender and has a lower loss rate;

Feedback Aggregation

60) 1 1 1 I 1 1 1]
g "dala" -
£ 50 - "ack" -7
i o "nak1" or
. . -_— | -4]
Router o 40 a/n ert’ @
I 2 AcKBre" x
E 30 - ~Yackerd" A
25% loss £ JJA- *
@ T
131 20 - -
5 il
®
S 10 -
[/2]
Al links are. 10Mb/s with Sms dela 0 PP ——
e Y _ 0 5 10 15 20 25 30 35 40 45 50
Fig. 5. Scenario Io iltustrate the effect of feedback aggregation on ACKer se- time (second)

leclion .
Fig. 7. Simulaticn resulls for feedback aggregation

PR2 is furth from the sender and exhibils a higher | . . .
rate ngrha:rai\;‘:jf:lilrignal 5% loss :);l:r P‘;:ll 115 @ MEher 1058 one possibly sent from PR4 is suppressed. Thus, the acker is

swilched back to PR4 again at the 8th second. The sender
swilches the acker between PR1 and PR4 a number of times.
Unnecessary acker swilches occur between PR1 and PR4 al-

Suppose the PGM sender begins to send data to all its re-
ceivers, and both PR1 and PR2 lose packet number 5. Due to the
shorter delay to PR1, the router closest to the sender will receive N
the NAK F rc}; m PRI before receiving one from PR2. Hence, the though the acker should (on a larger time scale) always be PR4
router forwards the NAK sent from PRI to the sender and, the which has a higher loss rate and higher RTT. Thus the lime scale

NAK sent from PR2 is suppressed. Since pgmce needs the infor- of pgmce may be oo fine, and coarser time scales may increase

mation of loss rate and RTT carried in NAK packets to perform stability.
acker swilching, the sender may select PR1 as the acker instead IV. PaMcC FAIRNESS DYNAMICS
of PR2 at certain instances, even though PR2 clearly has lower .]] .
In this section, we simulate pgmcc in more complex con-
throughput.

figurations. The objective of our experiments is to determine
whether pgmec remains TCP friendly in realistic scenarios more
similar to the Internet,

To verify that this scenario occurs, we stmulated a topology
similar to Figure 3, which is shown in Figure 6. The only differ-
ence is that we simplify the scenario by including only 4 PGM
receivers and two neiwork elements so that the simulation is PRS
easy to trace and analyze. The simulation is run for 50 seconds. PS

’ WV

m.1 ruulc: moles

Fig. 6. Simulaiicn lopology 1o examine feedback aggregalion

We plot the sequence numbers and acker switches in Figure 7. PRI P {2 PR3
In the figure, “data™ is sent from the sender to the receivers, Fig. 8. Simulation topology
“ack” is the acknowledgment sent from the acker upon receiving
a packet, "nakl" is the NAK sent from PRI, and “nak4” is the Figure 8 shows the simulation topology which includes 22
NAK sent from PR4. “Acker]” shows that the current acker is source nodes (s*) and 22 destination nodes (d*). The link be-
PR at the specified time and “acker2” and “acker4” denote PR2 tween each node and router has a bandwidth of 150 kbps with
and PR4 are the ackers respectlively. I ms delay. The link bandwidth and link delay between routers

From the simulation results, we can see that PR2 is selected are specified in Table I. 22 TCP flows run between each pair
as the acker at the beginning of the simulation. About 4 seconds of source and destination nodes. TCP NewReno is used be-
later, the sender receives a NAK from PR4, and it switches the cause NewReno and SACK are being deployed in the majority
current acker from PR2 o PR4. The acker is switched again of web servers to provide better congestion control compared to
to PRI because the sender receives a NAK from PRI, and the other TCP versions [5). We investigate the performance of the

link5

TCP flow from S4 (o D4, which runs across the same links and
nodes as the PGM receiver with the longest RTT. One UDP flow
sending Pareto traffic runs acrass “Link 47 with a 500 ms on/off
interval. All the routers use simple drop tail queues with 120
packet slots each. The PGM sender and receivers are located in
the nodes shown in Figure 8§ and labeled “PS"™ and “PR*™ All
the simulations were run for 900 seconds.

In each of the following experiments, we measure the goodput
(as defined in [6]) to show bandwidth achieved at the receiver
excluding duplicate packets. In all the experiments, the goodput
for TCP flows from S7 to D7, from 511 to D11, and from 521
to D21 are almost 2/3 of the link bandwidth because the RTT of
each of them is fairly short [7].

A. Experiment I: Highly Congested Network

In this experiment, we use link bandwidths and delays as
specified in Table I. The throughput (gaodput) of the PGM ses-
sion and the TCP session from S4 10 D4 is shown in Figure 9,
and the size of the congestion window for both PGM and TCP
is shown in Figure 10,

1PGM/TCP(src4 - dstd)

350 T T 7 T T T I :
z "pgmdaia’ ==
g s0r pomdaty; === g
S B e pgmnak” o
2 250 wE "mgmacker" +
3 e “lepdata” -+)
'g 200 !f"_ "tcpack“
2 150 [o
8 * e
£ 100 -} L |
= '}" n:J:" =
8 50 i
v 'l Latrman

A T 1]] 1] !

oL
0 100 200 300 400 500 600 700 800 900
lime (second)

Fig. 9. POM/TCP throughput in highly congested nebwvork

PGM cc_window && TCP cc_window
18 I I I I I I I i
16 ‘ ‘pgmcewin’ ——

"tepwin® ----—

window size {packet)
=
I

B —
N -
AT
LI
4
——‘
L
LY
]
L
L.
ek
]
\h
\-
M
L
\
bt
.
———
-
I~ 1

0 100 200 300 400 500 600 700 800 900
time (second)

Fig. 10. PGMfTCP sender congestion window in highly congested network

Figure 9 shows that for the first (about) 50 seconds of the sim-
ulation, PGM has a much higher throughput than the TCP flow.
After 50 seconds, the slopes of the PGM flow and the TCP flow
are similar. Both of the Aows have low throughput. This reason

for this observation becomes obvious from the congestion win-
dows for both PGM and TCP flows shown in Figure 10. The
PGM sender window increases only in the first 50 seconds of
the simulation. The size of the PGM sender window drops o
one several times in the first 100 seconds, and it remains one
till the end of the simulation. On the other hand, the congestion
window at the TCP sender increases slowly due (o the slow start
at the beginning, but the TCP sender is able to send more data
afterwards compared (o the PGM sender due to a larger window
throughout the rest of the simulation.

We first trace how the ackers are switched in this experi-
ment. From the pgmcc implementation, the PGM sender always
chooses the receiver who is closest to it as the acker at the be-
ginning of the simulation (since it is the first receiver it receives
feedback from). Hence, PR1 is elected as the acker at the begin-
ning. Later, several packets are dropped at router 4 causing PR4
and PR35 to send NAKSs for the same lost packets. The NAKs
from PRS are suppressed and only the NAKs sent from PR4 are
forwarded o the sender. Hence, the acker is switched from PRI
to PR4 due to the higher [oss rate of PR4 over PR1 perceived
by the PGM sender. Finally, more packets are dropped at router
3 causing PRS 1o send NAKSs for the lost packets, so the last
acker switch moves the acker from PR4 to PRS since PR3 has
the longest RTT and the highest loss rate. The receiving rate at
each PGM receiver is shown in the first line (labeled “Highly
Congested™) in Table 11.

sequence number (packet)
mn
4]

o 1 1 1

100 200 300 460 500 600 700 800 900
time (second)

Fig. 11. PGM odatafack sentfreceived at the sender in congesied network

We also investigale why initial acker swilches cause steep in-
crease of the window at the PGM sender. Figure 11 illustrates
the time that data packets (represented by the diamond shape)
are sent and the acks are received by the PGM sender in this ex-
periment. Each ack (sent from the current acker) is represented
by a plus sign in the figure. The packet number (modulo 50 to
make the figure more readable) is shown on the y-axis. At (he
beginning of the simulation, PRI is selected as the acker be-
cause it is closest to the sender. After sending packet number
173, the acker switched from PR1 to PR4 at time 50.222 sec-
ond (the overlapped diamond and plus sign in Figure 11 at time
76.9 seconds indicates the acker switch). Because the RTT of
PR4 is much longer than PRI, it takes longer for PR4 (o receive
data packets sent from the sender than it does for PR1. More-
over, each data packet is marked with the current acker address

TABLE I
LINK BANDWIDTHS AND DELAYS BETWEEN ROUTERS
| Link | Link0 | Link 1 Link2 | Link3 Link4 | Link5 |
Bandwidth (kbps) | 50 100 50 150 150 50
Delay (ms) 20 10 5 5 5 10
TABLE I
RECEIVING RATE OF EACH PGM RECEIVER
Experiment | PRI PR2 PR3 | PR4 PR5
Highly Congested 100% 100% 100% 97% 92.5%
Medium Congestion | 100% 100% 99.48% 100% 97.14%
Uncongested 100% 99.9% 98.39% 99.9% 98.03%

in pgmcce. Hence, even though an acker switch occurs early, the
previous acker (PR1) continues sending ACKs to the sender un-
til reception of packet number 173. As a result, the new acker
(PR4) only sends ACKs after the reception of packel number
174. In this experiment, PR4 began sending ACKs after 76.9292
seconds even though the acker switch occurred at Lime 50.222
seconds.

There are (wo conseguences of this behavior. First, when an
acker switch occurs, 1t means there is a receiver with a lower
throughput than the current acker. However, as discussed above,
the previous acker keeps on sending ACKSs till the packet num-
ber is equal to the trail of the sender window at the time of the
acker switch. For each ACK received at the sender side, the
sender increases the token count T by one and increases the
window accordingly. Thus, more data packets are sent by the
sender. This leads to the second consequence which is that the
network becomes even more congested. We observed the same
behavior when the acker switched from PR4 1o PRS.

The delay of sending ACKs from the new acker observed in
this experiment is one of the causes of the sudden drop of the
window size to one. Because pgpmcc uses a fixed timeout in-
terval to delect congestion, if the sender does not receive an
ACK from the acker within the timeout time specified, it drops
the window size W to one and decreases the token count T to
% [1]. Revisiting Figure 11, we see that the distance between
the last overlapped cross and diamond at time 76.9 and the first
non-overlapping cross indicates the lime that the sender waits
for the ACK for packet number 174 from the new acker (PR4).
If the distance is longer than the (imeout interval, which is true
in this experiment, one or more timeouts occur, degrading PGM
performance.

Another reason for the sudden drop of the window size to one
is that the RTT of the current acker itself is sometimes simply
longer than the timeout interval. In this case, the PGM sender
will never be able to receive an ACK within the timeout lime and
will keep timing out, as shown in Figure 10. This problem can
be remedied by implementing a TCP-like retransmission time-
out determination algorithm.

in terms of the poodput, the goodput for each of the PGM
receivers ranges from 3.95 to 4.26 kbps and the goodput for TCP
receiver is 1,39 kbps. It is not surprising that goodput for both
PGM and TCP flows is quile low because the links are congested

and shared among many TCP and UDP flows.

B. Experiment II: Medium Congestion

In this section, we keep all simulation parameters unchanged
except that we increase the bandwidth of the links between
routers, Many experiments were run with bottleneck link band-
widths ranging between 2.5 and 3.5 times the original band-
widths shown in Table I. The results are similar, so we only
discuss the results using bandwidth of 2.5 times, and 3.5 times
the original bandwidih.

The throughput of both PGM and TCP Hows and their win-
dows sizes are shown in Figures 12 and 13 respectively. The
receiving rate of each PGM receiver is shown in the second line
of Table I

We observe similar behavior o Figure 9 in Figure 12(a).
Fewer timeouts occur (shown in Figure 13(h) in this experiment
compared to he highly congested network in the previous sub-
section. This is because we have increased the link bandwidths,
so the time it takes for transmission of ACKs from the acker to
the sender is shorier than that in the previous setting. However,
the timeouts are still frequent, cansing the window 1o drop to |
because the RTT of PRS is greater than the PGM sender time-
out interval. The throughput of the TCP flow, on the other hand,
is better than the one in experiment I and has a higher slope.
In terms of the goodput, the goodput of PGM receivers ranges
from 4.77 to 4.91 kbps, and goodput of the TCP receiver is 4.97
kbps.

Figure 12(b) may appear different at first, but it is similar to
Figure 12(a) if we had run the simulation longer. The goodput
of each of the PGM receivers ranges between 22 and 22.4 kbps,
and that of the TCP receiver is 7.24 kbps. The reason for the
higher goodput for PGM receivers, in addition to the increase
of the bandwidth, is that the acker was switched from PR3 to
PR35 several times. As discussed above, acker switches take lime
and the sender window is increased meanwhile. Further, the
two different branches have different throughputs. This effect is
clearly shown in Figure 13(b).

By increasing the bottleneck link bandwidth, the throughput
of both the PGM and TCP flows increases. From this set of
experiments, we conclude that the PGM flow outperforms the
TCP Aow during initial acker switching, but the TCP flow has a
higher throughput if the timeout interval at the sender does not

1PGM/TCP(src4 ~ dst4)

PGM cc_window && TCP cc_window

600 ——
= "pgmdala" _'J_(:_.""‘
% 500 - "Pgmack_'f;-'——. i
3 "Pgmna}q" I
T: 400 lrpqchker: + _
8 __.‘“_,.{deala“ -----

5 or /TE(//’:
o 1-"'%. I
8 200F et .
c - =
3 # o
g 100 i%; &~ |
W L
0 .'_:',-' 1 1 1 1 1 | i .
0 100 200 300 400 500 600 700 800 900
time (second)

{2) 2.5 x Congesled

1PGM/TCP(srcd ~ dstd)

1800 r : ———r
T 1600 - g d-——-*-ati,,] i
E pgmack” --—-——
S 1400 o pamack - |
% 1200 - ,f "pglmaCker:' + N
3 "tcpdata” --- -
-E 1000 B ’/;ér “leaCk“ __________ -
o] 800 | Ja{j -
8 e00F -]
= s -

S 400} # j— i

g & U

0 200 [o7 e i
0 HF-"""I-' 1 1 [| | |)

6 100 200 300 400 500 600 700 800 900
time (second)

(b) 3.5 X Congesled

Fig. 12. PGM/TCP throughput with mcdium congestion

adapt to the increase of the acker RTT.

C. Experiment HI: Uncongested Network

In this section, we retain all the parameter values of previous
experiments but we increase the bandwidths of the links between
routers. Many experiments were run with various bandwidths,
but, since the results are similar, and we only show the results us-
ing bandwidths 10 times, and 80 times the original bandwidths
in Table I. The throughput of both PGM and TCP flows and
their windows sizes are shown in Figure 14 and Fipure 15.

From the results in this set of experiments, we find (hat the
acker switches back and forth between PR3 and PRS5 due to the
closeness of the throughputs of PR3 and PRS (the receiving rate
for each of the PGM receivers is shown in the third line (labeled
“Uncongested’’) in Table IT}). Feedback suppression does not
cause problems here because PR3 and PR35 lose different pack-
ets. As expected, the PGM sender window continues to increase
some time after acker swilches. In terms of goodput, the good-
put for each of the PGM receivers ranges from 74.15 to 76.56
kbps, and for the TCP receivers it is around 7.8 kbps in both

20 I I 1 I [I I I
18 "pgmeewin' ——
E._ 16 | | lepwin® ----- .
8 141 Y A 1 i
AL A A B -
& Wwh [I i i
® IR R T
2 BT: P RVARE AR
3 N A A (A FAY
£ 4 b TSy L
’TT v vifo ¥
25 / - 1 L
0] 1 1 1 1 1] 1
0 100 200 300 400 500 600 700 800 900
time (second)
(a) 2.5 x Congested
PGM cc_window && TCP cc_window
45 I I T I T I I T
a0 | "pgmeewin' ——
= 35 L lcpwin® ----- 1
S
E 30 F / 1 -
ﬁ 25 [~ /l T
-g 20 / / : i
o - if-] ,."'E -
g 157 / ,r":'/| A
E WEA A A4 S| A7 g
l {) ,-"I J': A _." l-.. y e 1
5 T! M AT LA -
o 1 1 1 T

0 100 200 300 400 500 600 700 8OO 900
lime {second)

{b} 3.5 x Congested

Fig. 13, PGM/TCP scader windaw size with medium congestion

Figure 14(a) and (b).

The reason why PGM oulperforms TCP appears to be the se-
lection of PR3 as the acker throughput most of the simulation.
Both the TCP receiver and PGM receiver PRS are connected o
router 6. PRY is the acker for only 173 seconds while PR3 is the
acker for 736 seconds of the simulation. PR3 has a short RTT
and reasonable loss rate. Therefore, even though increasing the
link bandwidth will increases the throughput of both PGM and
TCP flows, the PGM flow outperforms the TCP flow in this case.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the fairness and dynamics
of the pgmce single-rate multicast congestion control protocol.
Our simulation results show that a pgmcc flow initially sends
more than a competing TCP flow due 1o the rapid opening of the
PGM sender window between initial acker switches. If the acker
selection process stabilizes and a PGM receiver with a very long
RTT is selected to be the acker, timeouts severely degrade the
performance of the PGM flow. A TCP-like retransmission lime-
out compulalion mechanism can remedy this problem. With the

1PGM/TCP(src4 ~ dstd)

7000 ' ! 1 T T T T T
g i "ngmdala" —
% 6000 Ilpgmactrl.p;?!
[0 B "pgmna " - |
£ 5000 tporaackags® r
E ||lcp a“ ----- 1
5 ol MEPack” -
2 3000 |) _
3
5 2000 -) _
=
g 1000 F _]
W ST e

0 ‘fi‘f—-&;-_r--—--l-—-- | I I I '

0 100 2060 300 400 500 600 700 800 900
time (second)

(a) 10 x Congested

1PGM/TCP(src4 ~ dstd)
6000] I 1 1 1 I I] j

“pgmdata”
llpgmackn T—

5000

4000

3000

2000

1000

sequance number {packet)

0
0 100 200 300 400 500 600 700 800 900
time {second)

(b) 80 x Congested

Fig. 14, TGM/TCP Ibroughpul in an uncongesied network

use of a limeout interval selected according to the acker RTT,
the PGM sender can distinguish between sttuations of real con-
gestion and late ACKSs received from an acker with a long RTT.
In an uncongested network, the PGM flow may outperform a
competing TCP fow if frequent acker switches occur between
ackers of different throughputs.

We plan to examine various application reliability semantics
1o see how the pgmece scheme fits in the unreliable (or not fully
reliable) multicast protocol context. In [1], the author states
that the pgpmcc can be safely deployed with both reliable and
unreliable multicast applications. The PGM multicast protocol
provides reliability in the transport layer as specified in [3] and
illustrated in Figure 3. On examining the ns pgmce implemen-
tation, we find that if a PGM receiver lost a data packel, it only
sends a NAK back to the sender once. If the NAK get lost or
corrupted before it gels to the sender or if the NCF sent 1o ac-
knowledge the NAK reception is lost or corrupted before it gets
to the receiver, the receiver which originally sent the NAK will
wail for a retransmission timecul. Then, the receiver resched-
ules the retransmission timeout up to ten times waiting for the

PGM cc_window && TCFP cc_window

35 [I [I 1 I I I
| "pgmcewing f-— |
- 30 : “epwir .'L"'
a1] . !
= 25 | ' { W? flr
o nog | /
g i / X i
s 20/ i
N I I Ir' i f I ‘ T
5 g5l M Al ‘f A
z SR VLT T
A T A1
T 10 ., L" | / (!-“l a7 / S /el
£ lﬂ Hhr { ' 7 I‘I :l": s 1l ' : J“'III'
= AT ﬁl' ; [! i gl
SN Yy R E h
0 r F '1 1 1 ;!F I“' : 1 ,I!f
0 100 200 300 400 500 600 700 800 900
time (second)
(a) [0 x Cangesled
PGM cc_window && TCP cc_window
30 I [I I { I I I
]‘, mcewin' ——
= 25 i tcpwin® ---- .
2 iy b
O
L1i] {
k=3 ;
Q
N
L]
=
[=]
°
=
=

0 100 200 300 400 500 600 700 800 900
time (second)

(b) 80 x Conopgested

Fig. 15. PGM/TCP sender window size in an uncongested network

repair, instead of resending the NAK. If, after rescheduling the
retransmission timeout for ten times, the repair is not received,
the receiver treats the packet as unrecoverable. This essentially
means that this flavor of PGM is not fully reliable. It is not
completely unreliable either because NAKSs are sent, and when
a receiver receives the repair from the sender, it does not check
whether the repair is needed or not (e.g., if the repair must be
received within a certain amount of lime and it is useless other-
wise). We plan to experiment with various reliability semantics,
and examine their effect on the pgmce congestion control algo-
rithm, especially on acker selection with insufficient NAKSs.

ACKNOWLEDGMENTS

The authors would like to thank Gianluca Tannaccone and
Luigi Rizzo for providing us with their pgmec implementation
and their help with configuring it.

REFERENCES

[1] L Rizzo, “pgmcc: a icp-lhendly single-rate multicast congestion con-
wol scheme,” in Proceedings of the ACM SIGCOMM. August 2000,
hetp:#wwosicLunipiit/ luigi.

2l

(3]
[4]
[5]

(61
(7

L. Rizza, L. Vicisano, M. Handley, and G. lannaccone, “PGMCC single
rale mullicast congestion control: Protocol specification,” Iolernet Drfi,
Internet Enginecring Task Force, Feb. 2001, Work in progress.

D. Farinacei, A. Lin, T. Speakman, and A. Tweedly, “PGM reliable trans-
port protocol specificalion,” Iniemel draft, March 2000, Work in progress.
K. Miller, “Muliicast networking and applications,” Addison Wesley Long-
man, Inc., 1999,

K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno,
and SACK TCP,” in ACM Computer Communication Review, July 1996,
vol. 26, pp. 5-21, [ip/#[tp.ce.lbl gov/papers/sacks.ps.Z.

S. Floyd and K. Fall, “Promaung the use of end-ta-end congestion control
in the intemel,” JEEE/ACM Transactions on Networking, August 1999,

J. Fadhye, V. Firoiu, D. Towsley, and J. Kurose, “Moldeling TCP
throughput: A simple madel and ils empirical validation,” in Proceed-
ings of the ACM SIGCOMM, Sepiember 1998, vol. 28, pp. 303-314,
hup:figain.cs.umass.edw/.

	Dynamics of the "pgmcc" Multicast Congestion Control Protocol
	Report Number:
	

	tmp.1307986960.pdf.7wrHe

