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We quantitatively study the charge transport mechanism of electroweak baryogenesis in a realistic tw
Higgs-doublet model, comparing the contributions from quarks and leptons reflecting from electroweak d
main walls, and comparing the exact profile of theCP-violating phase with a commonly used ansatz. We note
that the phenomenon of spontaneousCP violation at high temperature can occur in this model, even when
there is noCP violation at zero temperature. We include all known effects which are likely to influence the
baryon production rate, including strong sphalerons, the nontrivial dispersion relations of the quasiparticles
the plasma, and Debye screening of gauged charges. We confirm the claim of Joyce, Prokopec, and Turok
the reflection oft leptons from the wall gives the dominant effect. We conclude that this mechanism is at be
marginally capable of producing the observed baryon asymmetry of the universe, and we discuss some way
which it might be enhanced.@S0556-2821~96!02414-9#

PACS number~s!: 98.80.Cq, 11.15.Ex, 11.30.Er, 12.60.Fr
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I. INTRODUCTION

An exciting proposal during the last few years is that th
baryon asymmetry of the universe was created during
electroweak phase transition@1#, by harnessing both the
anomalous baryon number violation present within the sta
dard model and the first order nature of the phase transit
which gives the necessary departure from thermal equil
rium. The third ingredient needed for baryogenesis isCP
violation, which is widely believed to be too small for thi
purpose in the standard model. However, in modest ext
sions of the standard model it is possible to introduce n
sources ofCP violation which are more effective for baryo-
genesis@2–5#. For example, in generic models with mor
than one Higgs doublet, phases can be introduced into
potential for the scalars which are only weakly constrain
by laboratory limits onCP violation @6#.

The simplest example is a theory with two Higgs dou
blets, where there is a single phaseu, namely, the phase
mismatch between the vacuum expectation values~VEV’s!
of the two scalar fields@2#. Although at zero temperatureu is
just another parameter of the theory, during the electrowe
phase transition it is a spatially varying fieldu(x) whose
value depends on the position relative to the domain wa
that separate the true and false vacuum phases during
transition. In principle, the detailed form ofu(x) is needed
for computing the difference in reflection probabilities be
tween quarks and antiquarks bouncing off the domain wa

*Current address: Niels Bohr Institute, DK-2100, Copenhagen” ,
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which is how a baryon asymmetry is produced in the charg
transport mechanism of electroweak baryogenesis@7,8#. Un-
til now there have been no attempts to computeu(x); rather,
an ansatz has been invoked. We will show that the differenc
between the actual solutions and the ansatz can be quite s
nificant. Moreover, a detailed study of the equation of mo
tion for u(x) reveals the interesting phenomenon of sponta
neousCP violation @9# at high temperature that can occur in
this model, even when there is noCP violation at zero tem-
perature.

We subsequently use our solution foru(x) to study
baryon production in the charge transport mechanism. W
account for all known effects which are likely to influence
the baryon production rate including the nontrivial dispersion
relations of the quasiparticles in the plasma, strong sphal
rons, and Debye screening of gauged charges. We do n
include thermal damping in our calculation of reflection am-
plitudes, but we will argue that this phenomenon is likely to
be of little consequence to our results. We confirm the claim
of Joyce, Prokopec, and Turok@8# that the reflection oft
leptons from the wall gives the dominant effect; however, we
differ from Ref. @8# in that our exact computation of the
probabilities for particles to reflect from the bubble wall
gives smaller results than their estimates. Based on our r
sults, it appears difficult to get a large enough baryon asym
metry even using the most favorable values of largeCP
violation and slow bubble wall velocity. However, some
modifications, such as a largert lepton Yukawa coupling or
further slowing of the bubble walls toward the end of the
phase transition, may make it possible to account for th
baryon asymmetry with this mechanism.

In Sec. II we introduce a two-Higgs-doublet model which
O
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2452 54CLINE, KAINULAINEN, AND VISCHER
is sufficiently realistic to include the physics needed for ele
troweak baryogenesis, and we find its corresponding fin
temperature potential. Section III discusses the solution
the u field equation of motion, and in Sec. IV the comput
tion of the fermion reflection coefficients is explained. Se
tion V treats the complicated process of how the fermio
reflected from the wall will propagate back into the symm
ric phase before the wall overtakes them again. In Sec. VI
put these results together to find the baryon asymmetry.
present our results and conclusions in Sec. VII.

II. MODEL AND ITS EFFECTIVE POTENTIAL

In the most general potential with two Higgs double
flavor-changing neutral currents~FCNC’s! are unsuppressed
it is, therefore, convenient to impose a global symmetry su
asF1→2F1 to forbid them@10#. This symmetry, if exact,
would also forbidCP violation and lead to domain wal
formation in the early universe, but these problems can
cured without reintroducing the first by allowing the symm
try to be softly broken by a termF1

†F2 @2,11#. The potential
is

V~F1 ,F2!52m1
2F1

†F12m2
2F2

†F21k̃F1
†F21k̃*F2

†F1

1
l1

2
~F1

†F1!
21

l2

2
~F2

†F2!
21h1~F1

†F2!

3~F2
†F1!1h2~F1

†F1!~F2
†F2!1h3„~F1

†F2!
2

1~F2
†F1!

2
…1y2F̄LF2f R1c.c. ~1!

The last term is the Yukawa interaction of the Higgs fie
with a generic fermion field, taking into account that th
couplingy1 to F1 is forbidden by the global symmetry.

In the above expression we have used global field red
nitions to make the couplingh3 real. In general the mas
term k̃ thus remains complex. Ifh3 should happen to be
zero, as is the case at the tree level in the supersymm
~SUSY! standard model, the same redefinition could be u
to makek̃ real and then there would be noCP violation in
the Higgs sector. However, even in the SUSY case a co
plex value ofh3 is generated at one loop@7#. We will write
k̃ as a modulus times a phase:

k̃5keidk. ~2!

Finite-temperature corrections to the effective potentia
the one-loop level are given by the integral@12#

DVT~f!57
T4

2p2E
0

`

dxx2

3Trln„16exp$2Ax21@M ~f!/T#2%…, ~3!

where the trace is over all particles in the theory and1
(2) is for fermions ~bosons!. Each real field~four for a
Dirac fermion! counts as a single state in the sum. T
masses are evaluated at arbitrary background values o
scalar fields. ExpandingDVT(f) to fourth order in the
masses, the result can be written as
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DVT~f!>(
i

HCi

mi
2T2

48
2Di

mi
3T

12p

2Ei

mi
4

64p2 @ ln~mi
2/T2!2Fi #J , ~4!

where Ci52 ~1!, Di51 ~0!, Ei51 (21), and Fi>5.41
(2.64) for bosons~fermions!. For example, the quadratic
term has the effect of shifting the parametersm i

2 of the tree-
level Lagrangian to

m i
2~T!5m i

22aiT
2, ~5!

where, in terms of the SU~2! and U~1! gauge couplings and
the Yukawa couplings,

ai5
1
12 ~3l i1h112h2!1 1

16 ~3g21g82!1 1
4 yi

2 . ~6!

~Note thaty150 for our model.! The ring improvement of
the potential is the first iteration of Eq.~3!, in which the
massesM of the bosons are taken to be those at the tree le
plus the one-loop temperature-corrected ones@13#.

The effective potential derived here differs from that o
Turok and Zadrozny@2# who considered the same mode
without thek term. Their computation was made in the un
tary gauge, which gives unreliable results, as has been sho
in Ref. @14#. One way to see that the result of@2# is incorrect
is the fact that their thermal corrections do not respect t
symmetryF1↔F2 even though the underlying Lagrangian
does. Reference@14# shows that the unitary gauge is a poo
choice near the critical temperature, where each order in
loop expansion is as important as the next for obtainin
quantities that are perturbatively calculable in covaria
gauges.

The phase transition in this model generically proceeds
two stages, because there are separate critical temperat
for the two fields@15,16#. To sidestep this complication we
now follow previous authors by making the simplifying tech
nical assumption thatl15l2[l, m1

25m2
2[m2 @2,17#.

Then the Higgs potential is invariant under the exchange
the moduli of the two fields, and we can parametrize th
domain walls separating the true and false vacua in the fo

F1~x!5
1

A2 S 0

r~x!ei @a~x!1u~x!#/2D ,
F2~x!5

1

A2 S 0

r~x!ei @a~x!2u~x!#/2D . ~7!

TheCP-conserving phasea(x) is the neutral Goldstone bo-
son which is absorbed by theZ0 when the symmetry is bro-
ken. Its expectation value is a constant which can be ignor
in our subsequent discussion; therefore, the phase transi
is described by two real fields instead of three. Moreover,
a first approximation, the phaseu(x) can be treated as a
small perturbation, so that the domain wall profile during th
phase transition is determined by a single equation f
r(x). We expect the physics of quark reflection from bubb
walls in this model to be similar to that of the more realisti
case whenm1

2Þm2
2 .
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It is clear from the full potential that if, for smallu(x), we
want the symmetry to break in the direction ofF15F2 ,
then we must demand that

k,0. ~8!

If not, the same physics would still ensue except that
would have to change the name of one of the fields, s
F1→2F1; thus, we will take Eq.~8! as our convention for
the sign ofk.

Unfortunately the necessity of coupling the fermions
only one Higgs field means that finite-temperature corr
tions will spoil the symmetry that would allow both fields t
have equal VEV’s as in Eqs.~7!. We will ignore this com-
plication in order to maintain the single-stage phase tran
tion, yet still keep the effect of fermion contributions to th
finite-temperature effective potential, using the prescript
that

m2~T!5m22aT2, a5~a11a2!/2. ~9!

This should be regarded as a reasonable compromise
tween realism and simplicity. It would be exact in the ca
where the fermions coupled with equal strength to bo
Higgs doublets, which is another, less familiar way of avo
ing flavor-changing neutral currents~for further discussion of
this point, see Sec. VII!. We will keep only the dominant top
quark Yukawa contributiony251.4 in a2 . This value corre-
sponds to a mass of 176 GeV@18#.

The result of substituting the form~7! into the effective
potential for the Higgs fields is

Veff~r,u!5@2m21aT21kcos~u2dk!#r22dTr3

1 1
4 $leff12h3@cos~2u!21#%r41•••,

leff5l1h11h212h3 . ~10!

The ellipsis represents contributions which have a sma
effect on the evolution of the fields than those retained: te
perature corrections to the quartic couplings and cubic te
of the form (r21cT2)3/2. The cubic term retained in Eq.~10!
is contributed by the transverse gauge bosons whose the
squared mass~thecT2 term! vanishes at orderg2. They give
d5@2g31(g21g82)3/2#/(12A2p)50.018. However, this is
an underestimate since the (r21cT2)3/2-like terms must still
function in somewhat the same way as a pure cubic te
and they are numerous because the two Higgs doublets
tribute a total of eight particles in the sum~4!. These terms
are inconvenient to include explicitly because they make
impossible to compute the parameters of the phase trans
analytically. Instead we will parametrize their effect, as w
as contributions from other possible particles such as sin
Higgs fields@19# and possible nonperturbative effects@20#,
by keepingd as an adjustable parameter~for more discus-
sion, see Sec. VII!. In any case, this is necessary for avoidin
the problem of baryon washout in the broken phase@17#. To
see this, we note that the phase transition occurs at the c
cal temperature

Tc
25~m22k!/~a2d2/leff!, ~11!
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defined as the temperature when two degenerate minima d
velop in the Higgs potential. At this time the VEV is

rc52dTc /leff . ~12!

Residual sphaleron interactions in the broken phase can wa
out the baryon asymmetry once it has been created unless
condition rc*Tc is satisfied or, in other words,d*leff/2.
@This can be derived from the condition that the sphalero
energy Esph be greater than '45Tc @3# using
Esph58pB(leff)MW(T)/g

2, where B(leff).1.6 for small
values ofleff .# Unfortunately the valued50.018 due to
transverse gauge bosons would necessitate too small a va
of leff to be compatible with the laboratory bound of
mh0
2

5leffr0
2.(60 GeV)2. Henceforth we will therefore take

d5leff/2.
For future reference we give the VEV of ther field and

the vacuum masses of the Higgs fields here, in the limit of
smallCP-violating phase. At zero temperature the potentia
is minimized by

r05@2~m22k!/leff#
1/25

246

A2
GeV, ~13!

and if we define a parameter

z52k/mh0
2 , k5

m2

12~2z!21 , ~14!

the masses can be written as

mh0
2

5leffr0
2 ,

mA0
2

524h3r0
222uku5mh0

2
~2z24h3 /leff!,

mH0
2

5~leff22h122h224h3!r0
222uku

5mh0
2

@112z2~2h112h214h3!/leff#

mH6
2

52~h112h3!r0
222uku5mh0

2
@2z2~h112h3!/leff#.

~15!

Note thath0 is the Higgs field which gets a VEV. To explore
the implications of various choices of the parameterk, it will
be helpful to invert the relations~15! to solve for the quartic
couplings as functions ofz and the mass ratios

g i[mi
2/mh0

2 , ~16!

with gh0[1. The couplings can then be written as

ĥ1[h1 /leff5~2z22g61gA!/2,

ĥ2[h2 /leff5~122z12g62gH!/2,

ĥ3[h3 /leff5~2z2gA!/4. ~17!

From these we can express the parametera of Eq. ~9! in
terms of the mass parameters,
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a5leffS 162
z

3
1

1

24 (
h0,A,H

1,2

g i D 1
3g21g82

16
1
y2

8
, ~18!

which is useful for determining the critical temperatur
through Eq.~11!, and thereby the width of the bubble wall to
be discussed below.

Curiously, the combinationa2d2/leff can vanish for suf-
ficiently large negative values ofk ~large positivez), the
mass which mixes the two Higgs fields in the tree-level p
tential. From Eq.~11! we see that this would imply a nega-
tive value forTc

2 , meaning that there would be no phas
transition. We should not trust our effective potential fo
these parameters~and even if we could, there would be no
electroweak baryogenesis!, and so we will exclude this re-
gion. Using the top quark Yukawa couplingy51.4, one can
solve for the condition that there is a phase transition:

z,3c/leff11/223~d/leff!
21 (

h0,A,H
1,2

g i /8,

c5
3g21g82

16
1
3y2

8
50.34. ~19!

For the smallest experimentally allowed values ofmh0
2 ,

leff50.12, and assuming thatd5leff/2 and the mass ratios
g i51, we getz,8.8. This condition can be violated only if
there is a fine-tuned cancellation betweenm2 andk designed
to keep the weak scale at 100 GeV. For heavy Higgs bos
masses the restriction onz becomes even less severe.

III. BUBBLE WALL PROFILES

We now turn to the description of the domain wall at th
phase transition. In principle the equations of motion for th
bubble wall nonlinearily couple all doublet field components
For technical reasons we will assume that the relative pha
between the Higgs doublet is small, and therefore we wo
only to the lowest order inu(x); in this case, the equation for
the modulusr decouples from that ofu. The equation for
u has nontrivial solutions because of the explicitCP viola-
tion present in the effective action in the form of a comple
k. Moreover, we find that for a certain region of paramete
CP gets spontaneously broken in the symmetric phase, g
ing rise to nontrivial solutions even when the effective actio
has no explicitCP violation.

Since the bubbles of true vacuum grow to macroscop
proportions, one can approximate the walls as planar, d
pending only on a single coordinatez @21#. Combining the
effective potential~10! with the kinetic energy density

Ekin5~]zr!21 1
4 ~r]zu!2, ~20!

one finds that to zeroth order inu the equation of motion of
the r field has the usual kink solution

r~z!5rcg~z!, ~21!

g~z!5 1
2 @11tanh~z/Dwall!#,
e
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e
r

on
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Dwall5
4r0
mh0rc

.

For example, withleff50.12, g i5z51, andd5leff/2, one
finds a rather wide wall withDwall.11.5/Tc.0.15 GeV21.
For the equation of motion foru, we define a dimensionless
distanceẑ5z/Dwall along the bubble wall and obtain

] ẑ
2u14~12g!] ẑu1Bsin~u2dk!1Cg2~sin2u!/250,

B[2kDwall
2 , C[4h3Dwall

2 rc
2564h3 /leff . ~22!

The boundary conditions in the broken and unbroken sy
metry phases (z@0 andz!0, respectively! depend on the
values of the parametersB andC. By demanding that the
derivative of u vanishes at6` it is easy to see that the
boundary conditions for the caseB1C,0 are

u~z!5H dk , z52`,

dkB/~B1C!, z51`,
~23!

to lowest order indk . However, ifB1C.0, the boundary
conditions are no longer proportional todk . In particular in
the case thatdk50, so thatCP is explicitly conserved by the
Higgs potential, one finds the nontrivial boundary condition
~note that becauseB,0 this solution only exists when
B1C.0)

u~z!5H 0, z52`,

arccos21~2B/C!, z51`.
~24!

This is an example of spontaneous breaking ofCP at finite
temperature@9#, whereCP is conserved atT50. It is inter-
esting because in this case there will be no constraints fr
laboratory searches forCP violation in the phaseu. It is
straightforward to show that spontaneousCP violation oc-
curs only for sufficiently large values ofz52k/mh0

2 ,

z.AF213gA~d/leff!
21F,

F[1.5c/leff11/429d2/2leff
2 1 (

h0,A,H
1,2

g i /16, ~25!

using the parameterc defined in Eq.~19! and the mass ratio
gA5mA

2/mh0
2 . The constraints~19! and~25! restrict the range

of spontaneousCP violation to a rather narrow band inz.
For example, with the particular choice of parameters show
in Eq. ~34!, one finds that it occurs if 7.85&z&8.70. How-
ever, this is essentially the only constraint there is; one c
verify that the upper bound onz in Eq. ~19! does not conflict
with the lower bound~25! unlessgA is larger than the aver-
age ratio of the other Higgs boson masses by the amoun

gA2 (
iÞA,h0

g i /358c/leff15/328~d/leff!
2. ~26!

Such a large discrepancy between the masses seems unl
and would invalidate the use of perturbation theory in th
construction of the finite-temperature effective potential. W
will always assumedk50 when considering the spontaneou
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CP violation and focus on the situationB1C;0, so that the
boundary values ofu are small and we are justified in trea
ing it as a perturbation.

Since there is no unique choice for the sign ofu when
CP is only spontaneously violated, one would expect t
half of all the bubbles that form during the transition produ
baryon asymmetries of the opposite sign, which averag
zero in the end. However, it is conceivable that a sm
amount of explicitCP violation could be dynamically am
plified by the spontaneous effect@23#, avoiding the cancella-
tion, and so we will keep in mind the possibility.

Let us first, however, consider the case of explicitCP
violation with B1C,0 and small CP-violating angle
dk!p. The linearized equation is

] ẑ
2u14~12g!] ẑu1~B1Cg2!u1D50,

D[2dkB. ~27!

Although one might try various techniques for numerica
integrating Eq.~22!, they require specifying boundary con
t-

hat
ce
e to
all
-

lly
-

ditions at finite values ofz, where one does not know the
exact asymptotic behavior without first having solved the
equations. We found that results for the baryon asymmetr
due to heavy top quarks were quite sensitive to small unce
tainties in the asymptotic behavior, making these method
unsuitable. Instead, it is convenient to rewrite Eq.~27! with
the kink profileg as the independent variable:

4g2~12g!2]g
2u14g~12g!~324g!]gu1~B1Cg2!u1D

50. ~28!

The solution can be written as a power series ing or 12g,
valid in the intervalgP(0,1):

u~g!5 (
k50

`

~ak1bkg
g!gk5 (

k50

`

@ãk1b̃k~12g! g̃ #~12g!k.

~29!

The coefficients are given by recursion relations:
bk5
~g1k21!@8~g1k!112#bk212@4~g1k22!~g1k11!1C#bk22

4~g1k!~g1k12!1B
,

b̃k5
$4~ g̃1k21!@2~ g̃1k!11#12C%b̃k212@4~ g̃1k22!~ g̃1k11!1C#b̃k22

4~ g̃1k!21B1C
,

g5~12B/4!1/221, g̃5~2B2C!1/2/2. ~30!
to

an-

-
ant
-
e
.
tz,

ex-
The analogous relations fora andã are obtained from thes
by settingg5g̃50. ak andãk correspond to the inhomoge
neous solution and are proportional toD:

a21[0, a052D/B,

ã21[0, ã052D/~B1C!. ~31!

bk andb̃k correspond to the inhomogeneous solution, and
their overall scales are not determined by the equation its

b21[0, b0 undetermined,

b̃21[0, b̃0 undetermined. ~32!

However, these scales are fixed by demanding that the
series and their derivatives be equal at any intermediate p
on the interval. After this, by choosing the appropriate se
for the point in question it is always possible to get qu
rapid numerical convergence.

For the case of spontaneousCP violation, where
B1C.0, we can again linearize the equation of motion
u as long as its value in the broken phaseu0 is small, that is,
if 2B/C is not much smaller than unity. Expanding arou
u0 gives an equation similar to Eq.~27! except with a term of
the formDg2 rather thanD. However, one is always free t
shift u by a constant since this has no effect on the reflec
e
-

so
elf:

two
oint
ries
ite

in

nd

o
tion

asymmetry of the fermions, and a judicious shift allows us
recover the original form of Eq.~27!, except that the coeffi-
cients must be reparametrized according to

B→Bcosu0 ,

C→Ccos2u0 ,

D→Bcosu0~ tanu02
1
2 tan2u0!, ~33!

where cosu052B/C in terms of the original parameters. Af-
ter this replacement the solution foru(g) is identical to that
given above.

In previous papers it has been assumed that the kink
satz u(z)5Dug(z) provides a good approximation to the
solution, whereDu is the difference between the two bound
ary values. Because an overall additive constant is irrelev
for our imminent goal of determining the asymmetry of fer
mions reflecting from the domain wall, we can also take th
exact solution foru to vanish in the symmetric phase. In Fig
1 we compare the profiles of the real solution and the ansa
using the parameter set

leff50.12, d50.06, g i51, k variable, ~34!

corresponding to Higgs boson masses of 60 GeV, at the
perimental lower limit. For very smallk (z!1) the solution
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FIG. 1. Theu profiles corre-
sponding to the solution of Eq.
~22! for the set of parameters de-
fined in Eq.~34! and for varying
z52k/mh0

2 . The curves with
z,7.85 andz.7.85 correspond,
respectively, to explicit and spon-
taneous breaking ofCP symme-
try. All curves are scaled byDu
and shifted so as to be zero at the
symmetric phase. The profile cor-
responding to the tanh ansatz
u(z)/Du[@11tanh(z/Dwall)#/2 is
given by the solid line.
,

a
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e
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a-
falls to zero in the symmetric phase (z52`) much more
slowly than does the tanh ansatz. For intermediate values
two profiles are close to each other, and asz becomes large
the real solution falls to zero before the ansatz does. T
behavior continues right up to the critical value~25! of z
where spontaneousCP violation begins, at which point in-
creasingz causes the solution to head back toward the t
ansatz. Forz58 the solution once again lies quite close
the ansatz, only to move again away from it with even lar
z. The conclusion is that the tanh ansatz seems, some
accidentally, to be a rather good approximation to the so
tion for certain narrow ranges ofk including the natural
valuesAk'mh0, but may be poor elsewhere.

It is interesting to note that the tanh ansatz in fact co
cides with the exact solution ofu for special values of the
parameters. This can easily be seen by substituting the g
u5a01a1g into Eq. ~28!, resulting in the conditions
B5212, C5216 in the case of explicitCP violation.
These in turn can be solved forz and some linear combina
tion of g i . The solution takes the form

z5
2B

16~aleff /d
221!

,

gA52z2C/16. ~35!

Normally the first of these equations would be quadratic
z because the parametera @Eq. ~6!# depends onz and g i
through Eq.~17! for the quartic couplings. However, if w
assume that all theg i are equal~with the exception of
gh0[1), the second equation of Eqs.~35! fixes precisely the
same linear combination ofz and g i as appears ina. For
example, withleff50.12 andd50.06 as above, Eqs.~35!
give z50.06 andg51.1 whenB5212,C5216. This ex-
plains why the solution forz50.1 falls so close to the tan
ansatz in Fig. 1. One can also find that the tanh solutio
recovered whenB52(480)1/2, C540 for the case of spon
taneousCP violation. These values also correspond to so
hypersurface in the physical parameter space, but it is
straightforward to find a representative here than in the c
of explicit CP violation above.
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We have also found a more analytical solution foru(x)
which can be expressed as a single integral. This is presen
in Appendix A.

IV. FERMION REFLECTION ASYMMETRY
FROM THE BUBBLE WALL

With the solution for the spatial dependence of the
CP-violating phase at hand, we now wish to compute th
fermion reflection asymmetry from the bubble wall. We will
first consider the scattering to the zeroth order, ignoring th
effects of the background to the fermion propagation, an
then generalize the treatment for the scattering of quasipa
ticles, i.e., for the effective one-particle excitations of the
plasma at finite temperature. The zeroth order treatment w
be adequate for the scattering of fermions with large trans
verse momentum and in particular for the scattering of th
top quark~see Appendix B for further details!. For light fer-
mions and with small momentum the quasiparticle picture i
essential, but even then we will be able to derive the corre
sponding reflection asymmetries from the zeroth order re
sults by simple mapping of the momentum variable.

A. Zeroth order equation

The different reflection probabilities for fermions and an-
tifermions arise from having a spatially varying, complex
mass in the Dirac equation

@ i ]”2m~z!PR2m* ~z!PL#C~ t,z!50, ~36!

wherePL andPR are the chirality projection operators. The
mass is given by replacing the Higgs fields in Eq.~1! by their
vacuum expectation values:

m~z!52y2^F2&52
y2

A2
r~z!e2 iu~z!/2. ~37!

The fermion states that interact with the bubble wall are
eigenstates of energy, not momentum, and so one tak
C(t,z)5e2 iEtc(z). In the chiral representation of the Dirac
matrices, the Dirac equation then separates into two equ
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tions for a pair of two-component spinors which we shall c
c15(L2 ,R1)

T and c25(R2 ,L1)
T, where the letter de-

notes the chirality and the subscript the direction of moti

i ]zc15S E 2m

m* 2E Dc1 , i ]zc25S E 2m*

m 2E Dc2 .

~38!

The two equations are thus identical except for the in
changem↔m* . The boundary conditions forc1 , describing
an incoming wave from the symmetric phase (z,0) plus
reflected and transmitted parts, are

c1~z!5SR~p!e2 ipz

eipz D , z!0,

c1~z!5
T~p!

A2p8~p81E!
S m*

E1p8
D eip8z, z@0, ~39!

whereR(p) and T(p) are the reflection and transmissio
amplitudes,m is the asymptotic value ofm(z) deep in the
broken phase, andp85AE22um2u. We use the prime to dis
tinguish p8 from the momentum deep in the symmetr
phase,p5E. The boundary conditions are satisfied only f
certain values ofR(p) and T(p), for which we want to
solve. The boundary conditions forc2 are the same excep
for the replacementsm*→m, R→R̄ and T→T̄. Then the
asymmetry in the reflection probabilities forL2→R1 and
R2→L1 is

DR~p![uR~p!u22uR̄~p!u2. ~40!

The whole analysis can be repeated for the antiparti
simply by lettingE→2E in the original Dirac equation. It is
straightforward to show that the respective equations
c̄15(R̄2 ,L̄1)

T and c̄25(L̄2 ,R̄1)
T are the same as thos

for c1 and c2 , except for the changem→2m. But the
overall sign of the mass can have no effect on measur
quantities, and so it follows that the reflection probabiliti
for c̄1 and c̄2 are alsouR(p)u2 and uR̄(p)u2, respectively.

For particles incident from the broken phase, we can e
ily find that the reflection probabilities are related to those
the above situation by

uRR→L
b u25uRL→R

s u2,

uRL→R
b u25uRR→L

s u2, ~41!

where we have indicated the particle chiralities in the s
scripts and the superscriptsb ands refer to the broken and
symmetric phases. The relations can be derived starting f
the solution forc1 obtained above~which describes the pro
cessL→R in the symmetric phase! and taking its charge
conjugate,c185s2c1* . This is a time reversal of the origina
solution, and it satisfies the same equation asc1 except for
the changem→2m. Therefore, if we form a third spino
c19 made in just the same way asc18 except starting from the
Dirac equation withm→2m, it will be a solution to the
original equation~38! for c1 . If we denote the reflection an
transmission amplitudes forc1 asR(m) andT(m), respec-
all
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tively, then those ofc19 areR* (2m) andT* (2m). Next we
can form a linear combination ofc1 andc19 ~remember that
c9 goes backward in time!,

@R* ~2m!c12c19#/T* ~2m!, ~42!

chosen so as to exactly cancel the incoming wave from th
symmetric phase and to normalize the incoming wave from
the broken phase to unity. Thus our new solution describe
reflectionR→L of a particle incident from the broken phase,
and the reflection coefficient is seen to be
2R* (2m)T(m)/T* (2m). When we square this and use
the fact that no observable can depend on the sign of th
mass, we immediately get the first of Eqs.~41!. This result is
a consequence ofCPT invariance.

The reflection amplitudes can be numerically compute
from Eqs.~38! and ~39! by a straightforward shooting algo-
rithm to integrate the two differential equations. We have
used this method to verify the results of previous authors
However, it breaks down when the quark mass in the broke
phase starts to greatly exceed the inverse wall width, that i
when

j[mcDwall[
4m0

mh0
@1 ~43!

~wheremc andm0 are the fermion mass values atT5Tc and
T50, respectively!. This is apparently because the solution
begins to undergo many oscillations over the region of th
bubble wall, which makes it prohibitively difficult to numeri-
cally solve the equation between the two asymptotic regime
outside the wall. This is also the regime where the overa
reflection coefficients are exponentially suppressed in th
fermion mass, so that this regime should make a subdom
nant contribution to the total baryon asymmetry. We hav
used the perturbative method of Funakuboet al. @24# to com-
puteDR in this case. They found that, for the lowest order in
u!p and for the particular wall profileg(z) given by Eqs.
~41!, the asymmetry is given by an integral involvingu(z),
g(z), and the unperturbed negative- and positive-chiralit
wave functionsfp

6(z) of the fermions:

DR~p!5CpE
2`

`

dzfp
1~z!fp

2~z!
d

dz
@g~z!u~z!#1c.c.

~44!

The complex constantCp in front of integral can be ex-
pressed in terms of ratios ofg functions and the wave func-
tionsfp

6(z) are expressible in terms of hypergeometric func
tions @24#.

Some typical profiles for the reflection asymmetry as a
function of momentum are shown in Fig. 2. For later pur-
poses it turns out that a simple exponential provides a re
sonably good fit for any value of the mass:

DR~pz!

Du
>HA~j!e2~pz2m!/w~j!, pz.m,

0, pz,m,
~45!

with a height and width that depend on the mass.DR van-
ishes forpz,m because then both particles and antiparticle
are totally reflected by the bubble wall. The actual function
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DR(pz) go smoothly to zero aspz→m, as shown in Fig. 2,
but this occurs on a scale much shorter than the w
w(j), so that the exponential is not a bad approximati
Little error is made by using Eq.~45! in later expressions fo
the baryon asymmetry since these are momentum integ
which do not especially weight the threshold region.

A curious property of Eq.~44! is that when one uses th
tanh ansatzu(z);g(z), the sign of the asymmetry oscillate
as a function of the quark mass, changing at small inte
values of the inverse wall width,j52, 3, 4. Thereafter it
falls to a value smaller than our computational accuracy. T
real solutions foru(z) typically display no such behavior
and DR falls much more slowly with increasing fermio
mass than for the ansatz. Using our complete numerical c
we have verified that this is truly a behavior of the ansatz
the smallu limit and not an artifact of the linear approxima
tion leading to Eq.~44!. However, even for the ansatz, if th
change inu is sufficiently large that Eq.~44! is no longer
valid, the full numerical solution of the Dirac equation r

FIG. 2. The scaledDR(p)/Du profiles defined by Eqs.~38!–
~40! for certain representative values of the mass param
j5m(Tc)Dwall . The solid lines are the exponential fits given by E
~45!.
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veals no such oscillatory behavior. The difference is shown
in Fig. 3, where we plot the maximum value ofuDR(pz)u
versusj for the first two cases.

We have also examined how the widthw(j) of the DR
profiles varies as a function of the fermion mass. We have
defined it to be the area under the curveDR(pz) divided by
the maximum value ofDR discussed above. The dependence
is shown for typical values of the model parameters in Fig. 4
In fact we find thatw(j) is largely independent of the po-
tential parameterk. For the region of fermion masses shown
in Fig. 4, it is fit well by the expressions

w~j!/m52~1.1lnj10.54!, j,0.3,

w~j!/m50.19j21.2, 0.3,j,0.7,

w~j!/m50.15j21.8, j.0.7, ~46!

where henceforthm stands for the mass of the fermion at the
critical temperature. The smaller values ofj are of interest
for the t lepton.

To make contact with the physical situation of interest, we
note that for the choices of parameters we have been usin
for the Higgs potential~only the valueleff50.12 is relevant
here!, the dimensionless quantityj5mDwall that character-
izes the fermion mass turns out to be

j511.7 top quark,

j50.33 bottom quark,

j50.12 t lepton. ~47!

For the top quark this means that the reflection coefficient is
extremely small except in a very narrow region of momen-
tum space. We find that the height times width of the reflec-
tion asymmetry profile is of orderAw;10210m, which is
seven orders of magnitude smaller than that of the bottom
quark. Henceforth we will ignore the top quark contribution
to the process of forming the baryon asymmetry.

eter
q.
FIG. 3. The dependence of the
maximum value of theDR profile
on the mass parameterj, for dif-
ferent values of the Higgs poten-
tial parameterk in units of GeV2

~assuming a Higgs boson mass of
mh0560 GeV.! For comparison
with Fig. 1, the values of
z52k/mh0

2 corresponding to
these2k values are 0.28, 3.9, 7,
and 8, respectively.
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FIG. 4. The width in momen-
tum spacew(j) of our fit ~45! for
the asymmetry in the reflection
probabilities DR(p), along with
our fits ~46! to w(j) for large and
small j5mDwall .
f

e

c

For future reference we tabulate certain values ofw(j),
along with the corresponding values ofA(j)[uDRumax, us-
ing the parameters of Eq.~34! and the representative valu
k521000:

j50.06, w/m.2.6, A.e23.2,

j50.12, w/m.1.8, A.e22.7,

j50.16, w/m.1.3, A.e22.5,

j50.33, w/m.0.7, A.e21.9. ~48!

B. Thermal corrections: Small-momentum regime

The propagation of fermions is affected by the ambie
high-temperature plasma in the early universe. Therefore
Dirac equation used in the previous subsection, which
sumed that the fermions obey the usual vacuum disper
relations, apparently needs some modification. We giv
more detailed derivation of the modified Dirac equation
Appendix B, where we argue that the zeroth order treatm
given above is adequate to use in the large transverse
mentum region, and also derive the equations used belo
study the small momentum limit, where the effects of t
background are most important.

Whenever the fermion momentum is small compared
the thermal masses, denoted byvL and vR for the two
chiralities of a given fermion species, induced by interactio
with the plasma@25,26#, the dispersion relations for thei th
chirality, in the rest frame of the plasma, are changed to@26#
~see also Appendix B!

v5v i6ukW u/3, symmetric phase,

v5v06@~Dv/26ukW u/3!21umu2/4#1/2, broken phase,
~49!

using the definitions

v05~vL1vR!/2 and Dv5vL2vR . ~50!
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They are shown in Fig. 5. The modes with the negative slope
dv/dk close to the origin are called holes@27#, or abnormal
@26#, because their group velocity is opposite to their mo-
mentum, and since they do not exist at low temperatures.

When the momentum is purely in thez direction, the dis-
persion relations correspond to an effective Lagrangian
whose resulting Dirac equation is, instead of Eqs.~38!,

i

3
]zc15S v2vL 2m/2

m* /2 2v1vR
Dc1 ,

i

3
]zc̄25S v2vR 2m* /2

m/2 2v1vL
Dc2 . ~51!

For the antiparticles, one must change not only the sign o
v but also thev i ’s since purely thermal effects increase the
energies of both particles and antiparticles equally.

The quasiparticle dispersion relations given here are a lin-
ear approximation valid only for momenta much smaller
than the scalev0 . In particular the abnormal mode energies
do not really fall monotonically to zero but reach a minimum
and start to rise again. However, this happens on a scal

FIG. 5. Schematic view of the fermion dispersion relations in
the small momentum limit corresponding to Eqs.~49!. The solid
lines pertain to the broken and the dashed lines to the symmetri
phase. The mass gap in the former, near the energyv0 , has half of
its zero-temperature value.
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v0 , which is much larger than the scale of the exponent
decay inDR(p) apparent in our previous solutions of Eqs
~38!, and which will also be supplied by the solutions of Eq
~51! a posteriori. Therefore, setting aside the possible depe
dence on the parallel momentum, the linear approximation
reasonable for computing the effects of the quasiparticles
baryon production.

Despite the differences between Eqs.~51! and the original
Dirac equation~38!, there is a simple mapping between the
reflection coefficients because each equation can be tra
formed into the other. Letz̃53z, c1,25e6 iDvz̃/2c̃1,2, and
ṽ5v2v0 . It is straightforward to show that the new equa
tions resulting from this transformation are the same as o
would obtain from the Dirac equation~38! by making the
replacementE→ṽ andm→m/2 in the latter. The reflection
asymmetry is given by exactly the same functionDR(p), but
the correspondence betweenp and the actual~outgoing! mo-
mentumk is

p5k/31H Dv/2, L1 ,R2modes,

2Dv/2, R1 ,L2modes.
~52!

This applies to the excitations, whose energies exceedv0 .
The Dirac equations for the modes withv,v0 are the same
except for the opposite sign ofṽ5v2v0 . The sign change
means that there is a mapping between the Dirac equati
for v.v0 andv,v0 modes which makes them look the
same except for the interchange ofm andm* . Therefore the
reflection asymmetry changes sign along withv2v0 @28#.
To be explicit, recalling thatDR(p) is the difference in re-
flection probabilities between the processesL2→R1 and
R2→L1 for v.v0 , 2DR(p) is the reflection asymmetry
for the modes withv,v0 , which are depicted in Fig. 5.

We assumed that the components of momentum para
to the wall were zero in this discussion. For the usual disp
sion relations which are valid at large momenta this is
limitation because one can always boost to the frame wh
these components are zero to solve the Dirac equation. In
small-momentum region, however, the dispersion relatio
of the quasiparticles are clearly not Lorentz invariant, so th
if one does the same boost, they take on a different fo
which is incompatible with the boundary conditions of th
Dirac equation as we have written them. The exact treatm
would be quite cumbersome, and so we will compromise
ignoring the dependence on the parallel momenta when t
are smaller thanv0 . When they are greater thanv0 , the
usual dispersion relations become appropriate and we
use the first form~38! of the Dirac equation.

C. Decoherence during the reflection

We have so far completely ignored the effects of dampi
in our treatment of the reflection from the wall. In Ref.@29#
it was argued that the continuous scatterings off the ba
ground particles experienced by the reflecting quarks lead
a significant loss of coherence of the wave function. Th
accounted for the scatterings by including the complex p
of the quark self-energy into the Dirac equation, and found
tremendous suppression of the final baryon asymmetry in
minimal standard model. The issue of how to correctly a
count for the decoherence phenomenon is still controver
ial
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@30#, and we do not wish to get into the details of that arg
ment here. Here we will demonstrate that the neglect
damping is much better justified for the situation in whic
we are interested.

Let us begin with the damping in the small-momentu
region. The damping rate of a fermion at zero momentu
was first computed in a gauge-invariant way in Refs.@31,32#
with the result

gF~k50!5a~N,Nf !CF~N!
g2T

16p
, ~53!

whereCF5(N221)/2N is the usual Casimir operator eigen
value and the constanta(N,Nf) has a weak dependence o
the group indexN and the number of fermion familiesNf .
In QCD with three families, Refs.@31,32# give a(3,3).5.7
which, withas;0.1, leads to a rate 2gq;0.19T. This result
was used by Ref.@29# to obtain a mean free path of the
quarks ofl q;1/6gq;0.9/T, which is significantly less than
the smallest expected wall widthsDwall* few/T.

However, this large result for the quark damping rate
almost exclusively due to strong interactions. There exists
standard model computation ofg for the leptons in the lit-
erature, but from the results of@32# for pure SU(2),
a(2,2).5.8 anda(2,4).6.3, one can estimate thatat.6.
Then Eq.~53! straightforwardly givesgt.0.04T, and hence
l t;4.4/T. This result is comparable to the wall width pre
dicted in the model under consideration, and so we exp
that scattering of low-momentum leptons by the plasma w
not strongly damp their quantum mechanical reflection fro
the wall, even if the more restrictive picture of the Ref.@29#
is the correct one.

At large momenta there are no problems with the infrar
properties of the gauge interactions that led to the difficulti
in the evaluation ofg at low momenta@31,32# and the damp-
ing rate is given by the usual scattering computation. O
then expects that the damping length would be roughly on
third of the diffusion length. Thus for quarks we estima
that l q;Dq/3.2/T and for leptonsl L;40/T. One might
be led to believe that at least for leptons, the neglect
damping during the reflection process is a good approxim
tion, given our determination of 10/T for the wall width.
However, one must keep in mind that the important refle
tions are coming from particles with small momenta perpe
dicular to the wall, whose other momentum components a
typically of order T, so that they approach the wall at
glancing angle and therefore typically undergo several int
actions during their traversal of the wall@8#. In our treatment
below we will distinguish between the particles with larg
and small momenta parallel to the wall, the latter of whic
are much less sensitive to the decoherence effects.

To conclude this section we note that it is not yet cle
how to consistently compute the effects of decoherence
the present mechanism of baryogenesis. Nevertheless, in
end we will find that the reflection oft leptons dominates
baryon production and, moreover, for these particles the
gion of phase space where all components of the mome
are small~so that they are approaching the wall from a sha
angle and do not undergo many scatterings! dominates over
the large momentum region. Therefore we do not expect t
the decoherence effects will be crucial for our final results
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V. FERMION TRANSPORT

To compute the baryon asymmetry resulting from ferm
ons reflecting off the wall, it is necessary to understand
diffusion of reflected fermions back into the symmet
phase. There exist several different ways of treating this
the literature: Monte Carlo simulations@7#, the diffusion
equation@8#, and solving a more exact form of the Boltz
mann equation, called the Fokker-Planck equation@33#. Al-
though the Fokker-Planck equation should in principle
more accurate, more work is needed to establish why it g
different results from the diffusion equation, which has he
tofore received more attention. For ease of comparison w
previous work, we will also adopt the diffusion equation
our framework for solving the transport problem.

Our approach will proceed in three steps. First we co
pute the flux of net right-handed and left-handed ferm
numbers into the symmetric phase in the vicinity of t
bubble wall. This results in an initial chiral asymmetry
front of the wall, in which we are interested because it
what biases sphalerons to produce baryons, since the sp
ron rate is proportional to the asymmetry in left-handed f
mions. However, flavor-changing processes will redistrib
the initial asymmetry among the various species of partic
and so we must next take into account the interactions wh
are fast compared to the diffusion rate, and find new ini
values for the densities near the wall after chemical equi
rium is established. In the third step we consider the dif
sion of the particle asymmetries into the symmetric pha
incorporating the Debye screening of hypercharge using
results of Ref.@37#. The goal of these computations is
spatial profile for the total left-handed fermion numb
which can be used to compute the rate of baryon num
violation, assumed to be the slowest process of interest in
problem. Integration of this rate finally gives the bary
asymmetry.

A. Fermion flux in the symmetric phase

The first step toward generating a baryon asymmetry i
create an asymmetry in the density of left-handed particle
the symmetric phase, since it is these which drive sphale
to create baryons. The left-handed asymmetry arises du
four contributions: Left-moving, right-handed particlesR2

reflect into right-moving, left-handed particlesL1 with re-
flection probabilityuR(p)u2, wherep labels the momentum
in the symmetric phase; using Eq.~41!, L1 fermions are
transmitted from the broken phase with probabil
12uR(p)u2; the analogous processes with antiparticles giv
canceling contribution, however with a different probabili
uR̄(p)u2 because of theCP violation in the wall. For a given
momentum, this gives a left-handed current of

JL}uRu2f s~R2!1~12uRu2! f b~L1!2uR̄u2f s~R̄2!

2~12uR̄u2! f b~ L̄1!, ~54!

where f s,b(X) denotes the Fermi-Dirac distribution functio
for speciesX with subscripts or b showing whether the
corresponding particle is propagating in the symmetric or
broken phase. Because the wall is moving,f (X) will be dif-
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ferent for left and right movers. It is, however, the same for
particles and antiparticles, so that using Eq.~40!, Eq. ~54!
becomes

JL}DR~p!@ f s~R2!2 f b~L1!#. ~55!

Thus the asymmetry vanishes in the absence of eitherCP
violation or the velocity of the wall, as expected. The current
of right-handed fermions has the opposite sign due to the
CPT theorem~as can be seen from comparing the Dirac
equations for right- and left-handed particles!:

JR}2DR~p!@ f s~L2!2 f b~R1!#. ~56!

To the extent that left- and right-handed particles have iden-
tical dispersion relations, hence equal distribution functions,
the sum ofJL andJR is zero, so that there is no net current of
baryon or lepton number. In fact the two chiralities get dif-
ferent thermal energy shifts due to their different interactions
with the background plasma particles; this will be relevant
when considering the contributions to the baryon asymmetry
from the reflected quarks.

The full expression for the flux is an integral over all the
momenta of the expressions like those above, weighted b
the group velocity of the right-moving particles which is
obtained from their dispersion relations. We will divide the
momentum space into two regions, depending on whethe
the momenta are large or small compared to the therma
self-energies. The large-momentum region gives a contribu
tion to the flux which is similar to what we would have
computed with the usual dispersion relations, because in thi
region the temperature corrections become small and th
Lorentz symmetry is approximately restored. The small-
momentum region gives new contributions associated with
the normal and abnormal quasiparticle excitations~49!.

1. Large-momentum region

We will first concentrate on the large-momentum region.
For the flux of left-handed particles per color degree of free-
dom (Nc53 for quarks, 1 for leptons!, this region contrib-
utes

JL
LM

Nc
>E

umu

` dkz
2p

DR~kz ;umu!E
v0

` dkuukuu

2p

kz
E1

@ f ~E12vkz!

2 f ~E11vkz8!#@12 f ~E11vkz!#, ~57!

where the factorkz /E is the group velocity in thez direction
and

E15AukW u21umu212vL
2,

kz85Akz22umu2. ~58!

Note that the lower limit on the parallel momentum integra-
tion in Eq. ~57! has been somewhat arbitrarily chosen to be
kuu,min5v0; we will come back to this shortly. To a good
approximation thekz dependence ofE1 can be neglected in
the phase space distribution. Then taking the limit of small
wall velocity we can expand the phase space functions inv
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after which thekuu integral is elementary. Finally, using th
form ~45! for the reflection asymmetryDR, we obtain the
result

JL
LM/Nc.

vDuAwumu2

4p2 r L~w/umu! f ~E1
L!@12 f ~E1

L!/2#,

~59!

where

E1
L5Av0

212vL
21umu2,

r L~w/umu!5@112w/umu12w2/umu21K2~ umu/w!eumu/w#.
~60!

HereK2(x) is the Bessel function of the second kind. F
smallw/umu the functionr L(w/umu) approaches unity, which
is the appropriate limit to take for the top quark. For all t
other fermions w/umu is not small and one obtain
r L(w/umu).(214w/umu14w2/umu2). For example for the
t lepton withj.0.12,w/umu.1.8 andr L.22, while for the
bottom quark withj.0.33, w/umu.0.7 andr L.6.2. Thus
one sees that the flux is rather sensitive to the fermion m

The energyE1
L reflects how the flux depends on th

choicev0 for the lower limit of kuu integration. This value
was chosen to ensure that the finite-temperature correc
are small at higher momenta, but we might have instead u
kuu,min5O(few)v0 . In order to see how this ambiguity a
fects our results, we need to know the thermal masses o
bottom quark and thet lepton ~the top quark will no longer
concern us because its reflection coefficient is so small th
makes a negligible contribution compared to these ligh
particles!; at the one-loop level, they are given by

vbL
2 /T25gs

2/613g2/321g82/2881y2/16.0.40,

vbR
2 /T25gs

2/61g82/72.0.24,

vtL
2 /T25~3g21g82!/32.0.044,

vtR
2 /T25g82/8.0.016. ~61!

We have ignored all Yukawa couplings except for that of
top quark,y51.4, and we evaluated the gauge couplings
MZ ~which is close to the critical temperature in our mode!:
as50.12, g250.42, andg8250.13. Using these number
one finds that bE1t

L .0.34–0.5 and correspondingl
f (E1t

L ).0.42–0.38 when the lower limit is varied over th
rangekuu,min

2 5(1–5)v0 . Similarly for the bottom quark we
find bE1b

L .1.1–1.5 andf (E1b
L ).0.26–0.18. To a reason

ably good accuracy then the contributions to the left-han
flux coming from the high-momentum region are, using E
~48!,

JL
LM~t!.231022vDumt

3 ,

JL
LM~b!.931023vDumb

3 . ~62!

Thus the initial asymmetry in left-handed (B1L) due to
bottom quarks from the high-momentum region is larger b
factor of 16 than that due tot leptons.~Remember that eac
quark carriesB51/3.)
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2. Small-momentum region

We now turn to the contribution to the flux coming from
the small-momentum region. This region of phase space wa
found to be crucial for standard model baryogenesis@26#,
because only at small momentum does one have the hope o
avoiding Glashow-Iliopoulos-Maiani~GIM! suppression in
the CP violation arising from the Cabibbo-Kobayashi-
Maskawa~CKM! matrix. At first it would appear that this
region does not have the same significance in the presen
mechanism, where theCP violation comes from the com-
plex phase of the Higgs field, but we will find that it is
actually more important than the large-momentum regime.
We first compute the reflected current in one spatial dimen-
sion ~1D! model and then estimate the 3D current from that
of 1D using a simple phase space argument.

After some straightforward algebra one can show that the
1D left-handed particle flux, for example, is given in the
small-momentum region by

JL
SM/Nc5E

vmin

` dv

4p
DRS v2v0 ;

umu
2 D @12 f ~v1vkL

N!#

3$ f ~v1vkR
N!2 f ~v1vkL

N8!%

2E
vco

vmaxdv

4p
DRS v02v;

umu
2 D @12 f ~v1vkL

A!#

3$ f ~v1vkR
A!2 f ~v1vkL

A8!%, ~63!

where the limits of integration are

vmin5v01umu/2,

vmax5v02umu/2, ~64!

and the momenta the left-handed particle transmitted into the
symmetric phase, the right-handed particle incident from the
symmetric phase, and the left-handed particle transmitted
from the broken phase, for the normal and abnormal modes
are, respectively,

kL
N5kL

A53~v2vL!,

kR
N5kR

A53~vR2v!,

kL
N8,kL

A853S 2
Dv

2
6A~v2v0!

22
umu2

4 D . ~65!

In arriving at Eq.~63! we have transformed the momentum
integral into an integral over energy using the relation
dk(dv/dk)5dv, where (dv/dk) is the group velocity of
the excitation, and expressed the relevant momentum vari
ables ~52! in terms of the energy differencev2v0 . The
relative minus sign between the two terms was explained
below Eq.~52!. The additional factor of 1/2 included in the
phase space measure comes from the wave function reno
malization of the incoming flux ~Appendix B! and
12 f (v1vkL

N,A) is the Pauli blocking factor. The integration
limits ~64! have a simple interpretation, as illustrated in Fig.
5: For any energy in betweenvmax andvmin the states are
totally reflected because they do not have enough energy t
penetrate the broken phase. The cutoffvco is due to the fact
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that the linear dispersion relations break down and the q
siparticles become unstable at the momenta that would
respond to such small energies. However, the actual valu
vco is of no consequence because the sharp momentum
pendence ofDR cuts off the integral at energies well abov
this value. Then, expanding the difference of the two dis
bution functions to first order in the wall velocity, we obta
simple integrals over the reflection asymmetryDR. Using
the form ~45! for DR, the resulting 1D flux is

JL
1D/Nc.2

3vDu

4pT
A~j/2!umuw~j/2!

e2bv0

~11ebv0!3
r S~w/umu!,

r S~w/umu!5@112w/umu1K1~ umu/2w!eumu/2w#. ~66!

Because the thermal dispersion relations~49! are not Lorentz
invariant, it is not straightforward to relate this result to t
desired 3D case. If we assume, however, that thekuu depen-
dence of the reflection asymmetry is small, and take a r
sonable upper cutoff ofkuu,max5v0 on the integral over these
momenta to ensure that the small-momentum dispersion
lations are still valid, we find the result

JL
SM

Nc
;2

3vDu

16p2T
A~j/2!umuw~j/2!v0

2 e2bv0

~11ebv0!3
r S~w/umu!,

~67!

where we used the superscript to distinguish this contribut
from that of the large-momentum region~59!–~62!, and the
ratio of the three-dimensional phase space to that of
dimension is

E
0

v0 d2kuu

~2p!2
5

v0
2

4p
, ~68!

taking into account the relevant cutoff on the momentu
which defines what we mean by the small-momentum
gion. Using this estimate, we find that ratios of fluxes fro
the small- to large-momenta regions are, approximately,

JL
SM

JL
LM 5H 20.4, t lepton,

26, b quark.
~69!

It will be shown in Sec. V C that the large-momentum co
tributions get a suppression of approximatelym/T in their
contribution to the chiral asymmetry that develops in front
the bubble wall. This being a few percent both for thet
lepton and theb quark, we see that the small-momentu
region makes the dominant contribution to baryogene
Moreover, as argued in Sec. IV C, the large-momentum p
ticles approach the wall at a glancing angle and unde
more scatterings with the plasma in the wall; hence, th
effects will ultimately be even further suppressed.

3. Total flux

To conclude this section we mention that due to the d
ference of the thermal distribution functions for the left- a
right-handed particles, the total fluxJL1JR is nonzero, as
was first pointed out in Ref.@34#. We will see that the total
flux of leptons is unimportant compared to the left-hand
flux, but for quarks one must keep track of both. Based
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the previous estimate of Eq.~59!, the contribution to the total
flux from the large-momentum region is given by

Jtot
LM;Nc

vDuAwumu2

4p2 r L~w/umu!~E1
L2E1

R!
]

]E1
@ f ~12 f /2!#,

~70!

whereE1
R follows from the definition ofE1

L in Eq. ~58! by
replacingvL by vR . For the bottom quark the ratio of the
fluxes implied by Eqs.~62! and ~70! is roughly

Jtot
LM~b!

JL
LM~b!

.20.1. ~71!

The total flux coming from the small-momentum region van
ishes at linear order in the wall velocity, and so we mus
expand the distribution functions of Eq.~63! to second order
in vk, with the result that the total flux is proportional to the
previously computed chiral flux~67! according to

Jtot
SM

JL
SM.3vbDv

ebv022

ebv011
, ~72!

which gives.20.04v for the bottom quark. For thet ’s the
total fluxes are clearly ignorably small. For bottom quark
however, because total baryon number is conserved by t
QCD sphaleron effects and left-handed baryon number
not, as will be seen below, it will turn out that these ratios do
not remain small after the reflected quarks interact with th
plasma.

B. Equilibration of species

Knowing the flux of the two chiralities of a fermion at the
bubble wall gives us an initial condition for the problem of
how they diffuse into the symmetric phase in front of the
wall. During the diffusion process there will be interactions
of the fermions with particles in the plasma which change
the net fermion densities~the asymmetry between particles
and antiparticles!, redistributing them among other species
For example, interactions with Higgs bosons will conver
between the two chiralities. A precise treatment would re
quire the equations for the transport of the two chiralities to
be coupled by such interactions. For simplicity we prefer to
consider such reactions as either being slow or fast compar
to the transport time so that we can deal with uncouple
transport equations. If the reaction times are borderline b
tween these two extremes, we can interpolate between the
to get an idea of what the more exact treatment would give
In our model it will turn out to be unnecessary to do so
however.

To decide which interactions are important let us estimat
the time scales. The diffusion time scale depends on th
bubble wall velocity and the diffusion rate, as will become
clear in the next subsection, and is given byv2/D whereD is
the diffusion coefficient. This rate is approximately 1023T
for quarks at a temperatureT, and 1024 for leptons, assum-
ing a wall velocity ofv50.1 for definiteness. The only in-
teractions with a competitive rate are the strong sphaleron
which are the QCD analogue of the usual sphalerons, and t
interactions of Higgs bosons with top quarks. The forme
have a rate around 1022T implied by appropriate scaling of
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2464 54CLINE, KAINULAINEN, AND VISCHER
the weak and strong coupling constants@34#, and the latter
we estimate to be 1023T, making certain reasonable assum
tions about the Higgs boson masses; the rate of nor
sphaleron interactions, by contrast, is 531025T, consistent
with our assumption that it is smaller than the other relev
rates.

Clearly we want to impose the equilibrium of stron
sphalerons on our system of fermion asymmetries, con
niently characterized by local chemical potentials for ea
species. This has important consequences for the q
asymmetries, essentially erasing them up to small correct
~known as mass corrections!, although it has no effect on
lepton asymmetries. The Higgs-boson–top-quark inter
tions are marginally in equilibrium on the diffusion tim
scale, and so we will consider both extremes, when they
approximated as being fast and slow.

Let us introduce chemical potentials, localized at the w
Since there is no practical difference between the first
second generations, we need onlymL,R

u andmL,R
d to represent

up, down, charmed and strange quarks of both chiralit
these will be produced from top and bottom quarks by
strong sphalerons. We also imagine that thet is the only
lepton whose Yukawa coupling is large enough for a sign
cant asymmetry to be produced through reflections at
bubble wall, so that we need not concern ourselves abou
first two generations of leptons. It is also useful to defin
quantity m̄ for each species:

m̄ i5m i S 12
3mi

2

p2T2D[m i~12d i !, ~73!

wherem2 is the thermal mass of the particle, since we a
interested in the symmetric phase.m̄ is directly proportional
to the density of particles@34–36#, whereasm has this prop-
erty only when the mass corrections are neglected.

We can also define quantities proportional to the densi
of various flavor and chiral combinations of baryon and le
ton number, as well as weak hypercharge:

BL~R!
11252~m̄L~R!

u 1m̄L~R!
d !,

BL~R!
3 5~m̄L~R!

t 1m̄L~R!
b !,

BR
i j5m̄R

i 2m̄R
j ,

LL
35m̄L

t 1m̄L
nt ,

LR
35m̄R

t ,

Y52~m̄L
u1m̄L

d!1~m̄L
t 1m̄L

b!2~m̄L
t 1m̄L

nt!12~4m̄R
u22m̄R

d !

1~4m̄R
t 22m̄R

b !22m̄R
t 12n~m̄H01m̄H1!, ~74!

assuming for the moment that there aren Higgs doublets
which are in equilibrium with each other. To find the ne
equilibrium conditions of the chemical species we must i
pose constraints on them ’s for each reaction considered t
be fast. For the strong sphalerons the condition is

2~mL
u1mL

d!1~mL
t 1mL

b!52~mR
u1mR

d !1~mR
t 1mR

b !,
~75!
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since they change the chirality of each flavor of quark by two
units. The Higgs constraint from interactions with top quark
is

mH05mR
t 2mL

t or mH15mR
t 2mL

b . ~76!

The distinction between the isospin components of wea
doublets will turn out to be irrelevant for our results, so tha
we need not worry about the rate of the weak interaction
The reason is that the weak interaction constraints only ser
to determine the chemical potential of theW6 bosons, but
have no effect on the baryon and lepton asymmetries.

The equilibrium conditions must be solved subject to the
constraints that certain quantities are conserved: namely,

B1125BL
1121BR

112 , B35BL
31BR

3 ,

BR
ud50,BR

bu ,LL
3 ,LR

3 ,Y. ~77!

The last of these is hypercharge; we will deal with the Deby
screening of hypercharge in the next subsection. Here let
only note that the list of conserved quantities is augmente
with one more,BR

tu , say, if the Higgs equilibrium condition
~76! is removed.

Our goal now is to solve for the linear combinations of
chemical potentials that correspond to total left-hande
baryon and lepton number, because it is these that drive t
weak sphalerons to make baryons. It is easy to see that if w
ignored the mass corrections that distinguishm ’s from m̄ ’s,
the left-handed baryon number vanishes due to the stron
sphalerons, for then we would have
BL
1121BL

35BR
1121BR

3 , which coupled with the initial con-
dition that B1121B350 from the reflections would give
zero for both chiralities of total baryon number. Actually
there is another correction to this statement since, as w
mentioned, the net flux of baryon number at the wall is no
quite zero due to similar thermal mass corrections. Both e
fects save the quark reflection asymmetry at the wall from
making a vanishing contribution to the final baryon asymme
try. The situation for leptons is considerably simpler: To the
order of our approximations, nothing happens to them onc
they are produced at the wall, aside from the diffusion pro
cess which is yet to be considered.

It is a straightforward algebraic task to solve the system o
equations for the final chemical potentials in terms of the
initial ones. The initial ones are proportional to the fluxes
that we computed in the last section; the exact proportiona
ity between fluxes and densities will be discussed shortly
For now we will simply express the final values of left-
handed baryon and lepton number, after equilibration ha
taken place, in terms of conserved quantities, which can b
replaced by their initial values. To first order in the therma
mass corrections, the equilibrated values of left-hande
baryon number are found to be
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BL
eq5 1

2 @B1121B31~dbR2d tR!BR
bu#2@duL1

1
2 ~duR1ddR!1 1

4 ~dbR2d tR!2d tR2d tL#

3H @Y1LR
31~614n!BR

bu#/~9114n!, Higgs-boson–top-quark equilibrium,

~BR
bu1BR

tu!/3, no Higgs-boson–top-quark equilibrium.
~78!

Notice that this equation would vanish if we ignored thermal masses because the total baryon number in each gene
nonzero only due to the thermal masses, as our equation for the total flux of fermion number in the preceding section s
Now since the right-hand sides are expressed in terms of conserved quantities, we can evaluate them at the initial tim
the asymmetries were produced at the wall, before any equilibration takes place. All the lower generation asymmet
essentially zero, and hyperchargeY can be expressed in terms of theB andL asymmetries. Furthermore, since totalB or L is
a first order thermal effect, it can be ignored whenever multiplied by thermal masses as this would be second order. Eva
the thermal masses

duL1
1
2 ~duR1ddR!1 1

4 ~dbR2d tR!2d tR2d tL52
3

p2 S 7y232
1
g82

32 D ,
dbR2d tR52

3

p2 S y28 1
3g82

72 D , ~79!

and takingn52 Higgs doublets, the equilibrated value of total left-handed baryon number becomes

BL
eq50.5B31H 1.431024~120.55ht

2!BL
b20.01BL

t , Higgs-boson–top-quark equilibrium,

1.431024~122.3ht
2!BL

b20.04BL
t , no Higgs-boson–top-quark equilibrium.

~80!
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Although we kept the top quark contribution for complete
ness here, it is practically zero. Furthermore, the differen
between considering the Higgs-boson–top-quark interactio
to be in or out of equilibrium is obviously small for the
bottom quark. It should be noted how the left-handed asy
metry is diluted by the equilibrating processes, leaving t
initially much smaller total current, conserved by the stron
sphalerons, as the dominant source of the injected baryo
asymmetry. Using the previous results~69!, ~71!, and ~72!
for the ratios of injected fluxes, we get

BL
eq>0.5B350.5BL

bS JtotSMJL
SM

JL
SM

JL
1
Jtot
LM

JL
LM

JL
LM

JL
D

5~0.0120.03v !BL
b , ~81!

whereJL is the sum of the large- and small-momentum co
tributions. Let us now compare this to the injectedt lepton
current; using @JL

SM(b)1JL
LM(b)#/@JL

SM(t)1JL
LM(t)#

52400, the ratio is

BL
eq

LL
eq.2113v. ~82!

Therefore we see that the effect of the sphalerons is to red
the initial preponderance ofb quarks overt leptons in the
injected flux so that they are roughly equal in strength af
equilibration. However, in the next section we shall see th
there is an additional large suppression of the quarks com
from the much larger diffusivity of the leptons, so that in th
end the contribution from the quark reflections will be com
pletely overwhelmed by that coming from thet lepton re-
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flections. Hence the major conclusion to be drawn from E
~81! is that the quark reflection is unimportant for the prese
mechanism of baryogenesis.

Of course for the left-handed lepton flux, which will also
bias the sphaleron interactions, we have the trivial relati
that LL5LL

t since under our assumptions the Higgs intera
tions of thet lepton are too slow to change its asymmetry
However, it has been noted that the Yukawa couplings of t
fermions may be larger than we have assumed, since it
possible that the VEV’s of the two Higgs fields evolve dif
ferently than in our simple model. In this case thet lepton
might have been in equilibrium with the Higgs field on time
scales comparable with the diffusion time. The equilibrium
conditions would then suppress the final value of left-hand
lepton number. By repeating the previous computations w
the new equilibrium conditions for Higgs-boson–t-lepton
and Higgs-boson–bottom-quark interactions, we find that

LL
35LL

t H 1 no Higgs-boson–t -lepton equilibrium,

~6n13/2!21 Higgs-boson–t -lepton equilibrium,
~83!

the latter of which cases we include for completeness.
These results can now be used to correct the initial flux

obtained in the previous section, since we are using the se
ration of time scales to assume that the initial fluxes at t
wall are quickly altered by the establishment of chemic
equilibrium before much diffusion into the plasma take
place. We have found that the lepton flux is unaltered~unless
the VEV’s of the two Higgs fields evolve in a complicated
way between the phase transition and now!, but that for left-
handed quarks is reduced by roughly a factor of 20 from
preequilibrium value.
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C. Debye screening and diffusion

So far we have computed the initial fluxes from the w
and determined how they are changed by the chemical e
librium of fast interactions~primarily strong sphalerons! in
the plasma. The next step is to propagate the fluxes into
symmetric phase, and so see how efficiently they are abl
bias the baryon-violating interactions of the weak spha
rons.

In the diffusion equation approach it is assumed that
densityn of chirality in front of the wall, due to asymmetric
reflection of quarks or leptons, is described by the continu
equation and Fick’s plus Ohm’s law:

] tni1]zJi50, Ji52Di]zni1s iE. ~84!

HereDi is the diffusion coefficient for thei th particle spe-
cies, ands i is its conductivity under the influence of a wea
hypercharge electric field which is induced through the p
ticles themselves via Gauss’s law]zE5(yini , whereyi is
the hypercharge of thei th species. It is this coupling betwee
the densities and the gauged charge which gives rise to
bye screening of a certain linear combination of the den
ties. Equation~84! and Gauss’s law result in coupled equ
tions for theni ,

vni81Dini92s i(
j
y jnj50, ~85!

using the fact that for steady state solutions in the rest fra
of the bubble wall,ni has the formni(z2vt), so that we can
replace the time derivative in Eq.~84! by2v]z . The general
solution of Eq.~85! is given in Ref.@37#. There it is shown
that, for the purpose of computing the baryon asymme
one can account for the effect of screening by applying
correction factorFi;1 to the solution one would have go
ten by ignoring the screening term in Eq.~85!:

ni~z!5Fin0e
2vz/Di, ~86!

wheren0 is the density at the wall ignoring screening, to b
determined below. As will become apparent, the import
quantity for baryon production is the integrated density
front of the wall:

E
0

`

dzni~z!5Fin0Div
21. ~87!

This means that the contribution from quark reflections to
baryon reflection will be doubly suppressed compared to t
of leptons, as has been emphasized in@8#, once by the strong
sphaleron suppression of the flux itself, and again beca
the diffusion coefficient for quarks is much smaller than th
for left-handed leptons: 6/T versus1 110/T @8#. In Ref. @37# it
was shown thatFl51.75 for the left-handed leptons in th
case that the quarks are completely neglected. Moreover
checked that including the quark fluxes, as computed fr

1The value 6/T agrees with an independent calculation done
Ref. @33#. It can be shown that the momentum-space diffusion
efficient D̃ computed there is related to the normal one
D5T2/D̃.
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the results of Sec. V B, would produce only a minor change
which could be accounted for by takingFl.1.85 instead.
Since the quark contribution is further suppressed by therma
damping~see Sec. IV C!, it is clearly negligible in compari-
son to the contribution oft lepton reflection.

We must now determine the chiral density at the wall,
n0 , in terms of the chiral flux injected at the wall,JL , which
was computed in Sec. V A. To do so, we will imagine that
the wall deposits an infinitesimal amount of chiral density at
each point in spacexi when it passes by at timet i5xi /v,
which at first is localized exactly and then spreads out in
accordance with the diffusion equation. Integrating all these
contributions gives the total chiral density due to the flux of
particles reflected from the wall:

N~x2vt !5cE
2`

vt
dxi

e2~x2xi !
2/4D~ t2t i !

At2t i

5cE
0

`

dz
e2v~x2vt1z!2/4Dz

Az
. ~88!

Notice that Eq.~88! is a solution to the diffusion equation
~85!, ignoring the screening term, but with ad function
source localized atx5vt, the position of the wall. The sec-
ond form comes from the changes of variablesxi5z1vt,
and the constant of proportionalityc can be determined by
conservation of particle number. To do so, we note that for
x2vt→`, expression~88! approaches an asymptotic value
N052cApD/v. Since the wall is moving at velocityv, the
rate at which the chiral charge is being created per unit area
is N0v, and this must be equal to the fluxJL injected from
the wall.

However, this is not yet the correct identification ofn0 in
Eq. ~86! because we must remember that there is an equa
and opposite chiral flux being injected by the wall in the
opposite direction. However, the diffusion equation does not
‘‘know’’ it is being injected in the opposite direction; it only
knows that it has the opposite sign. If we were to add the two
contributions naively, they would exactly cancel each other.
What must happen, in fact, is that the two fluxes must pen-
etrate a distanceDP into the plasma before they become
thermalized and the diffusion equation becomes a valid de
scription @8#. Therefore the correct expression for the chiral
density is

n~z!5N~z1DP!2N~z2DP!, ~89!

and if DP!D/v, its integrated value is approximately given
by

E
0

`

dzn~z!52JLDP /v, ~90!

which must still be corrected with the factorFi to account
for hypercharge screening as in Eq.~87!. This is precisely the
result one would get by putting the source term
2JLDPd8(z)>JL@d(z1DP)2d(z2DP)# into the diffusion
equation, as was done in Ref.@8#. We believe that the present
derivation clarifies their procedure.

For the thermalization distanceDP , we take the estimate
made in Ref.@8# of the distance over which scatterings in the

in
co-
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plasma will randomize the velocities of the particles in t
injected flux~this might underestimate the injection distan
for the low momentum states, but we nevertheless use it
conservative estimate!:

DP53Dv i , ~91!

wherev i is the average velocity of the particles inJL . Fol-
lowing the logic of Sec. V A, this velocity is the ratio of th
flux, Eq. ~59!, to the same expression except without t
factor of kz /E1 in the integrand. For the large-momentu
region of phase space discussed in Sec. V A the result i

v i5F r L~a!

r S~2a!GF m

E1
L1T~11ebE1

L
!ln~11e2bE1

L
!
G , ~92!

wherea5w/m and the other symbols are defined in Eq
~60! and~66!. For thet lepton, this givesv i52.4m/T, while
for the b quark it is v i51.3m/T. For particles injected at
small momentum, the direction is nearly perpendicular to
wall and the dispersion relation~49! implies

v i51/3. ~93!

VI. BARYON ASYMMETRY

With the preceding results it is a simple matter to comp
the baryon asymmetry, because the rate of baryon viola
due to sphalerons in terms of the total left-handed quark
lepton densities is

ṅB529~G/T3!~nqL1nlL!. ~94!

This can easily be derived from the Boltzmann equation
the following way. Define forward~backward! sphaleron in-
teractions as those which change baryon number by13
(23) units. Half of the time the sphaleron interaction w
involve one member of a given fermion doublet and half t
time the other; if we ignore the distinction between the tw
at first and then average over different doublet member
the end, we will get the right answer. Since baryon numbe
violated by 3 units, the Boltzmann equation is

ṅB53( E dP@ f 1••• f n~12 f 1̄!•••~12 f n̄ !

2 f 1̄••• f n̄~12 f 1!•••~12 f n!#, ~95!

where the sum is over all possible channels, the integra
measure includes the squared matrix element and thed func-
tion for four-momentum conservation, and thef ’s are Fermi-
Dirac distribution functions forn (n̄) initial ~final! states.
The Pauli blocking factors can be written as

12 f i5eb~Ei2m i ! f i>ebEi~12bm i !, ~96!

so that Eq.~95! becomes

ṅB53b( ~m 1̄1•••1m n̄2m12•••2mn!

3E dP f 1••• f nf 1̄••• f n̄e
b~E11•••1En!, ~97!
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using energy conservation to equateE11•••1En to
E 1̄1•••1En̄ . The combination of chemical potentials ap
pearing here is always the same one no matter what chan
once we average over the members of the doublets: It is h
the sum of potentials for 18 left-handed quarks and 6 le
handed leptons associated with the sphaleron. The sum o
channels of the integral is by definition the rate of sphaler
interactions per unit time and volume. Using the fact th
density is related to the chemical potential byn5mT2/6 for
a single lepton flavor andn5mT2/2 for a single quark flavor
~because of the three colors!, we arrive at Eq.~94! after
summing over generations and averaging over members
doublets.

We have shown thatnq!nl in front of the wall, so that
only the lepton contribution need be considered. The int
action rate per unit volumeG is ksph(aWT)

4 in the symmet-
ric phase. To find the density of baryons produced by spha
rons at a given positionz, one integrates Eq.~94! from
t52` until the time when the bubble wall passes the pos
tion z, when the sphaleron interactions effectively turn of
The integral over time can be rewritten as an integral ov
distance in front of the wall by a change of variables:

nB52
9G

T3vE0
`

dznlL~z!. ~98!

A convenient measure of the baryon asymmetry is the ra
of nB to the entropy density of the universe
s52p2g*T

3/45, withg*5110.75 degrees of freedom at th
electroweak phase transition. Then, assembling our previ
results, we have that

nB
s

5
1215aW

4 ksph

p2g*Tc
2v2

DlFl~v iJL1 1
3 JL

SM!, ~99!

recalling that the expressions for the fluxes were given
Eqs. ~59! and ~67!. Putting in the numbers pertinent for the
t lepton contribution @Dl5110/T, Fl51.85,
A(0.06)5e23.2, w(0.06)52.6m, r S(0.12)512.4,
v0 /T50.17, andm(Tc)/Tc50.01], and using the recent re
sult k sph51.1 corresponding to the classical sphaleron tra
sition rate@38,39#, we obtain

nB
s

51310212
Du

v
~100!

Given the range allowed by primordial nucleosynthes
nB /s51.4–3.8310211 @42#, Eq. ~100! translates to a con-
straint for the parametersDu andv:

15&
Du

v
&40. ~101!

Although recent estimates@40,41# predict rather small termi-
nal velocities corresponding to deflagrating bubble
v;0.3, this is still too large to satisfy Eq.~100!, even if
Du51. However, it is possible to imagine means by whic
the final asymmetry could be boosted to the desired level,
we now discuss.

A very promising possibility of enhancement is provide
by a dynamical slowing down of the bubble walls due to th
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heating of the plasma in the unbroken phase by the sh
waves of the neighboring bubbles@40#. This deceleration al-
ways occurs for deflagration bubbles, and while it has
strong quantitative dependence on the dynamical detail
the transition, it is qualitatively easy to understand: The he
ing of the unbroken phase reduces the difference of the
energies between the interior and exterior regions o
bubble, which is the driving force of the expansion, and
the walls slow down when eventually hit by the shock wav
of the neighboring bubbles. Then, given that the wall vel
ity goes down by a large factor when, say, half of the u
verse is still in the unbroken phase, and knowing that
baryon production rate goes like 1/v, it becomes evident tha
essentially all baryons might have been produced in
later, decelerated phase of the transition. Reference@40#
suggests the possibility of a very large decelerati
v→v/100, which would easily make the present mechan
a viable candidate for baryogenesis. We stress, however
sensitive dependence of this effect on the dynamics of
transition and that we have not attempted to calculate its
in the present model.

Another way of increasing the above result was sugge
in Ref. @8#, namely, to increase the ratiom/Tc during the
phase transition beyond its value in our model, by invok
possible complications in the evolution of the two Hig
fields: If the one that couples to thet lepton has a large
VEV relative to the other Higgs field during the phase tra
sition than at zero temperature, then the power-law dep
dence onm/Tc would boost the production of baryons. Th
corresponds to taking a larger value of the dimension
parameterj5mDwall than that (j50.12) which our model
gave. We have explored the dependence of the baryon a
metry onj and summarized the results in Fig. 6. Althou
the enhancement depends on the details of the bubble
profile, which in turn depends on the Higgs potential para
eterk, for most values ofk the optimal fermion mass occur
in the vicinity of j51, corresponding to one inverse bubb
wall width. Thus the mass of thet lepton is not very far from
being the ideal size given the width of the wall in our mod

FIG. 6. The enhancement of the generated baryon asymmet
a function of the effective fermion mass parameterj5mDwall @see
Eq. ~48!#. The curve is normalized to unity at the valuej50.12
which we take to correspond to thet lepton. As in Fig. 3, the curves
are labeled by the corresponding value of2k in GeV2.
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Figure 6 shows that one can get somewhat larger value
k is tuned to particular values, as the case ofk5225 000
GeV2 illustrates. It is possible to understand this enhanc
ment qualitatively@22#. In the classical limit of the fermion
scattering off the wall, the gradient of theu field acts like an
effective potential to be added on top of the usual wall p
tential, with opposite sign for particles and antiparticle
Therefore, ifu is mainly changing well inside the broken
phase, some particles whose momentum would otherwise
them over the barrier effectively see a ‘‘bump’’ that cause
them to be reflected. At the same time antiparticles with t
same momentum see no such bump and are transmitted.
though quantum mechanics will reduce this effect because
tunneling, one nevertheless expects to see an enhanceme
the differenceDR of the reflection probabilities. Comparison
with Figs. 1 and 3 shows that, in contrast to the other cas
where]u/]z is concentrated toward the front of the wall, in
the case ofk5225 000 GeV2, u(x) is indeed changing
primarily within the broken phase.

VII. RESULTS AND CONCLUSIONS

We have attempted to make a quantitatively accurate
timate of the baryon asymmetry in the charge transpo
mechanism of electroweak baryogenesis, using a somew
realistic two-Higgs-doublet model. By assuming reasonab
values of parameters, we find that thet lepton is by far the
most important particle species contributing to the baryo
asymmetry through itsCP-violating reflections from the do-
main walls that form during the phase transition, and that t
resulting baryon asymmetry can be marginally big enou
for consistency with primordial nucleosynthesis.

In this section we will remind the reader of our assump
tions and try to indicate how our conclusions depend up
them.

~1! Concerning the phase transition, we tuned the para
eters of the Higgs boson potential to give tanb51 for the
ratio of the two Higgs field VEV’s, because we chose not
deal with a two-stage phase transition, in which one fie
gets a VEV before the other does. In order for the fermion
loop corrections not to spoil this tuning, that is, to keep als
the temperature-dependent Higgs masses equal, it was n
essary to couple heavy fermions with equal strength to bo
Higgs fields. However, if we letall fermions couple to each
Higgs field with exactly the same strength, then there wou
be noCP violation in the fermion mass, because the tw
fields would give contributions with canceling imaginar
parts. In this paper we assumed equal couplings of the
quark to the Higgs fields in the effective action, yet com
puted the quark reflection as if they only coupled to one
the fields. It should be clear that our conclusion about t
smallness of the asymmetry arising from quark reflectio
does not depend on these details. So in retrospect we see
we can choose to couple quarks symmetrically to the Hig
bosons and yet have the leptons coupling only toF2 . In
such a model the transition truly proceeds simultaneously
both Higgs fields, and our treatment is completely se
consistent. Moreover, we believe that our results are rep
sentative also of the two-stage phase transitions, becaus
long as one keepsrc /Tc51 to satisfy the sphaleron washou
constraint, the baryon asymmetry should not change mu

ry as
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since the ratio to which it is most sensitive,m(Tc)/Tc , re-
mains constant.

~2! The problem of sphaleron washout also prompted
to assume a small value of the mass of the lightest neu
Higgs particle, with a definite corresponding value of t
effective quartic couplingleff50.12. The ratiorc /Tc de-
creases with increasingleff , making the sphaleron interac
tions not sufficiently suppressed in the broken phase in
the bubbles. But this ratio also depends on the cubic term
the high-temperature Higgs potential. We had to assum
larger value of the cubic coupling than predicted within o
model in order to avoid the washout problem. The situat
is ameliorated somewhat by recent work@43# which finds a
suppression of the sphaleron rate inside the bubbles du
loop effects. Moreover, there is a large number of cubicl
contributions coming from the scalar fields, which we om
ted because of technical reasons, which might tend to
crease the effective cubic term in this model. Finally o
might expect that nonperturbative effects in the symme
phase play the same role in the two-doublet model as
been recently found in the standard model@20#, increasing
the amount of supercooling and hence effectively increas
the ratiorc /Tc . This phenomenon should also be rough
mimicked by a larger effective cubic term.

~3! We treated theCP-violating phaseu(x) as a pertur-
bation which had no back reaction on the VEVr(x) of the
Higgs fields. Since there are no strong constraints on
phase, and none at all if it arises spontaneouly at finite t
perature, this assumption was not necessary and served
as a convenience. It is possible that a complete solution
the coupled equations forr(x) andu(x) would give differ-
ent results, but if thek-dependent changes of the shape
these solutions give any indication~Fig. 3!, we do not expect
much sensitivity except for fermion masses significan
larger than the inverse wall thickness.

If the t lepton was heavier by a factor of 5, the bary
production in the present mechanism would be increased
a factor of 15–80, making it a viable mechanism of bary
genesis. One obviously cannot change this fact of nature
we can imagine ways of makingmt effectively heavier dur-
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ing the phase transition. One possibility would be to actually
find a model that displays the behavior suggested by Ref.@8#
in which the VEV’s of the two Higgs fields obey
r1(Tc)/r2(Tc).r1(0)/r2(0). Oneshould in this case also
take into account other effects of a two-stage phase transitio
on baryogenesis. A second possibility we discussed is that a
the final stage of the phase transition the bubble walls are
slowed down due to the heating of the unbroken phase by th
shock waves of the neighboring bubbles, which could lead to
a large enhancement of the baryon production. A third pos-
sibility would be to demonstrate in a more convincing fash-
ion that the cubic term in the effective potential could be
increased even more than we assumed above, so th
m(Tc)/Tc would be increased. This would also be welcome
from the point of view of ensuring that sphaleron interactions
in the broken phase are too slow to destroy the baryon asym
metry that nature may have so intricately produced at the
electroweak phase transition.
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APPENDIX A: ANALYTIC SOLUTION
TO THE LINEARIZED u EQUATION

In this appendix we derive an analytical solution to the
linearized equation of motion foru(x)5u„g(x)…, Eq. ~28!.
Recall thatg(x) describes the modulus of the Higgs field at
the bubble wall, Eq.~21!.

4g2~12g!2
d2u

dg2
14g~12g!~324g!

du

dg
1~B1Cg2!u

52D. ~A1!

The two homogeneous solutions to this equation are given by
u1~g!5
1

g
g2a~12g!1b

2F1~2a1b1 1
2 1g,2a1b1 1

2 2g;112b;12g!,

u2~g!5
1

g
g1a~12g!2b

2F1~1a2b1 1
2 1g,1a2b1 1

2 2g;112a;g!, ~A2!
where the2F1 are hypergeometric functions characterized
the parameters

a5A12B/4,

b5 1
2A2B2C,

g5 1
2A92C.
byThe homogeneous solutionsu6 diverge forx→6`. But our
boundary conditions require finiteness in these limits. We
therefore have to set the coefficients of the homogeneous
solutions~A2! identically to zero and are left with the inho-
mogeneous solution.

The inhomogeneous solution can be constructed by use of
the Green’s function of Eq.~A1!. We find
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u~x!52 1
4 DWFu1

„g~x!…E
0

g~x!

dg8
g8

12g8
u2~g8!

1u2
„g~x!…E

g~x!

1

dg8
g8

12g8
u1~g8!G , ~A3!

where the WronskianW is given by

W5
G~a1b1 1

2 1g!G~a1b1 1
2 2g!

G~112a!G~112b!
. ~A4!

Although we cannot further simplify Eq.~A3!, we can find
an approximation to Eq.~A3! in the thick wall limit. In this
adiabatic case one would expect that the kinetic term is
relevant throughout. We then simply ignore the kinetic te
in Eq. ~A1! and find the solution fordV/du(x)50:

uadiab~x!5
2D

B1Cg2
. ~A5!

This solution can be verified using Eq.~A3!.

APPENDIX B: FINITE-TEMPERATURE DIRAC
EQUATION

In this appendix we outline the derivation of the Dira
equation for the scattering of a fermionic excitation off
bubble wall including the effects of the thermal backgroun
While most of the equations shown below have been deri
ir-
rm

c
a
d.
ved

elsewhere, we present them here for completeness and
order to be able to discuss their implications for the presen
physical application.

The basic computational task is to compute the therma
self-energy corrections to the fermion propagator. In the un
broken phase chirality is a good quantum number, so that th
self-energy separates in the chiral representation. Going d
rectly to the rest frame of the plasma, one may show tha
@25#

SX5$@aX~k,v!v1bX~k,v!#g02aX~k,v!k•g%PX ,
~B1!

whereX5L,R refers to the chirality,PX is the correspond-
ing chiral projector,k andv are the three-momentum and
the energy of the particle in the plasma rest frame, and th
functions a and b have the well-known high temperature
(k,v!T) limit @25#:

aX~k,v!5
vX
2

k2 F12
v

2k
lnS v1k

v2kD G ,

bX~k,v!5
vX
2

k Fvk 2
v22k2

2k2
lnS v1k

v2kD G . ~B2!

In the approximation that the masses of the particles withi
the loops can be neglected, the above expressions are va
also in the broken phase~and within the wall!. Then the
effective Dirac equation, at the one-loop level, becomes
S ~12aL!v2bL1~12aL!s•k 2m

2m* ~12aR!v2bR2~12aR!s•kD S LRD 50. ~B3!
r-

f
a

-
-

f

-

t

Because of the nonlinear dependence of the functionsa and
b on the energy and momentum, this is a highly nonlo
equation, which is a reflection of its inherent multipartic
nature. In particular the nonlinearity in energy makes it i
possible to give it an exact interpretation in terms of effe
tive single-particle states, except in the small- and lar
momentum limits, where the self-energy can
approximately linearized and the~re!quantization procedure
may be completed.

In order to proceed with the reflection computation, ho
ever, one needs to find at least an approximate interpreta
of Eq. ~B3! in terms of single-particle states. The remedy
of course well known; one defines the effective quasipart
states as the collective excitations corresponding to the p
of the one-loop propagator or, in other words, to the peak
the phase-space density in energy. One should, howe
bear in mind that such an interpretation does not give a c
plete description of the system and in some cases pushin
picture too far can lead to ambiguities.

The poles of the propagator correspond to the zeros of
determinant of the matrix appearing in Eq.~B3!. In the sym-
cal
le
m-
c-
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icle
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ver,
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metric phase the resulting dispersion relations take the pa
ticularly simple form

gX
p,h~v,k![~12aX!~v7k!2bX50, ~B4!

where the two signs correspond to two different branches o
solutions: The one with the minus sign can be viewed as
generalization of the usual particle excitation to finite tem-
peratures. The one with the plus sign on the other hand rep
resents a new solution that has no counterpart at zero
temperature. The appearance of this new ‘‘hole’’ excitation
apparently leads to unphysical doubling of the number o
degrees of freedom~as measured by the volume of phase
space!, which calls for and is corrected by finite-temperature
wave function renormalization. Indeed, by constructing a
one-particle propagator@26,27# from the quasiparticle states
and comparing to the full propagator, one finds that the cor
rectly normalized quasiparticle wave functions differ from
the vacuum wave functions by the momentum-dependen
normalization factor@ZX

p,h(k)#1/2, where@25,27,44#
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ZX
p,h~k!215S dgXp,hdv D

v5vp,h~k!

5F11aX1~12aX!
v7k

v6kG
v5vp,h~k!

. ~B5!

One can readily work out the limiting values ofZ: In the
small-momentum limit,

ZX
p,h~k!.

1

2
6

k

3vX
, ~B6!

and in the large-momentum limit~where alsov.k),

ZX
p~k!.12

vX
2

k2
ln

vX

k
,

ZX
h~k!.e22k2/vX

2
21. ~B7!

Thus, in the small-momentum limit both particle and ho
excitations have equal weight, which is half of the zer
temperature value. Moreover, holes are only present at m
mentak&vX , above which their effective number densit
@given by Z(k) f „v(k)…# falls off exponentially. Therefore
one does not need to account for holes in the hig
momentum region.

The small-momentum limit dispersion relations~49! and
the Dirac equation~51! are easily derived from Eqs.~B3! and
~B4! after finding the small-momentum limits of the func
tionsa andb:

aX5
vX
2

3v2 1O~k2!, bX52a1O~k2!. ~B8!

The factor of 1/2 coming fromZX
6(0) for both particles and

holes of both chiralities, which compensates the doubling
le
o-
o-

y

h-

-

of

the number of excitations due to the appearance of the ho
states, was included in our Eq.~63!. This factor was over-
looked in the treatments of the quasiparticle scatterings in th
standard model in Refs.@26,29#.

In the large-momentum limit the hole excitations vanish,
since their wave function renormalization factor goes expo
nentially to zero. Moreover, since botha andb go to zero at
largek,

aX.
vX
2

k2
ln
k

vX
, bX.

vX
2

k
, ~B9!

one might expect that the Dirac equation trivially approaches
the vacuum equation. The situation is more complicated
however, because we are interested in phenomena that d
pend on small differences between energy and momentum
In fact one can show that thea factor may safely be ne-
glected, but that the remaining equation has other terms tha
are of the same order as theb term even at high momentum.
Nevertheless, one would still expect that the vacuum equa
tion gives a reasonable approximation for the reflection o
high-momentum particles, since theb term affects both sym-
metric and broken phases equally.

Let us finally point out that in the intermediate momen-
tum regionk;vX the wave function normalization factors
do not add up to 1; instead, their sum can be as low as abo
0.8 @27#. This signals the breakdown of the single-particle
interpretation, which can lead to inconsistencies. For in-
stance, replacing the limiting normalization factors1

2 by cor-
responding momentum-dependentZ’s leads to a small non-
vanishing flux in the intermediate-momentum region, even
when the wall is not moving. However, this flux is much
smaller than, and clearly caused by, the inherent error in th
total flux due to the above-mentioned fact that in this region
the effective one-particle states do not give a faithful repre
sentation of the phase space.
.
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