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Dynamics of turbulence spreading in magnetically confined plasmas
Ö. D. Gürcan and P. H. Diamonda!

University of California at San Diego, La Jolla, California 92093-0319

T. S. Hahm
Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451

Z. Lin
University of California at Irvine, Irvine, California 92697-4575

!Received 26 August 2004; accepted 30 November 2004; published online 14 February 2005"

A dynamical theory of turbulence spreading and nonlocal interaction phenomena is presented. The
basic model is derived using Fokker–Planck theory, and supported by wave-kinetic and K-! type
closures. In the absence of local growth, the model predicts subdiffusive spreading of turbulence.
With local growth and saturation via nonlinear damping, ballistic propagation of turbulence
intensity fronts is possible. The time asymptotic front speed is set by the geometric mean of local
growth and turbulent diffusion. The leading edge of the front progresses as the turbulence comes to
local saturation. Studies indicate that turbulence can jump gaps in the local growth rate profile and
can penetrate locally marginal or stable regions. In particular, significant fluctuation energy from a
turbulent edge can easily spread into the marginally stable core, thus creating an intermediate zone
of strong turbulence. This suggests that the traditional distinction between core and edge should be
reconsidered. © 2005 American Institute of Physics. #DOI: 10.1063/1.1853385$

I. INTRODUCTION

One of the most formidable obstacles to achieving high
performance of magnetically confined plasmas, sufficient for
controlled fusion, is the development of the capability to
predict and control the turbulent transport of heat, particles,
momentum, etc. In recent years, progress in experiment,
theory, and computation has been dramatic, yet the “Holy
Grail” of predictive capacity by other than brute force, case-
by-case direct numerical simulation, remains elusive. Several
of the remaining challenges may be loosely characterized as
related to mesoscale phenomena, a category which refers to
dynamics on scales larger than a mode or integral scale eddy
size, but smaller than the system size or profile scale
length.1,2 Transport barriers,3,4 avalanches,5 and heat and par-
ticle pulses are all mesoscale phenomena. Propagating trans-
port barriers couple a turbulence quenching “front” to the
buildup of steep pressure gradients, strong velocity shears,
etc. Avalanches and pulses are due to strong, local excitation
of turbulence causing a spillover of the profile gradient into a
neighboring region, thus triggering more strong turbulence
and transport, etc., rather like the toppling of an array of
dominos. Experience has shown such mesoscale dynamics to
be extraordinarily difficult to realize in direct numerical
simulations, on account of the breakdown of the disparity
between turbulence and transport time scales. This suggests
that a simpler approach to modeling and describing meso-
scale dynamics may be productive.

Nearly all mesoscale phenomena involve, to some ex-
tent, the spatial propagation of turbulence or its direct in-
verse process, namely, the propagation and broadening of
transport barriers. In the case of transport barrier formation,

turbulence actually retreats, rather than spreads, but the dy-
namics of these processes are quite similar. Examples of tur-
bulence spreading at the back transition include Refs. 6,7.
Certainly the retreat of a barrier, as at the back transition, is
a classic case of “turbulence spreading.”8 Avalanches involve
turbulence spreading mediated by local gradient steepening
and relaxation. It is easy to see that the spatial propagation of
a turbulent region or patch is a common element of all these
phenomena. This is an especially pertinent observation, since
it is equally true that virtually all models of fluctuation levels
and turbulent transport are built on an assumption of local
balance of linear growth with linear damping and nonlinear
coupling to dissipation.9 Here, “local balance” refers to bal-
ance at a point or in a region comparable in extent to the
modal width. Such models thus necessarily exclude meso-
scale dynamics. Even when bifurcation transitions are mod-
eled, they usually are treated locally, leaving the question of
barrier width largely unaddressed.

It is certainly appropriate, then, to identify mesoscale
dynamics as an important category of poorly understood
phenomena. In such an instance, it is usually helpful to iden-
tify and study in depth the simplest, most minimal problem
in the genre before proceeding to consider more complicated
examples. In this case, the “minimal problem” is that of the
spatiotemporal propagation of a patch of turbulence from a
region where it is locally excited to a region of weaker ex-
citation, or even local damping. Understanding the simple
problem is, as we shall see, crucial to the construction and
interpretation of numerical simulations of microturbulence,
as well as to understanding the physical phenomena. The
phenomenon of spreading or propagation of turbulence has
been the subject of attention in the research community for
some time.10,11 Describing the development of a turbulent
burst, such as that which occurs at vortex tube reconnection,a"Also at Isaac Newton Institute, University of Cambridge, United Kingdom.
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is a classic problem in fluid dynamics. Turbulence spreading
was first studied systematically in the context of fusion plas-
mas by Garbet et al.,12 who sought to understand and explain
nonlocal relaxation phenomena. This study compared linear
!associated with toroidicity" and nonlinear spatial energy
transfer processes. Subsequently, spreading phenomena have
been observed in several computer simulations.13,14 In the
past two years, there has been renewed interest in spreading
on account of the hypothesis that it may be related to the
breakdown of gyro-Bohm scaling observed in numerical
simulations.15–17 A simple theoretical model was proposed to
support this hypothesis.18,19 Later, zonal flow coupling in to-
roidal geometry was suggested as an alternative means of
facilitating spreading.20

Previously, the spreading process was described by a
single phenomenological equation for the local turbulence
intensity ", which includes the effects of local linear growth
and damping, spatially local nonlinear coupling to dissipa-
tion and spatial scattering of turbulence energy induced by
nonlinear coupling.15,19 These effects combine to give an en-
ergy equation !loosely" of the form

#"

#t
−

#

#x
D!""

#"

#x
= #!x"" − #NL!x""!x"2,

the terms of which correspond to nonlinear spatial scattering
#i.e., typically D!""%"$, linear growth and damping, and
local nonlinear decay, respectively. Here #NL!x" is a spatially
varying coupling coefficient. The local nonlinear damping
term captures the effect of saturation via coupling to smaller
scales due to local mixing. The local saturation level "!x"
=#!x" /#NL!x" then corresponds to the traditional and time
honored “mixing length” level. This energy equation is the
irreducible minimum of the model, to which additional equa-
tions for other fields, and contributions to dynamics which
feedback on " may be added. Note that the above energy
equation manifests the crucial effect of spatial coupling in
the nonlinear diffusion term. The latter arises as a natural
consequence of nonlinear coupling in an inhomogeneous
system, i.e.,

!k! · k!! $ z!"2&%̃k!!&
2&ck!!"k → −

#

#x
D

#

#x
"k + k'

2D"k,

where

D ='
k!!

&Ṽrk!!&
2&ck!!.

Coupling in k! and scattering in space are inexorably coupled.
In particular variation in the spatial envelope of turbulence
will result in intensity profile readjustment. The energy equa-
tion implies that the integrated fluctuation intensity in a re-
gion of extent ( about a point x #i.e., (x−(

x+("!x!"dx!$ can grow,
even for negative #!x", so long as D!""#" /#x&x−(

x+( is suffi-
ciently large. Alternatively, " can decrease, even for positive
#!x", should D!""#" /#x&x−(

x+( be sufficiently negative. Note
that sgn #D!""#" /#x&x−(

x+($ thus defines a simple nonlocal cri-
terion, in terms of the fluctuation intensity profile, for the
influx or outflow of turbulent energy from a given interval in
radius. These simple observations nicely illustrate the failure

of the local saturation paradigm, and strongly support the
argument that propagation of turbulence energy is a crucial,
fundamental problem in understanding confinement scalings
for fusion devices in which growth and damping rate profiles
vary rapidly in space. We also demonstrate that the combined
effects of local growth and nonlinear diffusion leads to a
propagating fluctuation front. Such a solution exists for fi-
nite, local nonlinear saturation, and will appear as a ballisti-
cally expanding front, with speed v%!#D"1/2, where D
=D0# /#NL.

Another aspect of the dynamics which falls outside the
traditional “local balance” paradigm of the ground-breaking
monograph by Kadomtsev is illustrated by the equation for
"!x". First, turbulence energy propagation is intrinsically
nondiffusive, since D!"" increases with ". This is easily seen
by observing that for D!""=D0", the natural diffusive scal-
ings for the width of a turbulent patch are !2%D0"t and
"!%E0="0!0. It thus follows that the self-similarity variable
is x /!!t"=x / !D0E0t"1/3, so a turbulent patch spreads as (x
%!D0E0t"1/3 in the absence of growth or dissipation. Con-
trary to naive expectations, this actually corresponds to sub-
diffusive propagation, which has the property of accelerated
progression at small t, followed by slower progression at late
times. In this paper, we show that a localized pulse in a
nonlinearly saturated linearly unstable region spreads ballis-
tically with velocity given by v2=#2D0 /2#NL. These analy-
ses also underscore the importance of boundary conditions,
stability profiles, and gradient control in determining the out-
come of numerical simulations. Thus, the rapid readjustment
and spatial spreading of turbulence intensity profiles ob-
served in several gyrokinetic particle simulations are quite
likely symptoms of turbulence propagation. Although it is a
fact that the numerical simulations capture the locally satu-
rated state rather accurately, it is not clear that they run for
sufficient time to reveal the full effects of turbulence spread-
ing and the secondary saturation that is sometimes reached
when the spillover of turbulence is balanced by the damping
rate in the numerical “buffer zone.”21 It is important that
these simulations be properly constructed so as to “contain”
turbulence spreading, while avoiding unphysical backscatter,
boundary reflection, etc., of propagating turbulence fronts,
such as those discussed earlier.

The purpose of this paper is to discuss the foundations of
the theory of turbulence spreading and propagation. We dem-
onstrate that an equation for the mean fluctuation energy
density, with the structure given above, can be obtained by
either a Fokker–Planck analysis of the energy density evolu-
tion or by the application of quasilinear theory to the wave
kinetic equation. The spatial evolution equation for " ob-
tained in each case is !not surprisingly" the same. Physically
motivated arguments !based on considerations familiar from
K−! modeling" for the form of the nonlinear diffusion term
are supplied as well. The crux of these arguments is that in
an inhomogeneous medium, spatial scattering and spreading
are necessarily coupled to spectral transfer to small scale.
Thus, the turbulence spreading phenomena is seen to be ge-
neric. Notice that this model is inherently different from that
in Ref. 22 in an essential way, in that it describes the evolu-
tion of the fluctuation “wave action” rather than its deviation
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from the SOC value. This is important, since the symmetry
arguments of those models do not apply to this one.

Indeed, the model presented here has many similarities
to K−! models, familiar in the context of fluid turbulence.
We consider various cases, depending on the local growth
and damping profile #!x", the !initial" fluctuation profile, as
parametrized by (!= !1/""D!""#" /#x"&x−

x+, where #x− ,x+$ de-
notes the spatial interval of interest. In particular, we are
especially concerned with the dynamics and extent of propa-
gation driven by a strongly localized source and with deter-
mining the depth of propagation into a locally stable region.
As a simple, basic example, we demonstrate that the similar-
ity solution for an initially localized slug of turbulence,
which expands in a medium with constants # , #NL, and D0,
exhibits a front solution propagating at constant speed. This
result suggests that local saturation models, such as D
=# /k!

2 , miss an important element of the dynamics. They
also suggest that toroidicity and zonal flow effects are not
necessary to realize ballistic spreading. Indeed, ballistic
spreading has also been shown to occur in a related system
with subcritical excitation. A variety of #!x" profiles for the
unstable → damped transition region !i.e., gradual, abrupt,
etc." are examined. We also consider the time required for
turbulence to “tunnel” through a stable region of finite ex-
tent. Our predictions are discussed in light of, and compared
to, results from recent gyrokinetic particle simulations.

The remainder of this paper is organized as follows. In
Sec. II, a Fokker–Planck theory of turbulence spreading is
presented and discussed. The local, nonlinear drift-diffusion
equation for turbulence intensity is presented and discussed.
A derivation of the intensity equation based on wave kinetics
is also presented. Toroidicity effects are modeled by a radial
group velocity in the outboard direction, with a magnitude
set by the curvature drift velocity. Section III presents studies
of the dynamics of turbulence spreading. We derive a simi-
larity solution of the nonlinear energy equation for the case
of constant coefficients. The time asymptotic solution is one
of spreading at constant velocity. Propagation in various pro-
files of #!x" is examined, as well. Section IV contains a
discussion and conclusions.

II. FOKKER–PLANCK THEORY OF TURBULENCE
SPREADING

In this section, we present a Fokker–Planck23 model of
turbulence intensity spreading and propagation. The aim here
is to derive a simple theoretical model of spatiotemporal in-
tensity evolution and to understand the physics underpinning
such a model. We proceed very much in the spirit of a K
−! model of turbulence by deriving a nonlinear evolution
equation for "!x , t", the local !in radius" turbulence intensity.
K−! models have been used to study both fluid and plasma
turbulence. The dynamics of "!x , t" include local growth and
local nonlinear dissipation, as well as nonlocal couplings,
represented by an integral operator incorporating a transition
probability !Ref. 24, or see Ref. 25 for a recent review" for
spatial steps, or spreading. We first proceed via Fokker–
Planck theory and thus derive a nonlinear diffusion equation
for "!x , t". The structure of this equation can be understood

in light of the fundamental nonlinear couplings of the primi-
tive equations.

The basic components of a Fokker–Planck theory of tur-
bulence intensity propagation are "!x , t", the local turbulence
energy density, and T!x ,(x ,(t", the transition probability for
a “step” of the intensity "!x , t" of size (x in time interval (t.
Here the steps correspond to random radial couplings on me-
soscales, i.e., spatial scales in excess of the mode correlation
length and times longer than the local correlation time !i.e.,
(x)(xc and (t)&c". Thus, spreading is ultimately tied to
the inherent fluctuations in, or unpredictability of, integral
scale !i.e., mixing length scale" eddies or modes. Here, "!x , t"
refers to the intensity at r, integrated over ' ,%. Of course,
conservation of probability requires

) d!(x"T!x,(x,(t" = 1, !1"

so the transition probability must be normalizable. Further-
more, #!x" here is the local excitation or growth rate, while
#NL!x" represents the local nonlinear damping rate, represen-
tative of local nonlinear transfer to dissipation. Thus,

#NL!x" = #NL"
*, !2"

where #NL is a coefficient and 1/2+*+1. Typically, *%1
for weak turbulence, and *%1/2 for strong turbulence, on
account of the amplitude dependence of the correlation time.
Thus, "!x , t" evolves according to

"!x,t + (t" = "!x,t" + ##!x""!x" − #NL"
*+1!x"$

+) d!(x"T!x,(x,(t""!x − (x,t" . !3"

Note that the first term !in brackets" corresponds to radially
local growth and decay, while the second corresponds to
spatial propagation. Of course a Fokker–Planck argument as-
sumes Markovian evolution ab initio. The justification for
this is that we are concerned with the fluctuation intensity
envelope, which is slowly varying in space and time in com-
parison to the fluctuations themselves, i.e., #t",-" and
#X",k". The fluctuations themselves determine the step
sizes and times. We also neglect flow interaction and evolu-
tion, and assume that the second moment of the local transi-
tion probability is convergent. Violation of the latter would
necessitate a treatment of " evolution via fractional kinetics.

Now, we proceed by assuming (x"! /"+1, so that an
expansion of the interaction kernel is possible. The validity
of this approximation requires that the step size (x be
smaller than the gradient scale of the fluctuation intensity.
This approximation may fail at the edge, at the boundary of
transport barriers and in other regions with steep gradients,
in which case Eq. !3" becomes
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"!x,t" + (t
#"

#t
= ##!x" − #NL"

*$"(t

+) d!(x"T!x,(x,(t""!x,t"

−
#

#x*) d!(x"T!x,(x,(t"(x"!x,t"+
+
1
2

#2

#x2*,) d!(x"T!x,(x,(t"(x(x-
$"!x,t"+ . !4"

Now, noting the normalizability of T and rewriting the inte-
grals over T yields

) d!(x"T = 1, !5a"

) d!(x"T(x = .(x/ , !5b"

) d!(x"T!(x"2 = .(x(x/ . !5c"

Thus, the intensity evolution equation then follows as

#

#t
"!x,t" = ##!x" − #NL"

*$"!x,t" −
#

#x
#V""!x,t"$

+
#2

#x2
#D"!"""!x,t"$ , !6a"

where

V" = .(x/(t/ !6b"

is the intensity drift velocity and

D".(x(x/2(t/ !6c"

is the intensity diffusivity. Note that both V" and D" are
fluctuation intensity dependents.

Equation !6a" is a Fokker–Planck equation for the
coarse-grained !on scale of (c" turbulence energy density.
The key unresolved issue is, of course, how to calculate the
drift and diffusion V" and D", a challenge which, in turn,
requires us to face up to the underlying physics of radial
propagation of turbulence energy. We argue by correspon-
dence with the familiar wave kinetic equation

#N
#t
+ !vgr + v" · $ N −

#

#x
!- + k · v" ·

#N
#k
= #NCN , !7"

which states that the wave population density !which usually,
but not always, corresponds to the wave action density" is
conserved along ray trajectories given by

dx
dt
= vg + v , !8a"

dk
dt
=
− #

#x
!- + k · v" , !8b"

up to nonpopulation density conserving processes, repre-
sented by #NCN, on the right-hand side !RHS" of Eq. !7".
Note that integrating Eq. !7" over k yields an evolution equa-
tion for a local wave density. Thus, by correspondence with
Eq. !8a", in which v!x , t" is a local flow velocity on scales
large and/or slow as compared to those of the underlying
waves, and vg is the wave group velocity, we can write

dx
dt
= vgr + .vr/ + .vr. !9a"

Here vgr is the radial group velocity of the fluctuations,
.vr/ is the mean radial wave energy flow, and .vr is the
fluctuating large-scale flow, which induces mesoscale ran-
dom radial couplings and the resulting random walk of tur-
bulence energy density. Physically, .vr is associated with the
spatial variability of the integral scale fluctuations, and thus
must be determined by their space-time scales. Application
of standard methods from the theory of random processes
gives

d
dt

.x = .vr, !9b"

D = )
/

0

d&..vr!0".vr!&"/ 0 D0"*. !9c"

This variability is inexorably coupled to the mixing process
which underlies the general concept of the mixing length.
The dynamics responsible for each is nonlinear coupling.

Clearly some further explanation of space and time
scales is in order. Here, .vr/ refers to a mean radial flow,
coherent and large scale as compared to both the underlying
turbulence and waves, and the processes responsible for the
propagation of turbulence. Crudely put, .vr/ may be thought
of as a quasicoherent convective cell, or a “streamer” flow
field.

.vr then is due to fluctuations in this flow field, on ac-
count of nondeterministic behavior in the radial convection
velocity. Thus, .vr corresponds to fluctuations in the radial
flow induced by integral scale eddies and waves. Note that
the model thus involves four scales, namely, (xc !the corre-
lation length of the basic turbulence", .! !the length scale for
random walk of turbulence intensity", (! !the length scale of
quasicoherent convective cells", and the macroscopic scale
lengths associated with gradients and the system size. In
practical terms, .! is set by the turbulence mixing length
scale. Again, we see that the concepts of turbulence spread-
ing and turbulent mixing are quite closely related, and both
stem from the same characteristic scale of turbulent motion.
We caution the reader here that the mixing length does not at
all necessarily correspond to the linear mode width, as is
usually assumed.

The fluctuations .vr on scales .! correspond to fluctua-
tions in radial flow rates induced by large incoherent eddies.
These motions may be thought of as somewhat related to
“avalanches,” except that here we are concerned with trans-
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port of fluctuation intensity, not heat, particles, etc. Never-
theless, the obvious synergism between gradient drive and
fluctuation level strongly suggests that these two phenomena
are related, and that intensity bursts are possible. Thus, an
inclusive model of turbulence propagation should treat the
evolution of profiles and the electric field, as well as "!x , t".
Indeed, simple forms of such an archetypical model have
already been constructed and used to describe transport bar-
rier dynamics !which may be thought of as the spreading of
“antiturbulence”". Here, however we focus on self-scattering
and self-spreading of turbulence alone, and thus do not at-
tempt to present a complete model including profile evolu-
tion. It is, however, important to stress that the statistical
structure of the transition probability need not be Gaussian.
Indeed, studies of avalanches lead us to expect that T is
likely quasi-Gaussian for moderate (x, with a non-Gaussian
tail for large (x. The latter may indeed be a power law,
which in turn could render the second moments #as given in
Eqs. !6b" and !6c"$ of T undefined. In such a case, the tur-
bulence propagation will be strongly bursty and intermittent,
and must be described via a fractional kinetics approach.26

Proceeding with the calculation, we hereafter assume
!for simplicity" that no large-scale coherent flow is present,
and thus ignore .vr/. We shall later consider a simple model
that includes the radial mean intensity flux driven by
fluctuation-fluctuation coupling. Such a model has different
characteristics, since the nonlinear diffusion of "!x , t" occurs
via its advection by the mean radial flow similar to the ad-
vection of a passive scalar.

Thus neglecting .vr/, V" and D! may be written as

V" = vgr!x" + V̂", !10a"

D" = D0,*"*. !10b"

Here, as before, *=1 for weak turbulence and *=1/2 for
strong turbulence, where D0,* gives the relevant scaling of
the diffusion coefficient for fluctuation intensity, which in
practice is set by the scaling of the nonlinear couplings at
large scales. Following the Stratonovich calculus27 interpre-
tation of the Fokker–Planck theory, V",* corresponds to that
piece of the drift, which is associated with the spatial gradi-
ent of D", i.e.,

V̂" =
#

#x
!D0,*"*" . !11a"

Thus, nonlinearity and fluctuation profile structure produce a
mean turbulence energy drift, as well as a diffusion. The
equation for "!x , t" can then be written as

#

#t
" +

#

#x
#!vg""$ −

#

#x
D0,*"*#"

#x
= ##!x" − #NL"

*$" .

!11b"

Equation !11b" is the working equation for "!x , t" which is
the primary focus of our attention hereafter. The various
terms in Eq. !11b" correspond to linear propagation of energy
by waves, spatial flow of energy induced by fluctuation in-
tensity gradient, spatial diffusion of energy by random non-
linear couplings, and local linear growth and nonlinear de-

cay, respectively. Equation !11b" represents a hybrid of a
wave kinetic equation and a K−! model equation for turbu-
lence, as a consequence of its mixture of linear and nonlinear
effects. Note also that the diffusion here is nonlinear, since
D%"*. The space-time dynamics of the turbulence intensity
are described by Eq. !11b", which can be recast in conserva-
tive form as

#"

#t
+

#

#x
0" = S". !12a"

Here,

0" = !vgr"" − !D0,*"*"
#"

#x
!12b"

is the intensity flux and

S" = ##!x" − #NL"
*$" !12c"

is the local source and sink. The intensity flux contains de-
terministic drifts !proportional to vgr" and a nonlinear Fick-
ian diffusion term !D0,*"*"#" /#x, the latter implying that
turbulence intensity gradients drive a diffusive flux of fluc-
tuation energy. Nonlinear interaction and coupling enter in
two ways, namely, as a local sink on the RHS, which repre-
sents local transfer to dissipation, and as spatial coupling
effects on the LHS. This reflects the fact that the nonlinearity
scatters fluctuation energy both spatially and in wave number
space.

Equation !12a" also gives a simple relation for the time
rate of change of fluctuation energy in the finite interval
#x− ,x+$. Integrating Eq. !12a" straightforwardly yields

#E
#t
= &− 0"&x−

x+ + S , !13"

where &0"&x−
x+ is the net flux in/out of the region and S is the

integrated sink term. Thus, #E /#t)0 is possible if either
&0"&x−

x+)0 or S)0, so that a linearly stable region can support
fluctuations which are excited elsewhere and couple into it.
Even if S+0, a sufficiently large &0"&x−

x+ is sufficient for local
growth. It is also interesting to observe that

&0"&x−
x+ = &vgr"&x−

x+ + ("!" , !14a"

where

("!" = 1 #

#x
D0,*"1+*

1 + *
1
x−

x+
. !14b"

In the absence of local sources or radial wave propagation,
we see that #E /#t)0 requires ("!")0, which defines a con-
dition on the fluctuation intensity profile for local growth.
Obviously ("!")0 implies a net influx of turbulence to the
region #x− ,x+$, while ("!"+0 implies an outflow. As is ob-
vious, should ("!" be sufficiently large, growth in the region
can occur even if #+0.

It is also illuminating to amplify and extend the discus-
sion of the relationship between turbulence spreading and
mixing length theory. For simplicity, consider simple shear-
driven, incompressible Navier–Stokes turbulence. In that
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case #for V!=V!x"ẑ+ Ṽ!$, the mean intensity flux V!x" evolves
according to the Reynolds averaged equation

#

#t
.V!x"/ = −

#

#x
.ṼxṼz/ + 1

#2.V/
#x2

, !15a"

while the average turbulence kinetic energy evolution is gov-
erned by

#

#t
."!x,t"/ +

#

#x
.Ṽx"/ = − .ṼxṼz/

#

#x
.Vz/ −

#

#x
.ṼxP̃/

− 1.& ! V!&2/ . !15b"

Here, "= &Ṽ&2 /2, 2=1 for convenience, and symmetry in y ,z
is assumed. Equation !15b" states that the mean flow evolves
via Reynolds stress-induced momentum transport and vis-
cous dissipation, while Eq. !15b" balances fluctuation energy
input by Reynolds work and pressure work, with energy
transport and viscous dissipation. For incompressible turbu-
lence, the pressure work is negligible and the .Ṽxp̃/ term is
hereafter neglected. This system of simple averaged equa-
tions may be closed by invoking the mixing length hypoth-
esis, which relates fluctuations to “mixing” of averaged
quantities over a scale !, called the mixing length.28 In the
mixing length ansatz, the fluctuation axial flow Ṽz is given
by

Ṽz 0 − !
#.V/
#x

, !16a"

and the energy density fluctuation by

"̃ 0 − !
#."/
#x

. !16b"

Note that Eq. !16a" may be rewritten as &Ṽz / .V/&%! /Lv,
where Lv

−1= &!1/ .V"/# .V/ /#x&, which has the traditional form
of a mixing length rule. For flow in pipes or jets, the mixing
length ! is usually associated with some macroscopic scale,
such as the distance from the wall, etc. In plasma confine-
ment guesstimates, ! is usually related to a linear mode
width or !preferably" a radial correlation length.

Equations !15a" and !15b" then can be reexpressed as

#

#t
.V/ =

#

#x
1T

#.V/
#x

+ 1
#2

#x2
.V/ !17a"

and

#

#t
."/ −

#

#x
1T

#."/
#x

= 1T, #.V/
#x -2 − 1.!!Ṽ"2/ . !17b"

Here, the turbulent viscosity 1T !also called the “eddy vis-
cosity”" is given by

1T = ."/1/2! . !17c"

Equation !17b" states that fluctuation energy spreads diffu-
sively at the same rate at which the mean flow relaxes. This
simple exercise suggests that just as turbulent transport
mixes mean quantities during relaxation, it also mixes and
transports fluctuation energy. Thus, turbulent spreading goes
hand-in-glove with mixing dynamics and mixing length

models of turbulence. Note also that this analysis pinpoints
the fundamentally nonlinear dynamics of spreading, since
this phenomenon emerges directly from a consideration of
the triple moment.

Wave kinetics yields yet another alternative and useful
perspective on turbulent spreading. See the Appendix for a
derivation of a bivariate diffusion equation using this ap-
proach.

III. DYNAMICS OF TURBULENCE SPREADING
A. Intensity front dynamics and propagation

In this section, we examine the dynamics of turbulence
spreading and propagation, as described by the energy den-
sity evolution equation

#"

#t
+ vg

#"

#x
−

#

#x,D0"*!x,t"
#"

#x- = #!x"" − #NL!x""*+1,

!18"

derived by Fokker–Planck methods in the preceeding sec-
tion. For the case where *=1 !weak turbulence", #=0, #NL
=0, vg=0, and D0=const, Eq. !18" has a well-known self-
similar solution29

"!x,t" =
A
t1/3

#1 − x2/d!t"2$3!&d!t" − x&" , !19a"

where

d!t" = !6AD0"1/2t1/3. !19b"

This solution expressed in terms of the similarity variable
x /d!t"%x / t1/3, describes the self-similar subdiffusive expan-
sion of an initially localized slug of turbulence with initial
impulse A=(dx"!x ,0", where "!x ,0" has compact support.
Hahm et al.19 considered the effects of # and #NL on this
case perturbatively, with encouraging results.

The other case is vgx=const, #=const, and #NL=0, for
which another similarity solution can be obtained, which is

"!x,t" = Ae#t !1 − !x − vgxt"2/d!t"2"
!#e#t − 1$/#"1/2

3!&d!t" − !x − vgxt"&"

!20a"

where now

d!t" = !6D0A"1/2#!e#t − 1"/#$1/3. !20b"

Notice that the effect of group velocity is easily captured by
a Galilean transformation. Convective propagation toward
the low-field direction may be viewed as a surrogate for
spreading via toroidicity-induced coupling of poloidal har-
monics. This solution does not saturate, and it spreads “ex-
ponentially” fast, due to the fact that the nonlinear damping
is set to zero. Indeed, it seems clear that exponential spread-
ing is indicative of the neglect of proper damping or satura-
tion processes in the theory. In addition to their intrinsic
physics interest, these solutions define practical benchmark
cases for any numerical solution of Eq. !18". Figure 1 dem-
onstrates the excellent agreement between numerical solu-
tions and the analytical, self-similar solutions. The numerical
solutions establish the relevance of the similarity solutions:
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the final asymptotic forms are nearly independent of the ini-
tial conditions. Note that these are not “traditional” solutions
of the diffusion equation, since the nonlinear term plays an
important role in setting the diffusion rate. Another class of
solutions of interest is that for the case #=const, #NL
=const and D0=const. As this case corresponds to constant
or slowly varying background, it is discussed in some detail
here. After the re-scalings x→ !#NL/2D0"1/2x , t→#t ,"
→ !#NL/#""!x , t", Eq. !18" may be rewritten as

#"

#t
−
1
4

#2

#x2
"2 − "!1 − "" = 0. !21"

Equations !20a" and !20b" are immediately recognizable as a
variant of the well-known Fisher–Kolmogorov–Petrovski–
Piskunov !Fisher-KPP" equation for logistic-limited epi-
demic propagation,30,31 now with nonlinear diffusion. The
Fisher-KPP equation is a reaction-diffusion type equation
which is well known to exhibit spatiotemporally propagating
front solutions.32 A numerical solution of Eqs. !20a" and
!20b" !for localized initial conditions" is shown in Fig. 2.
This rather clearly suggests that the profile of "!x , t" time-
asymptotically approaches an expanding front, which decays
exponentially in space. This structure is similar to that of a
“leading edge,” which is a well-known solution of the Fisher
equation. Motivated by these observations, we ansatz the
similarity solution

"!x,t" = f!t"!1 − e−&x−d!t"& − e−&x+d!t"&" . !22"

Equation !22" describes a bounded, localized solution with
extent 2d!t" and with two expanding fronts, propagating in
opposite directions at speed d!t", where the dot denotes dif-
ferentiation with respect to time. Substituting Eq. !22" into
Eq. !21" yields !for t→/" a differential equation for d!t" and
an expression relating d!t" to f!t". These are

d!!t" −
1
2
+ 2e−d!t"cosh

−1!ed!t"/2"
2− 4 + e2d!t" = 0 !23a"

and

f!t" =
1

1 − 4e−2d!t" − 4
ed!t"cosh−1!ed!t"/2"

!− 4 + e2d!t""3/2
. !23b"

An implicit solution for d!t" follows directly from Eq. !23a"
in the form

FIG. 1. Behavior of the solutions for the cases !a" #=0.5 and !b" #=0.0, with #NL=0. The dots correspond to the result of numerical integration and the solid
line corresponds to the exact analytical solution. For #=0 the usual scaling 4=x / t1/3 is obtained, whereas for #=0.5 exponential spreading is observed.

FIG. 2. Constant velocity expansion for the cases #=const and #NL=const.
The numerical simulation represented by the dots is in excellent agreement
with the asymptotic analytical solution represented by the solid lines. Even
more complex initial conditions approach the same asymptotic solution.
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sinh#2 cosh−1!ed!t"/2"$ − 2 cosh−1!ed!t"/2" = et. !24"

d!t", as given by the solution of Eq. !24", defines an exact,
asymptotic solution of Eq. !21" in the form suggested by Eq.
!22". It is interesting to observe that for t→/, Eq. !24" has
the simple solution d!t"= t /2. Restoring dimensional quanti-
ties, this implies that the fluctuation energy front expands
according to

d!t" = vt !25a"

with a constant front velocity

v = ,#2D0
2#NL

-1/2. !25b"

This solution suggests that the dynamics of "!x , t" devel-
oping from a localized source evolves in two steps. First,
there is rapid growth to logistically limited local saturation at
"=# /#NL. Second, the value "=# /#NL defines an effective
value of the fluctuation energy diffusion D=D0" /4
=D0# /4#NL. The effect of the spatial coupling induced by
such diffusion then combines with local growth to produce a
classic Fisher-KPP front with velocity V= !2#D"1/2. Here # is
the local effective reaction !growth" rate, which corresponds
in this case to turbulence growth, and D is the net effective
diffusion, D=#D0 /4#NL. It is interesting to note that the
front of turbulence energy propagates ballistically #i.e., d!t"
=vt$. This occurs in the absence of toroidicity-induced cou-
pling of poloidal harmonics. Thus, rapid propagation ob-
served in turbulence simulations does not follow exclusively
from linear coupling of poloidal harmonics !i.e., ballooning
effects", but rather can be a more general consequence of the
dynamics. Indeed, this dynamical ballistic expansion rate can
easily exceed that due to toroidal coupling. Note that for
standard “gyro-Bohm” scalings, #%vTi /L! , #NL%vTi /L!,
and D0%2i

2vTi /L!, so v%2ivTi /L!%V*i. In this normaliza-
tion, " is dimensionless and is scaled to the square mixing
length level, so "%1 at local saturation. Taking vgx of order
of the curvature drift speed for the purposes of simulating the
coupling of poloidal harmonics, vgx%2ivTi /R%!V*i. Thus,
v /vgx%!1/!", so we find that dynamically driven expansion
and spreading can progress ballistically, and in fact faster
than geometrically induced spreading due to toroidicity. The
speed of this dynamically induced ballistic spreading is set
by the geometric mean of local growth !i.e., reaction rate #"
and diffusion !D=D0"=D0# /#NL". Note also that ballistic
front propagation at finite speed requires finite local nonlin-
ear damping !i.e., #NL%0", so as to allow a meaningful lo-
cally saturated state. Indeed, local nonlinear damping is es-
sential in order to accurately distinguish between nontrivial
spreading phenomena and simple readjustment of an unsat-
urated intensity profile. The implications of neglecting non-
linear damping in Eq. !18" are further elaborated later in this
paper. Whereas Eq. !22" together with Eq. !24" or Eq. !25a"
is an example of ballistic spreading, the solution in Eq. !20a"
is an example of exponential spreading. More generally, this
simple example is a splendid illustration of the breakdown of
the local saturation paradigm. In particular, this result states
that though the turbulence comes to a local saturation !i.e.,
#=#NL"", the presence of a gradient in " !i.e., a leading edge,

due to localized pulse initial conditions" forces nontrivial
envelope dynamics #i.e., spreading at v= !#2D0 /2#NL"1/2$.
These nontrivial envelope dynamics occur on time scales
longer than those local fluctuations but much shorter than
transport time scales, and thus are a prime example of me-
soscale dynamics.

B. Intensity spillover into a stable region

We now consider the spreading of turbulence into locally
marginal or damped regions from zones of linear
instability.19 To understand the radial spreading of turbulence
into a linearly stable region, we should consider what hap-
pens near the boundary between stable and unstable regions.
The simplest way to model such a boundary is to assume
#!x"=#3!−x", where 3!x" is the unit step function. The tur-
bulence in the unstable region is expected to grow until a
local saturation is reached, and to spread until it covers the
entire unstable region. The turbulence will then start to
“spill” into the stable region, leading to a steady state in the
long time limit. This steady state is reached when the rate at
which turbulence spills into the stable !or damped" region is
equal to the damping rate of turbulence in the region. Thus,
for the marginally stable case, it takes an infinite time to
actually reach a steady state, which involves an infinitely
large damping region with an exponentially decaying inten-
sity profile. It is possible to estimate this steady state solution
based upon local balance and the matching conditions at the
boundary. The steady state profile in the #)0 region satisfies

1
4

#xx!"2" + " − "2 = 0. !26a"

Multiplying by #x!"2" and integrating, we obtain

"!!x" = ±
!"!x" − 1"

"!x"
2"!x"2 +

2
3

"!x" +
1
3
. !26b"

It is possible to further integrate and then invert Eq. !26b" to
obtain an exact solution for "!x". However, for quantifying
the spillover of turbulence, only the solution in the #=0
region is relevant. The relevant solution in this region can be
written as "=*0e−x. To find *0 one should match the solution
and its derivative across the discontinuity, i.e., *0="0 and

"0 − 1
"0

2"0
2 +
2
3

"0 +
1
3
= − "0, !27a"

which yields *0=1/22/3. Hence, in the linearly stable region,
the solution is

" =
#

#NL
*3!x"
22/3

e−x/5+ , !27b"

where 5=2!2D0 /#NL" is thus the skin depth or penetration
length of the turbulence. The results of a numerical study of
the same problem are shown in Fig. 3. Note that the solution
reached steady state in about 50–100 time units !correspond-
ing to -*

−1" and is in good agreement with the analytical
solution. It should be noted that the final turbulence profile
appears to be more or less independent of the initial condi-
tions for this equation.
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When the case of two regions, one with #)0 and an-
other with #+0 !i.e., #g= &#&, #d=−&#&, where #g and #d are
the linear growth and damping rates in the corresponding
regions" is considered, a very similar picture emerges. In fact
it is not difficult to find the solution for "!x" in the #+0
region by matching the function and its derivative across the
interface. The solution in that case turns out to be

" =
4
3

3!x"3!x − x0"
&#&
#NL

sinh2, x − x025
- , !28a"

where x0=5 cosh−1!7/4" to match the solution in the #)0
region. This solution is shown in Fig. 4. Thus, in the case of

a linearly damped region, the skin depth 5 remains the same,
but the turbulence definitely terminates at x=x0, in contrast
to the finding of exponential decay for the #=0 case. When
the growth rate in the unstable region #g and the decay rate
in the decaying region #d are not equal in magnitude, a more
general expression for x0 can be written as

x0 = 5 cosh−1,32 !#g/#d"
#4!1 + #g/#d"$1/3

+ 1- . !28b"

Notice that x0, which is the termination point of the turbu-
lence region, varies mainly with #g /#d, such that for #g
6#d the turbulence penetration depth becomes large.

Another straightforward way of computing the turbu-
lence penetration length is to consider the turbulence in the
decaying region as being made up of eddies of decaying
turbulence. As the eddies enter the damped region they will
persist for a lifetime or a “flight time” defined as the time of
decay of an eddy of initial “height” ". It is clear that

tflight 7 1/#d,

where #d is the decay rate. In practice, this is the time it takes
for " to e-fold in the damped region. Since the left hand side
of Fig. 5 corresponds to the saturated region, in which the
expansion is ballistic, with velocity given in Eq. !25b", the
range of the eddy is

(x = vtflight 72 D0
2#d

.

This is essentially the same as 5, which was calculated by
solving the steady state problem exactly in the two regions
and matching these two solutions. It is remarkable that al-
though the flight time and the velocity both change in the
damped region !the expansion is not ballistic in the damped
region", probably due to self-similarity, this simple argument
still gives the correct answer.

Notice that although the above argument for the turbu-
lence penetration, assumes ballistic spreading !into the stable
region as well as the unstable region", it is dimensionally
valid for other cases as well. This is particularly relevant for
boundary control of numerical simulations, in which turbu-
lence penetration, into a stable boundary buffer layer, can
occur. The depth of this penetration in numerical simulations
seems to be roughly a few 2*’s. However, it is not clear if
this is the true “steady state” after turbulence spreading. Fur-
ther study of the effects of penetration and spreading into the

FIG. 3. Steady state solution for steplike #!x" profile, where #=0 in the
stable region. The dots denote the numerical integration, whereas the solid
line is the analytical solution in the outer region calculated by a matching
argument.

FIG. 4. Steady state solution for steplike #!x" profile, where #+0 in the
“stable” region. The dots denote the numerical integration, whereas the solid
line is the analytical solution in the outer region calculated by a matching
argument.

FIG. 5. Turbulence penetration depth calculated by considering eddies that
are traveling with constant speed in the x direction, while being damped. An
obvious analogy is with kinematics, where the height is related to ".
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buffer layer of the simulation domain is clearly necessary.
For instance, Eq. !28b" indicates that #d, which is related to
the damping that is introduced near the boundary of simula-
tion domain, should be large !i.e., larger than the growth rate
in the simulation domain". If this is not the case, turbulence
will penetrate more than just a few 2*’s into the buffer layer,
and then be reflected and backscatter into the core. More-
over, this conclusion is derived from the “minimal” model,
which only takes immediate fluctuations into account. More
realistic models, which include a delayed response to the
radial mean flux, should estimate even larger penetration. On
the other hand, inclusion of zonal flow dynamics may have
the opposite effect when the zonal shears are strong.

When a localized source of turbulence is considered, the
spreading effect is similarly important, and therefore should
be examined. According to Eq. !28b" the turbulence penetra-
tion depth is a function of #g /#d and becomes large if the
damping rate is small. This suggests one particular applica-
tion of the penetration idea, namely, the spreading of turbu-
lence towards the core region when it is produced in the
strongly turbulent edge, as in L mode. In this case if the
damping rate #i.e., max!#NL,#d"$ is small, the turbulence
would spread a distance of (x7x0 #see Eq. !28b" for x0$ into
the core. Figure 6, showing the turbulence due to a localized
source, can be thought as a visualization for the spreading of
turbulence, which is produced in the region of steeper gradi-
ents as in an L-mode edge, into the core region. A simple
analog is that of a sprinkler. Additional dependence on #NL,
the nonlinear damping rate, is shown both for fixed # !so that
as #NL decrease the local saturation level increase" and for
fixed # /#NL. This figure also clearly shows that quite deep
spreading into a quasimarginal region is possible. This effect
is particularly important in hot L-mode plasmas, where the
core, likely to be marginal with respect to ion temperature
gradient driven modes !ITG", is adjacent to a turbulent edge.
In such a case, the dynamics of spreading from the edge
would produce a strongly inward turbulent transition region
intermediate between the marginal core and the turbulent
edge.33 No additional instability mechanism need be invoked

to explain such a region. This transition region could have
significant impact on confinement predictions, as it would
extend the effective extent of the edge.

C. Tunneling through stable gaps

We have demonstrated that turbulent fluctuations can
leak or spill into stable regions. This suggests that they can
also tunnel through locally stable regions of finite width !i.e.,
“gaps” in the growth rate profile". The tunneling problem is
demonstrated in Fig. 7. We considered tunneling through
both marginally stable and heavily damped !#d8#g" regions.
Such gaps might correspond to small local transport barriers,
where #!x"+0, which form on account of pressure gradient
steepening, mean electric field shear, islands, etc. The pre-
diction of exponential decay for a marginal region with #
=0 #i.e., Eq. !27b"$ indicates that the turbulence can eventu-
ally tunnel through marginally stable gaps of all sizes. Of
course, it will take a very long time to tunnel through larger
gaps. A simple but interesting plot of gap width versus tun-
neling time is given in Fig. 8. This plot indicates that the
expansion of turbulence into the linearly stable region !with
nonlinear damping" proceeds in time as x% tn with n
%1/4–1/5. Finally, a complete analysis of propagating front

FIG. 6. Turbulence due to a strongly localized source modeling the spreading of turbulence that is produced in the edge, into the core region !a" when #NL
is varied but # is kept constant, !b" when #NL and # are varied in such a way that # /#NL is kept constant.

FIG. 7. A sketch of the turbulence tunneling problem. “Tunneling” is said to
have occurred when turbulence is observed in the third region.
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position versus time for various #!x" profiles can be found in
Fig. 9. Figure 9 systematically compares turbulence spread-
ing, first without nonlinear damping #Fig. 9!a"$, then with
nonlinear damping #Fig. 9!b"$. Note that in the absence of
local nonlinear damping, the front position extends without
limit exponentially. Even case !c", which has a substantial
region with #+0 shows no tendency of saturation. On the
other hand, with nonlinear damping #Fig. 9!b"$, spreading
can saturate, depending on the profile of #!x". In particular,
case !c" now saturates. The mechanism of this saturation is
nonlinear coupling of the stable !#+0" and unstable !#
)0" regions mediated by spreading. Note also that, even
with nonlinear damping, the turbulence can jump gaps in
#!x", as in case !g", for example. Notice that for case !f",
since the particular gap size is larger than the turbulence
penetration depth, tunneling does not occur, however for
smaller gaps, the same dynamics results in tunneling for that
case as well.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the dynamics of turbu-
lence spreading and nonlocal phenomena in magnetically
confined plasmas. The principal results of this investigation
are listed below.

!1" A model for the local turbulence intensity evolution was
derived using Fokker–Planck theory. The model is fur-
ther elucidated by comparison and contrast with wave
kinetics and with K−! type turbulence closures. The
model involves local growth ##!x"$, local nonlinear
damping ##NL!x""*+1$ nonlinear diffusion !D"=D0"*",
and radial group propagation as a mock-up of toroidicity
effects.

!2" The simple model has been extensively explored, using
combined analytical and numerical calculations. For the
case #=#NL=0, a well-known self-similar solution indi-
cating subdiffusive spreading is recovered. More inter-
estingly for constants # ,#NL, and D0, the model reduces

to a variant of the familiar Fisher-KPP equation. A bal-
listically propagating front solution, with V
= !#2D0 /2#NL"1/2, is shown to emerge from the
asymptotic limit of a similarity solution. The solution is
consistent with the behavior of the well-known leading
edge behavior of Fisher fronts.

!3" The penetration of a stable region has been studied. In
particular, the depth of penetration into a marginal re-
gion as a function of time has been determined, and the
penetration depth into a damped region has been calcu-
lated. In particular, significant turbulence penetration
from a strongly turbulent edge into a marginally stable
core is shown to be possible. Several studies of the in-
teraction of a propagating front with a stable “gap” re-
gion #i.e., where #!x"90$ have been completed. Results
indicate that turbulence can jump through modest gaps
on dynamically interesting scales.

These results have many implications of interest in the
context of confinement physics. These implications are as
follows.

!1" The time-honored local saturation paradigm !i.e., # /k!
2

=D" is clearly inadequate and incomplete. A finite initial
pulse of turbulence spreads on dynamically interesting
time scales, and more rapidly than rates predicted by
considerations of transport, alone. For example, the pre-
dicted intensity velocity is the geometric mean of the
local growth rate and the turbulent diffusivity. Efforts at
modeling based on the local saturation paradigm should
be reconsidered.

!2" Ballistic fluctuation energy front propagation is possible
via dynamics alone, and does not require toroidicity-
induced coupling, zonal-flow induced side-band cou-
pling, and other intricate effects. Such front propagation
may break gyro-Bohm scaling.

!3" Since turbulence propagation fronts can jump modest
gaps in the local growth rate profile, the width of a trans-
port barrier probably must exceed a certain minimum in
order for a barrier to be identifiable. Additional physics
in the model may be necessary to define a barrier, as
well. In particular, modest regions of linear stability may
not correspond to the locations of barriers, and the linear
growth rate may not be a good indicator of a barrier.

!4" Since turbulence can tunnel into marginal or stable re-
gions, fluctuation energy originating at the strongly tur-
bulent edge may spread into the marginal core relatively
easily, thus producing an intermediate region of strong
turbulence. This phenomenon blurs the traditionally as-
sumed distinction between the core and edge, and sug-
gests that the boundary between the two is particularly
obscure in L mode. It also identifies one element of the
global profile readjustment which follows the L→H
transition, namely, the quenching of turbulence in the
core which originated at the edge.

!5" Tunneling can also allow turbulence to penetrate the
“buffer layers” usually setup at the boundaries of nu-
merical simulation domains. Note that should the simu-
lation run time exceed the buffer layer penetration time,

FIG. 8. Turbulence tunneling time vs width of the stable region. The initial
time offset is the time elapsed before the turbulence spreads to the edge of
the gap. The solid line is a power law fit to an expression of the form
(x / !(t"n. Here (x is normalized to 5=2!2D0 /#NL" and time is normalized
to the linear growth rate #.
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unphysical backscatter of energy from the boundary may
occur. Thus, spreading phenomena may limit the time of
validity of numerical simulations.

We identify and discuss two extensions of the basic
theory. These will be addressed in detail in future publica-
tions. First, we consider the role of toroidicity and its conse-
quent induced coupling of poloidal harmonics on turbulence
energy propagation. This can be approached by retaining a
radial group velocity12 term in the energy equation !as done
here" or, more appropriately, by considering a lattice of
coupled poloidal harmonics and the energy transfer between
them. The latter corresponds to a study of ballooning effects
in real space. This may be facilitated by working in a basis of
modelets, as recently discussed by Connor and Hastie.34 A
second issue is the effect of zonal flows !Diamond et al.,35
and references therein" on the spreading dynamics. By shear-
ing the underlying turbulence, zonal flows can produce re-
gions of steep fluctuation intensity gradient, which in turn
drive spreading. A broad region of strong zonal flow excita-

tion would likely inhibit turbulence spreading. Indeed, the
phenomenon of transport barrier formation is a special case
of turbulence spreading !i.e., turbulence retreat". The inhibi-
tion of turbulence spreading by means of shear layers has
been predicted by, and observed in, several models of fluc-
tuation energy and mean flow evolution. Alternatively mod-
erate zonal flow coupling might enhance spreading via spa-
tial sideband coupling, as recently advocated by other
authors.20 We thus note that the effects of zonal flows on
turbulence energy evolution are numerous, and likely to vary
for different regimes of zonal flow damping, turbulence ex-
citation, etc. One upshot of this wealth of possibilities is the
possibility of alternating domains consisting predominantly
of turbulence and zonal flows, respectively. Such domain
wave patterns can propagate through the system.36,37 This
phenomenon of corrugated spreading has been observed in
gyrokinetic simulations and in numerical studies of a K-!
type model with mean field coupling. Thus, spreading may
be either smooth or structured and corrugated. At present,

FIG. 9. The front position vs time for various steplike #!x" profiles !a" with #NL=0 !i.e., locally unsaturated turbulence", !b" #NL=1 !i.e., locally saturated
turbulence". Notice that in !b", #!x" profile of !f" gives exactly the same result as the profile of !c", since the steady state turbulence skin depth is less than the
gap size for this particular gap size. In particular in part !a" it is clearly seen that if there is no saturation, the spreading is exponential, even when the
turbulence is strongly damped in one region #i.e., as in profile !c"$. Part !b", on the other hand, demonstrates the phenomena of reaching steady state #i.e., for
profiles !c" and !h"$, constant velocity front propagation #i.e., for profile !e"$, tunneling through barriers and later assuming the same speed #i.e., for profile !g"$,
and finally a constant speed spreading followed by a decelerating phase in the marginally stable region for profile !d".
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there is no clue as to how the system selects its pattern struc-
ture from between these two possibilities.

A second possible extension concerns the validity of the
Fokker–Planck theory. It is well known that the Fokker–
Planck equation provides a means to compute the time evo-
lution of the probability distribution function for a stochastic
system, given the input of the “microscopic” !i.e., single
step" transition probability. The latter must be normalizable
and must have a finite second moment for the Fokker–Planck
approach to be valid. It is by no means clear that the local
transition probability for turbulent spreading will actually
have a convergent second moment. Indeed, since spatial
spreading and spectral transfer in wave number space are
strongly coupled, it is quite possible that since the wave
number spectrum follows a power law, so does the distribu-
tion of spatial steps. For self-similar processes described by a
power law, this requirement imposes severe constraints on
the spectrum.26 Violation of the condition of a convergent
second moment suggests that a nondiffusive Levy process
underlies the spreading phenomenon. We speculate here that
the divergence of the second moment in the Fokker–Planck
theory would also signify a breakdown in weak turbulence
theory as the latter is also based upon the assumption of a
quasi-Gaussian pdf.38 A well-known example of such a non-
diffusive spreading is the Richardson dispersion law, which
predicts that !, the separation between two points in a turbu-
lent flow grows as !2%!t3. This possibility will be investi-
gated in a future publication.

Another point is that although we used convenient
Heaviside step functions for growth rate profiles, in the study
of tunneling problem, in fact the basic model #i.e., Eq. !18"$
assumes #!x" to be nonzero, continuous, and differentiable.
For a turbulent diffusivity derived rigorously from the basic
equations it is easily seen that D" is tied to #, via the scaling
of the saturated intensity with drive. Alternatively put, there
is a time lag !related to the cross phase" between fluctuations
and nonlinear interaction. Thus, the above model is not ac-
curate when #90. To take this case into account, one needs
a minimum of a two-field model. We will consider the sim-
plest possible case, which in practice introduces a time delay
between growth and fluctuation-driven radial transport, and
this treats the transport as “accumulative.” Such a delay is
clearly present in the basic theory. The two-field model is

#

#t
"!x,t" + vgx!x"

#

#x
"!x,t" + :

#

#x
#"!x,t"V̄!x,t"$

− #!x""!x,t" + #NL!x""!x,t"2 = 0, !29"

#

#t
V̄!x,t" + *

#

#x
"!x,t" = 0. !30"

In practice for "%e#t, one can integrate the equation for the
mean flow and recover the initial model #i.e., Eq. !21"$, with
D0=:* /#. For the more general case, a sharp gradient near
the edge enhances the outward mean intensity flux simply by
acting as a conservative force that accelerates the flux. This
in turn advects the turbulence outward, reducing the intensity
gradient, but since it is the differential drive that produces
the gradient !i.e., existence of drive on one side and nonex-

istence of it on the other", the latter is immediately restored.
Since the gradient is always supplied at the same point by the
drive, the mean flow speeds at that point increase without
limit, until other effects set in. This is the reason we call this
type of transport accumulative. Such effects enhance the tur-
bulence tunneling considerably. Although the existence of
first-order spatial derivatives in Eqs. !29" and !30" and the
fact that the mean flow grows to such large magnitudes near
the boundary layer make the numerical problem somewhat
more difficult, a qualitative picture of what happens can be
found in Fig. 10.

Finally it is worthwhile to discuss the results of this pa-
per on the context of related studies of the theory of turbu-
lence spreading. This discussion is limited to three works,
namely, the pioneering study of Garbet et al., in 1994,12 the
recent turbulence model of Chen20,39 and collaborators,
based on zonal flow coupling effects in toroidal geometry,
and a new study for the case of subcritical turbulence by Itoh
et al., which is otherwise similar to this paper. Simply put,
the paper by Garbet et al. uses a fluid drift wave model and
neglects zonal flows. It predicts diffusive spreading !i.e.,
(x2% t" for weak turbulence in a cylinder, ballistic spreading
!i.e., (x% t" for weak turbulence in a torus, and an interme-
diate scaling for strong turbulence, in both cylinder and
torus. In contrast, we predict that ballistic spreading is pos-
sible without toroidal coupling effects, for either weak or
strong turbulence. The second work does not present a sys-
tematic study of spreading dynamics and its parameter de-
pendencies, but the authors have stated that spreading can be
“exponentially fast.”40 Here we find that exponentially fast
spreading can occur only if local, nonlinear saturation is ne-
glected. This limit appears questionable, in that it only seems
possible to define spreading meaningfully relative to a qua-
sisteady state, which is locally saturated. This model of Chen
et al. cannot treat strong turbulence, and leaves the important
!indeed, crucial for their case" issue of the effect of zonal

FIG. 10. Turbulence tunneling with the coupled two equation model.
Spreading, in the gap region, with this model is observed to be diffusive
!i.e., (x%(t1/2". This could be due to numerical diffusion.
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flow damping on spreading dynamics unaddressed. If the
zonal flow damping is weak, as in the Dimits shift regime,
formation of a barrier may be triggered and mean field evo-
lution must be treated as well. At the very least the strong
zonal flow shears in the Dimits shift regime should impede
spreading by shredding apart extended eddies. On the other
hand, if the zonal flow damping is moderate or strong, zonal
flow excitation is minimal, so the effect of zonal shears on
spreading is likely to be weak. The recent work of Itoh et
al.41 predicts that ballistic spreading is possible for subcriti-
cal turbulence, provided the size of the initial patch of tur-
bulence exceeds a minimum scale size. In that case also,
ballistic expansion of a turbulence intensity front appears in
the context of a simple model. It seems as though substantial
further research will be necessary in order to resolve the
many questions which persist in the theory of turbulence
spreading.
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APPENDIX: A BIVARIATE DIFFUSION EQUATION

The wave kinetic equation describes the adiabatic evolu-
tion of fluctuation “number” #i.e., quanta density N!k! ,x! , t",
which is usually, but not always, the wave action density$ by
a “slow” straining flow. Thus, the wave kinetic equation is a
natural description for the evolution of smaller scale waves
and turbulence in the presence of comparatively larger,
slower !i.e., integral scale" flows. The wave kinetic equation
gives

#

#t
N + v!g · $!N + V! · $!N −

#

#x!
!k! · V!" ·

dN
dk!
= C!N" , !A1a"

where

dk!
dt
= − $!!k! · V! + ṽxx!" . !A1b"

We will hereafter neglect mean flows !.V/30" and focus on
the effects of fluctuating flows. Averaging then yields

#

#t
.N/ + vgx

#

#t
.N/ + #x0x + #k0k' = .C!N"/ . !A1c"

Here,

0x 3 .ṽxÑ/ !A2a"

and

0k = 4− #

#x
!krṽx"Ñ5 !A2b"

define the strain-induced fluxes in space and wave-number
space. Application of either quasilinear theory or standard
Fokker–Planck methods then yields a bivariate diffusion
equation for the mean .N/, namely,

#.N/
#t

+ vgx
#

#x
.N/ −

#

#k'
Dk

#.N/
#k'

−
#

#x
Dx

#.N/
#x

= .C!N"/ ,

!A3a"

where

Dk ='
q
q'
2kx
2&ṽq&2Re#R!k!,q!"$ , !A3b"

Dx ='
q

&ṽq&2Re#R!k!,q!"$ , !A3c"

R!k,q" = i/6#;q − qvg!k"$ + i(;q7 , !A3d"

are k' and spatial diffusion coefficients, respectively, induced
by the spectrum of radial flow fluctuations .ṽ2/q. Dk accounts
for refraction to higher k' by flow straining and Dx accounts
for spatial scattering, caused by the same flow spectrum.
R!k! ,q!" is the response function which sets the effective cor-
relation time for interaction of wave packets !k!" with the
strain field ṽq. For symmetric spectra, cross-diffusion terms
are negligible. Equation !A3a" unambiguously shows that
spatial scattering of fluctuation energy, which leads to turbu-
lence spreading, is directly linked to large-scale straining,
which also initiates the turbulent cascade. This is a further
indication that turbulent spreading is a direct consequence of
nonlinear interaction in an inhomogeneous medium. Finally,
as large-scale flows are in turn driven by smaller scale
stresses, &ṽq&2 may be regarded as a functional of N, via a
feedback relation of the form

, #

#t
+ <-Ṽq = f!q"'

k!
g!k!"Ñq!k!" . !A4"

Here the g!k" is a generic coupling coefficient and f!q" is the
inverse of the large-scale dispersion, < is the decay/growth
rate. Thus, the .N/ equation is seen to be nonlinear in N, as
shown in the earlier Fokker–Planck derivation. Finally, we
remark that joint reflection symmetry considerations may be
used to derive a bivariate Burgers’ equation for pulses of
wave population density. These pulses may be thought of as
avalanches in !x ,k'" space. This theory is elaborated in Refs.
18 and 22.
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