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Abstract

Background: A wide range of bacteria species are known to communicate through the so called quorum sensing

(QS) mechanism by means of which they produce a small molecule that can freely diffuse in the environment and in

the cells. Upon reaching a threshold concentration, the signalling molecule activates the QS-controlled genes that

promote phenotypic changes. This mechanism, for its simplicity, has become the model system for studying the

emergence of a global response in prokaryotic cells. Yet, how cells precisely measure the signal concentration and act

coordinately, despite the presence of fluctuations that unavoidably affects cell regulation and signalling, remains

unclear.

Results: We propose a model for the QS signalling mechanism in Vibrio fischeri based on the synthetic strains lux01

and lux02. Our approach takes into account the key regulatory interactions between LuxR and LuxI, the autoinducer

transport, the cellular growth and the division dynamics. By using both deterministic and stochastic models, we

analyze the response and dynamics at the single-cell level and compare them to the global response at the

population level. Our results show how fluctuations interfere with the synchronization of the cell activation and lead

to a bimodal phenotypic distribution. In this context, we introduce the concept of precision in order to characterize

the reliability of the QS communication process in the colony. We show that increasing the noise in the expression of

LuxR helps cells to get activated at lower autoinducer concentrations but, at the same time, slows down the global

response. The precision of the QS switch under non-stationary conditions decreases with noise, while at steady-state

it is independent of the noise value.

Conclusions: Our in silico experiments show that the response of the LuxR/LuxI system depends on the interplay

between non-stationary and stochastic effects and that the burst size of the transcription/translation noise at the level

of LuxR controls the phenotypic variability of the population. These results, together with recent experimental

evidences on LuxR regulation in wild-type species, suggest that bacteria have evolved mechanisms to regulate the

intensity of those fluctuations.
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Background
Bacteria, long thought having a solitary existence, were

found to communicate with one another by sending

and receiving chemical messages [1]. Their communica-

tion mechanism results in the ability to synchronize the

activity of the colony as a whole. The latter leads to a

coordinated behaviour that in some cases resembles that

of multicellular organisms, e.g. the so-called community
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effect during development [2]. Thus, by means of the quo-

rum sensing (QS) mechanism, cells produce, export, and

import signalling molecules (autoinducer). As the colony

grows, more cells produce and export autoinducer, leading

to an increasing concentration of the signalling molecule

in the environment and in the cells. Upon reaching a con-

centration threshold, the autoinducer activates the expres-

sion of QS-controlled genes therefore coordinating the

cells in a density-dependentmanner. Importantly, QS con-

trols a number of relevant phenotypic changes in bacteria

as for example the virulence in S. aureus [3]. In addition, it

has become a model system for studying the emergence of

coordinated behaviour in communicating cells. All in all,
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QS has opened a research field with promising technolog-

ical applications [4], as for example, the environmentally

controlled invasion of cancer cells [5].

The QS systems in gram-negative bacteria share a

core network architecture. In this regard, a characteristic

model system is the LuxR/LuxI regulatory network inVib-

rio fischeri [6]. LuxR protein is an autoinducer-dependent

activator of the lux operon that drives the autocatalytic

expression of luxR and of the autoinducer synthase, luxI,

together with that of the genes responsible for the pro-

duction of bioluminescence. The up-regulation of luxI

increases the production of autoinducer molecules that in

turn activates further gene expression. The resulting posi-

tive feedback loop leads to a bistable switch-like behaviour

depending on the concentration of the autoinducer as

shown by in silico [7-9] and in vivo experiments [10,11].

Such switch-like behaviour has been observed at the pop-

ulation level by measuring the average gene expression

level. However, how individual cells behave remains puz-

zling. In fact, as observed in Vibrio harveyi [12], Vibrio

fischeri [13], Pseudomonas aeruginosa [14], and luxI/luxR-

GFP strains of E. coli [15], the cellular response to QS

signals seems to be highly heterogeneous at the level of

the distribution of both the population phenotype and the

response times of individual cells.

A number of studies have shown that noise plays an

important role in bistable systems [16-18]. Therefore, the

aforementioned heterogeneity may be caused by the ran-

dom fluctuations that unavoidably affect cell regulation

and signalling. This poses the intriguing question of how

cells achieve a coordinated response in the presence of

noise. Indeed, the QS mechanism may produce a robust

and synchronized behaviour at the level of the population

both experimentally [19] and theoretically [20]. However,

how this behaviour at the collective level arises from the

stochastic dynamics of individual cells is still an open

question. At the end, in the framework of QS, a collec-

tive response means a precise information exchange in

the colony. Consequently, how can a bacterial population

estimate its number of constituents precisely if such infor-

mation is fuzzy at the single cell level? Herein, we shed

light on this problem and investigate how noise affects the

QS transition both at the level of individual cells and at the

level of the cell population.

In the context of QS modelling, most research has

focused on the understanding of the intracellular circuit

[7-11,21-24], i.e. single cell studies, while few of them have

considered an ensemble of communicating cells [25-28].

Yet, so far no study has taken into account the coupling of

the signalling mechanism at the single cell and collective

levels by stochastic means together with realistic dynam-

ics of the proliferation process. In this work, we model the

QS mechanism by using both deterministic and stochas-

tic approaches and taking into account the key regulatory

interactions between LuxR and LuxI, the autoinducer

transport, the cellular growth and the division dynam-

ics. Our results indicate that the cell response is highly

heterogeneous and that noise in the gene expression of

luxR is the main factor that determines this variability.

Moreover, we show that the transition of the QS switch

near the critical concentration of autoinducer is very slow

compared to other characteristic temporal scales of the

process and that, as a consequence, the non-stationary

effects are crucial for setting a precise switch. As we show

further below, the dilution due to cell growth and division

is a key element required for an in-depth understanding

of the QS response dynamics. In addition, we demon-

strate that noise, depending on the cell density, can either

prevent or promote phenotypic changes indicating a ben-

eficial role played by stochasticity. Altogether, we find that

the precision of the QS switch for determining the num-

ber of cells in the colony is highly dynamic and context

dependent, which in turn favors adaptability.

Methods

Modelling of the LuxI/LuxR gene regulatory network

The regulatory interactions that control the wild-type lux

operon are more complex than first thought [29]. Those

include both positive and negative regulation of the luxR

gene depending on the concentration of the autoinducer

[30]. Simplified synthetic constructs, such as lux01 and

lux02 [10], retain the minimal luxI/luxR regulatory motif

and lack the structural genes responsible for light emis-

sion that may also play a regulatory role, e.g. luxD [31].

Still, these constructs reproduce the main features of the

wild-type operon as revealed by GFP tags reporting the

promoter activity [10]. In addition, lux01 and lux02 con-

structs allow to perform controlled experiments that have

shed light on the wild-type dynamics and its regulatory

interactions. Herein, we follow this approach and focus

on the lux01 and lux02 constructs as well characterized

examples of the behaviour of the wild-type operon. The

lux01 operon lacks the luxI gene and only gfp is tran-

scribed in that direction. On the other hand, the lux02

operon carries a luxI::gfp fusion. Accordingly, lux01 cells

cannot produce their own autoinducer and the induction

in that case is driven by adding exogenous autoinducer to

the medium. Figure 1 shows schematically the regulatory

interactions we consider in our model. The autoinducer

molecules (A) are produced due to the action of their

synthetase, LuxI, and bind to the cytoplasmic protein

LuxR (R) creating a complex (C2). The latter binds to

the promoter region activating both the transcription of

luxI::gfp (only gfp in the case of lux01) and luxR. Sig-

nalling molecules can diffuse passively in and out the cell

and contribute to increase the external concentration of

the autoinducer (Aext) that can be eventually modified

by an external influx of molecules (A∗) and a dilution
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Figure 1 Scheme of the LuxI/LuxR regulatory network. The LuxR

(R) protein activates the operon upon binding to autoinducer

molecules (A). The lux01 operon lacks the luxI gene and therefore cells

cannot produce their own autoinducer and exogenous signalling

molecules are needed to activate the expression of luxR and GFP [10].

On the other hand, the lux02 operon carries a luxI::gfp fusion and

allows for the production of autoinducer and self-induction (see text

for details).

protocol (see below). In our model we consider that sig-

nalling molecules degrade at the same rate whether they

are cytoplasmic or not. Finally, we consider a DNA dupli-

cation process. Such modelling scheme can be formally

written as a set of chemical reactions:

DNA
αRkR
−→ DNA + mRNAluxR

DNA
αIkI
−→ DNA + mRNAluxI::gfp

DNA · (luxR · A)2
kR

−→ DNA · (luxR · A)2 + mRNAluxR

DNA · (luxR · A)2
kI

−→ DNA · (luxR · A)2 + mRNAluxI::gfp

mRNAluxR
pR

−→ mRNAluxR + luxR

mRNAluxI::gfp
pI

−→ mRNAluxI::gfp + luxI :: gfp

luxI :: gfp
kA

−→ A + luxI :: gfp

luxR + A
k−
1 /Kd1
←→
k−
1

luxR · A

2 (luxR · A)
k−
2 /Kd2
←→
k−
2

(luxR · A)2

(luxR · A)2 + DNA
k−
lux

/Kdlux
←→
k−
lux

DNA · (luxR · A)2

A
D

←→
rD

Aext

A
dA

−→ ∅

Aext
dA

−→ ∅

mRNAluxR
dmR
−→ ∅

mRNAluxI::gfp
dmI
−→ ∅

luxR
dR

−→ ∅

luxI :: gfp
dI

−→ ∅

(luxR · A)2
dC2
−→ ∅

luxR · A
dC

−→ ∅

DNA
ln(2)/τ
−→ DNA + DNA

DNA · (luxR · A)2
ln(2)/τ
−→ DNA · (luxR · A)2 + DNA. (1)

As revealed by the set of reactions (1), we assume that

the regulatory complex (luxR · A)2 activates the transcrip-

tion of luxI and luxR in opposite directions upon binding

to the DNA. These reactions account for the main reg-

ulatory interactions of both lux01 and lux02 constructs.

Since lux01 lacks the luxI gene the autoinducer, A, can-

not be synthesized, i.e. kA = 0, and an exogenous supply

of the signalling molecule is required to induce the sys-

tem. The expression rates of luxI and luxR depend on the

initiation rate of transcription, the speed of elongation,

the length of the transcript, and the rate of translation

and postmodification into functional proteins. We take

into account the differences due to these intermediate

processes in an effective manner by using different tran-

scription/translation rates for the luxR and luxI::gfp genes.

Note that we assume that there are basal transcriptional

rates, αRkR and αIkI , even though the regulatory complex

(luxR · A)2 is not bound to the promoter region of the

DNA. Still, since αR,αI ≪ 1 (see parameter values below),

the maximum transcriptional rates take place when the

activator complex is bound.

Deterministic and stochastic approaches: cell growth and

division

The equations (1) lead to a Master equation description

that can be sampled exactly bymeans of the Gillespie algo-

rithm [32]. This approach is suitable for the characteriza-

tion of the system at the single cell level. Complementary

to this, if the number of molecules of the species is large

enough such that the fluctuations can be neglected, a set

of ordinary differential equations (ODEs) can be derived

from Eqs. (1) (see Additional file 1: Text S1). The ODEs

formalism is then appropriate to account for the behaviour

at the colony level since noise averages out in that case.

Herein we make use of both stochastic and deterministic

descriptions as follows. As for the deterministic model, we

consider that all cells share their cytoplasm in a single vol-

ume Vc,tot (Figure 2). Chemical species X inside the cell

are described by their concentration, cX , in Vc,tot . There-

fore, this model can only be used to study the dynamics of

species averaged over all the cells in the population. From

an experimental point of view, the population average can
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Figure 2 Scheme of the deterministic and stochastic modelling approaches. A: In the deterministic model, the population of cells is described

by a unique volume with average and continuous concentrations of all species, including the DNA carrying the QS network (small circles). Cellular

growth is also taken into account in this approach. B: In the stochastic model, cells are modelled as individual compartments that can grow and

divide and all molecular species are represented as discrete entities. In both cases, A and B, we assume that all species are well-stirred inside the

cells and in the medium. In order to maintain a constant cell density, as in the experiments we aim to model, we implement a dilution protocol. In

the deterministic model the dilution removes continuously cytoplasmic material in order to compensate the cell growth. In the stochastic model

individual cells are removed every time a new cell is born (see Additional file 2: Video S1).

be measured determining the average bulk fluorescence of

theGFP reporter of the cell culture bymeans of a fluorom-

eter or by averaging the fluorescence data obtained with a

flow cytometer.

We notice that our in silico experiments span up to

100 hours of cell culture growth in some cases (simu-

lated experimental time, not computational time). Thus,

regardless of the description, and in addition to the

dynamics of the regulatory network, we also need to take

into account the effects of cell growth. If cells are main-

tained in the exponential phase with doubling time τ

then the dynamics of the volume of the cell is Vc,tot(t) =

V0,tot2
t/τ . Where V0,tot = NV0, N being the number of

cells in the colony and V0 the volume of a single cell at

the beginning of the cell cycle. As a consequence, the cel-

lular growth introduces dilution terms, −cX
ln(2)

τ
, in the

r.h.s. of the ODEs of all species, with the exception of the

autoinducer in the medium Aext . On the other hand, cell

division events lead to the duplication of the genetic mate-

rial. The latter is taken into account by adding the term

+
ln(2)

τ

(

cDNA + cDNA·(luxR·A)2

)

to the ODE that describes

the concentration ofDNA. This term compensates exactly

for the cell growth dilution such that cDNA,tot = cDNA +

cDNA·(luxR·A)2
, i.e. the total concentration of DNA, is kept

constant.
In our simulations, as in the experiments we aim to

reproduce, the cell density is kept constant. This can be

achieved by means of an external dilution protocol (see

below) that compensates for cell proliferation. We then

keep the volume Vc,tot constant and define the external

volume, Vext , such that the total volume of the cell culture

reads Vtot = Vext + Vc,tot . Accordingly, the parameter r,

see equations (1), reads r = Vc,tot/Vext . We assume that

molecules are homogeneously distributed inside both the

cytoplasm and the external volume (i.e. spatial effects are

disregarded). Finally, the resulting ODEs are numerically

integrated.

In order to study the role of noise in a population of cells

communicating by QS, we build also a stochastic model

of a population of bacteria. In this case, each bacterium

is described as a single cell carrying a copy of the regula-

tory network. The ensemble of all the chemical reactions

in all cells, including the diffusion reaction, are treated as

one global system. We apply the Gillespie algorithm [32]

to compute the time of the next reaction, choose the reac-

tion channel from the list of all possible reactions and

update the number of molecules according to the reaction

stoichiometry. We model the system of cells as a global

stochastic system in order to simulate as exactly as pos-

sible the stochastic dynamics of all chemical species, in

particular that of autoinducer molecules. The noise in the

signalling molecule originates from different sources: ran-

domness in its synthesis by LuxI, fluctuations at the level

of the number of molecules of LuxI, and randomness in

the diffusion reaction of the autoinducer. The latter is par-

ticularly important since it leads to correlations between

cells as follows. An autoinducer molecule can diffuse out

of the cytoplasm of one cell into the medium, thereby

increasing the number of molecules in the external vol-

ume by one; this increase in the level of Aext changes the

probabilities of an autoinducer molecule to diffuse into

any other cell. Thus, all the cells are coupled through the

diffusion reaction.We note that while a possible optimiza-

tion of the algorithm relies on parallelizing the code such

that each cell evolves independently [25], this approxima-

tion is prone to introduce errors in the dynamics of the

signalling molecule because the aforementioned correla-

tions are neglected.

As mentioned above, cell growth introduces a dilution

of the molecules in a cell. We implement cell growth in

our stochastic model by allowing the volume of cell i to

change in time as,

Vc,i(t) = V02
t/τi ,
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where V0 is the volume of a cell at the beginning of the cell

cycle (same for all cells), τi is the duration of the cell cycle

of cell i, and t is referred to the precedent division event.

When t = τi the cell i has doubled its volume and a new

division takes place. At this time the internal clocks and

volumes of daughter cells are reset to zero and V0 respec-

tively. Moreover, when a cell divides, proteins, mRNAs

and signalling molecules are binomially distributed [33]

between daughter cells and one copy of the DNA is given

to each cell. We note that regulatory complexes bound to

the DNA are detached prior to the distribution between

daughter cells. As in the case of the deterministic model,

we assume that the cell density is maintained constant

during experiments due to a compensational external

efflux that wash away cells in the culture (see below). In

relation to the effect of the cell volume of individual cells

on the diffusion rate of the autoinducer, we note that in

this case,

ri(t) =
Vc,i(t)

Vtot −
∑N

j=1 Vc,j(t)
.

The duration of the cell cycle, τi, is different for each cell

and is set independently after a division according to the

following stochastic rule [34],

τi = λτ + (1 − λ) τ̃ ,

where τ and τ̃ denote, respectively, the deterministic and

stochastic components of the cell cycle duration, and λ ∈

[0, 1] is a parameter that weights their relative impor-

tance. The stochastic component accounts for the period

of time between events driven by a Poissonian process and

satisfies an exponential distribution,

ρ (τ̃ ) =
e−

τ̃
τ

τ
.

In this way, we allow variability from cell to cell in

regards of the duration of the cell cycle, yet setting a

minimum cell cycle duration, λτ . According to these defi-

nitions, the average duration and standard deviation of the

cell cycle are τ and (1 − λ) τ respectively.

Finally, we notice that in principle the Gillespie algo-

rithm needs to be adapted in order to take into account

the time-dependent cell volume. The propensity of a

second-order reaction at cell i at time t scales as pi(t) =

p0V0/Vc,i(t), where p0 stands for propensity of the reac-

tion at division time when Vc,i(0) = V0. The propensity

p0 are derived from the corresponding reaction rate, k,

by dividing the latter by the initial cell volume, p0 =

k/V0. In addition to the change in the propensities of

the reaction channels, the algorithm would also need to

be adapted to compute the time till next reaction [35].

However, in our case, since all reactions rates are faster

than the rate of variation of the cell volume, ∼ 1/τ , (see

parameter values below) then the volume increase is neg-

ligible during the time interval until the next reaction

takes place. Consequently, we can adiabatically eliminate

the volume growth dynamics and safely assume that the

volume-dependent propensities remain constant until the

next reaction occurs. Summarizing, at a given time t we

compute, as described above, the time-dependent propen-

sities based on the volume of the cell at that time and,

according to those, we determine the time at which the

next reaction takes place, t + △t, following the standard

Gillespie algorithm.

Gene expression noise: burst size

During translation mRNA molecules are translated into

proteins following a bursting dynamics [36-38]. The so-

called burst size, bX , is defined as the ratio between the

protein X production rate and the mRNA X degradation

rate. It has been shown that bX is directly related to the

intensity of gene expression noise [36,39]. Thus, for the

same average protein concentration, the larger bX is, the

more fluctuating expression dynamics is displayed by pro-

tein X. In our stochastic simulations we use the burst size

bX as a parameter to tune the noise intensity at the level

of luxI and luxR and study its effects. Unless explicitly

indicated otherwise, the bursting size in the stochastic

simulations is bR = bI = 20.

External dilution protocol

In controlled experimental setups it is advantageous to

keep the cell density constant. This is carried out bymeans

of an external dilution protocol that compensates for cell

growth. Experimentally, this is usually achieved by peri-

odic dilutions of the cell culture [10] or by a continuous

flow of liquid medium in a chemostat or in a microfluidic

device [40]. This procedure allows to measure the station-

ary concentration of the signalling molecule at a given

cell density and/or to estimate the threshold of the QS

collective response of a cell culture. Moreover, the exter-

nal dilution is also important in order to maintain cells

in the exponential growth phase and prevent depletion of

nutrients in the medium. Additionally, the levels of the

autoinducer can be controlled by adding/removing exoge-

nous signalling molecules in/from the culture buffer. We

implement those in our simulations as follows.

In the deterministic model, as shown in Figure 2, we

assume a unique cell with volume Vc,tot . Cell density is

controlled by a continuous efflux that removes cytoplasm

and culture medium at a rate that compensates exactly

for the cell growth, such that the volume Vc,tot remains

constant. Concurrently, a continuous influx of equal and

opposite rate brings fresh medium to the cell culture. In

our in silico stochastic experiments, the efflux is repro-

duced by removing molecules,Aext , from the medium and
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washing away cells by “deleting” a cell picked at random in

the population each time a new cell is born.

In our simulations, as in the experiments we aim to

reproduce, the exogenous autoinducer concentration cA∗

is the control parameter [10]. This means that the levels of

autoinducer are controlled by varying the concentration

of exogenous autoinducer in the dilution buffer (influx).

The influx of exogenous autoinducer molecules, together

with the efflux of culture medium, can be represented by

the following reaction,

Aext
γ

←→
γ cA∗Vtot

∅.

where γ = ln(2)/τ . That is, an efflux removes autoin-

ducer molecules from the external volume at a rate

γ and an influx introduces signalling molecules in the

external volume at a rate γ cA∗Vtot . In the determinis-

tic description, the last equation leads to an additional

term at the r.h.s. of the ODE for the concentration of

Aext :+γ
(

cA∗
Vtot
Vext

− cAext

)

. We notice that in our simula-

tions, as in experiments, Vtot/Vext ≃ 1. In the absence

of synthesis (e.g. lux01) and taking into account that the

degradation is slower than the diffusion and the influx

rate, it is easy to see that the concentration of autoin-

ducer, both inside and outside the cell, tends to cA∗ : the

desired control value of the autoinducer concentration

(see Additional file 3: Figure S1).

Parameters

The parameters used in our model are listed in Table 1.

When possible, parameter values are fixed or estimated by

using experimental measurements found in the literature.

The rest of the parameters are fitted to the experimental

data of [10] using the deterministic model to reproduce

the main characteristics of the response curves of the

lux01 operon: a difference of two orders of magnitude in

the level of expression of GFP between the low and the

Table 1 Parameters used in the deterministic and stochastic simulations

Parameter Description Value Reference

Kd1 dissociation constant of LuxR to A 100 nM [41]

k−1 unbinding rate of LuxR to A 10min−1 estimated

Kd2 dissociation constant of LuxR · AI dimerization 20 nM fitted

K−
2 dissociation rate of dimer (LuxR · AI)2 1min−1 estimated

kA synthesis rate of A by LuxI 0.04min−1 fitted

Kdlux dissociation constant of (LuxR · AI)2 to the lux promoter 200 nM fitted

k−lux dissociation rate of (LuxR · AI)2 to the lux promoter 10min−1 estimated

b burst size 20 [38]

kR transcription rate of luxR 200/b min−1 fitted

kI transcription rate of luxI 50/b min−1 fitted

pR translation rate of luxRmRNA b dmR min−1

pI translation rate of luxImRNA b dmI min−1

αR ratio between unactivated and activated rate of expression of luxR 0.001 fitted

αI ratio between unactivated and activated rate of expression of luxI 0.01 fitted

dA degradation rate of A (same inside and outside the cell) 0.001min−1 [42]

dC2 degradation rate of (LuxR · AI)2 0.002min−1 estimated

dC degradation rate of LuxR · AI 0.002min−1 estimated

dR degradation rate of LuxR 0.002min−1 estimated

dI degradation rate of LuxI 0.01min−1 estimated

dmR degradation rate of luxRmRNA 0.347min−1 [43]

dmI degradation rate of luxImRNA 0.347min−1 [43]

D effective diffusion rate of A through the cell membrane 10min−1 [44]

τ cell cycle duration (doubling time) in RM/succinate at 30 C 45min [10]

λ relative weight between the det./sto. components of the cell cycle 0.8 [33,45]

V0 cell volume at the beginning of cell cycle 1.5 µm3 [46]

Vtot total cell culture volume 2 · 10−4 µl
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high states, a hysteresis effect in the range of autoinducer

concentrations 0 < cA∗ < 15 nM, and a time to reach

steady-state at full induction (cA∗ = 100 nM) shorter than

6 hours. In regards of the cell density, based on an estimate

of the CFU/mL for an average OD of 0.5 for E. coli cells,

we take a typical value of cN = 5 · 108 cells/mL. Moreover,

in order to keep the computational time within reasonable

limits, we choose a system size of N = 100 cells. After

fixing the number of cells and the cell density, the total

and external volumes are then respectively derived from

the relations cN = N/Vtot and Vext = Vtot − NV0, where

Vtot = 2 ·10−4 µL. Finally, for the case of the lux02 operon

there is one additional parameter that needs to be cali-

brated: the synthesis rate of the autoinducer, kA. The latter

is adjusted such that the lower bound of the hysteresis

region extends up to cA∗ = 0 as experimentally reported.

First passage time analysis

The mean first passage time at a given autoinducer con-

centration quantifies the average time that a cell takes to

get activated or deactivated. For computing the first pas-

sage time in transitions, from low (high) to high (low)

state, we take a single cell at the low (high) state and fol-

low its dynamics until the GFP expression level reaches

the high (low) state. We point out that the maximum GFP

concentration refers to that of the deterministic simula-

tions. In order to get enough statistics, we repeat this

procedure, departing from the same initial condition, 103

times for each concentration of autoinducer.

Results

The deterministic model reproduces the experimental

observations at the population level

The chemical kinetics formalism leads to a set of ODEs

that describes the population average dynamics in terms

of the concentration of the different species considered

in our model (see Additional file 1: Text S1). As in some

experiments [10], we assume that the cell culture grows in

an environment where the concentration of the external

autoinducer in the medium, cAext , is kept fixed and under

well-stirred conditions. In addition, we implement a dilu-

tion protocol that compensates for cell growth and main-

tains the cell density constant (see Methods). We notice

that in some experimental setups, e.g. [10], a periodic

dilution protocol is applied for keeping the cell density

constant; in our model, we keep the cell density con-

stant by means of a continuous influx and efflux of culture

medium, as in a chemostat or microfluidic device.

We use the deterministic simulations as a benchmark

of the regulatory interactions included in our model

and also to fit/estimate some parameters such that the

experimental data are reproduced (see [10]). Thus, by

integrating numerically the rate equations derived from

the population-averaged model, we compute the steady

state concentration (induction time 100 hours) of GFP

(lux01) and LuxI::GFP (lux02) as a function of cA∗ . The

steady-state induction curves for increasing and decreas-

ing autoinducer concentration of the lux01 and lux02

constructs are shown in Figure 3. We are able to repro-

duce the behaviour of the network at the steady-state, in

particular a region of bistability in the range of autoin-

ducer concentration 2 nM < cA∗ < 15 nM (lux01) and

0 nM < cA∗ < 15 nM (lux02). As shown by Williams et

al., the luxR regulation of the lux01 operon alone (posi-

tive feedback loop) is enough to yield a bistable response.

Moreover, expression of LuxI in the lux02 operon restores

the autoinduction loop and extends the lower bound

of the hysteresis range to zero concentration of exoge-

nous autoinducer as seen experimentally, indicating that

once the operon is fully activated and cells produce

Figure 3 Response curves to autoinducer induction in the population-average model. lux01 (A) and lux02 (B) operons. The normalized GFP

concentration is plotted as a function of the exogenous autoinducer concentration cA∗ : steady-state response for increasing (arrow-free upper blue

curve) and decreasing (arrow-free red curve) autoinducer concentration, response under 10 h induction time for increasing (blue curve with arrow)

autoinducer concentration, transient response after 2 hours of induction (lower blue curve) from initially non-induced cells,

decreasing-concentration trajectories (green curves) for cells weakly induced (2 hours) at cA∗ = 100 nM, 75 nM and 50 nM, and

decreasing-concentration trajectories (red curve with arrow) for cells fully induced (10 hours) at cA∗ = 100 nM. The decreasing-concentration

trajectories reduce the value of cA∗ hourly by 25% (similar to the experiments in [10]). The gray-shaded region between the increasing and

decreasing steady-state curves reveals bistability in the range 2 nM < cA∗ < 15 nM (lux01) and 0 nM < cA∗ < 15 nM (lux02).
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their own autoinducer that increases the stability of the

high state.

Further simulations to check if the dynamics of our

model is compatible with the experimental data refer to

the behaviour of the system under non-stationary induc-

tion conditions and to the serial dilution protocol of the

external medium [10]. As for the first, when cells are

induced for 10 h, we observe that the bistability region

increases (see Figure 3). As for the second, cells are par-

tially induced at a fixed autoinducer concentration for 2

hours and afterwards the external medium is changed

hourly to decrease the concentration of the autoinducer.

In this case, the transient response of the cells (Figure 3,

green curves) also reproduces the experimental observa-

tions. That is, from the point of view of the population

average, the deterministic model is not only capable of

reproducing the steady-state of the network but also its

dynamics. Moreover, in agreement with experiments (see

Figure S6 in [10]) our simulations reveal that the temporal

scale for reaching a steady-state is much larger than the

cell cycle duration. In order to clarify how noise and the

induction timemodifies the timing for the transition at the

single cell level we then perform stochastic simulations.

The stochastic simulations reveal the interplay between

non-stationary effects and noise

Cells are subjected to intrinsic noise at the level of the

mRNAs, regulatory proteins, i.e. LuxR and LuxI, and at

the level of signalling molecules. In order to analyze the

behaviour of individual cells and reveal how noise affects

the QS switch, we perform stochastic simulations of a

population of growing and dividing cells as described in

the Methods section (see Additional file 2: Video S1). The

transition of an individual cell from the low to the high

state, and the other way around, is intrinsically random

and depends, among others, on the levels of autoinducer.

Thus, inside a population some cells will jump while oth-

ers remain in their current state leading to a bimodal

phenotypic distribution. We compute the proportion of

cells that are below and above a threshold of GFP equal

to half-maximum GFP concentration. We consider the

distribution of cells to be bimodal when the proportion

of cells in either the low or the high state is below 90%

and according to this we define the range of autoinducer

concentration [ cA∗
b1
, cA∗

b2
] for which there is bimodality.

For low concentrations of autoinducer, cA∗ < cA∗
b1
, the

collective response of the cell population is unactivated,

and for high concentrations, cA∗ > cA∗
b2
, such response

activates most of the cells leading to a global response

of the colony. On the other hand, within the bimodality

range, the response is distributed between two subpopu-

lations, thus failing to achieve a global coordination in the

colony. In order to characterize this behaviour, we intro-

duce the concept of precision in the QS switch as the

inverse of the cA∗
concentration range for which the cells

response distribution (phenotypes), during an induction

experiment, is bimodal. That is, the larger the bimodal

range, the less precise the switch is in order to generate

a global response in the colony. In this regard, we point

out that the precision of the switch in a noise-free situa-

tion is infinite since all cells achieve global coordination

simultaneously.

Figure 4 shows, by means of a color density plot, the

probability of a cell to have a particular GFP expression

level after either 10 or 100 hours of induction as a func-

tion of cA∗ . In order to gather enough statistics, we average

our results over 10 different realizations (i.e. experiments).

For a large range of autoinducer concentrations, for both

the lux01 and for the lux02 operon, the distribution of

GFP expression after 10 h of induction is bimodal. As

shown, some cells of the colony are induced before the

critical concentration of the deterministic model at the

steady state (black line). Still, the concentration for which

more than 90% of the cells are induced requires up to

four times more autoinducer than under deterministic

conditions. Thus, on the one hand noise can help cells

to get induced at lower autoinducer concentrations but,

on the other hand, amplifies the non-stationary effects

for achieving global coordination. In order to clarify this

interplay between non-stationary and stochastic effects,

we perform the same simulations with a larger induction

time (100 h). As expected, the precision of the switch

increases (10-fold change) and cells achieve global coordi-

nation at (lux01) or before (lux02) the critical determin-

istic concentration. Note that in all cases noise induces a

significant variability in terms of the GFP expression lev-

els in the high state compared to that of the low state (see

also Figure 5). The variability introduced in the colony

response by the fluctuations with respect to the determin-

istic approach can also be observed in experiments under

weak inducing conditions where the autoinducer concen-

tration is periodically decreased (see Additional file 4:

Figure S2).

The heterogeneity in terms of the jumping statistics is

revealed in Figure 5 where we plot individual trajectories

for the lux01 operon as a function of time at cA∗ = 25 nM

over a period of 50 hours. Some cells become induced

after 3 hours, while others need ∼ 10 times more induc-

tion time to reach the high state. At this concentration

of autoinducer all cells have eventually reached the high

state after ∼ 30 hours of induction. Importantly, we do

not observe that cells jump back (see Discussion). That

is, while there is variability over the colony in regards

of the switching time, once the transition occurs the cell

remains in the new state that is sustained over generations

as seen in Figure 6. Therefore, over the typical timescale

of an experiment (10 to 50 hours), the behaviour of the QS

switch is highly dynamic and the precision of the switch is
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Figure 4 Cell response distribution to autoinducer induction in the stochastic model. Cell response probability after 10 hours (top: A, B) and

100 hours (middle: C, D) of induction at different autoinducer concentrations for the lux01 (left: A, C) and lux02 (right: B, D) operons in the stochastic

model. The distribution reveals the coexistence of two subpopulations with low and high GFP expression when the cells are induced at

intermediate autoinducer concentrations. The region of bistability (precision) is defined by the range of cA∗ for which the response is bimodal

according to the following criterion: the lower/upper limit of the bistable region (orange lines) is defined by the value of cA∗ for which 90% of the

cells are in the low/high state. The black line stands for the concentration of GFP (normalized) as a function of cA∗ in the deterministic model at the

steady state. After 10 hours of induction (top: A, B) most cells are still in a transient state if cA∗ < 70 nM. After 100 hours of induction (middle: C, D),

the bimodality region shrinks and the precision increases. The population average curves of the induction and dilution experiments in the stochastic

model (bottom: E, F, dashed lines) show that the intrinsic noise allows cells to jump to the high state inside the deterministic bistable region. On the

other hand, the transition from high to low follows the deterministic path thus indicating that the switching rate in this case is close to zero.

a transient quantity that crucially depends on the duration

of induction.

As expected the intrinsic noise decreases the preci-

sion of the QS switch with respect to the deterministic

case. Still, noise helps cells to become activated before

the critical concentration of a fluctuations-free system

under all induction conditions. Moreover, in steady-state

conditions the high state is globally achieved before the

critical deterministic concentration. This phenomenon is

recapitulated in Figure 4 (bottom) where we plot the pop-

ulation average response for the induction and dilution

experiments at steady-state (100 h induction) for both the

deterministic and stochastic models. Notice that the dilu-

tion curves of the stochastic model are similar to that

of the deterministic model; however, the average tran-

sition to the high state occurs at a lower autoinducer

concentration due to intrinsic fluctuations.

The features of the QS switch depends on the

transcriptional noise of LuxR

For the same concentration of the external autoinducer,

the stochastic dynamics of the regulatory network arises

from the noise at the level of LuxI and LuxR.We now ana-

lyze the individual contribution of those by modulating

the burst size of LuxR and LuxI, bR and bI respectively.

We notice that the burst size modulates the stochasticity

levels while maintaining the average protein copy num-

bers. Additional file 5: Figure S3 illustrates the effect of
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Figure 5 Individual cell trajectories for autoinducer induction in

the stochastic model. Individual cell trajectories (blue lines), cell

population average (orange line) and deterministic solution (red

dashed line) for an induction experiment at cA∗ = 25 nM for the lux01

operon in the stochastic model. Individual cell trajectories show the

heterogeneous distribution of cell jumping times. While some cells

achieve full induction of the operon before the deterministic case, the

global response of the population reaches steady-state at ∼ 30 hours,

slower than the deterministic solution.

changing the burst size by showing individual trajectories

of the chemical species obtained for large and small val-

ues of this quantity at low and high concentrations of the

external autoinducer. In this regard, insight about the acti-

vation process can be obtained by computing the mean

first passage time (MFPT) for transitions between the low

and the high state. Figure 7 shows this quantity as a func-

tion of cA∗ and for different values of the burst size of LuxR

and LuxI. For the sake of comparison, we also compute the

MFPT for the deterministic solution. We note that in that

case, the MFPT inside the bistable region is infinite, since

the deterministic system cannot spontaneously jump from

one stable state to the other. Our results indicate that

changing the burst size of LuxI does not modify the mean

first passage time whereas changing the transcriptional

noise at the level of LuxR modifies the jumping statis-

tics. Moreover, our results reveal a non-trivial behaviour

of the MFPT as a function of the concentration of the

autoinducer. On one hand, with respect to the activation

dynamics, when cA∗ is below ∼ 25 nM, an increase in

LuxR noise decreases the mean time of the activation.

That is, LuxR noise helps cells to get the initial acti-

vation quicker. On the other hand, above ∼ 25 nM of

autoinducer concentration, the effect is the opposite: an

increase in LuxR noise increases the mean jumping time

thus slowing down the full cell activation.

We observe these effects both for the lux01 and lux02

operons. Surprisingly, when the autoinducer concentra-

tion is above the critical concentration of the determin-

istic system, cA∗ ≈ 20 nM, the stochastic system always

takes more time to get activated than the deterministic

case. By computing additional properties of the first pas-

sage time probability density we also clarify the behaviour

of the precision depending on the induction time. In par-

ticular, we compute the times tlow and thigh for which,

at a given cA∗ concentration, the probabilities of find-

ing a FPT< tlow and a FPT> thigh are 10%, i.e. the 10%

and 90% quantiles respectively. The shadings in Figure 7

delimit these regions for the cases bR = bI = 20 and

bR = bI = 0.01. The precision of the switch after n hours

of induction, is directly related to the width of the shaded

region at 〈FPT〉 = n h: at any given time, this width indi-

cates which is the minimal concentration of autoinducer

for getting 10% of cells already activated and also the con-

centration beyond whichmore than 90% of cells have been

activated. Thus, in agreement with Figure 4, the induc-

tion time clearly modifies the precision: it increases (the

width decreases) as the induction time becomes larger.

Moreover, note that as the LuxR noise weakens the preci-

sion increases. Figure 8 recapitulates some of these results.

Figure 6 Lineage tree of an induced population of cells in the stochastic model. Linage tree of a population of cells induced at a fixed

autoinducer concentration cA∗ = 50 nM for the lux01 operon (left) and the lux02 operon (right). Vertical lines represent individual cells and

horizontal lines cell division events. The color of the lines is proportional to the normalized GFP expression. The initial number of cells is 100 and is

kept constant during the experiment by “deleting” cells at random every time a cell divides (truncated vertical lines). The lineage tree shows how

the state of the cell is transmitted over generations and reveals that once the operon is activated the transition is “irreversible”.
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Figure 7Mean first passage time of cell activation for different burst size values.Mean first passage time of cell activation as a function of

autoinducer concentration for different values of the burst size for LuxR (bR) and LuxI (bI) and for the deterministic solution: (A) low to high transition

MFPT in the lux01 operon, (B) low to high transition MFPT in the lux02 operon. The lower (upper) limit of the shaded regions is the 10% (90%)

quantile curve of the distribution of FPT for the cases bR = bI = 20 (blue shaded region) and bR = bI = 0.01 (green shaded region). The MFPT

reveals a non-trivial behaviour: for low autoinducer concentration noise helps cells to jump quicker to the high state, while for high autoinducer

concentration noise slows down the cells activation (see text). Intersections of the quantile 10% and quantile 90% curves with a horizontal line at

t = 10 h indicate the autoinducer concentration for which 10% of cell trajectories have jumped to the high state (left arrow) and the concentration

for which 90% of cell trajectories have been activated (right arrow). The precision after 10h of induction (inversely proportional to the width of the

region delimited by the arrows), increases when decreasing the noise in LuxR (see text). Note that in the case of the lux01 operon, we only change

the value of bR since GFP does not contribute to the activation process.

There we show the GFP expression probability for the

lux02 operon after 10 hours of induction for different val-

ues of the burst size bR and bI . Notice that the region

of bimodality does not vary when changing the burst

size for LuxI. However, decreasing the burst size in LuxR

reduces the region of bimodality thus increasing the pre-

cision of the switch. Furthermore, the noise at the level

of LuxR helps some cells to become activated at lower

concentration levels of the autoinducer. Once more, this

phenomenon does not depend on the levels of transcrip-

tional noise of LuxI. That is, while the global coordination

increases as the transcriptional noise of LuxR decreases,

more concentration of the autoinducer is required to start

activating cells. Figure 7 also suggests that the sensitivity

of the precision as a function of the induction time and/or

as a function of the stochasticity levels get diminished

after ∼ 30 hours since the width of the shaded region

barely varies. Figure 9 points towards that direction: under

Figure 8 Cell response distribution in the transient regime for different burst size values. Cell response distribution (jumping probability)

after 10 hours of induction (transient state) at different autoinducer concentrations for the lux02 operon in the stochastic model and different burst

sizes. Burst size values (A) bR = bI = 20 (B) bR = 4, bI = 20 (C) bR = 20, bI = 4 (D) bR = bI = 4 (E) bR = bI = 0.01. Width of bistable region: (A) = 60

nM (B) 25 nM (C) 70 nM (D) 27.5 nM (E) 25 nM. The black line stands for the concentration of GFP (normalized) as a function of cA∗ in the

deterministic model at the steady state.
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Figure 9 Cell response distribution at the steady-state for different burst size values. Cell response distribution at the steady-state (100 h

induction), at different autoinducer concentrations for the lux02 operon in the stochastic model for different burst size values: (A) bR = bI = 20 (B)

bR = bI = 4 (C) bR = bI = 0.01. The probability density of getting a particular GFP expression level is indicated by means of a density plot. The

width of bistable region barely depends on the stochasticity levels, ≈ 7 nM. The black line stands for the concentration of GFP (normalized) as a

function of cA∗ in the deterministic model at the steady state.

long induction time conditions (100 h) the precision of the

switch remains constant regardless the value of the burst

size. All together, these results indicate an interesting and

counterintuitive role of the transcriptional noise of LuxR

in terms of the biological function of the QS switch.

Discussion
The response of bacterial colonies driven by the QS

signalling mechanism under noisy conditions has been

addressed, in a broad sense, by different authors. In par-

ticular, the characterization of the collective response as a

synchronization phenomenon where the phenotypic vari-

ations can be generically predicted has been proposed

[47]. However, this approach requires gene regulatory

interactions controlling the QS switch that do not induce

bistability and lead to a monostable behaviour, e.g. nega-

tive feedback loops [48]. Our study focus on strains that

display, as the wild-type LuxI/LuxR system do, bistability

and, consequently, an alternative method to quantify the

phenotypic variability induced by noise was needed, i.e.

the precision concept. Moreover, previous works assume

stationary conditions and disregard the role of the cell

cycle duration. Herein, in agreement with experimental

results, we have shown that the time for reaching a steady

expression rate is much larger than the cell cycle duration

(see [10]). As a result, we have revealed that the inter-

play between non-stationary and stochastic effects is key

for understanding the global response of the colony and

the phenotypic variability. Finally, we have shown that

the intrinsic noise is able to stabilize a particular pheno-

typic state. This effect, namely the fluctuations inducing

a slowing down in the activation of the cells, emerges

because noise extends the bistable region compared to the

deterministic system. While such a noise-induced phe-

nomenon has been characterized in population models

[49] and, more recently, in theoretical studies on bistable

switches [18], to the best of our knowledge, this is the first

time that is reported in the context of QS systems. All in

all, from the viewpoint of the comprehension of how noisy

inputs may condition phenotypic variability in bacterial

colonies, our study introduces a number of advances.

Herein, we have characterized how the precision of

the QS switch depends on the stochasticity levels and,

importantly, elucidated which noisy component of the

LuxI/LuxR regulatory network drives the observed phe-

nomenology. Thus, we have found that under non-

stationary conditions, LuxR controls the phenotypic

variability and that changing the noise intensity at the level

of LuxI has no effect on the precision of the switch. A plau-

sible explanation for this reads as follows. The fluctuations

at the level of LuxI are transmitted to the autoinducer.

However, the diffusion mechanism rapidly averages out

the stochasticity levels of the latter. This is not possible

for LuxR which is kept within the cell. As a consequence

the amount of activation complex, that is ultimately the

responsible for the activation, is driven by the fluctuations

of LuxR but not by those of LuxI.

Recent experimental work has measured the biolu-

minescence levels of individual V. fischeri cells at fixed

autoinducer concentration [13]. In agreement with our

results, the authors observed that cells differed widely in

terms of their activation time and luminescence distribu-

tion. Interestingly, other experiments have revealed the

presence of additional regulatory interactions for control-

ling the LuxR noise levels. For example, C8HSLmolecules,

a second QS signal in V. fischeri, has been suggested

to reduce the noise in bioluminescence output of the

cells at low autoinducer concentrations [50]. In the same

direction, in V. harveyi, the number of LuxR dimers is

tightly regulated indicating a control over LuxR intrin-

sic noise [51]. In fact, wild-type V. harveyi strains have

two negative feedback loops that repress the production

of LuxR [52] and this kind of regulatory circuit is known

to reduce noise levels [53]. In this context, our results

provide a feasible explanation for the network structure

in wild-type strains: since noise in LuxR controls the
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phenotypic variability of the LuxR/LuxI QS systems, bac-

teria have evolved mechanisms to control its noise levels.

An additional argument in this regard arises from our

results about the deactivation of cells: once they are fully

induced we do not observe reversibility of the pheno-

type (FPT larger than 100 h). First, these results are in

agreement with other switching systems as the gallac-

tose signalling network in yeast [54] and with theoretical

results that explain the asymmetric switching dynamics

due to stochastic effects [18]. Second, they reveal the

importance of additional interactions that regulate nega-

tively luxR in wild-type strains and indicates that synthetic

strains as lux01 and lux02 summarize many features of

the wild-type operon during the activation process but fail

to capture some of dynamical aspects of the deactivation

phenomenon.

Finally, our simulations indicate that non-stationary

effects are essential during the activation of the QS

response. While speculative, these results can be extrap-

olated to growing colonies where the cell density is not

kept constant. A good supply of nutrients implies short

induction times since the concentration of autoinducer

will quickly grow (exponentially) as the population size

does. According to our results, this fast growing condi-

tion decreases the precision of the switch and, conse-

quently, promotes variability at the population level (see

Figure 10). In addition, the full collective activation of the

systemwould require a large population size. On the other

hand, if the colony grows in a poor nutrient environment,

the systemwill have time to reach a steady-state more eas-

ily and the precision would increase. Hence, the variability

would be diminished, and full activation would require

smaller colony sizes. Most phenotypic changes induced by

the QSmechanism refer to bacterial strategies for survival

and/or colonization. In this context, our results suggest

that both the QS activation threshold and the phenotypic

variability might depend on the growth rate of the colony

and, as a consequence, on the environmental conditions.

This is in agreement with recent studies that show that the

collective response of a population of cells depends not

only on the underlying genetic circuit and the environ-

mental signals, but also on the speed of variation of these

signals [55].

Conclusions
Herein we have introduced deterministic and stochastic

modelling approaches for describing the core function-

ality of the LuxI/LuxR regulatory network in quorum

sensing systems.We have focused on synthetic constructs,

lux01 and lux02, that reproduce the behaviour of the

wild-type system and allow for controlled experiments

that have provided quantification of the activation process

[10]. The deterministic approach has allowed us to esti-

mate different parameters of the model and reproduce the

Figure 10 The growth rate conditions the phenotypic variability.

In the context of a growing colony, the autoinducer concentration

increases as the colony does: purple lines show schematically two

exponential growth conditions for the autoinducer concentration as

a function of time. Our results on the MFPT, valid at fixed autoinducer

concentrations, can be extrapolated, qualitatively, to the case of

increasing autoinducer levels. Fast growth results in a large cell

variability and large critical colony size for achieving a global

response, while slow growth produces reduced cell variability and a

smaller critical population size. Increasing fluctuations in LuxR have

two opposite effects: in the slow growth case, increasing the noise

(blue curves: bR = 20; green curves: bR = 0.01;) decreases the critical

population size while hardly changing the variability, in the fast

growth case, increasing noise increases the critical population size

and increases greatly the variability.

switch-like behaviour of the QS network. Thus, our sim-

ulations reveal that the interplay between non-stationary

and stochastic effects are key and that, for an extended

range of autoinducer concentrations, a bimodal pheno-

typic variability develops such that cells fail to produce a

global response. In this context we have introduced the

concept of precision of the QS switch, as the inverse of the

width of the bimodal phenotypic region.

By computing the statistics of the activation dynamics

of cells, we have shown that the QS precision depends on

the gene expression noise at the level of LuxR and is inde-

pendent from that of LuxI. Our results, together with the

experimental evidences on LuxR regulation in wild-type

species, suggest that the noise at the level of LuxR controls

the phenotypic variability of the LuxR/LuxI QS systems

and that bacteria have evolved to control its intensity. In

addition, the robust stabilization of the phenotype once

is fully induced indicates that, albeit synthetic strains as

lux01 and lux02 summarize many features of the wild-

type operon during the activation process, they fail to

capture crucial aspects of the deactivation phenomenon.

Most insight in regards of the effect of LuxR noise on

the dynamics of cell activation is given by the study of the

mean first passage time (MFPT). In terms of the timing of
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activation, we have observed two opposite effects depend-

ing on the control parameter cA∗ : for cA∗ � 20 nM, the

larger the noise in LuxR, the quicker the cells become acti-

vated, while for cA∗ � 20 nM, we observe the opposite

effect and noise slows down cell activation. We suggest

that this effect can be explained by the stochastic sta-

bilization of the low state. Moreover, the calculation of

additional properties of the statistics of the first passage

time have allowed us to relate the concept of precision of

the switch with the variability of the FPT by estimating the

10% and 90% quantiles.

In summary, our results indicate that in bacterial

colonies driven by the QS mechanism there is a trade-off

between the activation onset and a global response due

to non-stationary and stochastic effects. On one hand,

large levels of noise at the level of LuxR imply that cells

require smaller autoinducer levels for achieving an acti-

vation onset but, at the same time, a global response

requires a substantial autoinducer concentration. On the

other hand, if the LuxR noise levels are small, the activa-

tion onset is shifted toward larger values of the autoin-

ducer concentration but the global response is achieved

for smaller concentration values. Our study could be use-

ful for Synthetic Biology approaches that exploit the QS

mechanism. The fact that some important features of the

QS mechanism, e.g. precision, rely on the burst size of

one component, opens the door to modifications of the

LuxI/LuxR operon for regulating the response depend-

ing on the problem under consideration. Finally, further

research is needed about the general validity and applica-

bility on the noise-induced stabilization phenomenon of

particular phenotypic states in other gene regulatory sys-

tems beyond the QSmechanism.Work in that direction is

in progress.

Additional files

Additional file 1: Text S1. Chemical equations for the deterministic

model.

Additional file 2: Video S1.Movie of the stochastic simulation. Movie of

the stochastic simulation for the lux02 operon, 10 h of induction at

cA∗ = 50nM, burst size bR = bI = 4. Cells are modelled as individual

compartments containing a copy of the LuxR/LuxI regulatory network. The

Gillespie algorithm (see text for details) is used to integrate the stochastic

dynamics of the whole system of cells. Cell growth and division is explicitly

taken into account as well as a certain degree of stochasticity in the cell

cycle duration. Cells movement is purely aesthetic since we do not include

any spatial effects in our model and consider a well-mixed environment.

The number of cells (N = 100) is maintained constant by removing one

cell at random each time a cell divides.

Additional file 3: Figure S1. Intra and extracellular autoinducer as a

function of exogeneous autoinducer concentration. Response curves to

autoinducer induction for lux01 (A, C and E) and lux02 (B, D and E)

operons. Total autoinducer concentration cAtot in the external volume and

in the cells (A and B), intracellular concentration cA (C and D), and

extracellular concentration cAext (E and F), as a function of the exogenous

autoinducer concentration, cA∗ , in the deterministic model. All

graphs represent the steady-state response for increasing (blue curve) and

decreasing (red curve) autoinducer concentrations. The exogeneous

autoinducer concentration cA∗ controls the autoinducer concentration in

the medium by means of an influx and an efflux (see main text). Upon

activation of the operon, LuxR is produced at high levels, thus sequestering

autoinducer molecules inside the cells. The bound form of autoinducer

cannot diffuse out of the cell and is therefore not subjected to the influx

and efflux. This explains why the total concentration of autoinducer in the

system,

cAtot = 1
Vtot

[

Vcell
(

cA + cluxR·A + c(luxR·A)2 + cDNA·(luxR·A)2
)

+ VextcAext
]

is

slightly larger than cA∗ , when the operon is activated. For the same reason,

the free form of autoinducer, both in the cell and in the medium, is slightly

smaller.

Additional file 4: Figure S2. Cell response distribution during

decreasing-concentration trajectories. Cell response distribution for

decreasing-concentration trajectories for lux01 (left) and lux02 (right)

strains in the stochastic model. Cells are initially induced at cA∗ = 100 nM

for 2 hours. The concentration of exogenous autoinducer cA∗ is then hourly

decreased in order to simulate the experiments (see [10]). The cell

distribution reveals the variety of cell trajectories in comparison to the

deterministic population average solution (green line). The cells jump to

the high state for a wide range of times and autoinducer concentrations.

Note also that fluctuations leads to a stabilization of the low state with

respect to the deterministic solution.

Additional file 5: Figure S3. Trajectory of chemical species in individual

cells. Trajectory of chemical species LuxR mRNA (mR), LuxR, LuxI,

intracellular autoinducer (AI), regulatory complex (LuxR · AI)2 (AL2) and

promoter bound to complex (P10), in an individual cell for the following

control parameter and burst size values: (A) cA∗ = 15 nM, bR = bI = 20,

(B) cA∗ = 50 nM, bR = bI = 20, (C) cA∗ = 15 nM, bR = bI = 0.01, (D)

cA∗ = 50 nM, bR = bI = 0.01.
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