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capillary number flows
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Abstract

Many applications of viscoelastic free surface flows requiring formation of drops
from small nozzles, e.g., ink-jet printing, micro-arraying, and atomization, involve
predominantly extensional deformations of liquid filaments. The capillary number,
which represents the ratio of viscous to surface tension forces, is small in such
processes when drops of water-like liquids are formed. The dynamics of extensional
deformations of viscoelastic liquids that are weakly strain hardening, i.e., liquids for
which the growth in the extensional viscosity is small and bounded, are here modeled
by the Giesekus, FENE-P, and FENE-CR constitutive relations and studied at low
capillary numbers using full 2-D numerical computations. A new computational
algorithm using the general conformation tensor based constitutive equation [J.
Non-Newtonian Fluid Mech., 120:101–135, 2004.] to compute the time dependent
viscoelastic free surface flows is presented. DEVSS-TG/SUPG mixed finite element
method [J. Non-Newtonian Fluid Mech., 108:363–409, 2002.] is used for the spatial
discretization and a fully implicit second-order predictor-corrector scheme is used
for the time integration. Inertia, capillarity, and viscoelasticity are incorporated in
the computations and the free surface shapes are computed along with all the other
field variables in a fully coupled way. Among the three models, Giesekus filaments
show the most drastic thinning in the low capillary number regime. The dependence
of the transient Trouton ratio on the capillary number in the Giesekus model is
demonstrated. The elastic unloading near the end plates is investigated using both
kinematic [J. Non-Newtonian Fluid Mech., 79:469–501, 1998.] and energy analyses.
The magnitude of elastic unloading, which increases with growing elasticity, is shown
to be the largest for Giesekus filaments, thereby suggesting that necking and elastic
unloading are related.

Key words: Filament stretching; Drop breakup; Viscoelastic flow; Elastic recoil;
Ink-jet printing
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1 Introduction

Applications involving fluid flow with deformable liquid-gas interfaces,

which is a type of free surface flow, of non-Newtonian liquids are ubiqui-

tous in industries and households. Deposition of thin film coatings on solid

substrates and formation of drops out of nozzles are the two commonest ex-

amples. Surface coating is used in the production of some of the everyday use

products such as tapes, adhesives, and CDs [1]. Drop formation is used in

applications such as ink-jet printing [2], micro-arraying [3], and atomization

[4]. Production of drops in these applications generally involves deformation

of liquid filaments that form out of nozzles at length scales of a few microme-

ters and time scales of a few microseconds. For example, in drop-on-demand

(DOD) ink-jet printing, typically, drops of few tens of micrometers radii are

produced in 100 µs or less (see, e.g., [5] for production of water drops). The

capillary number, Ca ≡ η0Ub/γ, where η0 is the liquid viscosity, γ is the sur-

face tension, and Ub is the bulk liquid velocity (typically a few hundreds of

cm/s in DOD ink-jet printing [5]), in this process is small (< 1) for water-

like liquids. Examples of non-Newtonian drop production from small nozzles

can be found in [6], in which, the authors report dripping experiments with

polyethylene oxide (PEO) solutions that have viscosity of about 6 mPa·s (6

times that of water) and surface tension of about 62 mN/m (0.86 times that

of water). Assuming Ub to be 100 cm/s, the capillary number associated with

the production of drops of this liquid using DOD ink-jet printing would be

Ca = (0.006 × 1)/(0.062) ∼ 0.1. In dripping type applications, Ca would

be still smaller, because Ub in dripping is much smaller than that in ink-jet

printing. Whereas the dynamics of Newtonian liquid filaments is fairly well

understood in such flows, an improved understanding of non-Newtonian dy-

∗ Corresponding author. Tel +1 713 348 5830; Fax +1 713 348 5478. Email:
mp@rice.edu (M. Pasquali).

Email addresses: pbhat@purdue.edu (Pradeep P. Bhat), obasaran@purdue.edu
(Osman A. Basaran).
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namics is needed [2, 7] and is a goal of this paper.

There are several methods to produce drops from nozzles (see [2] for a re-

cent review). In all these methods, essentially, an elongating liquid filament

or a liquid bridge is formed connecting two ‘blobs’ or reservoirs of the liquid.

This filament subsequently thins or necks by capillary action or by externally

applied strain and breaks forming individual drops. Formation of drops thus

involves predominantly extensional deformation. The material property which

characterizes the resistance of the liquid to such stretching or uni-axial exten-

sional deformation is the (uni-axial) extensional viscosity, ηE = (Tzz − Trr) /
.
ε,

where Tzz is the axial stress, Trr is the radial stress, and
.
ε is the elongation

rate. ηE for a Newtonian liquid is a constant and is simply three times its shear

viscosity [8]. However, for viscoelastic liquids the extensional viscosity is not

a constant, but is a function of both the rate of strain and the total strain

accumulated. The viscoelastic effects due to the extensional viscosity are well

manifested by the delay in the capillary breakup of the filaments and, in some

cases, the eventual formation of the ‘beads on a string’ morphology (i.e., many

droplets of the liquid which are inter-connected by strands of the liquid) [9, 10].

For the sake of brevity, hereafter the uni-axial extensional viscosity is called

simply extensional viscosity.

Kinetic theory based viscoelastic models incorporating finite extensibility

of the polymer molecules (e.g., FENE dumbbells [11]) show bounded growth

of the extensional viscosity with strain. Such models are called weakly strain

hardening models when the growth of the extensional viscosity is small. The

extent of strain hardening in these models is controlled by the model param-

eters. Incorporation of finite extensibility has been shown to be important in

predicting the terminal thinning regime and eventual breakup of the polymeric

liquid filaments [12]. This class of viscoelastic models is used in the present

analysis.

3
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Over the past two decades several extensional rheometers have been devel-

oped to measure the extensional viscosity of polymer solutions [13–16]. Among

them, the filament stretching extensional rheometers (FISERs) pioneered by

Matta and Tytus [17] and Sridhar et al. [18] have been shown to be the most

reliable instruments. In a FISER, a vertical column of the liquid held between

two circular plates, i.e., a liquid bridge, is stretched by moving either the top

or the bottom plate. The plates are separated exponentially in time and the

rate of stretching
.
ε is kept constant in order to mimic uni-axial elongation.

Thinning of the filament in the mid-plane is recorded using a laser micrometer

or a high speed camera, and the force on the stationary plate is measured to

obtain the transient growth of the stress in the filament. The evolution of the

mid-filament radius and the stress are then used to determine the extensional

viscosity [19, 20].

Stresses that develop in FISERs are inhomogeneous, although uni-axial

elongation is what is desired. Stresses inside the filaments are not directly

measurable and numerical computations are needed to study and quantify the

development of inhomogeneous stress profiles in FISERs [21–24]. Moreover,

the dynamics of stretching and the eventual breakup of liquid filaments in

FISER devices is similar to the formation and pinch-off of drops [25]. Nu-

merical studies of stretching liquid filaments are thus useful in the analysis

of FISER data and in understanding better the drop formation and pinch-off

process.

Numerical studies of dynamics of weakly strain hardening liquids in FISER

type flow problems have been conducted by Yao et al. [26, 27] (at Ca =

9.44, 19.7, and ∞), Kolte et al. [22] (Ca = ∞), and Matallah et al. [28]

(Ca = 1, 2, 10, and ∞)—all at capillary number greater than or equal to one.

Yao et al. have shown that weakly strain hardening models—Giesekus [29] and

FENE-P [11]—dramatically depart from the Newtonian behavior by exhibit-

ing a cohesive necking failure, i.e., these filaments exhibit a faster breakup

4
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compared to their Newtonian counterpart with the same Ca. Necking fail-

ure in viscoelastic filaments modeled by the Papanastasiou-Scriven-Macosko

(PSM) model [30], in the absence of surface tension, has been studied by Has-

sager et al. [31]. Foteinopoulou et al. have studied the growth of an axisym-

metric bubble inside an elongating viscoelastic filament [32], and the growth

of single and multiple bubbles inside Newtonian filaments [32, 33].

In free surface flow computations, the location of the liquid-gas interface

is unknown a priori and its solution is a part of the complete solution. Many

interface-tracking methods, e.g., boundary element (BEM) [34, 35], volume-

of-fluid (VOF) [36], and level set methods [37], are available to compute the

free surface shapes. While all of these methods can follow large interface de-

formations, each has some limitation. Although highly accurate, BEM does

not lend itself readily to situations in which the governing equations are non-

linear. Diffuse interface and interface capturing methods such as VOF and

level sets are extremely flexible and easy to use but are not as accurate as

techniques in which the interface is tracked, as in BEM and the approach

that is described below and adopted here. The finite element method (FEM)

has been demonstrated to be a highly accurate method for computation of

Newtonian free surface flows [38–43]. Moreover, FEM algorithms in which the

locations of free boundaries are computed coupled with the solutions of the

conservation equations, while more difficult to implement than VOF and level

set algorithms, have been demonstrated to capture large free surface defor-

mations and interface pinch-off in situations where surface tension effects are

significant [43–45].

FEM has also been extended successfully to solve viscoelastic flows and

many stable algorithms have been developed to handle the additional non-

linearity introduced by the viscoelastic constitutive equations (see [46, 47]

for reviews). Viscoelastic free surface flow calculations with different methods

of handling free boundaries have been presented more recently [48–55]. A
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new, fully-coupled (i.e., all variables, including free surface shapes, are solved

simultaneously) transient algorithm based on the DEVSS-TG/SUPG finite

element method [49] with conformation tensor based constitutive models is

presented here.

In this article three weakly strain hardening models, Giesekus,

FENE-CR [56], and FENE-P, are used in analyzing the dynamics of a fil-

ament stretching setup at low Ca. Section 2 contains the description of the

governing equations, the problem, and the relevant dimensionless parameters

in this setup. Section 3 contains the details of the numerical method, and

Section 4 presents the computational results with a detailed analysis. Key

findings of the paper are summarized in Section 5.

2 Governing physics

2.1 Transport equations

The conservation equations of mass (for incompressible flow) and momen-

tum are

0 = ∇ · v (1)

ρ
∂v

∂t
=−ρv ·∇v + ∇ ·T + ∇Θ (2)

where ρ is the density of the liquid, v is the velocity, T is the Cauchy stress

tensor, Θ is the potential of body force per unit volume, ∇ ≡ ∂
∂x

is the usual

spatial gradient, and ∂
∂t

is the partial time derivative. The stress tensor T is

split into an isotropic part, a viscous part, and an elastic part as

T = −pI + τ + σ (3)

6
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where p is the pressure, I is the identity tensor, τ is the viscous stress tensor

and σ is the polymer contribution to the Cauchy stress or the elastic stress

tensor. The viscous stress tensor τ is defined by the Newton’s law of viscosity:

τ = 2ηsD (4)

where ηs is the solvent viscosity and D = 1
2
[∇v + (∇v)T ] is the rate of strain

tensor.

The polymer contribution to the Cauchy stress is modeled by the general

conformation tensor based constitutive equation [49]. Microstructural features

of polymer solutions can be represented by a single variable, the conformation

tensor [57–60], which gives the expectation values of the local microstructural

features. The transport equation for the dimensionless conformation tensor M

in an isothermal flow, neglecting diffusion, can be written as [57]

∂M

∂t
=−v ·∇M + 2ξ

D:M

I:M
M + ζ(M ·D + D ·M− 2

D:M

I:M
M)

+M ·W + WT ·M− 1

λ
(g0I + g1M + g2M

2) (5)

where W = 1
2
[∇v − (∇v)T ] is the vorticity tensor, λ is the characteristic

relaxation time of the polymer, ξ(M), ζ(M), g0(M), g1(M), and g2(M) are

constitutive functions whose forms depend on the type of the constitutive

relation chosen. Table 1 lists the forms of these functions in the different

constitutive relations used in this paper.

The elastic stress tensor is obtained from the conformation tensor M as [49]

σ = 2(ξ − ζ)
(M− I)

I:M
M:

∂a

∂M
+ 2ζ (M− I) · ∂a

∂M
(6)

where a (M) is the Helmholtz free energy per unit volume.

7
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2.2 Problem description and boundary conditions

Figure 1 shows a schematic of an axisymmetric liquid bridge being stretched

between a moving top plate and a stationary bottom plate with equal radii.

The slenderness is defined by the bridge initial aspect ratio Λ0 = L0/R0

where L0 is the initial height of the liquid column and R0 is the radius of the

plate. The evolution of the stress fields in the liquid column depends on its

slenderness; thicker bridges display less homogeneous stress fields during the

initial stages of stretching for Boger type liquids [23]. Hereafter, Λ0 = 3 unless

stated otherwise.

The stretching of the filaments results in their straining. In the exponential

stretching, the resulting Hencky strain is

ε =
.
ε t (7)

The no slip condition at the end plates causes filaments with curved surfaces.

Excessive deformation due to this curved nature of the filaments is quantified

by the effective strain [26]:

εeff = 2 ln
(

R0

Rmid

)
(8)

where Rmid is the mid-plane filament radius. In this study, exponential stretch-

ing of filaments is computed unless stated otherwise.

The boundary conditions on the transport equations are as follows.

• Along the top plate, ∂Ωt: Adherence and no slip, i.e., vz = vz (t), and

vr = 0, where vz is the axial and vr is the radial component of velocity.

In the exponential stretching, the length of the bridge at any instant t is

L(t) = L0e
.
εt, which implies vz (t) =

.
ε L0e

.
εt, thus mimicking the uni-axial

8
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elongational flow [23]. In the linear stretching, L(t) = L0+Ut and therefore,

vz(t) = U , where U is constant.

• Along the bottom plate, ∂Ωb: No slip and no penetration, i.e., v = 0.

• Along the axis of symmetry, ∂Ωs: No penetration, i.e., n · v = 0, and van-

ishing shear stress, i.e., tn : T = 0, where n is the unit normal, and t is the

unit tangent to the boundary.

• Along the free surface, ∂Ωf: The force balance across the interface is applied

through the traction boundary condition:

n ·T = −pamb n + (2Hγ)n (9)

where pamb is the ambient pressure (i.e., in the gas phase), γ is the surface

tension of the liquid-gas interface, and H is the mean curvature.

The initial condition for computations is that of a cylindrical liquid column

at rest with no extra stresses: v = 0, p = 0, L = 0, and M = I, i.e., σ = 0.

2.3 Dimensionless numbers

The dynamics of stretching viscoelastic filaments is governed by the follow-

ing dimensionless numbers: Reynolds number, Re ≡ ρŨL̃/η0, where Ũ is the

characteristic velocity and L̃ is the characteristic length of the flow; capillary

number, Ca ≡ η0Ũ/γ; Bond number, Bo ≡ ρgL̃2/γ, where g is the acceleration

due to gravity; viscosity ratio, β ≡ ηs/η0, and Deborah number, De ≡ λ/t̃,

where t̃ is the characteristic process time of the flow. Re represents the ratio

of inertial to viscous forces, Ca represents the ratio of viscous to surface ten-

sion forces, Bo represents the ratio of gravity to surface tension forces, β gives

the solvent contribution to the total viscosity, and De represents the ratio of

polymer relaxation time to the characteristic flow time. In the exponential

separation of plates, the characteristic time is t̃ = (
.
ε)
−1

, the characteristic

length is L̃ = R0, and the characteristic velocity is Ũ = R0
.
ε. In the linear

9
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separation of plates at a constant speed U , the characteristic time is t̃ = R0/U ,

the characteristic length is L̃ = R0, and the characteristic velocity is Ũ = U .

The resulting dimensionless numbers for the exponential plate separation

are

Re =
ρ

.
ε R2

0

η0

(10)

Ca =
η0

.
ε R0

γ
(11)

Bo =
ρgR2

0

γ
(12)

De = λ
.
ε (13)

β =
ηs

η0

(14)

Hereafter, gravity is neglected (Bo = 0) unless stated otherwise.

In addition to these dimensionless numbers, viscoelastic model parameters

(listed in Table 1) also affect the dynamics of filaments.

3 Numerical method

3.1 Mesh equation

The elliptic mapping method of de Santos [61] is used here to compute the

flow domain and the moving boundary. The elements in the physical domain

are mapped onto a reference element in the computational domain; position

in the reference domain ξ is given by the mapping ξ = ξ (x), where x is the

position in the physical domain. The elliptic method requires such a mapping

to obey the following elliptic differential equation:

0 = ∇ ·
(
D̃ ·∇ξ

)
(15)

10
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where the dyadic D̃ controls the spacing of the co-ordinate lines. Solution of

Eq. 15 gives the mapping ξ; position in the physical domain x is then obtained

from the inverse mapping x = x (ξ).

Equation 15 is solved using the following boundary conditions: (1) the nodes

at the stationary bottom plate (∂Ωb) are fixed; (2) the radial positions of

the nodes at the top plate (∂Ωt) are held fixed and their axial positions are

subjected to the same translation as the plate, i.e., z = L(t); (3) the co-

ordinate lines are held orthogonal to one another along the line of symmetry

(∂Ωs), i.e., n ·∇ξ = 0; and (4) the component of the mapping that aligns with

the normal to the free surface (∂Ωf) is subjected to the kinematic boundary

condition:

0 = n · (v − vs) (16)

where vs is the velocity of points on the boundary, and the nodes are dis-

tributed uniformly in the tangential direction (i.e., along the free surface).

Conditions (1) and (2) also ensure that the two contact lines remain fixed or

pinned to the sharp edges of the two plates.

The movement of the mesh in a time dependent flow computation is ac-

counted for by transforming the partial time derivative of any physical quan-

tity Φ as

∂Φ

∂t
=

◦
Φ− ◦

x ·∇Φ (17)

where
◦
Φ is the time derivative of Φ in a fixed frame and

◦
x is the mesh velocity.

11
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3.2 Spatial discretization

We use DEVSS-TG/SUPG finite element method [49, 62, 63] to discretize

the mapping and transport equations. DEVSS-TG involves the introduction of

the following additional equation whose solution gives the interpolated trace-

less velocity gradient L [49]:

0 = L−∇v +
1

tr I
(∇ · v)I (18)

where tr I is the trace of I. The rate of strain tensor and the vorticity tensor

are then obtained as

D =
1

2
(L + LT ) and W =

1

2
(L− LT ) (19)

The viscous stress tensor is [49]

τ = ηs(L + LT ) + ηa[∇v + (∇v)T − L− LT ] (20)

where ηa is a numerical parameter whose value is of the same order as that of

η0.

DEVSS-TG/SUPG is a mixed finite element method. We use biquadratic

continuous basis functions for velocity v and mapping ξ, linear discontinuous

basis functions for pressure p (see, e.g., p. 354 in [64]), and bilinear continuous

basis functions for interpolated velocity gradient L and conformation tensor

M.

3.3 Time integration

A fully implicit predictor-corrector time integration with adaptive stepping

is used here [65, 66]. First- and second-order finite differences are used for the

12
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temporal discretizations.

A few (typically 4) first-order forward Euler predictor and backward Euler

corrector steps with constant step size ∆t are carried out initially to get the

necessary smoothing [67] before switching to second-order Adams-Bashforth

predictor and trapezoid-rule corrector steps. Time step size for the (n + 1)th

computational step is obtained adaptively from the nth step as

∆tn+1 = ∆tn

(
δ

||dn||

)1/3

(21)

where δ is the relative-error tolerance (here in the range 0.001–0.005) and dn

is the local truncation error given by the following relation:

dn =
yn+1 − yp

n+1

3
(
1 + ∆tn−1

∆tn

) (22)

where yn+1 is the corrected solution and yp
n+1 is the predicted solution.

The algebraic equations resulting from these discretizations are solved using

Newton’s method with an analytical Jacobian. The linear algebra solver is

based on the frontal algorithm of Duff et al. [68].

3.4 Remeshing

Necking and elongation of the filaments at high strains result in the distor-

tion and lower density of elements in the region of high stresses. To preserve

accuracy, we halt our calculations when a critical criterion for mesh quality is

violated. Elements are then added and redistributed. Time marching is then

continued with the fine mesh.

The coarse mesh data are saved at two successive time steps just before

halting the calculations. These data are then projected onto a fine mesh, and

13
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time derivatives are calculated. Calculations are then restarted using first-

order Euler for the first four time steps, after which the second-order schemes

are used.

The projection of the coarse mesh data onto a fine mesh is carried out

first by locating the fine mesh nodes in an undistorted coarse mesh. The

field variables (x, v, p, L, and M) are then interpolated. Because position

x is also interpolated, a boundary fitted mesh is obtained; thus, free surface

deformations are automatically accounted for.

4 Results and discussion

4.1 Method validation

The computational method is tested first by simulating an evolving Newto-

nian filament with an initial aspect ratio of 3. The upper plate is moved at a

constant speed, and the dimensionless numbers are Re = 9.56, Ca = 8.2×10−5,

and Bo = 0.342. Same dimensionless numbers were used by Zhang et al. (ZPB)

[25] in their 1-D analysis of and experiments on stretching Newtonian liquid

bridges. Table 2 contains the comparisons of the breakup length Lb/R0 and

the ratio (%) of the volume of the sessile drop to the total volume Vsessile/V

between the present work (2-D) and that of ZPB. For a minimum neck radius

Rmin/R0 = 5.5×10−3, Lb/R0 agrees within 0.82% of ZPB and Vsessile/V agrees

within 0.49% of ZPB.

When the simulation is continued further, i.e., for Rmin/R0 < 5.5 × 10−3,

the liquid-gas interface in the neck region close to breakup overturns. Such

overturning of interfaces in the neck region of Newtonian drops at these di-

mensionless numbers has been predicted by Wilkes et al. [42] and then exper-

imentally confirmed by Notz et al. [69] and Chen et al. [43]. Figure 2 shows

14
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the overall filament profile and a close-up of the overturned interface. The free

surface is multi-valued for a given axial location in the overturned region; this

feature can not be captured by 1-D computations.

The method is further tested by comparing the results from the simulation

of a stretching Oldroyd-B filament with that of Yao and McKinley (YM) [23].

The upper plate is moved such that the plates are separated exponentially

in time. The dimensional numbers are Λ0 = 1/3, Re = 0.0138, Ca = 63.26,

Bo = 0, and β = 0.915 as in YM. Figure 3 shows the comparison of the

evolution of the minimum neck radius Rmin/R0 with the Hencky strain ε. The

data from YM are obtained from Fig. 7 of [23] using the datathief (NIKHEF-

K) tracing software. Our calculations show good agreement with that of YM

for different elasticities studied (De = 0, 0.5, and 1.0); however, in the case of

De = 0.5 at ε > 4, a difference of about 6% is found between the two results.

We see much smaller difference in other comparisons (a comparison of our

calculations of thinning in Giesekus filaments with that in [26] will be shown

subsequently). Figure 4 shows the comparisons of the calculated axial velocity

normalized with the upper plate velocity, vz/U , along the axis of symmetry

with that of YM at a higher elasticity (De = 5.01). Our calculations agree

well with YM.

Figure 5 shows the contour plots of the axial component of the conformation

tensor Mzz at ε = 1.62. It can be seen that a thin boundary layer in Mzz has

developed near the free surface in the mid-filament region. This agrees well

with YM’s observation of axial stress boundary layers near the free surface

at these strains. For the Oldroyd-B constitutive relation, a boundary layer

in Mzz indicates a boundary layer in the axial elastic stress σzz, because the

conformation tensor M and the elastic stress tensor σ are proportional (σ =

G(M − I)). Thus, in effect we also see boundary layers in elastic stress near

the free surface. YM showed that filaments that are initially more slender (i.e.,

higher Λ0) yield less steep boundary layers. Our calculations with different Λ0
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confirm this observation (not shown).

4.2 Mesh and time step convergence tests

The method is tested for mesh and time step convergence and the respective

orders of convergence are obtained using Richardson extrapolation [70]:

f(he) = f(0) + Chχ
e (23)

where f is any computed variable expressed as a function of the characteristic

element size he, f(0) is the extrapolated value at infinitely small element

size, C is a constant, and χ is the order of convergence. The problem of an

evolving Giesekus filament with parameters same as in [26] (i.e., Λ0 = 0.54,

Re = 0, Ca = 18.27, β = 0.262, α = 0.32, and De = 2) is solved. Two

variables, the minimum neck radius Rmin/R0 and the extensional component

of the conformation tensor, Mzz, along the free surface are tracked. They are

then used to compute the orders of convergence.

4.2.1 Mesh convergence

Three meshes, Mesh 1, Mesh 2, and Mesh 3, are used. Mesh 1 has 6 radial

and 67 axial elements; Mesh 2 has 9 radial and 100 axial elements; and Mesh

3 has 14 radial and 150 axial elements (the characteristic element size he in

these meshes decreases progressively by a factor of 1.5).

Simulations are conducted up to Hencky strain of 3 (as in [26]) using a

constant time step size (10−3). Figure 6 shows the variation of Mzz along the

free surface at ε = 3. Curves from computations with the three meshes overlap

except at the center of the filament where the peak in Mzz lies. The inset in

the figure shows the detail near the peak; clearly, results converge with mesh

refinement as is expected from any grid-based computational method.
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The calculated value of the minimum neck radius Rmin/R0 and the maxi-

mum in Mzz along the free surface, (Mzz)max, obtained with the three meshes

at ε = 3 are tabulated in Table 3. The order of mesh convergence is then

calculated using Richardson extrapolation; good orders of 3.65, and 3.07, are

obtained from Rmin/R0, and (Mzz)max, respectively.

Figure 7 shows the variation of the relative error with the characteristic

element size he in Rmin/R0 (Fig. 7 (a)) and (Mzz)max (Fig. 7 (b)). The relative

error in the calculation of a variable f(he) is |f(he)−f(0)|/f(0). As expected,

the error in the computation tends to zero as he → 0.

4.2.2 Time step convergence

The time integration scheme used in this work is second-order accurate;

therefore, the order of time step convergence is expected to be 2. This is

verified by conducting simulations with three fixed time steps: ∆t1 = 2×10−3,

∆t2 = 1 × 10−3, and ∆t3 = 5 × 10−4 (each successive time step smaller by

a factor of 2). Mesh 2 (described before) is used in the computations and

Richardson extrapolation is used to obtain the order of convergence.

The minimum neck radius Rmin/R0 and (Mzz)max along the free surface

obtained from computations with the three time steps at ε = 3 are tabulated

in Table 4. An order of convergence of 2.06 is obtained from both of these

results; thus, the method is second-order accurate as expected.

The equivalence of results from adaptive and fixed time step calculations is

verified next. Minimum neck radius from two simulations, one with adaptive

steps and the other with a fixed step (∆t = 10−3), are compared. The same

mesh (Mesh 2) is used in these simulations.

Figure 8 shows the calculated variation of the minimum neck radius

Rmin/R0 with Hencky strain ε from the two simulations. Clearly, results from
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the two simulations agree well. Whereas with the fixed ∆t, a total of 1500

simulation time steps are required to reach ε = 3 at a stretch rate
.
ε = 2,

only 68 steps are used in the adaptive time stepping method (same
.
ε and an

average time step size of 2.2× 10−2). Thus, computations with adaptive steps

are much faster. Yao et al.’s [26] results are also included for comparison; the

figure makes plain that our calculations agree well with their results.

4.3 Dynamics of weakly strain hardening liquid filaments

4.3.1 Capillary effects on Giesekus filaments

Yao et al. [26, 27] have studied the dynamics of stretching Giesekus fil-

aments with parameters obtained from the experimental characterization of

5 wt% polystyrene solution in tricresyl phosphate and dioctyl phthalate [71].

Their calculations were carried out at high Ca (≥ 9.44) and small initial aspect

ratios. They found that Giesekus filaments undergo a drastic necking failure

by showing a faster thinning compared to their Newtonian counterparts at

the same Ca. They maintain that their observations were insensitive to Ca

by showing that the evolution of the extensional viscosity does not depend

upon Ca. In this paper, the effect of lowering Ca further on the dynamics of

these filaments is investigated. The effects of inertia are removed by setting

Re = 0 (creeping flow). Inertial effects become important only in the vicinity

of breakup of the filament when the outer fluid has negligible viscosity [35].

The effects of varying the mobility parameter α on the dynamics of the

filaments have been studied [23]. As α is decreased, the resistance to stretch-

ing is enhanced, and the filament thins slower. The Oldroyd-B model, which

predicts that filament breakup does not occur in finite time [72], is recovered

when α = 0. Two sets of (α, β) values are used in this paper. In studying the

effect of lowering Ca on the evolution of the minimum neck radius, α is set to
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0.32 and β is set to 0.262 as in [26]. In all the subsequent studies, α is set to

0.1 and β is set to 0.6 so that sufficient contribution from the polymer to the

total viscosity is maintained.

Figure 9 shows the thinning of Giesekus and Newtonian filaments with

Hencky strain ε at different Ca. The necking in the Giesekus filaments grows

more rapidly when compared with their Newtonian counterparts at all Ca, and

it can be seen that the deviation from the Newtonian behavior in the Giesekus

filaments starts earlier as Ca is decreased. The earlier non-linear analysis

of the stability of the viscoelastic liquid filaments to surface tension driven

deformations shows that the growth of perturbations in Oldroyd-B filaments is

faster initially and slower later on when compared to Newtonian filaments [73].

Figure 10 shows that when α is lowered (to 0.1), such an observation is seen

with a Giesekus filament (i.e., faster initial necking and slower necking later

on), but only up to some intermediate strain, after which the rate of necking

in it is higher than that of the Newtonian filament. In the Oldroyd-B limit

(α = 0), however, the rate of deformation of these filaments does not overtake

that of the Newtonian filaments once they slow down (in fact, they never

breakup) as in [73].

In elongational flows the dimensionless transient Trouton ratio Tr is defined

as [74]

Tr =
τzz + σzz − τrr − σrr

η0
.
ε

(24)

The transient Trouton ratio quantifies the resistance to the elongational flow;

higher Tr indicates higher resistance to the flow. In the present analysis, a

local Trouton ratio is computed at the mid-filament plane for different Ca

(hereafter referred simply as Tr). The effective strain rate,
.
εeff, is used in
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computing Tr, which is defined as [26]

.
εeff= −2

(
(vr)free surface

R

)
mid-filament

(25)

.
εeff is substituted for

.
ε in Eq. 24 to compute Tr. Figure 11 shows the variation

of Tr in the radial direction at the mid-filament plane for different times.

Tr is found to be roughly uniform along the cross-section at all times. Thus,

the average (across the cross-section) and the point values of Tr at the free

surface in the mid-filament plane are very close. Hereafter, only point values

of Tr are reported. Figure 12 shows the variation of the transient Tr with the

effective strain εeff. Clearly, the evolution of Tr depends on Ca; the curves

for capillary numbers smaller than 1 show a marked departure from those for

Ca > 1. The lower values of Tr explain the lesser resistance to elongation (as a

consequence, more drastic necking) shown by the low Ca Giesekus filaments.

Yao et al. [26, 27] have computed the transient Tr at higher values of Ca

and shown that its evolution is independent of Ca. Here, we show that the

transient Tr indeed depends on Ca and this dependence becomes important

when Ca < 1. The variation of the transient Tr with the effective strain

εeff in a uni-axial elongational flow (ideally what is aimed to be achieved in

filament stretching rheometers) is also shown in Fig. 12. It can be seen that

the computed variation of Tr with εeff for Ca ≥ 2 matches quite well the

prediction based on the ideal theory. This observation accords with earlier

studies that have shown that filament stretching rheometers are more useful

at high capillary numbers (see, e.g., [24, 26]).

4.3.2 Elastic effects on Giesekus filaments

The effects of elasticity on the dynamics of Giesekus filaments is studied

by fixing Ca = 0.1 and varying De. Figure 13 shows the necking of Giesekus

filaments at De = 0, 1, 2, 3, and 4. It can be observed that at higher De, fila-

ments neck faster. The filament with De = 4 shows the most drastic necking
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amongst all the filaments. Figure 14 shows the variation of the transient Tr

with Hencky strain ε; Tr approaches the same steady value in all three fila-

ments with different De. At smaller Hencky strains, the filament with De = 4

has the lowest value of Tr and the filament with De = 1 has the highest value.

At higher Hencky strains (≥ 1), however, all filaments display comparable

Tr values. The filaments approach breakup when ε is about 1.2 (evident from

Fig. 13); therefore, computations of Tr do not proceed much beyond this value

of strain. The difference in the necking behavior at these strains can be ex-

plained by the amount of elastic unloading or elastic recoil taking place near

the end plates. Yao et al. [26, 27] have studied such elastic unloading effects.

Their analysis of the kinematics near the end plates uses the sign of the axial

component of the rate of strain tensor (Dzz) as an indicator of elastic recoil

(negative Dzz implies recoil). Here we analyze elastic unloading by examining

how the elastic stress tensor acts upon the rate of strain tensor. Dzz results

are also included and the two analyses are compared.

In the equation of mechanical energy, the term T : ∇v quantifies the

conversion of the mechanical energy into internal energy. In incompressible

Newtonian liquids, this term is always positive and gives the dissipation of

the mechanical energy into internal energy [75]. In polymeric liquids, however,

this term is not always positive.

The velocity gradient ∇v can be decomposed into the symmetric rate-of-

strain tensor and anti-symmetric vorticity tensor, viz. ∇v = D + W. The

term for the conversion of the mechanical energy into internal energy is then

T : (D + W) = T : D since T : W = 0 because T is symmetric and W is

skew-symmetric. Using Eq. 3 and that I : D = trD = 0 in incompressible

flows gives

T : D = (τ + σ) : D (26)
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The term τ : D is always positive (τ = 2ηsD and D : D > 0) and represents

viscous dissipation. The term σ : D can be positive or negative; this is the

reason why Eq. 6 holds [57, 76]. It is positive when the flow acts on the

polymer molecules (the Helmholtz free energy grows) and negative when the

polymer molecules act on the flow, i.e., when elastic unloading takes place

(the Helmholtz free energy decreases). Thus, elastic unloading takes place in

the flow domain wherever σ : D is negative. Physically, when σ : D < 0, the

elastic stresses work by pulling the fluid in axially and pushing it out radially;

thus, the molecules recoil from a stretched state.

Figure 15 (a) shows the contour plots of σ : D for De = 1 and De = 3 at

Hencky strains ε = 1.02 and ε = 1.04, respectively. The dark blue regions in

the plots correspond to the regions where σ : D < 0. In both filaments there

are regions near the end plates where σ : D < 0 indicating the occurrence of

elastic recoil there. The computations reveal that the extent of the regions with

σ : D < 0 is larger when De = 3. The minimum value of σ : D, (σ : D)min,

is −46.5 when De = 1 and is −132.78 when De = 3. This clearly indicates

that the magnitude of recoil is larger when De = 3 than when De = 1.

Figure 15 (b) shows the variation of −(σ : D)min at different De with

Hencky strain ε. At a given strain, except at very small values of ε, (σ : D)min

decreases (−(σ : D)min increases) as De increases (e.g., see inset for the vari-

ation of (σ : D)min with De at ε = 1). For Hencky strains greater than one,

in which case the variation in Tr with De is negligible, a steep decrease in

(σ : D)min with increase in De is observed. This indicates more pronounced

elastic recoil in filaments with higher De. Because the capillary number is

constant and the Trouton ratios are comparable here, the dynamics in these

filaments differ only in the extent of elastic recoil. This suggests a strong corre-

lation between thinning of filaments and the enhancement of elastic unloading

in them.
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Figure 16 shows the axial velocity profile along the axis of symmetry for

three filaments with De = 1, 2, and 3 at a Hencky strain of about 1. The

axial velocity decreases along the axis near the end plates, i.e., Dzz becomes

negative there. Figure 17 (a) shows the variation of Dzz for these three vis-

coelastic filaments and also a Newtonian filament along the axis of symmetry.

The filament with highest elasticity (De = 3) has the lowest value of Dzz.

This shows that the amount of elastic unloading, according to the kinematic

argument as well, increases with De. Figure 17 (b) shows in the same plot the

variation of Dzz and of σ : D along the axis of symmetry at De = 3. Elastic

unloading near the end plate can be evinced from both kinematic (sign of

Dzz) and energy (sign of σ : D) arguments. However, the extent of the recoil

region predicted by the two arguments differs. Whereas the energy argument

shows the molecules recoiling only in a small region near the end plates, the

kinematic argument indicates recoil all the way to the end plates. Thus, even

though Dzz < 0 close to the end plates, reduction in the free energy does not

occur there (however, the extent of the region in which σ : D < 0 is broader

and closer to the end plates away from the axis of symmetry as shown in Fig.

15 (a)). Moreover, the negative sign of Dzz is not always a result of the recoil of

molecules but can also be caused by capillary forces as revealed in Fig. 17 (a)

by the variation of Dzz along the axis of symmetry of a Newtonian filament.

Therefore, the energy criterion is a more reliable indicator of recoil than the

kinematic one.

4.3.3 Giesekus vs. the other models

Necking behavior in FENE-CR and FENE-P filaments is investigated and

compared with that in an equivalent Giesekus filament. The extensibility pa-

rameter b in the FENE models is chosen such that it gives the same maximum

extensional viscosity as the Giesekus model. The two FENE models were se-

lected because both of them have bounded extensional viscosity like Giesekus,
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their maximum extensional viscosity can be matched easily by adjusting b,

and for a given b, FENE-CR and FENE-P models have the same maximum

extensional viscosity [11, 77]. The mobility parameter in the Giesekus model

α is set to 0.1 and b is set to 4 in the two FENE models. The elasticity is fixed

in the calculations by setting De = 2 in all models.

Figure 18 shows the comparison of necking in these three filaments and

an equivalent Newtonian filament at Ca = 0.1 and 2. The Giesekus filament

shows the fastest and the most drastic necking among all filaments at these

capillary numbers. Thinning behaviors of FENE-P and FENE-CR filaments

are nearly indistinguishable. This is understandable, because in extensional

flows both these models have similar transient extensional viscosity [77], al-

though in shear flows they have different responses (FENE-CR has a constant

shear viscosity whereas FENE-P is shear thinning). Hereafter, the dynamics

of Giesekus filaments is compared only to that of FENE-CR filaments as the

responses of the two FENE models are virtually the same.

Figure 19 shows the evolution of the transient Trouton ratio for Giesekus

and FENE-CR filaments with Hencky strain. Both curves approach a com-

parable maximum value as is expected because the steady state extensional

viscosities are close (it should be noted that calculations with the Giesekus

model do not proceed beyond ε ∼ 1.2 because the filament approaches breakup

around this value of strain as explained in Sec. 4.3.2). The difference in the

necking behavior of Giesekus and FENE models can be rationalized by the

magnitude of elastic recoil taking place near the end plates. Figure 20 shows

the value of σ : D along the axis of symmetry for Giesekus and FENE-CR

filaments at Hencky strains of ε ∼ 0.6 (Fig. 20 (a)) and ε ∼ 0.8 (Fig. 20 (b)).

The Giesekus filament starts recoiling near the end plates at ε ∼ 0.8 whereas

the FENE-CR filament does not. Elastic recoil is seen in the FENE-CR fila-

ment at higher strains. The early onset and higher elastic recoil in the Giesekus

filament thus appear to be related to its faster necking when compared to the
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FENE-CR filament.

5 Concluding remarks

A new transient viscoelastic solver based on the earlier DEVSS-TG/SUPG

mixed finite element algorithm and second-order predictor-corrector time in-

tegration scheme is presented. The general conformation tensor model, which

allows easy implementation of different types of differential constitutive equa-

tions, is incorporated. The algorithm uses a fully coupled solver with elliptic

mapping method. Consequently, it can handle complex physics such as over-

turning or folding of interfaces at low capillary number just before breakup.

The dynamics of weakly strain hardening viscoelastic liquid filaments, par-

ticularly those modeled by the Giesekus, FENE-CR, and FENE-P constitutive

equations and subjected to elongational flows, is investigated. Giesekus fila-

ments show the most drastic necking amongst the three filaments and their

Newtonian counterpart. The evolution of the local transient Trouton ratio in

the mid-filament plane for Giesekus filaments depends on the capillary num-

ber; this dependence becomes significant at Ca < 1. Moreover, for the same

capillary number, Giesekus filaments with different Deborah number show dif-

ferent dynamics. The filaments with higher Deborah numbers deform more or

neck faster. The faster necking with increase in Deborah number is demon-

strated to correlate well with increased elastic unloading taking place near

the end plates. The analysis of the elastic unloading based on the kinematics

as well as on the action of the polymer molecules on the flow is presented.

It is shown that the kinematic analysis can yield erroneous conclusions when

capillary number is small.

Giesekus filaments have been shown to neck faster compared to FENE-CR

and FENE-P filaments with comparable maximum steady extensional viscos-
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ity. The difference in necking appears to be related to the difference in the

elastic unloading near the end plates, which occurs earlier in Giesekus fila-

ments.

In a recent publication, Matallah et al. [28] have observed the formation of

a bead like structure in their simulations of stretching filaments modeled by

the Phan-Thien/Tanner (PTT) viscoelastic constitutive equation with non-

affine motion [78]. The PTT equation in this situation involves the Gordon-

Schowalter (GS) convected derivative [79]. By contrast, the three viscoelastic

constitutive equations studied in the present paper do not give rise to bead

formation over the range of the parameters investigated. A noteworthy differ-

ence between the present paper and that of Matallah et al. [28] is that none

of the constitutive equations used here involves the GS convected derivative.

We have investigated in detail this starkly different behavior that may be ob-

served during the stretching of filaments modeled by the PTT equation and

have shown that bead formation in this case is due to the use of a constitutive

equation that involves the GS convected derivative. The results of this analysis

will be reported in a future publication [80].
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Table 1
Constitutive functions in the general conformation tensor model [57] for different
types of constitutive equations used in this paper. G is the elastic modulus, α is
the mobility parameter in the Giesekus model (0 ≤ α ≤ 1), IM is the trace of the
conformation tensor M, and b is the extensibility parameter in the FENE models.

ξ (M) ζ (M) g0 (M) g1 (M) g2 (M) 2ρ
G

a (M)

Oldroyd-B 1 1 −1 1 0 IM − 3

Giesekus 1 1 α− 1 1− 2α α IM − 3

FENE-CR 1 1 − b−1
b−(IM/3)

b−1
b−(IM/3)

0 3 (b− 1) ln b−1
b−(IM/3)

FENE-P 1 1 −1 b−1
b−(IM/3)

0 3 (b− 1) ln b−1
b−(IM/3)
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Table 2
Comparison of the breakup length Lb/R0 and the ratio (%) of the volume of the
sessile drop to the total volume Vsessile/V for a linearly stretching Newtonian fila-
ment between this work (2-D) and that of Zhang et al. (1-D) [25]. The dimensionless
numbers are Re = 9.56, Ca = 8.2× 10−5, and Bo = 0.342.

Lb/R0 Vsessile/V

Zhang et al. [25] 3.665 87.94 %

This work 3.695 87.51 %
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Table 3
The minimum neck radius Rmin/R0 and the maximum value of the axial component
of the conformation tensor along the free surface, (Mzz)max, at Hencky strain ε = 3
obtained from calculations with the three meshes: Mesh 1, Mesh 2, and Mesh 3 (see
text for details). The viscoelastic model is the Giesekus model and the parameters
used in the calculations are Λ0 = 0.54, α = 0.32, β = 0.262, Re = 0, Ca = 18.27,
and De = 2. Order of convergence from these results is obtained using Richardson
extrapolation.

Mesh 1 Mesh 2 Mesh 3 Order

Rmin/R0 5.67327× 10−2 5.73302× 10−2 5.74659× 10−2 3.65

(Mzz)max 37.21217 36.98751 36.92279 3.07
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Table 4
The minimum neck radius Rmin/R0 and the maximum value of the axial component
of the conformation tensor along the free surface, (Mzz)max, at Hencky strain ε = 3
obtained from calculations with the three time steps: ∆t1 = 2×10−3, ∆t2 = 1×10−3,
and ∆t3 = 5 × 10−4. The viscoelastic model is Giesekus and the parameters used
in the calculation are Λ0 = 0.54, α = 0.32, β = 0.262, Re = 0, Ca = 18.27, and
De = 2. Second-order accuracy of the time integration method is verified from the
fact that the calculated order of convergence is 2.06 in both instances.

∆t1 ∆t2 ∆t3 Order

Rmin/R0 5.73336× 10−2 5.73302× 10−2 5.73294× 10−2 2.06

(Mzz)max 36.98670 36.98751 36.98770 2.06
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Fig. 1. Left: a schematic of a liquid bridge between a moving top plate and a
stationary bottom plate. L is the length of the bridge and R0 is the radius of the
plate. Right: computational flow domain and boundaries.
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Fig. 2. Profile of a stretching Newtonian liquid bridge with Λ0 = 3, Re = 9.56, Bo
= 0.342, and Ca = 8.2×10−5 close to breakup. The inset shows the zoomed in view
of the overturned interface.
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Fig. 3. Evolution of the minimum neck radius Rmin/R0 in Newtonian and Oldroyd-B
filaments with Hencky strain ε at De = 0 (Newtonian), 0.5 and 1. Results from this
work are compared with that of YM [23]. Here, Λ0 = 1/3, Re = 0.0138, Ca = 63.26,
and β = 0.915 (Oldroyd-B). The solid lines are from this work and the symbols
have been obtained from reading continuous lines in Fig. 7 of YM using datathief.
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Fig. 4. Axial velocity normalized with the top plate velocity U along the axis of sym-
metry (r = 0). Results are compared with that of YM [23] at Hencky strain ε = 2.
Here, Λ0 = 1/3, Re = 0.0138, Ca = 63.26, β = 0.915, and De = 5.1 (Oldroyd-B).
The solid lines are from this work and the symbols have been obtained from Fig. 9
of YM using datathief.
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Fig. 5. Contours (colors online) of the axial component of the conformation ten-
sor Mzz at Hencky strain ε = 1.62. Here, Λ0 = 1/3, Re = 0.0138, Ca = 63.26,
β = 0.915, and De = 1 (Oldroyd-B). Left: overall profile. Right: zoomed in view
of the mid-filament region showing the existence of a thin boundary layer near the
free surface.
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Fig. 6. Variation of the axial component of the conformation tensor Mzz along the
free surface at Hencky strain ε = 3. Results are from computations with the three
meshes: Mesh 1, Mesh 2, and Mesh 3 (see text for details). Giesekus filament with
parameters α = 0.32, β = 0.262, Λ0 = 0.54, Re = 0, Ca = 18.27, and De = 2 is
simulated. he is the characteristic element size.
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Fig. 7. Variation of the relative errors (see text for definition) in (a) Rmin/R0 and
(b) (Mzz)max. The dashed lines are the linear fits; the slopes of these lines give the
order of convergence, which is 3.65 in the former case and 3.07 in the latter case.
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Fig. 8. Variation of the minimum neck radius Rmin/R0 with Hencky strain ε. Cal-
culations are performed with a fixed time step ∆t = 1× 10−3 (a total of 1500 time
steps are required to reach ε = 3 at

.
ε= 2), and with adaptive time stepping (a total

of 68 steps at same
.
ε with average ∆t = 2.2 × 10−2). Here, Λ0 = 0.54, α = 0.32

(Giesekus), β = 0.262, Re = 0, Ca = 18.27, and De = 2.
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Fig. 9. Necking in Newtonian (symbols) and Giesekus filaments (lines) at Re = 0 and
different Ca. The parameters in the Giesekus computations are α = 0.32, β = 0.262,
and De = 2.0.
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Fig. 10. Evolution of the minimum neck radius Rmin/R0 with Hencky strain ε in
Giesekus filaments. Here, β = 0.262, De = 2.0, Re = 0, and Ca = 2.0. Necking in the
Giesekus filament is greater than its Newtonian counterpart when α = 0.32. How-
ever, deformations in the Giesekus filament are larger at shorter times, smaller at
intermediate times, and larger again at longer times, than the Newtonian filaments
when α = 0.1 (see inset for details on short time behavior).
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Fig. 11. Variation of the local transient Trouton ratio, Tr, in Giesekus filaments
(α = 0.1, β = 0.6) along the cross-section of the mid-plane at different times. The
dimensionless numbers are De = 1.0, Re = 0, and Ca = 0.1. The filament initial
aspect ratio Λ0 = 3 in this and all the subsequent results shown.

47



Page 48 of 56

Acc
ep

te
d 

M
an

us
cr

ip
t

0 1 2 3 4 5 6
1

10

ε
eff

T
r Ca = 0.05

Ca = 0.1

Ca = 0.5

Ca = 2

Ca =10

Uni−axial 
elongation

Fig. 12. Variation of the transient Trouton ratio Tr with effective strain εeff in
Giesekus filaments (α = 0.1, β = 0.6, De = 2.0, and Re = 0) at different Ca. The
dashed line corresponds to the evolution of Tr in a uni-axial elongational flow.
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Fig. 13. Evolution of the minimum neck radius Rmin/R0 with Hencky strain ε in
Giesekus filaments (α = 0.1, β = 0.6, Ca = 0.1, and Re = 0) at different values of
De.
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Fig. 14. Evolution of the transient Trouton ratio Tr with Hencky strain ε at different
De in Giesekus filaments (α = 0.1, β = 0.6, Ca = 0.1, and Re = 0) .
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Fig. 15. (a) Contours (colors online) of σ : D for Giesekus filaments. Left:
De = 1.0 and ε = 1.02. Right: De = 3.0 and ε = 1.04. (b) Variation of normalized
−(σ : D)min in Giesekus filaments with Hencky strain ε at different De. The inset
shows normalized (σ : D)min as a function of De at Hencky strain ε = 1. In both
(a) and (b), α = 0.1, β = 0.6, Ca = 0.1, and Re = 0.

51



Page 52 of 56

Acc
ep

te
d 

M
an

us
cr

ip
t

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

z / L

v z / 
U

De = 1 

De = 2 De = 3 

Fig. 16. Variation of the axial velocity vz normalized with the top plate velocity
U along the axis of symmetry (r = 0) in Giesekus filaments (α = 0.1, β = 0.6,
Ca = 0.1, and Re = 0) at different De and ε ∼ 1.0.
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Fig. 17. (a) Variation of normalized Dzz along the axis of symmetry in Newtonian
(De = 0) and Giesekus filaments (α = 0.1, β = 0.6, and at different De). (b)
Variation of normalized Dzz and normalized σ : D along the axis of symmetry at
De = 3.0. Here, Ca = 0.1, Re = 0, and ε ∼ 1.0.
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Fig. 18. Necking in the three viscoelastic filaments: Giesekus (α = 0.1), FENE-CR
(b = 4), FENE-P (b = 4), and an equivalent Newtonian filament. Here, β = 0.6,
Re = 0, and De = 2.0. (a) Ca = 0.1 and (b) Ca = 2.0.
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Fig. 19. Evolution of the transient Trouton ratio Tr with Hencky strain ε in Giesekus
(α = 0.1) and FENE-CR (b = 4) filaments. Here, β = 0.6, De = 2.0, Re = 0, and
Ca = 0.1.
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Fig. 20. Variation of normalized σ : D along the axis of symmetry for Giesekus fila-
ments (α = 0.1) and FENE-CR filaments (b = 4). Here, β = 0.6, Ca = 0.1, De = 2.0,
and Re = 0. (a) ε = 0.59 (Giesekus), ε = 0.62 (FENE-CR). (b) ε = 0.81 (Giesekus),
ε = 0.85 (FENE-CR).
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