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Dynamics of time matching:
Arousal makes better seem worse

JOHN GIBBON
New YorkState Psychiatric Institute and Columbia University
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Matching of time allocation across alternatives in proportion to relative reinforcement rates is a
ubiquitous finding in the animal-learning literature on choice. The dynamics ofthe underlying mech
anism, however, remain poorly understood. A recent finding by Belke (1992) profoundly challenges
scalar expectancy theory (SET; Gibbon et al., 1988) and other accounts of matching in concurrent
variable interval (VI) schedules. He studied concurrent probe tests of stimuli associated with equal
VIsbut trained in alternative concurrent pairs. In training, one was preferred and the other not. Un
reinforced probes revealed a strong preference for the alternative preferred in training. An experi
ment is reported replicating this result and showing that it is not due to generalization of preference
levels from training. When the probe is between the two preferred training stimuli, the richer sched
ule is unpreferred. A SET account of these results is presented which implicates two processes in
time allocation: (1) the choice between alternatives based on memory for delays to reinforcement,
and (2) the times at which such choices are made. The former process is sensitive to reinforcement
scheduling; the latter is sensitive to arousal levels induced by overall reinforcement rates in training.

A now venerable tradition in operant schedule research
shows that animals choosing between concurrently avail
able variable schedules of reward allocate time spent at
each alternative in proportion to their rates ofpayoff(the
matching law; Herrnstein, 1970; see Williams, 1988, for
a review). The matching law is ubiquitous throughout the
animal kingdom. A form ofmatching is seen at the level
of groups of animals distributing individuals across re
source sites where it is known as the "ideal free distribu
tion" (see Gallistel, 1990, for a review). At the level of
individuals, where it has been studied extensively in the
animal-learning literature, accounts of matching have
engendered an enduring controversy about its source.
Matching of behavior proportionate to payoff implies
more choices for the less profitable resource than
strictly necessary to maximize overall payoff rates. Sev
eral "molecular" or "quasi-molecular" accounts of
matching, which posit maximizing payoffs at a local or
molecular level, have been proposed. For example, me
loriation (Herrnstein & Vaughan, 1980; Vaughan, 1985)
and "momentary maximizing" (Shimp, 1969) argue
that subjects choose the better of two local rates or prob
abilities of reinforcement, and this results in overall
matching. Rather than explaining it, other, "molar"
matching accounts simply assume matching (e.g., Baum
& Rachlin, 1969; Gallistel, 1990; Mark & Gallistel,
1994).

The author is grateful for extensive discussion of these ideas with
C. R. Gallistel, who lent formative insights into an understanding of
switching rates. Thanks are due S. Fairhurst for data collection and
analysis. The work was supported by NIMH Grant MH41649-09. Ad
dress correspondence to John Gibbon, Biopsychology Unit 50, 722
W. I68th St., New York, NY 10032 (e-mail: jg34@columbia.edu).

Our account of matching (scalar expectancy theory
[SET]; Gibbon, Church, Fairhurst, & Kacelnik, 1988)
explained matching as a consequence ofchoice based on
memory of the delays to food associated with each alter
native. We argued that subjects remember a variety ofde
lays for each alternative in a variable interval (VI) sched
ule. Each of these delays is represented in memory by a
noisy perturbation governed by the scalar property. The
standard deviation of the remembered times is propor
tional to the size of the interval being remembered.

Figure 1 shows a mixture of memories for a variable
schedule of delays delivered at a constant probability,
the Poisson process common in nature, and in the labo
ratory for scheduling variable delays to reinforcement.
The geometric distribution of intervals is spaced evenly
in time, and the relative frequency with which each is ex
perienced decreases exponentially, proportional to the
height of the spikes. The smooth undulating curve repre
sents a mixture ofgaussian distributions associated with
each interval weighted by its probability of occurrence.
The scalar property on variance of remembered times
enhances the skew in the inducing, mixing distribution
of the VI so that the result is a severely skewed distribu
tion with an exponential right wing. We approximated
these memory distributions by exponentials (shown as
the heavy line function in the figure). This is a parame
ter-free approximation since the exponential mixing dis
tribution dominates the mixture so that subjects with
very different sensitivity to time nevertheless are all ex
pected to represent a VI schedule exponentially with a
common mean. We proposed that choice between two al
ternatives was governed by sampling a delay from each
and simply choosing the alternative with the smaller
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sample. That is, imagine a sample, a, from an exponen
tial, VI:A, with rate parameter .AvA = 1/A and a sample, b,
from a comparable VI with mean B. We calculated the
probability that a < b. For a fixed a, this is well known
to be given by the "tail integral" of B, exp( -a.AvB), and
integrating over a we have immediately

Figure 1. Probability density for a memory mixture of gaussian
densities and for the exponential with the same mean (heavy-line
function). The gaussian distributions have the scalar property on
variance, and the mixing distribution, indicated by the spikes, is a
constant-probability geometric series. (From "Scalar Expectancy
Theory and Choice Between DelayedRewards," by J. Gibbon, R. M.
Church, S. Fairhurst, and A. Kacelnik, 1988, Psychological Review,
95,102-114.Copyright 1988 by American Psychological Association.
Adapted by permission.)

trained in a concurrent choice context are later probed in
discrete choice trials against an alternative trained sepa
rately, it is the scheduled values of the concurrent stim
uli, rather than the obtained local probability ofreinforce
ment, that control choice in the probe trial. Preference
appears to be determined by the scheduled values ofdelay
to reinforcement, as SET claims, independently of the
pattern of reinforced and nonreinforced responses actu
ally experienced by the subject during concurrent choice.

A recent result by Belke (1992), however, casts doubt
on the SET account as well as on other molar and mole
cular accounts of time matching in concurrent sched
ules. I describe this study in some detail because it pro
vides the strongest challenge to extant accounts of
matching. Belke's result makes abundantly clear the need
for understanding the dynamics of concurrent choice.

In Belke's study, pigeons chose between two pairs of
concurrent VI schedules in a four-key chamber. Two
keys on one side were devoted to one pair ofVis; the re
maining two were devoted to the other pair. Baseline
training consisted ofconcurrent VI:20/VI:40 associated
with white and red keys on the left and concurrent VI:40/
VI:80 associated with green and yellow keys on the right
(all VI designations are in seconds). Subjects were ex
posed to each pair of schedules for 1 min, followed by a
10-sec blackout, followed by exposure to the alternate
pair, and so forth. Belke found matching to relative rein
forcement rates, that is, a 2/3 time-allocation preference
for white over red (twice as much time spent on white)
and a 2/3 preference for green over yellow, as would be
expected. Preference was expressed in response rates as
well, but local rates were roughly constant in the two sit
uations; hence, response matching was the result oftime
matching.

Unreinforced probe tests between red and green,
however, showed a 4:1 time-allocation preference for
green! Since local and scheduled probabilities of rein
forcement were equal for the two keys, indifference be
tween them would be expected according to molar match
ing accounts.

This kind of challenge is also damaging for the SET
version ofmatching. Ifsubjects sample a memory for the
VI:40 in red and a memory for the VI:40 in green, these
two samples are, on average, equally likely to favor ei
ther alternative and, hence, the matching level should be
indifference. On the other hand, as Williams (1994) and
Mark and Gallistel (1994) have pointed out, it may be
that it is the probability of switching out of a schedule
that is the controlling variable for preference here. Sub
jects may respond in the probe tests as though the alter
native were the original training alternative. Neverthe
less, even in this case, the preference actually obtained
(4:1) is too extreme to be explained by the probabilities
ofswitching out ofa given probe schedule alone. That is,
even if subjects were to preserve their training probabil
ity of switching out of red into white (2/3) and out of
green into yellow (1/3), these switching probabilities

(1)
1 +A/B

Our account thus required that choice probability between
two alternatives match their relative payoff rates, but, in
concert with other molar accounts, the dynamics ofhow
such choices are made on a moment-to-moment basis was
left unspecified.

On the other hand, while the dynamics ofchoice were
not specified, it is clear from this account that the mne
monic representation is associated with the scheduled
and delivered values of delays to reinforcement, not the
local probability of reinforcement obtained in a concur
rent choice situation. In concurrent VI schedules, both
alternatives elapse toward reinforcement independently
of the subject's behavior, and hence, for example, if re
inforcement rates are scheduled in a 4:1 ratio across the
two alternatives and responses (and times) match this 4:1
ratio, more responses, but also more reinforcers, occur
on the majority choice. The result is that local probabil
ity of reinforcement on each alternative is equal. This
feature is critical to "momentary maximizing" (Shimp,
1969), melioration (Herrnstein & Vaughan, 1980), and
the "cumulative effects model" (Davies, Staddon,
Machado, & Palmer, 1993), which rely upon an appreci
ation of local probability ofreinforcement given a choice
of either alternative (see Williams, 1994, for a review).

Local reinforcement rate does not enter into our ac
count, and strong evidence has been adduced to argue
against local probability of reinforcement as a control
ling variable in choice. Williams and Royalty (1989) and
Williams (1993, 1994) have shown that when stimuli
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would still generate, at most, a 2: 1 rather than a 4: 1 pref
erence for green. For then,

f(~,J) = MSR exp(-MSR tl,J)' I,J=A,B

E(tl,J) = l.1t,J = 1/MSR, MSR = 10.,

Figure 2. Schematic of a stationary two-state Markov c~. The
observed transitions between states A and B are shown With heavy
line arrows and hidden transitions from a state back to itself with dot
ted line arrows. The times associated with these transitions are expo
nential, with means equal to the memory sampling rate, proportio~al
to the overall rate of reinforcement (as indicated below the state dia
gram).

sponds to responding on VI:A, and State B corresp.o~ds

to responding on VI:B. The transition,~rom A to B I~ I~

dicated with a time, tA B and a probability QA' and sum
larly for the transition'from B to A. What is added here
are hidden transitions within a state (dotted arrows),
again associated with times and probabilities. This is a
stationary Markov chain, with probabilities PA = 1- QA
= Q = A /(AA+AB ) , where AJ = the mean reward rate in

B A . A ithVI:J. That is, the transition out ofB mto occurs WI a
probability equal to the relative reinforcement ~~te f~r A,
as described above (Equation 1). The four transition times
are exponentially distributed and reflect the times at
which successive choices for one or the other schedule are
made. Myerson and Miezen identified the between-state
transitions as exponential, as expected with a two-state,
two-transition Markov chain, but, more importantly, they
also showed that the mean transition rates were propor
tional to the overall rate of reinforcement. No principled
reason underlying this finding was given; rather, it was
found as an empirical fact. I analyze this finding below as
a consequence of memory sampling ideas.

Memory Sampling Rate and Preference . ,
The major analytic result proposed here ISthat time ~l

location as a measure ofpreference in concurrent choice
is really a composite of two factors: (1) the "true" pref
erence for one or the other alternative based upon the
memory representation of delays to food in that alterna
tive, and (2) the rate at which that preference is acce~s~d.

It is the latter that provides a number ofrather surpnsmg
predictions, including Belke's result described above.
Adapting Myerson and Miezen's finding, we will. arg~e
that the average rate ofchoice, to either stay or SWItch, IS
proportional to the overall rate of reinforcement. This
may be thought ofas the effect of "arousal" in the sense
espoused by Killeen and his colleagues (Killeen, Hanson,
& Osborne, 1978), except that here arousal modulates
the frequency of choice, rather than the frequency of a
pacemaker controlling timing. .

The overall rate of reward is the sum of the two inde
pendent rates, A. = AA + AB. Memory sampling governs
both the hidden transitions within a state and the ob
served transitions between states. The mean interchoice
interval the inverse of the memory sampling rate
(MSR), is proportional to 1/ A., so MSR = KA.. Subjects
sample from their memories and decide to either stay or
switch, at this sampling rate, with E(tJ.J) = J1J.J= lIMSR =
lIKA., all I,J= A,B. ,

The MSR idea has its roots in some very early Ideas on
extinction, the partial reinforcement extinction effect and
the "reflex reserve" (Skinner, 1938). It is exemplified in
earlier work of ours on extinction ofauto shaping condi
tioning (Gibbon, Farrell, Locurto, Duncan, & Terrace,
1980). Extinction occurs at a rate approximately propor
tional to the rate at which reinforcers were previously de
livered. That is, if one counts "expected reinforcers
omitted" in extinction, the rate ofdecay ofan association
is about the same no matter what the prior absolute rate
of reinforcement. This is not a new idea, but the present

PB.......,'\

!tB,B

..'. ......

(2/3) = 2/3.
(2/3)+( 1/3)

P(R~W)

P(G) = P(R~W)+P(G~Y)

P •••••-r
(tA.A
" .............

A qualitative account of Belke's result might, how
ever, be ascribed to generalization of preference. Sub
jects in the probe tests prefer (perhaps t~o. stro~gly).the
schedule that was preferred in the trammg situation.
They acted in favor of the previous majority choice, that
is, green, while red was unpreferred.

I report below an experimental examination of the
generalized preference question, and propose ~n expanded
account of the dynamics of concurrent choice, The ac
count depends importantly on subjects' maintaining, in
probe tests, the rate at which they sampled from memory
and made choices during training. The account adapts an
important proposal by Myerson and Miezen (1980). o.n
the kinetics of matching. These authors argued that It IS
the switching rate, not probability, out ofthe two sig~als

which is the controlling variable in concurrent matching,
In the following quantitative account, I elaborate on their
Markov chain analysis and show experimentally that the
switching rate out of, and back into, a given signal may,
when properly understood, predict not only Belke's re
sult but an even more striking case in which probes be
tween two separately trained concurrent alte~nativesc~n
result in preference for the minority alternative, That IS,
that better is worse in such probe preference tests.

Dynamics ofTIme Allocation
Myerson and Miezen (1980) showed that.the ~ynam

ics of temporal switching between alternatives m con
current VI schedules was well described by a two-state
Markov chain with just two transitions, those from one
to the other state. I adapt their account below to include
four transitions. Two are hidden transitions from a state
back to itself and the remaining two are the switching
transitions to'the alternative. In Figure 2, the modified
Markov chain is shown schematically. State A corre-
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An immediate result is that the relative-time-allocation
measure induces matching:

EDT(G) = KA.(G,Y) Qa = 80 sec/K.

Hence, relative time allocation between green and red is
4: I in favor of green, as Belke found. This is essentially
the argument advanced by Mark and Gallistel (1994), but
without the stochastic Markov analysis and assuming,
rather than deriving, matching.

The argument may be summarized qualitatively as fol
lows: (I) The time-allocation preference between two
schedules is determined by the ratio oftheir DTs, that is,
the time spent in the presence ofeach signal. (2) Distribu
tions ofDTs are determined by the probability ofswitch
ing or remaining on a given alternative multiplied by the
time between decision epochs. That is, DTs (Equation 2)
are composed of the number of hidden transitions from
a state back to itself (with probability P) plus the final
transition to the other alternative (with probability Q).
(3) The probability ofstaying or switching is determined
by sampling from the distribution of remembered times
for each schedule and choosing that with the shorter time.
This results in choice proportions that obey the matching
law. (4) The time between decisions is determined by
overall reinforcement rate from both choice alternatives
in training. (5) In the probe tests, subjects ignore the
new alternative and, instead, maintain the switching rates
established in training. The result is that a choice alter
native with a rich schedule may nevertheless have a rel
atively short dwell time, because a high memory sam
pling rate can reduce the time spent on that alternative.
In the Belke experiment, the memory sampling rate in
the VI:20NI:40 pair was twice that for the VI:40NI:80
pair, resulting in exits that were more rapid from the
VI:40 trained with the high reinforcement rate than from
the VI:40 trained with the lower reinforcement rate. We
will see below that an even more striking anomalous
preference is entailed by these ideas.

The experiment reported below replicates Belke's find
ing in a two-key procedure with a changeover (CO) re-

BETfERIS WORSE: AN EXPERIMENT

tribution of DTs is itself exponential, with rate parame
ter MSR, weighted by the exit probability, Q(Equation 3).

Probe preference. The DT analysis immediately gives
a prediction of a 4: I rather than a 2: I preference for the
VI:40 that was paired with the VI:80 over the VI:40
paired with the VI:20 in Belke's experiment. Overall re
inforcement rate in the white (VI:20), red (VI:40) pair is
A. (W,R) = 3/40 sec. The overall reinforcement rate for
the leaner pair is A. (G,Y) = 3/80 sec. The corresponding
memory sampling rates are proportional to these values.
EDT, then, for red in the 20/40 concurrent is

I
EDT(R) = KA.(W,R) QR = 20 sec/K.

Similarly, the EDT in green is

I

(2)

(3)

J*I=A,B,

where t1 1 k is the kth transition time from state Jback to it
self, n is 'the number of hidden transitions, and tJ,f is the
final transition time out ofJ into I. Taking expectations on
t [withE(tlJ) = I/MSR=1/KA.l andonn [withP(n = N) =
(PJ)NQJ], we have expected dwell time, EDT, given by

I
EDT(J) = KA.QJ .

EDT(A)

EDT(A) + EDT(B)

application is novel. I argue that adjustment to new lev
els ofpreference in the concurrent situation ought to de
pend on the previously experienced overall reward rate.

Time allocation. I now show how this mechanism
would produce matching oftime allocation in concurrent
VI schedules. To be concrete, we use VI:20 and VI:40 in
white and red, respectively, as in Belke's (1992) experi
ment. The overall food rate A. = 3/40 sec, hence on av
erage approximately every 13 sec/K subjects sample from
memory and choose to either stay or switch, with prob
abilities appropriate to the matching level, that is, 2: I in
favor ofVI:20. When the comparison favors white, then
subjects switch to it ifthey are not already there, and stay
if they are, and vice versa for red. This situation defines
the asymptotic two-state chain, Markov in both time and
space, shown in Figure 2. The fixed vector equals the
transition probabilities to white and red, PA' PB , where
PA = 2/3 = QB = 1-PB .

The central feature to be added to this analysis is the
dwell time (DT) in each state. The DT is the sum of the
number of (hidden) transitions from a state back to itself,
plus a final transition out. DTs in state J are then

AA
=PA= (4)

AA +A B

Exponential dwell times. A number of results, begin
ning with Heyman (1979) and extending through some
recent work of the Myerson group (Buckner, Green, &
Myerson, 1993; Myerson & Hale, 1988; Real, 1983; Real
& Dreyfus, 1985), confirm the exponential character of
the DTs. Our analysis may be seen to encompass this re
sult as follows: Assuming that the intersampling times,
tf J' are themselves exponentially distributed, a pleasing
result from stochastic process analysis (cf. McGill, 1963)
applies. A sum ofexponentially distributed times is well
known to be gamma distributed. However, when a sum of
exponentials is ended with a random stopping rule, that
is, with some probability, the distribution of the sum re
turns to exponential form. Hence, from Equation 2, the dis-



212 GIBBON

sessions, which occurred in an averageof 12days, another four probe
sessions were run between the red and green stimuli. For the sub
jects previously probed between the two majority choices, 20 ver
sus 40, the second set of probes examined 40 versus 40 (Belke
replication). For the other subjects, previously probed on the Belke
replication, the second set of probes was between the two majority
choices. In total, probe testing lasted approximately 5 weeks, four
sessions of the first probe test interspersed with eight or nine ses
sions of baseline, followed by four sessions of the second probe
test interspersed with eight or nine sessions of baseline.

Q
N
II)

>
J:l

i

- Schedule Matching

•••• Preference Matching

- SET Prediction

[] Training

IZJ Probes

0.8

0.4

0.2

0.6-o
c
o
;::..
o
Doo..
D.

!
II)

>
J:l

i
Figure3. Relative time a1Jocanonto the majority choice in baseline

(left twobars) and probe testing (right twobars). Matching levelsare
indicated with light horizontal lines and the scalar expectancy theory
predictions with heavy horizontal lines. The generalized preference
predic1ion is indicated with a dashed horizontal line.

Results
The proportion of time spent on the richer of the two

training schedules during the baseline trials (taken from
the probe testing phases) is shown in the left two his
togram bars in Figure 3. Birds slightly undermatched the
proportion of reinforcements (.67) in both pairs. For the
20/40 pair, there was no significant difference at the .05
level (used throughout) between matching and the level
achieved. For the 40/80 pair, undermatching was reli
able. Time allocation for both pairs was reliably different
from indifference. Thus, birds matched, or slightly under
matched, relative reinforcement rate.

Time allocation to the majority choice during the probe
tests is shown in the two histogram bars on the right. The
first bar replicates Belke's result, with the VI:40 from the
40/80 pair preferred about 4: lover the VI:40 from the
20/40 pair. The matching level (indifference) is shown
for reference. This proportion was significantly different
from .5 and not different from .8.

The critical observation is shown in the far right bar
when the probe was between VI:40 from the 40/80 pair and
VI:20 from the 20/40 pair. Here the matching level based

sponse key and a main key (Findley, 1958; Findley con
current). Twopairs ofconcurrent schedules, as in Belke's
procedure, were trained during l-min intervals with brief
time-out periods between them. The main key was either
white (VI:20) or red (VI:40) for one pair and either green
(VI:40) or yellow (VI:80) for the other. After training,
unreinforced probe tests were introduced. One probe test
replicated Belke's procedure. The main key in the probe
was either red (VI:40 from the white/red pair) or green
(VI:40 from the green/yellow pair). CO responses
switched the main key between red and green during the
probe. The second, critical, probe test was conducted be
tween white and green. Here white was the richer sched
ule and green, the leaner schedule; if subjects do not ad
just their dwell times in the probe tests, however, time
allocation should favor green 2:1even though its relative
density of reinforcement is half that of white! That is,
dwell time in green = 80 sec/K, while dwell time in white
= 40 sec/K (twice that in red, as shown above), and so
relative time allocation should favor green 2: 1, because
here memory is sampled at a lower rate.

Method
Subjects. The subjects were 6 white Carneaux pigeons that had

previously been used in timing tasks unrelated to concurrent choice.
Apparatus. The subjects were trained in a two-key pigeon

chamber enclosed in a sound-attenuating box. Further acoustical
isolation was provided by low-volume white noise broadcast
through a speaker in the chamber. Each key was located 21.5 em
above the chamber floor and was transillurninated by an lEE pro
jector. A 5 X 5 em aperture centered 10 em above the floor and lo
cated symmetrically between the two keys provided access to a
solenoid-operated grain hopper. A dim houselight provided gen
eral illumination, except during reinforcement, when it was re
placed by a light over the hopper. The procedure was implemented
and data collected by a computer located in an adjacent room.

Procedure. The subjects were placed directly on the changeover
key concurrent schedules ofVI:20NI:40 or VI:40NI:SO for 5 weeks
of one session per day, consisting of 30 l-min periods during
which one or the other concurrent pair was in force. These periods
were followed by a lO-sec time-out, as in Belke's procedure, but
successive pairs were chosen randomly after each time-out. Thus,
on average, 15 l-min periods were devoted to the VI:20NI:40 pair
and 15 were devoted to the VI:40/VI:SOpair. During the I-min pe
riods, the main key was illuminated either white or red (chosen ran
domly at the start ofeach I-min period) or green or yellow, and re
sponses to the CO key changed the main key color to its alternate.
A changeover delay (COD) of2 sec was in effect such that a rein
forcer set up for a given alternative could not be delivered until 2 sec
had elapsed after a switch. Three of the 6 subjects were assigned
white and red for VI:20 and VI:40 and green and yellow for VI:40
and VI:SO, respectively. The other three were assigned red and white
for VI:20 and VI:40 and green and yellow for VI:40 and VI:SO.

Probe testing. Probe testing was then introduced for 2lf2 weeks,
with probe days occurring variably but, on average, every 3rd day.
Baseline training continued in the remaining sessions. On probe
days, 10 of the 30 I-min periods were probe periods. During probe
periods, no reinforcement was scheduled. In the probe trials of the
first four probe sessions, the main key was illuminated white or
green for all subjects. This meant that, for 3 of the subjects, the probe
test was between the VI:20 of the previously trained VI:20/VI:40
pair and VI:40 of the previously trained VI:40/VI:SO pair. For the
other 3 subjects, the probe test was between VI:40 ofthe 20/40 pair
and VI:40 of the 40/S0 pair (Belke replication). After four probe
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on scheduled reinforcers would be a 2: I preference for the
VI:20, while the obtained level is about a 2: I preference for
VI:40! Preference is slightly below 2: I, but the result is not
significantly different from .67, while it is different from .5
(and, hence, from the matching level of .33).

These surprising preferences are a direct result of un
changing DT distributions between training and probe
tests. Figure 4 shows DT distributions averaged over these
6 subjects in semilog form. The straight lines in the fig
ure are regression fits to data from training and probe tri
als restricted to intervals greater than 3 sec and less than
23 sec. This range was chosen because all subjects show
a short rise in relative frequency, to a peak at about sec
ond 4 or 5, and a subsequent linear decline. The upper
limit was chosen to exclude any zeros in the I-sec relative
frequency bins. The short rise may reflect a tendency to
stay at an alternative beyond the COD (2 sec). Over the

middle range, linearity is well approximated for all four
schedules. Linearity in semilog coordinates means that
the distributions beyond the peak are exponential, repli
cating previous findings of exponentially distributed
dwell times. The close correspondence between slopes of
regressions on the training and probe data mean that sub
jects are performing similarly in training and testing.

The two distributions on the left are for the 20/40 train
ing pair, and those on the right are for the 40/80 training
pair. Notice that the slopes on the left are steeper than
those on the right and that, in particular, the slopes for
the 40-sec paired with the 80-sec schedule (40b) in the
upper right are considerably shallower than those for the
40-sec paired with the 20-sec VI (40a). That is, exits
from 40b occur at a much lower rate than do exits from
40a, and hence the strong preference for 40b in the probe
test. Similarly, exits from 40b occur more slowly than
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exits from 20, and hence the surprising preference for
40b in this probe test as well.

DISCUSSION

The novel preference for 40b over 20 does not fit with
a generalization-of-preference account which might be
put forward to accommodate the Belke result. Both of
the two probe stimuli were favored 2:1 in the training
pairs. Hence, a generalization account would predict, at
best, indifference between them. In contrast, the data show
that subjects spend about one-third of their time on the
richer schedule. That is, better is worse.

These results, and the preceding analysis, implicate a
two-component time-allocation system in a stationary
Markov chain. One component is a decision process for
deciding between two training alternatives. This process,
I argue, is well described as sampling from exponential
memories and simply choosing the better ofthe two sam
ples. The second component is the memory sampling
rate. Memories are sampled and choices are made at ex
ponentially distributed times, with a mean rate propor
tional to the overall rate of reinforcement in the training
context, that is, proportional to arousal levels. When this
rate of reinforcement is high, as in the richer pair in this
experiment, sampling occurs faster than when it is low,
as in the leaner pair. This results in matching when the
choice is between the two training schedules, since they
are trained in the same overall reinforcement context.
But when the schedules are probed with an alternative
trained in a different context, subjects do not adjust their
sampling rate. They are slower to decide in the probe sig
nal from the leaner pair than they are in the probe signal
from the richer pair. This results in the surprising time
allocation "preference" for the leaner of the two probe
schedules when both were preferred in training.

The stochastic properties ofthis system have interest
ing implications as well-unappreciated heretofore, per
haps because the hidden transitions were not considered.
For example, Buckner et al. (1993) argued that the oc
currence of reinforcement on a side lengthened the stay
on that side, because their data show that DTs that in
clude a reinforcer average about twice as long as those
without reinforcers. But a beautiful result, due to Feller
(1966), on two independent Poisson processes shows that
this is just what is to be expected if the reinforcement de
livery system is independent, moment to moment, from
the stochastic switching rates. Conceptually, Feller's re
sult says that DTs that are "lucky enough," so to speak,
to "catch" a reinforcement are on average twice the
length of other DTs, hence the above finding. Notice
that the time between reinforcement and exit from a side
then remains at about the overall average DT, as does the
time from entrance to reinforcement, as would be ex
pected on a strictly independent basis. Thus, we argue
that it is the stochastic properties of these systems that
produce the extended DTs which contain reinforcers, not
a local effect of reinforcement delivery.

I have argued that the exponential character ofDTs is
a consequence of exponential memory sampling. How
ever, one might simply assume exponential DTs with the
appropriate means. Then the present unusual "prefer
ence" for the leaner of two equally preferred schedules
also may be predicted by the switching-rate constancies
of Myerson and Miezen (1980) and Mark and Gallistel
(1994), without recourse to the deeper analysis provided
here of how such dwell times are produced. The present
account unifies a decision rule that does not itself spec
ify matching as an outcome, with the molar matching re
sult and its exponential DT character, by incorporating
memory-driven hidden transitions from one schedule
back to itself.

The implications of the memory-sampling-rate analy
sis are potentially far reaching, especially if the hidden
transitions may be experimentally unmasked. It is note
worthy, in this context, that matching is also obtained in
discrete trial procedures (e.g., Nevin, 1969) in which there
are no hidden transitions and no switching rates, because
choice opportunities are experimentally controlled. Wil
liams and Royalty (1989, Experiments 2 and 3) and Wil
liams (1993) also studied discrete-trial preference tests
ofchoice between signals trained in alternative contexts.
Their results are in qualitative agreement with control by
the scheduled reinforcement probabilities in training.
Choice in discrete trials should force decisions based on
memory for the trained interreward intervals, consonant
with the decision process espoused here and independent
ofthe rate at which subjects would make such choices in
free-operant situations.

While arousal apparently controls the rate at which
animals sample from their memory to make choices,
it is not yet clear what kind of time window for storing
interreward intervals into memory is used. Mark and
Gallistel (1994) have shown that under some circum
stances extremely rapid adjustments to fluctuations in
reward rate occur during concurrent choice. In the pre
sent context, this suggests that storage into memory may
be sensitive to fluctuating payoff rates. It may he shown
that the present account of choice does not require stor
age of more than a few, say three to five, interreinforce
ment intervals to generate matching. Under these condi
tions, local time allocation tracks local fluctuations in
reward rate. It seems likely that a fluctuating environment
may predispose subjects to remember a small number of
delays, while stable environments may encourage a
larger memory store.

An important next step will be to examine whether the
memory-sampling-rate idea applies to probes between
signals for exclusive alternatives as opposed to concur
rent signals for the schedules themselves. The former,
studied in concurrent-chain procedures, may be analo
gous to patch choice in foraging animals (Shettleworth,
1988). It is an open question as to whether memory sam
pling obeys the same rules when subjects are choosing
between patches, analogous to travel decisions offoragers
to approach one or another resource.
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