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ABSTRACT

Abstract

Vibration energy harvesting can be an effective method for scavenging wasted mechanical energy for use by

wireless sensors that have limited battery life. Two major goals in designing energy harvesters are enhancing the

power scavenged at low frequency and improving efficiency by increasing the frequency bandwidth. To achieve

these goals, we derived a magneto-elastic beam operated at the transition between mono- and bi-stable regions. By

improving the mathematical model of the interaction of magnetic force and beam dynamics, we obtained a precise

prediction of natural frequencies as the distance of magnets varies. Using the shooting technique for the improved

model, we present a fundamental understanding of interesting combined softening and hardening responses that

happen at the transition between the two regimes. The transition regime is proposed as the optimal region for en-

ergy conversion in terms of frequency bandwidth and output voltage. Using this technique, low frequency vibration

energy harvesting at around 17 Hz was possible. The theoretical results were in good agreement with the experi-

mental results. The target application is to power wildlife bio-logging devices from bird flights that have consistent

high power density around 16 Hz [1].

1 Introduction

Ambient energy surrounds us in different forms, such as wind, solar, thermal, and mechanical energy. Many of these are

considered waste energy from the naturally generated sources. The process of scavenging and storing such energy is known

as energy harvesting.

A major source of energy to harvest is the prevalent mechanical vibration present in the environment and wildlife. Vi-

bration energy harvested from these sources can be useful for autonomous powering of wireless sensors [1–7]. With the

advancement of sensor technologies, less than 1mW of power is sufficient to efficiently run these sensors [8–11]. Such

low power consumption inspires the use of alternative energy sources to address the limited life and replacement costs of
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batteries. Vibration energy harvesters are mechanical resonators that oscillate when attached to a vibration source [12–14].

This oscillation is then converted into electric energy using electromagnetics [15–17], electrostatic [18, 19] or piezoelec-

tric [20–37] transducers. The latter type is the most common mechanism because of its high-energy density.

Linear resonators are inefficient because of their narrow frequency bandwidth compared with the broadband ambient

vibrations. For higher efficiency, the linear resonator frequency should be altered to match the excitation frequency from the

ambient source. Several methods for tuning the resonator frequency with the dominant ambient frequency were explored

including the use of magnets [38–45], but these did not change the nature of the narrow bandwidth. To solve the bandwidth

problem, several nonlinear resonators have been investigated during the past few years.

Nonlinear systems have higher bandwidth leading to an increase in the efficiency of the harvester. Sources of nonlinear-

ities include magnetic [20, 46–59] and mechanical [29, 30, 60, 61] forces. A common magnetoelastic resonator is composed

of a cantilever beam with a tip magnet facing the same pole of a stationary magnet. Magnetic nonlinearity, hardening or

softening, can be achieved by controlling the distance between two magnets. Increasing the distance will cause the system to

have a single stable equilibrium point and hardening behavior will occur, while reducing the distance will cause the system

to have two stable equilibrium points and softening behavior will appear.

Several mono-stable energy harvesters in the micro-scale [62–65] or the macro-scale [49] have been developed for

broadening bandwidth. Some examples include the use of microbeams under bending and stretching [62, 63], stoppers [64]

and nonlinear springs [65].

Using bi-stability to increase the output power and frequency bandwidth was investigated by Erturk et al. [53, 66]. Dif-

ferent studies used the same approach to efficiently harvest energy [17,18,36,45,55,67–70]. Masana and Daqaq [29] showed

that the potential well for the bi-stable harvester depends on the excitation levels and achieved larger bandwidth but only at

higher excitation levels. A similar design but with added lumped mass was investigated by Sneller et al. [30], in which the

added mass reduces the excitation level required for the harvester to oscillate between the two potential wells.

For bi-stable energy harvesters, experiments show the highest energy is produced at the transition from the mono-stable

to the bi-stable region [71, 72]. However, a deep understanding and analysis of the complicated behavior of the harvester

in the transition regime is still absent. This calls for accurate models and analysis tools to be developed and applied. For

example, analytical methods such as harmonic balance [57, 73] have been used to solve the governing equations of motion.

However, to capture more accurate dynamical responses, higher order harmonics should be considered, which makes the

analysis very sophisticated. The perturbation methods are also limited to weak nonlinearities [74] and are not capable of

capturing combined softening and hardening nonlinear responses [75]. Among the possible numerical techniques for anal-

ysis, the most commonly used method of long time integration is computationally inefficient and unable to predict complex

bifurcation behaviors. In this study, we have addressed this limitation by using the shooting technique that can capture all the

possible bifurcations including the combined softening and hardening behavior in the transition region. This feature allows

studying in details the broadening of the frequency bandwidth. The shooting technique updates the initial conditions until

it finds the steady state solution of the dynamical system and determines its stability based on the Floquet multipliers. It is

more efficient than other numerical methods and, unlike perturbation methods, is not limited to the small nonlinearities or

forcing. The presented simulation results are validated by experimental results.

An important aspect of the proposed energy harvester is the low frequency conversion capability. Several structures

have been employed to decrease the frequency of vibration for energy harvesting to below 100 Hz, including a zigzag micro

structure with a tip mass [76], a composite bi-stable plate [77], and an impact energy harvester [78]. Our results indicate bi-

stable harvesters at the transition regime, which not only generate larger voltage, but also achieve larger bandwidth at a lower

frequency (around 17 Hz). The transition regime can be determined by tuning the magnetic distance to the distance between

the mono- to bi-stable regions. The mentioned characteristics make the transition regime attractive, and hence call for more

attention. The variations of the natural frequency and voltage output with the distance between the permanent magnets was

explored experimentally [68–70, 79]. However, determining accurately determines the fundamental natural frequency of the

resonator as a function of distance between two magnets remain missing. Predicting of natural frequency in the transition

region is important, which maybe determined using a lumped parameter model [34]. Using a continuous model, we obtain

a good agreement between the predicted and measured natural frequencies as the distance between magnets varied. Precise

prediction of the dynamic responses and natural frequencies shed light on the underlying mechanism of the transition regime

of bi-stable energy harvesters and can be used as a useful tool to design optimal energy harvesters for applications such as

self-powered bird tags [1].

The outline of the paper is as follows. Section 2 describes the principle of operation of the resonator and the experimental
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setup. A free vibration model of the system is developed in Section 3. Section 4 expresses the magnetic force. Section 5,

6, and 7 elaborates the static analysis, eigenvalue problems and dynamic analysis, respectively. Results and discussions are

presented in Section 8 followed by the conclusions in Section 9.

2 Principle of Operation

The nonlinear resonator is composed of a piezoelectric cantilever beam with a tip magnet facing the same pole of another

magnet (Fig. 1a). To increase the amplitude of the resonator and lower its natural frequency, we use a polymer material for

the cantilever beam that is partially covered by piezoelectric laminates. The magnetic force acts as a nonlinear spring that

makes the system bi-stable. There have been studies on modeling this bi-stable resonator that mostly focus on lumped pa-

rameter modeling [68]. However, lumped modeling is only an approximation for the system’s response at frequencies close

to its natural frequency. To accurately evaluate the response of the resonator for a wide range of frequencies, we develop a

continuous model of the system and determine the response to a harmonic base excitation, z̈(t) = Acos(Ωt), where Ω is the

frequency of excitation and A is the amplitude. In Fig. 1a, d is the horizontal distance between two magnets, L is the length

of the beam, L1 is the length of the piezoelectric layer on the top and bottom, W (x, t) is the transverse deflection of the beam,

RL is the load resistance, and Fmag is the magnetic force. The tip magnet is modeled as a rigid body with mass M and mass

moment of inertia J = 1
6
ML2

m with a side length Lm.

The effect of the distance between magnets on the beam response and potential energy function is illustrated in Fig. 1b.

Magnetic force is a function of separation distance and is responsible for creating one more equilibrium points to make a

bi-stable system. The corresponding potential energy function is a single well or double well depending on the distance

between magnets. For large distances between magnets, the beam oscillates around one stable point, point 1 (mono-stable

behavior). At small distances, the system has two potential wells and the beam oscillates between two stable equilibrium

points, at points 2 and 3, (bi-stable behavior).

Fig. 2 shows the experimental setup used to test the magnetoelastic energy harvester. The setup consists of a PUMA

Spectral Dynamics Analyzer (PSDA) and the resonator attached to a rigid base with a rail to adjust the initial magnet dis-

tance. The PSDA sends the signal to the amplifier which amplifies the signal to vibrate the shaker at the specified excitation

amplitude for a required range of excitation frequency. The resonator and its base were placed on a shaker to apply the base

vibration. A schematic for the experimental setup and connections is shown in Fig. 2.

The materials used include a polymeric beam made of Makrolon polycarbonate with modulus of elasticity of 2.34 GPa.

The beam is partially covered by a piezoelectric material of lead zirconate titanate (PZT) 5A Navy Type II with modules

of elasticity of 66 GPa, and it has a piezoelectric voltage constant of ε31 = −11× 10−3 V m/N, at the top and bottom. The

cubic magnets have a side length of 8 mm and magnetic moment of 0.5A2/m. The rest of the parameters are listed in Table 1.

Two accelerometers; PCB Piezotronics 352C22 and 352A24; with sensitivities of 10.28 mV/g and 98 mV/g and 0.5gm and

0.8gm weights, respectively, were used to measure the output and input acceleration signals. The accelerometer with higher

sensitivity was placed on the rigid holder while the accelerometer with lower sensitivity was placed on the tip magnet. Both

accelerometers were connected to the acceleration data logger, which was connected to the PSDA. The data logger had many

channels to receive the data from the accelerometers and the piezoelectric circuit.

3 Free Vibration Model

The energy harvester has two parts: the first is the biomorph with the piezoelectric layer at the top and bottom (0 ≤

x ≤ L1), and the second consists of a polymer layer (L1 ≤ x ≤ L). By applying Newton’s second law and considering the

continuity conditions at L1, the governing equations for free vibration (no base excitation) of the system and boundary

conditions are obtained.

ρAcẄ1(x, t)+EIcW1xxxx(x, t)+ cẆ1(x, t)−ϑV (t)

[

dδ(x)

dx
−

dδ(x−L)

dx

]

= 0, 0 ≤ x ≤ L1

ρpApẄ2(x, t)+EpIpW2xxxx(x, t)+ cẆ2(x, t) = 0, L1 ≤ x ≤ L (1)

CpV̇ (t)+ϑ
∂Ẇ (x, t)

∂x

∣

∣

∣

∣

L1

+
V (t)

RL

= 0
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where the third equation in Eqn. (1) is for the voltage produced in the piezoelectric layer [49,54,55,67–70]. The correspond-

ing boundary conditions for the system in Eqn. (1) is given by

W1(0, t) = 0, W1x(0, t) = 0

W1(L1, t)−W2(L1, t) = 0

W1x(L1, t)−W2x(L1, t) = 0

EIcW1xx(L1, t)−EpIpW2xx(L1, t) = 0 (2)

EIcW1xxx(L1, t)−EpIpW2xxx(L1, t) = 0

EpIpW2xxx(L, t)−MẄ2(L, t)−MLcẄ2x(L, t)+Fmagy −Mg = 0

EpIpW2xx(L, t)+MLcẄ (L, t)+
[

ML2
c + J

]

Ẅ2x(L, t)−LcFmagy +LcMg = 0

where ρAc is the equivalent mass per unit length, for the biomorph part of the beam (ρ1A1 +ρpAp +ρ2A2). The subscripts

(1,2) denote the biomorph and the polymer parts of the beam. c is the damping, δ is the Dirac delta function, Ep and Ip

are the polymer beam modulus of elasticity and the second moment of inertia, respectively. V and RL are the voltage and

resistance load, respectively, Cp =
2bLεεxx

33
h1

is the capacitance through two piezoelectric layers connected in parallel. EIc and ϑ
are the effective flexural rigidity of the biomorph part of the beam and the coupling coefficient term for parallel connections,

respectively, and are given by

EIc =
2b

3

{

Ep

h3
p

8
+E1

[

(

h1 +
hp

2

)3

−
h3

p

8

]}

(3)

ϑ = e31b(hp +h1)

where e31 is the piezoelectric constant, b is the width of both the piezoelectric layer and the beam, h1 and hp are the thickness

of the piezoelectric layer and the polymer beam, respectively, and E1 is the modulus of elasticity of the piezoelectric layer.

4 Magnetic Force

The total magnetic force between two dipoles is a function of spatial derivatives of their magnetic field, whose formula

is given in reference [80]. The total magnetic force is given by

Fmag =
FR

Z4
(4)

where Z is the distance between the centers of the two magnets, FR is the magnitude of the moments for magnetic dipoles

and given by

FR =
3εm1m2

2π
(5)

where m1 and m2 are the moments of magnetic dipoles for the fixed and tip magnets, respectively. ε is the permeability of the

free space and equal to 4π×10−7 mkg

s2A2 . As seen in Fig. 3, the total magnetic force can be written in terms of two components,

one in the longitudinal direction, which is assumed to balance the longitudinal stiffness of the beam. The other one in the

transverse direction, which is responsible for the beam transverse deflection and is given by Eqn. (6)
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Fmagy = Fmagsin(θ)

= Fmag

Y

Z

= Fmag

Y
√

(Y 2 +d2)
(6)

=
FRY

(Y 2 +d2)5/2

where d is the longitudinal separation distance between the centers of the two magnets, and Y is the deflection of the center

of the moving magnet in the transverse direction given by

Y =W2(L, t)+LcW2x(L, t) (7)

As it can be seen from Eqn. (6), the magnetic force is a nonlinear function of the beam tip displacement. This nonlinearity

causes the system to have multiple equilibrium points.

5 Static Analysis

The static problem can be formulated by setting all time derivatives to zero in Eqn. (1) and Eqn. (2):

EIcWs1xxxx(x) = 0

EpIpWs2xxxx(x) = 0

(8)

Ws1(0) = 0, Ws1x(0) = 0

Ws1(L1)−Ws2(L1) = 0

Ws1x(L1)−Ws2x(L1) = 0

EIcWs1xx(L1)−EpIpWs2xx(L1) = 0

EIcWs1xxx(L1)−EpIpWs2xxx(L1) = 0

EpIpWs2xxx(L)+Fmagys −Mg = 0

EpIpWs2xx(L)−LcFmagys +LcMg = 0

where the subscript (s) refers to static, and Fmagys is the static form of the magnetic force in the transverse direction given by

Fmagys =
FRYs

(Y 2
s +d2)5/2

(9)

where Ys is the static deflection for the magnetic tip center. Now the general solutions for the static equilibrium equations

Eqn. (8) are third order polynomials of the forms:

Ws1(x) = A1x3 +B1x2 +C1x+D1

Ws2(x) = A2x3 +B2x2 +C2x+D2 (10)

Applying the static boundary conditions in Eqn. (8), one can solve for all coefficients of A1, ... D2. The simulated static

deflections were extracted from the solutions of Eqn. (10). The experimental static deflections of the tip magnet attached to
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the beam with respect to the level of the beam base were measured when varying the distance between the two magnets. The

threshold distance is specified as the farthest distance where the tip magnet can hold in both upper and lower potential wells.

Fig. 4 shows the variation of the static deflection for the center of the tip magnet with the distance between two magnets

theoretically and experimentally. The maximum deflections obtained were 20 mm in both results. From the static response,

it is clearly shown that there is a critical separation distance between the two magnets, called threshold separation distance

dth, which has a value of 20mm. This threshold value divides the static response into two major regions. The first region

(d > dth) is called the mono-stable region, where the system oscillates around one stable equilibrium point in the middle.

The second region (d < dth) is called the bi-stable region, where the system oscillates between two stable equilibrium points.

The static profile contains one stable branch for the mono-stable region and three branches for the bi-stable region; upper

and lower branches are stable, while the middle one is unstable. The stability was examined by finding the eigenvalues of

the Jacobian matrix at the equilibrium point and negative values indicated stability. The phenomenon of symmetry breaking

bifurcation is shown clearly at the threshold value. The reason for this breaking is the weight of the system that acts as a

constant force in the static equilibrium equation in addition to the nonlinearity caused by the magnetic force. If the weight

were not present, the bifurcation diagram would be symmetric. Theoretical and experimental results are very close to each

other and both results show the same threshold value dth, of 20 mm.

6 Eigenvalue Problem

To determine the natural frequencies and mode shapes of the system, we solve the eigenvalue problem. The total

deflection of the beam can be linearized around its equilibrium points as

W (x, t) =Ws(x)+u(x, t) (11)

where Ws(x) and u(x, t) are the static equilibrium position and dynamic response, respectively. Substituting Eqn. (11) into

Eqn. (7), we obtain the following form for the displacements for center of the moving magnet

Y = W2s(L)+u2(x, t)+LcW2sx(L)+Lcu2x(x, t)

= W2s(L)+LcW2sx(L)+u2(x, t)+Lcu2x(x, t) (12)

= Ys +Yu

where Ys is the static displacement and Yu is the dynamic displacement of the magnet center. Substituting Eqn. 12 into

Eqn. (6), and expanding in Taylor series around Yu = 0 and neglecting nonlinear terms yield

Fmagy =
FRY s

(d2 +Y 2
s )

5/2
+

FR

(

d2 −4Y 2
s

)

(d2 +Y 2
s )

7/2
Yu

= Fmagys +Fmagyu (13)

where Fmagys and Fmagyu are the static and linearized dynamic magnetic forces, respectively. It should be noted that expansion

of Eqn. (6) around zero will not yield the same result and will cause an error in the calculation of natural frequencies and

dynamic responses. The key for correct expansion of the magnetic force is to account for the static equilibrium point in the

equation. Eqn. (12) and (13) are then substituted into Eqn. (1) and Eqn. (2). Static magnetic force cancels the corresponding

restoring force of the beam resulting in the following equations of motions and boundary conditions:
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ρAcü1(x, t)+EIcu1xxxx(x, t)+ cu̇1(x, t)−ϑV (t)

[

dδ(x)

dx
−

dδ(x−L)

dx

]

= 0

ρpApü2(x, t)+EpIpu2xxxx(x, t)+ cu̇2(x, t) = 0

CpV̇ (t)+ϑ
∂u̇1(x, t)

∂x

∣

∣

∣

∣

L1

+
V (t)

RL

= 0

u1(0, t) = 0

u1x(0, t) = 0

u1(L1, t)−u2(L1, t) = 0 (14)

u1x(L1, t)−u2x(L1, t) = 0

EIcu1xx(L1, t)−EpIpu2xx(L1, t) = 0

EIcu1xxx(L1, t)−EpIpu2xxx(L1, t) = 0

EpIpu2xxx(L, t)−Mü2(L, t)−MLcü2x(L, t)+Fmagyu = 0

EpIpu2xx(L, t)+MLcü2(L, t)+
[

ML2
c + J

]

ü2x(L, t)−LcFmagyu = 0

Now to find the mode shapes and natural frequencies at a given static equilibrium position, we assume a solution in the

form of

u j(x, t) = φ j(x)e
iωt (15)

where φ j(x) is the first mode shape, and the subscript j corresponds to the beam part. ω is the beam first natural frequency.

Dropping the damping and voltage terms and substituting Eqn. (15) into Eqn. (14) we can extract the following eigenvalue

problem

φ1xxxx(x)−a4
1φ1(x) = 0

φ2xxxx(x)−a4
2φ2(x) = 0

φ1(0) = 0

φ1x(0) = 0

φ1(L1)−φ2(L1) = 0 (16)

φ1x(L1)−φ2x(L1) = 0

EIcφ1xx(L1)−EpIpφ2xx(L1) = 0

EIcφ1xxx(L1)−EpIpφ2xxx(L1) = 0

φ2xx(L)−Lcηφ2(L)−
5

3
L2

cηφ2x(L)−
Lc

EpIp

Fmagyφ = 0

φ2xxx(L)+ηφ2(L)+Lcηφ2x(L)+
1

EpIp

Fmagyφ = 0

where

a4
1 =

ρAcω2

EIc

, a4
2 =

ρpApω2

EpIp

(17)

and η = Mω2

EpIp
, Fmagyφ is the magnetic force as a function of the mode shape and is given by

Fmagyφ =
FR

(

d2 −4Y 2
s

)

(d2 +Y 2
s )

7/2
Yφ (18)
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where Yφ is given by:

Yφ = φ(L)+Lcφx(L) (19)

Fig. 5 shows the first normalized mode shape plotted at some sample values in the mono-stable, bi-stable, and transition

regions to compare the mode shape magnitudes for these three regimes. The mode shapes are normalized with respect to

the maximum mode amplitude among all distances. The higher amplitude and bending effect shown in the bi-stable region

(d = 6 mm) are due to the higher magnetic force value at this region. The smaller the distance, the larger the amplitude in

the bi-stable region, which is consistent with the results in Fig. 4. The smallest amplitude among all distances was at the

threshold distance (d = 20 mm). The first mode shape profile is consistent with the experimentally observed oscillations and

hence will be used as the dominant mode shape for the dynamic analysis. The natural frequency for the first mode shape of

the linear system (when the fixed magnet is removed, but the moving magnet and its weight effect is present) was calculated

by solving the system of Eqn. (16) after equating the magnetic force term to zero. It was found that the linear resonator has

a natural frequency of 17.35 Hz.

Next, we investigated the variation of the natural frequency of the nonlinear resonator under the effect of the magnetic

force that varies by the distance between the two magnets. Different researchers studied the frequency variation with chang-

ing the separation distance between the two magnets [34, 45, 72]. However, these studies didn’t provide a match between

the experimental and simulated results. Fig. 6 shows the theoretical and experimental variation of the first natural frequency

with the distance between the two magnets. The results extracted theoretically from the solving the eigenvalue problem and

experimentally with an excitation amplitude of 0.5g are in very good agreement. The results show a threshold separation

distance, dth, 20 mm, which separates the bi-stable and mono-stable regions. The magnetic force has its maximum effect

on the system in the bi-stable region at smaller distances. At this point the natural frequency starts with a higher value of

38 Hz and starts to drop by increasing the distance until it reaches its minimum value of 15 Hz at the threshold distance

experimentally. Increasing the distance further will move the system to the mono-stable region, where the natural frequency

starts to increase and converges to that of the linear resonator where the magnetic force has no effect.

7 Dynamic Analysis

7.1 Reduced Order Model (ROM)

To evaluate the dynamic response of the resonator and the produced voltage by the piezoelectric layer, the governing

equations for the forced vibration are derived using Lagrange’s equations. The total kinetic and potential energy for the

harvester is divided into two parts, the first for the biomorph beam and the second for the polymer beam. At the end, the

two governing equations are merged into one governing equation in addition to the electrical equation of the piezoelectric

layers. For the first part of the beam (biomorph portion), the kinetic and potential energy are given by T1 and U1, respectively:

T1 =
∫ L1

0

1

2
ρAcẆ

2
1 (x, t)dx (20)

U1 =
∫ L1

0

1

2
EIcW

2
1xx(x, t)dx−ϑV (t)W1x(L1, t)−

1

2
CpV 2(t) (21)

where the last two terms in Eqn. (21) are the potential energy for the piezoelectric layers. For the second part of the beam

(polymer layer), T2 and U2 are given by:

T2 =
∫ L

L1

1

2
ρpAPẆ 2

2 (x, t)dx+
1

2
M
[

Ẇ2(L, t)+LcẆ2x(L, t)
]2
+

1

2
JẆ 2

2x(L, t) (22)

U2 =
∫ L

L1

1

2
EpIpW 2

2xx(x, t)dx+UMag (23)
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where, UMag is the magnetic potential energy. The total kinetic energy is given by T = T1 + T2, while the total potential

energy is given by U =U1 +U2. Lagrange’s equation is written as ℓ= T −U . To develop a ROM for the energy harvester,

we need to express the transverse deflection using the Galerkin approach as

W1(x, t) =W1s(x)+
n

∑
i=1

φ1i(x)qi(t)+Z(t), 0 ≤ x ≤ L1

(24)

W2(x, t) =W2s(x)+
n

∑
i=1

φ2i(x)qi(t)+Z(t), L1 ≤ x ≤ L

where qi(t) is the modal coordinate, Z(t) is the base motion, and n is the number of mode shapes. Because of the mass of

the moving magnet, the beam’s first mode will be dominant and has the greatest strain profile near the clamped end, which

means largest piezoelectric response (higher electrical energy). Because of the dominance of the first mode, the governing

equations will be approximated to one mode shape. Using Lagrange’s equation with one mode approximation, we can obtain

q̈1(t)+2µωnq̇1(t)+ω2
nq1(t)−χV (t)−F0 cos(Ωt)+

1

M33
Fmagyu = 0

(25)

V̇ (t)+κq̇1(t)+λV (t) = 0

where

µ =
D33

2M33ωn

, ωn =

√

K33 +α1

M33
, χ =

θ33

M33
,

(26)

α1 =
FR(d

2 −4Y 2
s )

(d2 +Y 2
s )

7/2
Yφ, F0 =

AΩ2H33

M33
, λ =

1

CpRL

, κ =
θ33

Cp

where α1 is the linear part of the magnetic force after Taylor series expansion. This term shows how the natural frequency is

affected by the distance between magnets. The remaining coefficients of Eqn. (25) are given by

M33 =
∫ L1

0
ρAcφ2

1(x)dx+
∫ L

L1

ρpApφ2
2(x)dx+M

(

φ2(L)+Lcφ2x(L)

)2

+ Jφ2
2x(L)

D33 =c

∫ L1

0
φ2

1(x)dx+ c

∫ L

L1

φ2
2(x)dx (27)

K33 =
∫ L1

0
EIcφ2

1xx(x)dx+
∫ L

L1

EpIpφ2
2xx(x)dx

θ33 =ϑφ1x(L1)

H33 =
∫ L1

0
ρAcφ1(x)dx+M

(

φ2(L)+Lcφ2x(L)

)

+
∫ L

L1

ρpApφ2(x)dx

Fmagyu =α2q2
1(t)+α3q3

1(t)+α4q4
1(t)+α5q5

1(t)+α6q6
1(t)+α7q7

1(t)+ (28)

α8q8
1(t)+α9q9

1(t)+O(q10
1 )

where α1, ...,α9 are the coefficients of Taylor’s series expansion, listed in the Appendix. It’s worth mentioning that the

quadratic and cubic terms dominate and have the largest effect on the dynamics of the harvester.
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Different techniques can be used to solve the system of equations such as Long Time Integration (LTI) and the Method of

Harmonic Balance (MHB) [57, 73, 74]. However, such techniques have some limitations. In addition to more computational

time, LTI cannot catch the unstable solution. MHB depends on the number of terms in the assumed harmonic solution. To

catch the nonlinear response with good accuracy, a higher number of harmonics would have to be taken into consideration,

which in turn will make the problem very sophisticated and difficult to solve. Because the nonlinear behavior of our harvester

is essential to increase the bandwidth and amplitude, which leads to better designs, it is important to closely capture these

nonlinear behaviors. For such a goal, we use the shooting technique for obtaining stable and unstable solutions and analyzing

their stability for the nonlinear resonator. Also, to guarantee the accuracy of the shooting results, it will be compared to the

long time integration method results. To apply the shooting method, the governing equations, Eqn. (25), should be written in

state space form, which lead to the following three first order ordinary differential equations (ODEs):

Ẋ1 = X2

Ẋ2 =−

(

2µωnX2 +ω2
nX1 −χX3 +F0 cos(Ωt)+

1

M33
FmaguX

)

(29)

Ẋ3 =−(κX2 +λX3)

where FmaguX is the magnetic force but written in state space form up to the ninth order term and given by

FmagyX =α2X2
1 (t)+α3X3

1 (t)+α4X4
1 (t)+α5X5

1 (t)+

α6X6
1 (t)+α7X7

1 (t)+α8X8
1 (t)+α9X9

1 (t) (30)

Then, by following the procedures described in [81] we end up with a first order ODE system of equations with their related

initial conditions. These equations are integrated numerically using an initial guess for the initial conditions over one period

T . Where T = 2π
Ω , and Ω is the excitation frequency. The process is repeated until convergence is achieved and the errors

are minimized. More precisely, a converged solution is reached when the error becomes less than a preset tolerance. An

ordinary differential equation solver in the software Mathematica [82] based on the Runge-Kutta scheme is used to integrate

the dynamical system. The next step is analyzing the stability for the obtained periodic solution. This is done by solving for

the eigenvalues, called Floquet multipliers, of the Manodromy matrix. Three Floquet multipliers will be the output of the

eigenvalues for the Manodromy matrix, and the solution is considered stable if the absolute value for all Floquet multipliers

are less than one, otherwise the solution is considered unstable.

8 Results and Discussions

8.1 Linear Harvester

Using the experimental setup in Fig. 2, the resonance frequency was found to be 17.45 Hz at the maximum peak-to-peak

deflection of 9.5 mm with a maximum peak-to-peak voltage of 2.4 V at 0.5 g base excitation.

It should be noted that the beam entirely made of piezoelectric laminate with the same length has a natural frequency of

around 100 Hz compared to 17.45 Hz for the proposed beam with extended polymer. That means that our harvester lowered

the natural frequency by 87%, making that more suitable for low ambient and wildlife frequencies such as those of bird flights

for self-powered tag applications. This natural frequency can be decreased further as we decrease the distance between two

magnets close to the threshold distance, where a wide bandwidth can be realized as explained next.

8.2 Nonlinear Harvester

Next, we investigate the dynamics of the energy harvester for different distances in the mono-stable and bi-stable regions.

We picked two values for d in the mono-stable and the bi-stable regions as shown in Fig. 4. The frequency response and

open circuit voltage response were investigated for each distance at different excitation levels.

8.2.1 Mono-Stable Cases

The dynamics of the energy harvester in the mono-stable region is explored for a separation distance of 40 mm between

the two magnets. Fig. 7a and Fig. 7b show the forward swept experimental and simulated displacement and the voltage

responses, respectively, under 0.5 g excitation level. Simulation results were conducted with shooting method. Simulated
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results of displacements show a good agreement with the experimental results. It is noted that the beam vibrates with a larger

amplitude, but the voltage output is smaller compared to the linear resonator for the same excitation level of 0.5 g. This

can be explained by referring to the third equation in Equation set of (14). In this ODE equation, the output voltage varies

with the tip angular velocity term (frequency). One can deduce that although the displacement amplitude has increased in

the mono-stable region compared to a linear resonator, because of the frequency decrease, the voltage has decreased. The

predicted output voltage in Fig. 7b seems to be less accurate compared to the experimental results, and the reason for this is

that in the model the piezoelectric layer is assumed clamped, which in the experiment, it is very close to the base, but not

clamped with other beam layers.

Fig. 8a and Fig. 8b show the experimental displacement and voltage responses under different excitation levels. Higher

amplitude is achieved by increasing the excitation level. Hardening phenomenon is noticed when increasing the excitation

level in both responses.

Next, the distance between the two magnets will be reduced toward the threshold from the mono-stable side to d = 22 mm,

Fig. 9. As seen, despite the lower deflection amplitude, the voltage amplitude has increased to 5.4 V . The reason is that the

voltage is a function of angular velocity at the end of piezoelectric equation Eqn. (1) and not the tip displacement. Hence,

although the amplitude dropped, the voltage increase occurs because of increase in the angular velocity.

8.2.2 Bi-Stable Case

In this section, we will investigate the dynamic behavior of the energy harvester in the bi-stable region. We will start

by analyzing the dynamics of the smallest distance between the two magnets then we increase the separation toward the

threshold value in the next subsection. The frequency and voltage curves shown in Fig. 10a and Fig. 10b, respectively, are

for d = 5 mm. One can notice the higher shift in the natural frequency value to 34 Hz for the nonlinear harvester compared to

17 Hz for the linear resonator. The amplitude of the deflection is very low compared to the mono-stable results. This can be

explained from the oscillations being confined around the bottom equilibrium point because of the effect of the weight and

larger magnetic force at small distances. Softening behavior can be seen clearly in the two curves. At very low separation

distances between the two magnets, the magnetic force expression does not obey the formula used in the equation and it

becomes very complicated. Because of this, no periodic solution can be obtained by the model.

8.2.3 Transition Region

We then examine the response in the bi-stable regime at a separation distance very close to the threshold, d = 18 mm,

(transition region). Experimental and simulated results at 0.5 g excitation level are shown for the displacement and voltage

responses in Fig. 11a and Fig. 11b, respectively. Good qualitative agreement is shown between the experimental and simu-

lated results showing the softening behavior. Less accurate prediction of the voltage could be because in the experiment the

piezoelectric strip is very close to the base of the beam, but it is not clamped in the experiment. We avoided clamping the

piezoelectric strip as that led to breakage at high excitation levels. In theory, all layers of the beam consisting of polymer and

the piezoelectric strip are perfectly clamped at the base. This difference in the boundary results in smaller voltage in practice.

At the transition distance in the bi-stable region (d = 18 mm), the nature of the frequency response at higher excitation level,

such as 1.0 g, changes from softening to hardening as shown in Fig. 12a and Fig. 12b. Using the shooting technique, we

captured the stable and unstable solutions. The figures reveal the nonuniqueness of the solution for the nonlinear harvester.

In some frequency ranges, three solutions are available, two of which are stable (black circle), and one is unstable (red

square). Sweeping the frequency in a forward direction from point (a) and a backward direction from point (d) will result

in the b-c-e-f hysteresis loop as shown in Fig. 12a and Fig. 12b. The nonlinearity caused by the magnetic force increases the

harvester’s bandwidth compared with the harvester bandwidth in Fig. 7a and Fig. 7b.

In Fig. 12, we notice the hysteresis and multiple solutions behavior because of the nonlinearity in the system. For such

regions with multiple solutions, the periodic solution amplitude depends on the initial conditions. As an example, in Fig. 12a

at a frequency of 18Hz the system can converge to the lower branch or upper branch depending on the initial conditions. For

such cases the basin of attraction is considered as a powerful tool to examine the multiple solutions convergence based on

varying the initial conditions. Fig. 13a shows the basin of attraction for the two solutions at Ω = 18 Hz, where the orange

color represents the lower branch convergence and the black color is the upper branch convergence obtained for long time

integration. The figure shows the basin of attraction of the upper branch is slightly smaller than that of the lower branch;

however, it has a comparable size. Decreasing the frequency to the fold frequency at 16.7 Hz, the basin of attraction of the

upper branch becomes much larger than the lower branch (Fig. 13b).
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The experimental, simulated results from the shooting method, and simulated results from long time integration for the tran-

sition separation distance of 18 mm at different excitation levels are shown in Figures 14, 15 and 16, respectively. The results

from shooting method and numerical integration are in close agreement. The shooting method is superior because of its

capability of catching the unstable branch and its low computational time. In the transition region, the harvester gets higher

deflection than that of the two previous cases in the bi-stable region. Maximum amplitude and voltage achieved were 34 mm

and 7.0 V , respectively at excitation level of 1.0 g. We observe a combined nonlinear behavior of softening and hardening as

a function of the excitation level. At low excitation levels, the quadratic nonlinearity dominates, so softening occurs, while

at high excitation levels, positive cubic nonlinearity dominates and hardening appears. This observation was made possible

by considering the quadratic nonlinearity of the magnetic force, which has not reported in previous studies. [47–59].

Higher bandwidth is also obtained at the transition region, especially at high excitation levels. At medium excitation levels,

such as 0.5 g, a 35% increase in the bandwidth and a 37% increase in the maximum amplitude are attained compared to the

linear resonator. Qualitatively, the experimental results in Figures (14a, 14b) are in good agreement with theoretical results

in Figures (15a, 15b). However, quantitatively these results are not close to each other. The reasons for such different can be

explained because of the deflection measurements. The center of the tip magnet theoretically is assumed to be aligned with

the neutral axis of the cantilever beam, while experimentally it is placed on top of the free end of the cantilever beam. Another

reason for the difference is the boundary conditions in the theoretical model, which are assumed to be fully clamped-free

case, while in experiment such boundary is not ideally clamped.

To assess the role of resistance on the harvester output, we vary the resistance from the 1 MΩ used for our simulations so

far. Increasing the resistance will increase the amount of voltage produced as shown in Figure 17. We can notice that the

output voltage duplicates by increasing the resistance from 1 MΩ to 10 MΩ. A further increase will not yield a significant

difference in the generated voltage, thus the optimum resistance value is found to be 10 MΩ.

The behavior of the system at the threshold distance (dth = 20 mm) has distinct features. This is the distance where the two-

well-potential transitions to the one-well-potential function. Small changes in some parameters lead to period doubling and

chaos. We use phase portraits, Poincaré sections, and bifurcation diagrams to characterize the dynamic responses. Keeping

the frequency constant at the natural frequency at the threshold distance (Fig. 6), 12.59 Hz, we vary the level of excitation to

obtain the force sweep, see Fig 18. This figure is obtained from long time integration for 650 periods of excitation using the

initial conditions for periodic solutions of the shooting technique and then recording the last 130 periods at the steady-sate

region. Poincaré sections are taken by sampling the data at the period of excitation starting from the displacement with the

maximum absolute magnitude. The nature of the response depends on the initial conditions, the magnitude of the excitation,

and the frequency of excitation. The excitation level starts at 0.2 g where the harvester oscillates in one potential well at the

frequency of excitation. By increasing the level of excitation, the periodic solution evolves into period doubling.

The increase of excitation level beyond the period doubling cascade (period 2, 4 and 8) leads to the appearance of chaotic

oscillation as seen in Fig 18. As it is deduced, the chaotic response has two bands, a lower band around the lower stable

equilibrium point and the upper one around the saddle. The size of the upper band is larger than the lower band. This fact is

also seen from the number of crossings of the zero-velocity axis around the −0.7 mm and −1.4 mm in Fig. 19aa. The phase

portrait shows irregular excursions of the chaotic response, while the Poincaré section in Fig. 19b clearly reveals the chaotic

attractor.

Similar period doubling and chaotic behaviors are observed by sweeping the frequency of excitation at the fixed excitation

level of 0.2 g, see Fig. 20 at the threshold distance, dth = 20 mm. The frequency is decreased toward the natural frequency of

the threshold distance. Results indicate that the system has a period doubling bifurcation at the natural frequency, 12.51 Hz.

Consequently, period 2, period 4 and period 8 are visible in the period doubling cascade that culminates in chaos as the

frequency decreases further. The chaotic response is an unpredictable response and very sensitive to the initial conditions.

In summary, we can conclude that the higher energy can be harvested in the mono-stable and bi-stable regions at distances

close to the threshold value. In other words, the optimum range for harvesting energy was found to be around the threshold

distance from both sides, mono and bi-stable regions. To illustrate this result, the maximum output voltages at the excitation

level of 1.0g were recorded for all previous cases in the mono and bi-stable regions (Fig. 21a). Results indicate the maximum

voltage of 7 V can be obtained in the bi-stable region close to the threshold distance of 20 mm.

Another interesting conclusion is related to the dynamic behavior of the energy harvester. It was noticed that the hardening

behavior is the dominant case for the mono-stable region (at large distances), while the softening behavior is the prominent

behavior in the bi-stable region (at small distances). As the distances get closer to the threshold from both sides (the mono

and bi-stable regions) a combination of hardening and softening behaviors appears with a dominant hardening response.

Results are summarized in Fig. 21b. Tuning the frequency to the transition region enables controlling the natural frequency
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of the harvester to match the low frequency range of interest for different applications. The increased nonlinearities in this

region (combination behavior) leads to an increase in the frequency bandwidth and the amount of energy harvested.

9 Conclusions

A magnetoelastic piezoelectric energy harvester was investigated in this paper to increase the frequency bandwidth

and amplitude of the response. A mathematical model for the continuous system of the energy harvester was developed.

Static analysis of the harvester revealed a threshold value that divided the nature of the response into mono- and bi-stable

regimes based on the distance between two magnets. Thorough attention was paid to the magnetic force and its interactions

with the beam dynamics, and that led us to accurately predict the variation of the fundamental natural frequency with

the distance between two magnets. Consequently, frequency response simulations of the system were obtained with high

accuracy using the shooting technique. The shooting method enabled us to capture stable and unstable solutions and obtain

a good agreement with experimental results on softening, hardening and combination behavior across bi-stable, mono-stable

and transition regimes, respectively. For the first time, we report on the combination of softening and hardening behavior

in the transition region (where mono-stability changes to bi-stability). Because the output voltage and frequency bandwidth

are the largest near the transition region, this region was found to be the optimum range for harvesting energy. Compared to

a linear resonator at medium excitation level of 0.5 g, an increment of 37% in the output voltage and an increase of 35% in

the frequency bandwidth was obtained at distances close to the threshold distance. In addition, the natural frequency of the

resonator energy harvester was decreased from 100 Hz to 17 Hz by operating at the transition region, which makes it more

suitable for energy harvesting from ambient vibrations.
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Appendix: Coefficients of Magnetic Force

This section lists the coefficients produced from the Taylor series expansion of the magnetic force:
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(a) (b)

Fig. 1: Schematic of the experimental setup and the stability configurations of the resonator (a) Schematic of the experimental

setup. (b) Mono-stable and bi-stable configurations.
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Fig. 2: The experimental setup of the piezoelectric EH, cantilever harvester to the right and PUMA Spectral Dynamics

Analyzer to the left.
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Fig. 3: Schematic for the total magnetic force acting on the tip mass.
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Fig. 4: The tip mass static response with the separation distance, d, between the two magnets. Threshold value, dth found to

be 20 mm. Three values for mono-stable and bi-stable regions are selected for analysis.
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Fig. 5: First normalized mode shape plotted at different distances between the two magnets, where d = 20 mm is the threshold

distance.
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Fig. 6: Variation of the first natural frequency with the distance, d, between the two magnets. Threshold value match static

profile with value of dth = 20 mm.
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(a) (b)

Fig. 7: Experimental and simulated forward sweep frequency and voltage responses for mono-stable resonator at d = 40 mm,

A = 0.5 g and damping µ = 0.038 (a) Tip mass displacement. (b) Output voltage.
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(a) (b)

Fig. 8: Experimental frequency forward swept responses for mono-stable resonator at d = 40 mm at different excitation

levels (a) Tip mass displacement. (b) Output voltage.
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(a) (b)

Fig. 9: Experimental frequency forward swept responses for mono-stable resonator at d = 22 mm at different excitation

levels (a) Tip mass displacement. (b) Output voltage.

VIB-16-1454 . Towfighian . 26

Journal of Vibration and Acoustics. Received September 09, 2016; 

Accepted manuscript posted April 20, 2017. doi:10.1115/1.4036503 

Copyright (c) 2017 by ASME

A
cc

ep
te

d
 M

an
u
sc

ri
p
t 
N

o
t 
C

o
p
ye

d
it
ed

Downloaded From: http://vibrationacoustics.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jvacek/0/ on 04/26/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



(a) (b)

Fig. 10: Experimental frequency responses for bi-stable resonator at d = 5 mm (a) Tip mass displacement. (b) Output voltage.
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(a) (b)

Fig. 11: Experimental and simulated frequency responses for bi-stable resonator at d = 18 mm, A = 0.5 g and damping

µ = 0.038 (a) Tip mass displacement. (b) Output voltage.
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(a) (b)

Fig. 12: Bi-stable simulated results for the nonlinear energy harvester at d = 18 mm, A = 1.0 g and damping µ = 0.038 (a)

Tip mass displacement. (b) Output voltage.

VIB-16-1454 . Towfighian . 29

Journal of Vibration and Acoustics. Received September 09, 2016; 

Accepted manuscript posted April 20, 2017. doi:10.1115/1.4036503 

Copyright (c) 2017 by ASME

A
cc

ep
te

d
 M

an
u
sc

ri
p
t 
N

o
t 
C

o
p
ye

d
it
ed

Downloaded From: http://vibrationacoustics.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jvacek/0/ on 04/26/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



(a) (b)

Fig. 13: The basin of attraction for the resonator for (a) d = 18 mm at 1.0 g, Ω = 18 Hz, µ = 0.038. (b) d = 18 mm at 1.0 g,

fold frequency Ω = 16.7 Hz, µ = 0.038. Orange color is the basin of attraction for lower branch, while the black color is the

basin of attraction for the upper branch.
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(a) (b)

Fig. 14: Experimental frequency responses for bi-stable resonator at d = 18 mm:(a) Tip mass displacement. (b) Output

voltage.
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(a) (b)

Fig. 15: Simulated frequency responses with Shooting methods for bi-stable resonator at d = 18 mm: (a) Tip mass displace-

ment. (b) output voltage, damping µ = 0.038.
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(a) (b)

Fig. 16: Simulated frequency responses with Long Time Integration and Shooting methods for bi-stable resonator at d =
18 mm: (a) Tip mass displacement. (b) Output voltage, damping µ = 0.038.
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Fig. 17: Maximum output voltage with increasing the resistance up to 10 MΩ for an excitation level of 0.3 g, separation

distance of 18 mm, and damping of µ = 0.038.

VIB-16-1454 . Towfighian . 34

Journal of Vibration and Acoustics. Received September 09, 2016; 

Accepted manuscript posted April 20, 2017. doi:10.1115/1.4036503 

Copyright (c) 2017 by ASME

A
cc

ep
te

d
 M

an
u
sc

ri
p
t 
N

o
t 
C

o
p
ye

d
it
ed

Downloaded From: http://vibrationacoustics.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jvacek/0/ on 04/26/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Fig. 18: The bifurcation diagram of the actuator constructed from a force (excitation level) sweep at the threshold distance

(dth = 20 mm) and its natural frequency of Ω = 12.59 Hz, single-sided Poincaré sections obtained at the period of excitation.
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(a) (b)

Fig. 19: Chaotic response for the harvester at dth = 20 mm, Ω = 12.59 Hz, and 0.2228 g excitation level:(a) Phase portrait.

(b) Poincaré map.
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Fig. 20: The bifurcation diagram sweeping the frequency of excitation at dth = 20 mm and Amp = 0.2 g, single-sided

Poincaré sections obtained at the period of excitation.
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(a)

(b)

Fig. 21: Maximum output voltage as the distance between magnets varies at the excitation level of 1.0 g. (b) Dynamics

behavior for energy harvester.
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Table 1: Geometrical and material properties of the harvester.

Parameters Polymer PZR 5A Magnet

Length (cm) 7.2 3 0.8

Width (cm) 1.0 1.0 0.8

Thickness (cm) 0.1 0.1 0.8

Density (kg/m3) 1220 7800 7500

Modulus (GPa) 2.344 66 −

Magnetic moment (A2/m) − − 0.5

Piezoelectric constant − −3 −
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