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Abstract
T cell recognition of unknown antigens relies on the tremendous diversity of the T cell receptor (TCR) repertoire; generation of
which can only occur in the thymus. TCR repertoire breadth is thus critical for not only coordinating the adaptive response
against pathogens but also for mounting a response against malignancies. However, thymic function is exquisitely sensitive to
negative stimuli, which can come in the form of acute insult, such as that caused by stress, infection, or common cancer therapies;
or chronic damage such as the progressive decline in thymic function with age. Whether it be prolonged T cell deficiency after
hematopoietic cell transplantation (HCT) or constriction in the breadth of the peripheral TCR repertoire with age; these insults
result in poor adaptive immune responses. In this review, we will discuss the importance of thymic function for generation of the
TCR repertoire and how acute and chronic thymic damage influences immune health. We will also discuss methods that are used
to measure thymic function in patients and strategies that have been developed to boost thymic function.
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Introduction

The adaptive immune system relies on a diverse repertoire of
receptor bearing lymphocytes allowing for the recognition of
an untold number of potential pathogen targets and for the sur-
veillance of cancerous mutated self-antigens. The integrity of the
thymus is essential for the output of T cells with diverse

receptors, a point most dramatically demonstrated by the immu-
nodeficiency in patients with DiGeorge syndrome (DGS)—a
profound inborn immunodeficiency in which a 22q11 deletion
results in defective third and fourth pharyngeal pouch develop-
ment and thus hypoplasia of the thymus. However, even in
healthy individuals, thymic function is a dynamic process with
tissue function severely impacted by negative stimuli. These can
be broadly separated into two categories, with different outcomes
on immune health and ultimately different clinical parameters for
therapeutic intervention. The first of these are the acute injuries
such as everyday insults like stress and infection, but also more
profound injuries such as that caused by common cytoreductive
cancer therapies. The second category encompasses chronic
damage such as age-related thymic involution, persistent infec-
tion, and chronic stress. In this review, we will discuss these
different injuries to the thymus and their influence in disease
pathophysiology, and discuss preclinical and clinical evidence
on potential therapeutic strategies to boost thymic function.

Acute damage: restoring T cell numbers

Everyday insults: hormones and infection

Stressors leading to rises in systemic cortisol, a glucocorticoid
hormone, are well known to cause thymic involution via
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apoptosis of thymocytes and clinical studies show a negative
relationship between systemic corticosteroid levels and thy-
mic function [1]. Glucocorticoids are central to many acute
forms of thymic involution [2], directly inducing apoptotic
cell death of CD4+CD8+ DP thymocytes, which preferential-
ly express the glucocorticoid receptor; the same effect also
o c c u r s w i t h c ommon l y u s e d g l u c o c o r t i c o i d
immunsupressives [3].

Increases in sex hormones also contribute to thymic injury
both in the acute and chronic setting [4] and are even thought
to play a role in age-related thymic atrophy and can directly
induce thymic involution [5] (see below). During pregnancy,
rises in sex hormones lead to acute thymic involution, a
biologicaly useful process believed to be due, at least in part,
to progesterone activation of osteoclast differentiation recep-
tor (RANK) on thymic epithelial cells that cause reduction in
normal thymocyte production and the expansion of regulatory
T cells that aid in the prevention of miscarriage [6].

Although generation of new T cells and their export into
the periphery is important for infection response [7, 8], most
acute viral infections paradoxically result in acute thymic at-
rophy; largely due to intense lymphocyte depletion as a result
of increased apoptosis of thymocytes and interference with
thymocyte development [9]. Infection-related thymic involu-
tion can be partially attributed to rises in TNFα and increased
production of IFNγ from activated CD8+ T cells and natural
killer (NK) cells. Acute bacterial infections have also been
implicated, with Streptococcus suis infection leading to thy-
mic involution by triggering apoptosis in developing thymo-
cytes [10]; while Mycobacterium tuberculosis infection lead
to thymic atrophy [11], though this is likely primarily mediat-
ed by glucocorticoids [12].

In all studies that have explored thymic involution in re-
sponse to acute infection and/or stress, the thymus is capable
of remarkable repair and rejuvenation. Therefore, everyday
insults such as stress and infection are not thought to have a
prolonged impact on thymic function; although there are
unanwered questions to the long-term impact of repeated mi-
nor acute insults.

Profound acute damage: cytoreductive therapies

In addition to the everyday insults like stress and infection, the
thymus is also exquisitely sensitive to cytoreductive therapies
like chemotherapy and radiation, often used in the condition-
ing required for successful hematopoietic cell transplant
(HCT) [13, 14]. In mouse models, studies have found that
after both total body irradiation (TBI) or chemotherapy, in
addition to the direct depletion of highly proliferative thymo-
cytes, there is significant damage to the nonhematopoietic
epithelial microenvironment resulting in reduced T cell devel-
opment [15, 16]; which may result from the relatively high
rate of turnover of some TEC subsets [17]. Although damage

and recovery are worse in older individuals whose thymus has
already undergone significant involution, prolonged T cell
depletion after cytoreductive therapies can be dangerous in
even relatively young individuals; which has been shown in
cohorts of human patients [18] and in mice [19, 20]. In long-
term follow-up studies of patients receiving allogeneic-HCT,
delayed T cell reconstitution can last a year or more due to a
delay in full recovery of T cell numbers, and is associated with
increased risk of infections, relapse of malignancy, and the
development of secondary malignancies [21–28].

Notably, the thymus is not only sensitive to the condition-
ing regimes required for HCT, but it is also extremely sensi-
tive to the treatments used to suppress the immune system
from the impacts of graft versus host disease (GVHD), as well
as GVHD itself, as demonstrated in several studies on mouse
[3, 29–33]. Furthermore, animal models have also helped in
identifying a link between acute GVHD-mediated thymic
damage and the formation of chronic GVHD, which may be
due to a failure of tolerance induction [34–36].

Chronic insult: dynamic thymic function
and TCR repertoire breadth

Chronic infection

Most of the studies evaluating thymic fuction in the context
of chronic insult have concentrated on chronic infections
such as HIV, which leads to several modes of thymic dys-
function including thymic atrophy, reduced thymic output,
reduced export of immature thymocytes and disruption of the
thymic microenvironment [37–39]; and Cytomegalovirus
(CMV), which notably leads to overgrowth and clonal dom-
inance of the peripheral repertoire [40, 41]. Notably, effec-
tive response to antiretroviral therapies was found to depend
on competent thymic function, with enhanced function in
HIV-infected children with higher basal levels of thymic
function [42], in contrast with infected adults who have a
reduced thymic output and output decreased peripheral
CD4+ T cells [43, 44]. Moreover, in addition to viral load,
quantification of CD4+ recent thymic emigrants (RTEs) has
long been employed as a marker for HIV disease progres-
sion, and a recent study has demonstrated the use of RTE
CD4+ T cells as a marker of perinatal HIV infection in in-
fants [45]; further strengthening the link between viral infec-
tion, efficient thymic function and therapeutic implications
of thymic recovery. Notably, dominance of virus antigen-
specific T cell clones is found in several chronic models of
persistent antigen stimulation, such as CMV [46], Epstein-
Barr virus [47], and HBV [48], though the contribution of
chronic infection induced reduction in thymic production
relative to the peripheral expansion of virus-specific lympho-
cytes remains to be determined. Studies in SARS-Cov-2–
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infected patients have suggested a link between COVID-19
disease severity and T cell counts, with a well-defined lym-
phopenia observed in hospital-admittd patients, but the
mechanistic link is not yet clear [49].

Age

Age-related thymic atrophy, or involution, occurs in almost all
vertebrates [50], and is characterized by the progressive re-
gression of thymic size and structure, resulting in impaired
thymopoiesis [51, 52]. The profound loss of thymic functional
capacity that occurs from thymic atrophy is one of the most
studied aspects of immune aging. In addition to global de-
crease in thymic output, the aged thymus outputs T cells that
are functionally inferior to those exported from the young
thymus, with the deterioration of their quality centered on
disturbances in intracellular signaling pathways resulting in
a lack of antigenic stimulation and cytokine production [51,
53, 54]. Thymic involution ultimately leads to reduced re-
sponsiveness to new antigens [41, 55], and contributes to
immunosenescence, which is marked by reduced
thymopoiesis accompanied by ineffective central tolerance
[56, 57]. Several factors are believed to influence thymic in-
volution, including fewer hematopoietic progenitor cells [58,
59], the effects of altered sex hormone levels with age [60,
61], and TEC-driven structural changes [62]. Of note, al-
though the age-induced reduction in lymphoid progenitors
can exacerbate thymic involution [63], it is the alterations in
the thymic microenvironment that are ultimately most respon-
sible for driving the age-related decline of T cells [64].

Overall, it is the current hypothesis that unlike the directly
targeted death of thymocytes in acute damage, the loss of of
the cortico-medullary junction is preceded by structural dam-
age in both cortical and medullary TECs, the loss of
established thymic architecture and increases in fibroblast
numbers TEC apoptosis in mouse models [17, 62, 65].
Moreover, TEC homeostasis is largely under the control of
the TEC autonomous expression of the transcription factor
forkhead box N1 (Foxn1), reduced expression of which is
identified in the involuted thymus [66]. With the steadily
expanding numbers of elderly adults, thymic decline and T
cell deficiency represents a profound underappreciated clini-
cal complication. The implications of thymic involution are
heavily centered on hampered naïve T cell output leading to a
constriction in TCR repertoire diversity, reducing the proba-
bility of a sufficient immune response [55, 67]. Specifically,
reduced output of new naïve T cells, coupled with oligoclonal
expansion of memory T cells, contributes to the constriction
of TCR repertoire breadth with age [68]. Moreover, increased
output of self-reactive T cells likely contributes to multiple
age-related disorders, including peripheral and neurological
autoimmune disease [69].

Endogenous thymic regeneration

Although the thymus is extremely sensitive to injury it also
has a remarkable capacity for repair [70–72]. In fact, the gen-
eral phenomena of endogenous thymic regeneration has been
known for longer even than its immunological function [73,
74]. Even in the surgical setting, childrenwho have undergone
partial thymectomy exhibit significant rejuvenation of the re-
maining thymic tissue [70]. Thus, endogenous thymic regen-
eration is a critical process to restore immune competence
following thymic injury; however, endogenous thymic regen-
eration can be a prolonged process and is an important clinical
problem in older patients receiving common cytoreductive
therapies and recipients of HCT [18, 21–24]. Of key impor-
tance, the underlying mechanisms controlling this process
have been largely unstudied [63, 75].

Recent preclinical work in mice has identified several dis-
tinct pathways that underlie endogenous thymic regeneration
(Fig. 2). In the first of these, damage to the thymus triggers the
production of IL-23 by a population of thymic dendritic cells,
which in turn initiates the production of IL-22 by innate lym-
phoid cells (ILCs) [71, 76]. IL-22 acts on epithelial cells,
including TECs and mediates thymic repair [33, 77].
Receptor activator of nuclear factor kappa-B ligand
(RANKL), which is expressed by multiple subsets in the thy-
mus including γδ T cells, ILCs, and positively selected thy-
mocytes [78–80], is also increased in after injury caused by
the cytoreductive conditioning required prior to HCT, sug-
gesting that RANKL plays a role in endogenous regeneration
of the thymus [71, 81]. RANKL, which is a member of the
tumor necrosis factor (TNF) superfamily, is important during
thymic development due to its ability to drive the differentia-
tion of TECs and induce the expression of AIRE [80, 82, 83];
although absence of RANKL postnatally can be compensated
for by other factors [84]. RANKL can also stimulate TEC
proliferation as well as their production of IL-7 [85], and
overexpression of the soluble RANKL decoy receptor OPG
causes an enlarged thymus [78, 86, 87] and exogenous admin-
istration of RANKL improved medullary architecture in
RANKL-deficient mice [88]. In a second endogenous path-
way of regeneration, thymic damage initiates the production
of bone morphogenic protein 4 (BMP4) by radio-resistant
endothelial cells (ECs). BMP4 has been known to be impor-
tant for thymus organogenesis [89–91], and in fact BMP4 is a
crucial factor in the induction of TEC-like cells from pluripo-
tent stem cells [92–94]. BMP4 is produced by endothelial
cells (ECs) after acute injury and acts on TECs, primarily
cTECs, and induces their expression of FOXN1 and its down-
stream targets such as DLL4 [95], which is central to thymic
regeneration [61]. Finally, work has also revealed that
keratinocyte growth factor (KGF), produced primarily by fi-
broblasts and thymocytes, is also important for the endoge-
nous response after damage [96]. KGF stimulates TECs to
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induce their proliferation and expansion [97], but can also
protect TECs from damage caused by alloreactive T cells in
mouse models of GVHD [98].

Measuring thymic function

While studies in mice have elucidated considerable insight
into thymic function, it is a challenge to truly assess thymic
function in the clinical setting. Oftentimes, surrogate measures
are used, ranging from readily available clinical parameters
such as absolute lymphocyte counts (ALC) and quantitative
assessment of T cell subsets (CD4+ and CD8+ T cells, MAIT
cells, γ∂-T cells), to more complex and less routine assays to
measure thymic functional mass, recent thymic emigrants
(RTEs) or T cell receptor repertoires.

Absolute lymphocyte count

In the context of HCT, ALC, which is a routinely obtained
clinical parameter, has been shown to be predictive of survival
and relapse after both autologous and allogeneic transplant
[99–103]. However, in a setting such as age or chronic
insult—where there is no acute depletion of the endogenous
T cell pool, ALC is less informative for general immune
health.

Imaging for functional tissue

Although surrogate readouts like ALC can give a rough as-
sessment of lymphocyte status, true assessment of thymic
function can only be gleaned by directly analyzing the tissue
itself. Given the correlation between thymic size and thymic
function, imaging techniques may be employed in attempt to
estimate thymic function. The anterior mediastinum is largely
occupied by the thymus, which is consequently accessible to
ultrasound [104, 105]. The absence of the mediastinal thymic
profile in a chest X-ray is a hallmark in the suspect of congen-
ital immunodeficiency of the childhood [106].More advanced
imaging techniques such as computed tomography (CT) and
magnetic resonance imaging (MRI) are used in the diagnosis
of thymomas and the latter is the gold standard radiologic
follow-up of thymic neoplastic epithelial lesions [107].

Rebound thymic hyperplasia is a well-known phenomenon
among children receiving chemotherapy and is appreciable as
a diffuse 18FDG uptake in the mediastinum on positron emis-
sion tomography (PET) [108]; this technique is also able to
detect spontaneous thymic regeneration in some adult patients
[109], but these imaging approaches have also proved sensi-
tive enough to detect changes in thymic size caused by che-
motherapy [110, 111]. Moreover, in patients with HIV, in-
creased thymic volume measured by CT correlated with re-
sponse to antiretroviral therapy and peripheral CD4+ counts

[112, 113]; and a recent trial demonstrated that low prenatal
thymic volume < 32 weeks of gestation was predictive of
spontaneous preterm delivery [114]. However, while it is pos-
sible to use imaging techniques to measure functional thymic
tissue, due to its costs this is not a feasible approach for routine
measurement.

Recent thymic emigrants

A more promising and tractable surrogate of thymic function
is to quantify the number of circulating RTEs [115]. In mouse
studies, this can be done by either intrathymic injection of a
dye such as FITC (though the stress of which may affect
thymic function), or by using a reporter mouse strain where
a fluorescent tag such as GFP is inserted under the promoter
for RAG2, a gene fundamental for T cell (and B cell) devel-
opment [116, 117]. In this model, the RAG2 (and GFP) gene
is no longer transcribed after the DN stage of T cell develop-
ment but GFP protein remains present into the periphery and
is diluted as naïve cells expand, therefore marking RTEs [118,
119].

However, while useful for measuring thymic function in a
preclinical setting, these tools are not available for measuring
thymic function in the clinical setting. The gold standard for
measuring RTEs in humans is by analyzing T cell receptor
excision circles (TRECs), circular molecules formed from
DNA excised during formation of the T cell receptor (TCR)
encoded region [120–122]: an intermediate rearrangement
event in most developing T cells destined to express the αβ
TCR results in the deletion of the TCRδ gene that lies 5′ to the
TCR Jα region, generating a δRec-ψJα TREC (signal joint
TREC, or sjTREC), thereby ensuring that α and δ TCR pro-
tein chains are never coexpressed on the same T cell. This
“beta” TREC assay is the most commonly used in the clinical
practice to assess the exact number of RTEs; however, in
particular, conditions such as during immune reconstitution
following bone marrow transplantation or during HIV infec-
tion, this parameter can be affected by events occurring in the
periphery such as T cell proliferation [123, 124]. Thus, data of
sjTREC quantification should be cautiously interpreted. An
alternative assay is based on measurements of the early occur-
ring, single-step TCRG gene rearrangement [125] which re-
sults in the formation of a Vγ-Jγ coding joint (CJVγ-Jγ) and a
Vγ-Jγ signal joint (SJVγ-Jγ) on the corresponding excision
circle (Vγ-Jγ TREC). From the difference between CJVγ-Jγ
and SJVγ-Jγ levels, the number of cell divisions undergone can
be calculated [126]. It has been demonstrated that this calcu-
lation is able to discriminate between intra- and extrathymic T
cell proliferation [127].

Use of TRECs has been shown to correlate strongly with
thymic function in settings of age and conditioning such as for
HCT [121, 122], where TRECs have shown more rapid re-
covery in younger recipients and in recipients of conventional
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grafts compared to T cell depleted grafts [128], while the
occurrence of chronic GVHD significantly decreases TRECs
[129]. Furthermore, low TREC values correlated strongly
with severe opportunistic infections [128, 130]. Notably,
TREC measurement is a part of neonatal screening for con-
genital immunodeficiencies and to measure immune reconsti-
tution after bone marrow transplantation [27, 131, 132].
Approaches have been developed to crudely identify TREC-
enriched populations of T cells by flow cytometry using
markers such as CD31 on CD4+ (but not CD8+) T cells
[133–135]. However, a heterogenous proportion (15–60%)
of CD31+ TREC+ T cells across individuals indicates that
that CD31 is not a robust marker for identification of
TRECs+ T cells.

TCR repertoire

Given the difficulty in getting truly evaluating thymic function
clinically, and that the primary role of the thymus is to gener-
ate a self-tolerant but diverse repertoire of T cell receptors that
are capable of recognizing unknown antigens, ultimately
obtaining an accurate representation of the peripheral TCR
repertoire is of greatest utility when measuring thymic func-
tion. However, while RTEs are quantifiable, measuring the
total number of unique T cell clonotypes in circulation is a
far greater challenge. TCR repertoire breadth reflects both the
capacity of the thymus to generate naïve T cells and the cu-
mulative responses of T cells to antigen challenges in the
periphery [40, 41], but the challenge of quantifying the abso-
lute number of unique clones speaks to the tremendous
breadth of diversity that a healthy thymus can output. Since
there are a potential for 1014 unique TCR β chains and 109

distinctα chains [136], mathematical modelling has suggested
an estimate of αβ diversity of 2 × 1019 possible clones [137,
138]. However, the range of probabilities of TCRβ chain pos-
sibilities based upon the number of insertions and likelihood
of certain V(D)J combinations was recently calculated to be as
low as 10−18 for the rarest clones and as high as 10−6 for the
most likely [139]; and the probability of generating any indi-
vidual TCRαβ is < 10−12 [138]. Different analyses from deep
sequencing of the TCRβ chain estimate the lower bound of
peripheral clonotypes to be from 106 to 108 [140, 141].
Statistical modeling approaches are used to estimate the total
number of TCR clones in a given individual, a necessity given
the limited quanity of cells achievable by peripheral blood
draw [142]. Several include methods derived from models
enumerating species diversity in an ecosystem in what is
known as the “unseen species problem” [140, 142, 143].
However, the computational challenge of estimating the rep-
ertoire size may also yield considerable bias and is almost
impossible to determine in individuals with perturbations in
thymic function [144].

Many of the experimental estimates for TCR repertoire
breadth are dependent on the technical limitations of the as-
says being used to repertoire breadth. One of the first tech-
niques used to estimate the breadth of the TCR repertoire was
to spectratype the CDR3 region of the TCR according to size
by polyacrylamide gel electrophoresis. Because of the random
generation of a large number of unique CDR3 regions, the
spectratype of CDR3 fragment lengths will form a Gaussian-
like distribution of CDR3 amplicons of each length [145].
Though a step forward toward identifying TCR diversity, this
methodology has been made largely obsolete by advances in
high-throughput DNA and RNA sequencing, also referred as
next generation sequencing (NGS), which have allowed for
significantly deeper sequencing than is possible using
capillary-based technologies [146, 147]. However, a recent
comparison of various DNA and RNA based TCRseq
methods found that α chain sequencing is particularly suscep-
tible to reproducibility concerns, and while introducing a
unique molecular identifier (UMI) may bemore accurate, they
are also more susceptible to missing rare clonotypes than non
UMI-based methods [148]. Moreover, even if the per base-
error of the NGS systems is low (far less than 1% using an
Illumina sequencer), rare errors at a single nucleotide position
are non-negligible as TCR sequences differing by even a sin-
gle nucleotide can codify for different clonotypes [149]. Thus,
NGS analyses pose a risk of not accurately capturing the
breadth in, particularly, rare clonotypes. In addition, most
studies performing TCR sequencing use bulk sequencing to
obtain the highest number possible of TCR transcript reads;
however, these attempts at ‘exhaustive sequencing’ are limit-
ed in their sensitivity and accuracy [150, 151]. These ap-
proaches also depend on sequencing only α and β chains
without pairing, which considerably restricts the potential
breadth of the TCR repertoire [152]; incorrectly estimating
the number of unique clonotypes as a nonnegligible portion
of αβ T cells express two α chains and a single β chain
(estimates of which vary from 14% to as many as ~ 35% of
T cells expressing two alpha chains) [138, 153]. Although
bioinformatic tools to reconstruct paired TCR alpha and beta
chains have been proposed [154, 155], and these approaches
have been useful to identify pathogen or antigen specific TCR
clones [156, 157], as well as shared binding sites [158]; they
are not particularly useful for estimating absolute repertoire
breadth.

One approach to overcome many of the aforementioned
limitations in estimating TCR repertoire breadth is to use sin-
gle cell RNA sequencing (scRNAseq) technology. scRNA-
seq allows for a true assessment of TCR clonotypes by pro-
viding alpha and beta chain sequence pairing, which is not
possible when performing bulk analysis. Importantly,
scRNAseq also allows for analyzing the whole transcriptome
of a single T cell identified through its TCR, which has been
used great effect in studying the transcriptomic features of T
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cells infiltrating tumors, such as in liver cancer [159].
However, while extraordinarily promising for overcoming
the limitations of conventional bulk sequencing approaches
and providing a true assessment of TCR repertoire breadth,
the current limits of scRNAseq are the prohibitive cost.

Why does TCR diversity matter?

As discussed above, thymic involution, caused by either acute
insult or chronic age-related decline, profoundly influences
the peripheral T cell pool, primarily by tuning TCR repertoire
breadth [144]. These shifts in repertoire likely underpin mul-
tiple clinical complications; in particular success of vaccina-
tion and of cancer immunotherapy, and possibly even disease
incidence itself [67].

Traditional vaccination strategies rely on the presence of
vast antigen recognition repertoires [41, 160]. Therefore, to-
gether with rapid viral modifications such as antigenic drift (a
key feature of seasonal influenza virus), and constriction of
the TCR repertoire with age as a result of declining thymic
function; vaccination against influenza provides inadequate
protection in elderly and immunocompromised individuals
[161]. This can be specifically quantified as there is a demon-
strably restricted influenza A specific V⍺ and Vβ TCR reper-
toire with age [162]. Due in part to this tight correlation be-
tween thymic function and clinical outcomes, loss of naïve
CD4+ T cells accompanied by a reduced TCR diversity has
been proposed as a prognostic tool for determining responses
to infection, especially in aging populations [55].
Furthermore, assessing infection or vaccine antigen-specific
TCR diversity can be used as a surrogate readout of immune
protection, as evidenced in studies using immunization
against the alpha herpes family virus, varicella zoster [163]
and hepatitis B infection [48]. Notably, the emergence of T
cell directed vaccines, which induce both CD4+ and CD8+
effector responses, have proven to increase effective viral
clearance [164], and although this is promising in immuno-
competent individuals, the success is determined by a large
pool of naïve T cells, further strengthening the need for ther-
apeutic enhancement of T cell reconstitution for successful
immunization.

Immunotherapy using antibodies directed against T cell
checkpoint molecules has emerged as an enormously promis-
ing therapy for multiple malignancies [165, 166]. However,
even in the best-case scenario, using dual blockade of both
CTLA-4 and PD-1/PDL-1 in melanoma, this therapy leads to
stable remission in only approximately 65% of recipients
[167], and in cases such as lung cancer the success rate is
significantly lower [168]. Recent work has revealed that some
of the success of checkpoint blockade rests on the mutational
burden of the tumor [169, 170]. That is, tumors with a higher
rate of mutation (and subsequent neoantigens) have a greater
chance of T cell receptor (TCR) recognition and more

successful outcomes from immunotherapy treatment. Given
that T cells are central to antitumor immunity [171, 172] and
that a diverse TCR repertoire promotes the probability of an-
tigen recognition, immune response, and attenuation of dis-
ease progression [173, 174], the success of checkpoint inhibi-
tion, even in tumors with extensive mutations, is entirely pred-
icated on the presence of reactive T cell clones against (most
often unknown) tumor antigens. Therefore, constricted TCR
repertoire breadth, regardless of the reason, is linked with poor
response to vaccines and immunotherapy [175, 176], and
TCR repertoire profiling can be used as a predictive biomarker
for treatment success [177–179]. However, there are conflict-
ing reports of the correlation of checkpoint blockade effective-
ness with high mutational burden [180].

Thus, the combination of tumor genetics and the variability
of tumor neoantigens, in addition to the breadth of the TCR
repertoire, likely provides the most robust predictive insight
into the efficacy of checkpoint inhibitor therapy. Therefore,
enhancing TCR repertoire breadth could be of enormous clin-
ical interest, both in the cases of cancer therapeutics, immuni-
zation, and endogenous response to infectious disease.

Repairing the thymus in settings of acute
and chronic injury

Given the dynamic nature of thymic function and its impor-
tance for generating and maintaining an effective TCR reper-
toire, there is a clear clinical need for therapies that can boost
thymic function. To this end, several putative therapies are be-
ing developed in preclinical models, some of which have gone
on for assessment in clinical trials (Table 1; Figs. 1 and 2).

Cytokines and growth factors

One of the most widely studied molecules with thymic regen-
erative capacity is the lymphopoietic cytokine IL-7 [205],
which can act directly on T and B lymphoid precursors
[206, 207]. The mechanism behind IL7-induced thymic re-
generation lies in its ability to enhance the proliferation of
lymphocytes and lymphoid precursors [208, 209]. IL-7 has
been shown to be effective at boosting thymic function in both
aged mice (chronic damage) as well as those receiving condi-
tioning required for HCT (acute damage) [210, 211]. Since its
discovery as a key lymphopoietic factor, IL-7 has been pro-
posed as a therapeutic target for immune modulation [205].
Consistent with preclinical studies, clinical trials using recom-
binant IL-7 in patients with either solid tumors or HIV infec-
tion have shown that recombinant IL-7 is safe and led to
expansion of both CD4+ and CD8+ T cells [191–195]. In
the context of acute damage, recipients of allo-HCT who
had been given a recombinant and glycosylated form of IL-
7, CYT107, demonstrated a rapid increase in peripheral CD4+
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and CD8+ T cells and increased generation of virus-specific T
cells [196]. However, exogenous IL-7 has significant effects
on peripheral T cells and its effects on T cell reconstitution and
repertoire diversity may primarily be by stimulating peripheral
T cells, including RTEs [209, 212]. Currently, a clinical trial
to evaluate the effect of recombinant IL-7 on T cell reconsti-
tution in receipients of cord blood HCT is ongoing
(NCT03941769).

One approach used to identify therapeutic strategies to
boost thymic function has been to exploit the mechanisms that
govern endogenous regeneration from acute injury [16]. As
described above, studies have found that IL-22, KGF,
RANKL, and BMP4 are all involved in the endogenous re-
sponse to injury, and all can be utilized to boost thymic func-
tion in the setting of acute damage [77, 88, 95, 96]. Of these,
the most widely studied has been KGF, with exogenous ad-
ministration of recombinant KGF found to significantly in-
crease thymic cellularity in mouse models of aging and fol-
lowing acute damage caused by radiation or chemotherapy
[96, 98, 197]. Due to its approved status as a treatment for
mucositis [213], KGF (palifermin; trade name Kepivance,
marketed by Biovitrum) has emerged as a prominant potential
therapeutic strategy for improving thymic function after acute
injury such as in recipients of HCT. Several studies in mice
and non-human primates demonstrate the efficacy of KGF for
improving thymic-dependent T cell development in HCT
[214]. However, in a recent trial of MS patients who have
undergone a T cell depleting course of antiCD52 antibody,
there was actually a detrimental effect of KGF on thymic-
dependent T cell development. [198]. Several trials have been

initiated to explore the effects of KGF on T cell reconstitution
in the setting of HCT (NCT01233921, NCT03042585,
NCT02356159, and NCT00593554).

Although understudied clinically, BMP4, IL-22, and
RANKL all show promise in their capacity to boost thymic
function, at least in settings of acute injury. Due to the diverse
pathophysiological roles of IL-22, and the key role in epithe-
lial cell regeneration, modulation of the IL-22-IL22R system
is an attractive therapeutic target. Several studies have found
that exogenous administration of IL-22 could significantly
improve thymic function after acute damage in mice [71, 81,
200]; including in the face of fulminant GVHD [33].
Furthermore, a recent clinical study suggests that serum levels
fo IL-22 could be predictive as an indicator of thymic output
after HCT [215]. IL-22 production is triggered after damage
by innate lymphoid cells, which also produce RANKL [71],
which may regulate expression of IL-22 in an autocrine fash-
ion [216], but also has its own regenerative capacity. In fact,
administration of exogenous RANKL enhanced thymic func-
tion after bone marrow transplantation by boosting TEC sub-
sets, including TEC progenitor niches [81]. While BMP4 it-
self could not be given to enhance thymopoiesis, a cellular
therapy of thymic-derived BMP4-producing ECs could en-
hance thymic regeneration when given to mice after an acute
form of damage caused by sublethal TBI but has not been
tested in the chronic damage setting [95]. In addition to these
factors, IL-21 has been shown in preclinical mouse models to
be effective at reversing age-related involution and boosting
thymic function after acute injury [185, 186]; and IL-12,
which can induce IL-7, is capable of reversing age-related

Table 1 Therapeutic strategies to boost thymic function: preclinical development and clinical translation

Preclinical Clinical Trial number Refs

Acute Chronic

Pre-T/HSPCs ++ ND ND N/A [181–184]

RANKL ++ ND ND N/A [81]

BMP4 ++ ND ND N/A [92–95]

IL-21 ++ ++ ND N/A [185, 186]

IL-12 ++ ++ ND N/A [187, 188]

ATO ++ ND No data in regeneration but ATO have been used to determine
thymic intrinsic defects in immunodeficient patients

N/A [189, 190]

IL-7 ++ ++ Increased T cells in HIV+ patients and improved reconstitution
in allo-HCT recipients

NCT03941769 [191–196]

KGF ++ ++ Used widely for mucositis, trials have not shown considerable
benefit in T cell reconstitution in recipients of HCT.

NCT01233921, NCT03042585,
NCT02356159, NCT00593554

[77, 88, 95, 96,
98, 197–199]

IL-22 ++ ND Secondary readout in ongoing trial in steroid-refractory GVHD NCT02406651 [33, 71, 81,
200]

Thymosin-α1 ++ ++ Enhanced lymphocyte count and improved mortality in
COVID-19 patients

NCT04320238
NCT04487444

[201, 202]

SSI ++ ++ Increased thymic function and output of RTEs in prostate
cancer patients (aged) and in HCT recipients

NCT01746849
NCT01338987

[203]

GH ++ ++ Increased thymic size and RTEs NCT04375657 [204]
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involution in mice [187]. Notably, IL-12 is also able to ehace
engraftment of hematopoietic progenitors after irradiation
[188].

Hormone modulation

Sex steroids, and especially testosterone, have been im-
plicated in the age-related degeneration in thymopoiesis,
B lymphopoiesis, as well as early lymphoid precursors
[5]. Given these profound effects, perhaps unsurprisingly
sex steroid inhibition (SSI) has been used to boost thy-
mic function. SSI promotes reorganization of the thymic
architecture, an enhanced ability to import circulating
p rogen i to r s [217] and subsequen t ly enhances

thymopoiesis in aged mice and humans [20, 60, 72,
217–219]. SSI has been shown to [1] promote lymphoid
potential and overall function of hematopoietic stem and
progenitor cells [20, 220, 221]; [2] induce the expression
of CCL25 [217], which promotes the importation of he-
matopoietic progenitors from the circulation [222, 223];
and [3] induces the expression of the Notch ligand DLL4
[61]. SSI effects are not restricted to the thymus with
significant effects in BM lymphopoiesis and on the ear-
liest hematopoietic stem cells observed [63, 220, 221].
Furthermore, in addition to its impact on the aging thy-
mus, SSI is also capable of significantly improving re-
covery following autologous [224] and allogeneic [225]
HSCT as well as cytoablative therapy [20, 72, 220]. SSI

• Disrupted architecture
• Reduced export of      
  naive T cells
• Constriction in TCR 
  repertoire breadth

Acute injury

Prolonged
recovery

Acute
injury

Steady-state Chronic injury (age)

• Generation of 
  broad repertoire of 
  self-tolerant T cells

• Acute damage to thymic 
  microenvironment
• Delayed recovery of T 
  cells and TCR repertoire
• Susceptible to 
  infection/relapse

Fig. 1 Damage and regeneration
in the thymus and TCR repertoire.
Steady-state T cell development
in the thymus of young, healthy
individuals results in the
generation of a broad but self-
tolerant T cell receptor (TCR)
repertoire. It is this diversity of the
TCR repertoire that allows for T
cell recognition of unknown
antigens. However, thymic
function progressively declines
from puberty resulting in reduced
export of newly generated naïve T
cells that, coupled with the
expansion of existing naïve and
memory T cells, leads to a
constriction in the diversity of the
peripheral TCR repertoire and
reduced responsiveness to new
antigens. Furthermore, even
though the thymus has a
remarkable capacity for repair
after acute insults, and there is
likely continual thymic involution
and regeneration in response to
stress and infection in otherwise
healthy people, acute and
profound thymic damage such as
that caused by common cancer
cytoreductive therapies or the
conditioning regimes required for
HCT, leads to prolonged T cell
deficiency. In the setting of HCT,
a well-established therapy with
curative potential for a variety of
malignant and nonmalignant
diseases, delayed T cell
reconstitution is an important
contributor to transplant-related
morbidity and mortality due to
infections and malignant relapse.
Elements of the figure were
generated using Biorender.com
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can be achieved pharmacologically by disrupting up-
stream hormone signals, blocking the binding of sex ste-
roid receptors, or by inactivating the hormones them-
selves [61]. Given that SSI is routinely used in prostate
cancer patients, SSI is by far the most widely used ther-
apeutic strategy with potential for boosting thymic func-
tion. In fact, SSI has clear clinical efficacy in both set-
tings of acute insult and chronic age-related involution.
Specifically, in a retrospective study of prostate cancer
patients, there were increases in CD4 and CD8 counts as
well as in TRECs [218]. In a follow-up prospective
study, Boyd and colleagues found increased neutrophil
engraftment as well as enhanced levels of TRECs and
improved TCR diversity in recipients of both allogeneic
or autologous HCT [203]. Two further prospective trials
are currently recruiting to evaluate the effects of
Luteinizing hormone-releasing hormone (LHRH) modu-
lation for improving thymic reconstitution after allo-HCT
using either the LHRH agonist leuprolide (Leuprorelin,
NCT01746849) or the LHRH antagoinist degarelix
(Firmagon, NCT01338987).

In addition to sex hormone modulation, targeting growth
hormone (GH, somatropin) and ghrelin have also emerged as
promising strategies for thymic regeneration [226]. GH in
particular is particularly promising given the extensive clinical
studies evaluating its efficacy in a range of conditions. GH
regenerates the aged thymus [227, 228] and enhances hema-
topoietic progenitor cell function in the BM [229]. As such,
considerable interest in the translation of GH into the clinic
has been shown, primarily in the setting of chronic HIV in-
fection with enhanced thymus function and antiviral responses
[230–233]. Although growth hormone has never been specif-
ically studied clinically in the context of acute injury, a recent
trial assessing chronological aging found that GH (in addition
to the antidiebetes drugs metformin and DHEA) could en-
hance the number of RTEs and increased thymus size by
MRI [204]. A follow-up expanded trial has been designed to
assess current TRIIM-X trial (NCT04375657). Notably, a re-
cent studiy found that thymosin-α1, which has previously
shown efficacy for T cell reconstitution in recipeients of
HCT [201], could also restore lymphocyte count and
emeliorate mortality in COVID-19 patients [202].

Fig. 2 Acute injury and
endogenous mechanisms of
regeneration. (Top) Acute thymus
injurious events including acute
infection, rises in glucocorticoids
and sex hormones, and
cytoreductive treatment for HCT
or chemotherapy for cancer
treatment. (Bottom) Endogenous
cell signaling pathways leading to
regeneration from acute injury:
IL-23 from thymus dendritic cells
stimulate the release of IL-22
from innate lymphoid cells
(ILCs). ILCs also release
RANKL independent of IL-23.
IL-22, RANKL, BMP4 (from
thymic endothelial cells), and
KGF (from thymic fibroblasts) act
on thymic epithelial cells (TECs)
stimulating their proliferation.
TECs release IL-7 required for
thymocyte repopulation.
Thymocytes produce Vascular
Endothelial growth factor which
signals to thymic endothelial
cells. Bolded arrows indicate
endogenous factors that, when
given exogenously, have
regernative potential. Elements of
the figure were generated using
Biorender.com
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Cellular therapies and artificial tissue

Given the systemic injury that occurs after acute injury caused by
cytoreductive conditioning, including in the bone marrow, there
is a profound lack in the supply of hematopoietic progenitors that
are capable of seeding and reconstituting thymic function [234].
Therefore, one approach to boost T cell reconstitution after injury
is to cotransplant BM-derived lymphoid precursors [181].
Although this approach is limited by the supply of lymphoid
precursors that can be isolated from BM, ex vivo systems using
Notch-1 stimulation may allow for the development of large
numbers of T-lineage precursors that could be used for adoptive
therapy [182, 183, 235–237]. Transfer of T cell precursors in a
model of allo-HCT significantly enhanced thymopoiesis and en-
hanced peripheral T cell reconstitution [182–184].

All of the approaches discussed so far rely on the presence of
functional endogenous thymus tissue, which may be lacking in
particularly older individuals. Therefore one approach that has
shown some promise is to build what has been called an artifi-
cial thymic organoid (ATO) entirely for regenerating immunity
[238–241]. ATO tissues have been made by decellularizing
endogenous thymic tissue, as well as generating synthetic ma-
trices to support T cell development, though in vivo evidence of
therapeutic efficacy of these approaches is still limited [189,
241, 242]. However, given the extensive requirement for cellu-
lar micornvironmental support for T cell development, these
approaches still require cellular input to generate a fully func-
tional thymus, namely the thymic epithelial microenvironment
would need to be recapitulated. Thymic epithelial progenitor
cells (TEPCs) have been successfully isolated from fetal mouse
thymus and induced to generate a new thymus in athymic
mouse recipients [243–246], and neonatal TECs, or TECs de-
rived from pluripotent progenitors can promote enhanced thy-
mic function [247–249]. However, while there is evidence of a
bipotent TEPC in the postnatal thymus [250–252], their capac-
ity to self-organize as a whole organ like fetal TEPCs is limited.
TEC-like progenitors appropriate for this purpose have also
been generated by direct conversion of embryonic fibroblasts
by induced expression of the TEC transcription factor FOXN1
[253], as well as inducing TECs from embryonic ctem cells or
iPS cells from both mouse and human [92–94, 254]. Although
the efficacy of ATOs have not yet been extensively evaluated in
the setting of regeneration outside of mice, ATOs have recently
been used to great effect to distinguish hematopoietic from
intrinsic thymic defects in pediatric immunodeficiencies; there-
by identifying patients with DGS that would be candidates for
thymus transplant [190].

Conclusion

T cell immunity is critical for not only coordinating the adap-
tive response against pathogens but also for mounting a

response against malignancies. However, although the impor-
tance of the thymus for generation of an effective TCR reper-
toire is unquestionable, and there is a clear clinical need for
boosting thymic function after immune depleting therapies
such as the conditioning required for hematopoietic stem cell
transplant (HCT); the importance of postnatal thymic function
for clinical outcomes in a broader cohort of cancer patients is
only beginning to be appreciated. In particular, wider use of
new technologies such as single cell sequencing in particular
will allow true evaluation of the breadth of the TCR repertoire
and how this relates to pathophysiology of disease and thera-
peutics. Finally, new strategies are under development to en-
hance posttransplant T cell recovery and several of those are
now in clinical trial, such as IL-7, KGF, IL-22, and SSI.
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