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A growing number of experimental and theoretical works have been addressing various aspects of the
viscous fingering formation in rotating Hele-Shaw cells. However, only a few of them consider the influence of
Coriolis forces. The studies including Coriolis effects are mostly restricted to the high-viscosity-contrast limit
and rely on either purely linear stability analyses or intensive numerical simulations. We approach the problem
analytically and use a modified Darcy’s law including the exact form of the Coriolis effects to execute a
mode-coupling analysis of the system. By imposing no restrictions on the viscosity contrast A �dimensionless
viscosity difference� we go beyond linear stages and examine the onset of nonlinearities. Our results indicate
that when Coriolis effects are taken into account, an interesting interplay between the Reynolds number Re and
A arises. This leads to important changes in the stability and morphological features of the emerging interfacial
patterns. We contrast our mode-coupling approach with previous theoretical models proposed in the literature.
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I. INTRODUCTION

The study of the evolution of hydrodynamic instabilities
and pattern formation at the interface separating two fluids in
a rotating Hele-Shaw cell has attracted much interest since
the initial work by Schwartz �1–20�. The problem constitutes
a variation of the traditional, purely viscosity-driven
Saffman-Taylor instability �21,22� in which the cell is rotated
around a vertical axis passing through its center. As a result
of the density difference between the two confined fluids,
centrifugally induced interfacial deformations arise, leading
to various interesting dynamical and morphological effects.

Despite the considerable number of theoretical and ex-
perimental studies of rotating Hele-Shaw cells �1–20�, just a
few of them �1,15–18� address the role of Coriolis forces in
affecting the dynamics of the interface. On the analytical
side, the structure of the fingering under Coriolis forces is
largely restricted to linear stability investigations �1,15,16�
and mostly limited to the high-viscosity-contrast case �invis-
cid outer fluid�. The unbounded outer fluid problem studied
in Ref. �15� has been extended �16� to cover the linear sta-
bility of the two-fluid problem �fluids contained within a
bounded disk�, with arbitrary viscosity contrast and density
ratio. These studies provide useful information about the sys-
tem during the initial �purely linear� time regime. A notewor-
thy point originally examined in Ref. �15� refers to the way
the Coriolis force is added into the governing equations for
fluid flow in rotating Hele-Shaw cells: while Schwartz �1�
includes it directly in a gap-averaged two-dimensional �2D�
Darcy’s law, Waters and Cummings �15� introduce it in a
more rigorous fashion onto a 3D Navier-Stokes equation.
Comparison between these two approaches at the linear level

�15� supports the generality of the Navier-Stokes first-
principles calculation, restricting the quantitative validity of
the more casual model of Ref. �1� to considerably small Rey-
nolds numbers �relative measure of inertial and viscous
forces�. More advanced �fully nonlinear� stages of the inter-
facial evolution including Coriolis forces are also not com-
pletely understood and rely heavily on numerical simulations
for immiscible �1� and miscible �17,18� flows. To this day, no
attention has been paid to an analytical investigation of the
dynamics that bridges these two extreme stages under the
presence of Coriolis forces. Consideration of arbitrary values
of the viscosity contrast has also been largely overlooked.

Recently, the interfacial instability of two viscous fluids in
a rotating Hele-Shaw cell has been studied �neglecting Cori-
olis effects� by analytical mode-coupling approaches �10,13�.
In particular, it has been shown that a second-order weakly
nonlinear analysis is capable of accurately describing essen-
tial nonlinear aspects related to the finger competition dy-
namics �13�. It has been found that competition among the
fingering structures is dramatically dependent on the viscos-
ity difference �or viscosity contrast A� between the fluids. It
turns out that changes in the magnitude and sign of A result
in fingering patterns presenting very different typical lengths
and widths �2,10,12,13�. Subsequent numerical studies of the
problem �14,19� have verified that the emergence and loca-
tion of interfacial singularities �pinch-off events� are signifi-
cantly modified as A varies. These simulations also have sub-
stantiated the analytical results of Ref. �13�, providing
convincing evidence of the usefulness and validity of their
weakly nonlinear approach. Similar type of studies including
the effect of Coriolis forces still need to be addressed.

In this work, we carry out an analytical weakly nonlinear
analysis for the intermediate stages of the interface evolution
in rotating Hele-Shaw cells, where the Coriolis effect is sig-
nificant. We explore the onset of nonlinear effects and try to
gain analytical insight into the dynamic process of fingering
formation. In contrast to prior work �1,15,17,18� on the un-
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bounded outer fluid problem, our study imposes no restric-
tions on the viscosity contrast, so that A can be arbitrarily
taken within its entire range of validity �−1�A� +1�. This
enables us to extract valuable analytical information con-
cerning the interplay between Coriolis and viscosity contrast
effects in both the linear and early nonlinear regimes. We
will be particularly interested in studying the impact of these
effects on the linear growth rate of interfacial perturbations
and on the finger competition dynamics. Comparison of our
main results with previous theoretical studies on rotating
cells with Coriolis effects �1,15� is also performed.

II. PHYSICAL PROBLEM AND GOVERNING EQUATIONS

Consider a rotating Hele-Shaw cell of gap width b con-
taining two immiscible, incompressible, viscous fluids spin-
ning with constant angular velocity � around the z axis,
which is perpendicular to �and coaxial with� the cell plates
�see Fig. 1�. We define our rotating coordinate system in such
a way that its origin is located at the center of the cell. The
viscosities of the inner and outer fluids are, respectively, de-
noted as �1 and �2, and the surface tension between them is
�. The densities of the fluids are defined as �1 and �2. We
consider that the outer fluid is unbounded and focus on the
centrifugally induced motion where �1��2, but allow the
inner fluid to be either more or less viscous than the outer
fluid. The perturbed interface is described as R�� , t�=R
+	�� , t� where R is the radius of the initially circular inter-
face and 	�� , t� represents the net interfacial perturbation in
polar coordinates �r ,��.

Our weakly nonlinear approach follows the theoretical
model recently proposed by Waters and Cummings �15� and
considers that the fluid flow in the rotating frame of reference
is governed the Navier-Stokes equation

� j� �u j

�t
+ �u j · ��u j� = − �pj + � j�

2u j − � j� 
 �� 
 r�

− 2� j� 
 u j �1�

and the continuity equation for an incompressible fluid

� · u j = 0, �2�

where u j denotes the three-dimensional fluid velocity for
fluid j �where j=1,2�, pj is the hydrodynamic pressure, �
=�ẑ �ẑ is the unit vector along the z axis�, and r is the
position vector of a fluid element measured from the rotation
axis. Note that in order to express solutions in the rotating
frame of reference at the Hele-Shaw cell, it is necessary to
augment the hydrodynamic pressure force balance for mo-
tion in an inertial frame with two “fictitious” forces. These
are the centrifugal and Coriolis forces, represented by the
third and fourth terms on the right-hand side of Eq. �1�,
respectively. The acceleration due to gravity is neglected.

By using the full Navier-Stokes expression �1�, plus Eq.
�2�, and imposing the no-slip boundary condition at the cell
plates �u j =0 at z=0 and z=b�, a generalized Darcy-like law
can be obtained by averaging the three-dimensional velocity
u j over the gap direction �z axis�

v j = −
b2C j

12� j
��Pj −

D j

C j
�ẑ 
 �Pj�� , �3�

where v j�r ,��=�0
bu j�r ,� ,z�dz /b represents the 2D gap-

averaged velocity in each fluid,

C j =
sinh �12Rej − sin �12Rej

2Rej
�12Rej�cosh �12Rej + cos �12Rej�

, �4�

D j =
1

2Rej
	1 −

sinh �12Rej + sin �12Rej

�12Rej�cosh �12Rej + cos �12Rej�

 ,

�5�

with Rej = �� j�b2� / �12� j� being a Reynolds number �23�. We
stress that in deriving Eq. �3�, although the “standard” iner-
tial terms ��u j /�t+ �u j ·��u j� appear in the original Navier-
Stokes equation �1�, they are later dropped by virtue of the
assumed smallness of some reduced Reynolds numbers �15�.
The more general, but considerably more complicated case
where such inertial terms are retained has been recently ex-
amined by Waters et al. in Ref. �16�, when the fluids are
bounded.

In Eq. �3� the centrifugal contribution is conveniently in-
corporated into a Laplacian reduced pressure

Pj = pj −
� j�

2r2

2
, �6�

which couples the hydrodynamic pressure pj �which is not
Laplacian� to purely centrifugal effects. By using expressions
�4� and �5� and expanding to the lowest nonzero order in the
Reynolds number we obtain

C j �
1

1 + �Rej
2 ,

D j

C j
� �Rej ,

with �=204/35�5.83 and �=12/5=2.4. It is worth noting
that by taking the zero-Reynolds-number limit �Rej→0� of
our Eq. �3� we obtain that C j =1 and D j /C j =0, so that we
reproduce the usual Darcy’s law equation for a rotating Hele-
Shaw cell without Coriolis forces �2,10,12,13�.

FIG. 1. Schematic diagram representing a rotating Hele-Shaw
cell.
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We also call the reader’s attention to the fact that in de-
riving the Darcy-type law, Eq. �3�, we have introduced the
Coriolis force term already at the level of the Navier-Stokes
equation �1�. It was under such circumstances that the gap-
averaged calculation leading to Eq. �3� has been performed.
This was also the case in the work by Waters and Cummings
�15�. This procedure is in contrast to Schwartz’s work �1�
where a simplified Navier-Stokes equation is considered �by
neglecting both the “standard” inertial terms and also the
Coriolis contribution� and, just after performing its gap av-
eraging, the Coriolis term is put back into the problem in an
ad hoc manner. The linear stability analysis performed in
Ref. �15� has demonstrated that this arbitrary assumption of
Ref. �1� can lead to appreciable errors at the linear level,
making it valid only for very small Reynolds numbers. Our
mode-coupling theory adopts the more rigorous approach
originally proposed in Ref. �15�, so this restriction is not
imposed on the magnitude of Rej.

We extend the previous linear studies �1,15� to the weakly
nonlinear stages of the dynamics and derive the equation of
motion for the interfacial perturbations up to second-order
couplings. We begin by Fourier expanding the interface per-
turbation and the corresponding reduced pressure field as

	��,t� = �
n=−


+


	n�t�exp�in�� , �7�

with Fourier amplitudes 	n�t� and discrete azimuthal wave
numbers n=0, ±1, ±2, . . ., and

Pj = �
n�0

Pjn�t�
R�n�

r�n� ��− 1�j

exp�in�� , �8�

where expression �8� automatically satisfies Laplace’s equa-
tion.

We proceed by expressing Pj in terms of the perturbation
amplitudes 	n by considering two basic boundary conditions
at the fluid-fluid interface: �i� the kinematic boundary condi-
tion �n ·v1�R= �n ·v2�R, where v j is given by Eq. �3� and n is
the unit normal vector pointing from fluid 1 to fluid 2, and
�ii� the pressure jump at the interface ��p1− p2��R= ����R,
where � denotes the interface curvature. By substituting Eqs.
�7� and �8� into these boundary conditions, expanding to sec-
ond order, and Fourier transforming one obtains, after some
manipulation, the dimensionless mode-coupling equation for
the interfacial amplitudes �for n�0�:

	̇n = ��n�	n + �
n��0

�F�n,n��	n�	n−n� + G�n,n��	̇n�	n−n�� ,

�9�

where

��n� =
2E1E2

��E1 + E2� + A�E1 − E2��
�n��1 − B�n2 − 1�� �10�

is a linear dispersion relation and

F�n,n�� =
2E1E2

��E1 + E2� + A�E1 − E2��
�n��1

2
− B
1 −

n�

2
�3n�

+ n��� �11�

G�n,n�� = � �E1� − E2�� + A�E1� + E2��
�E1 + E2� + A�E1 − E2���E1E2

E1�E2�
�


��n��1 − H0 sgn�nn��� − H1 + i�I0 sgn�n��

+ �n�I1 sgn�n��� �12�

represent second-order mode-coupling terms, with E1=C1
+ i sgn�n�D1, E2=C2− i sgn�n�D2, E1�=C1+ i sgn�n��D1, and
E2�=C2− i sgn�n��D2. The detailed functional form of the
terms H� and I� �where the index �=0,1� appearing in Eq.
�12� is presented in the Appendix.

Note that all these quantities ��, F, and G� are complex in
general. Perturbations grow �or decay� at a rate ��n� �the
linear growth rate�, where ��n� is the real part of the com-
plex quantity defined in Eq. �10�, ��n�=Real���n��. The
same is true for the mode-coupling terms F�n ,n��
=Real�F�n ,n��� and G�n ,n��=Real�F�n ,n���. The sgn func-
tion equals ±1 according to the sign of its argument. In Eq.
�9� lengths are rescaled by R and time by R /U, where U
= �b2R��1−�2��2� / �12��1+�2�� is a characteristic velocity.
Here we define the surface tension parameter B
=� / �R3�2��1−�2�� and the viscosity contrast

A =
�2 − �1

�2 + �1
. �13�

From now on, we work with the dimensionless version of the
equations. Notice that Eq. �9� is conveniently written in
terms of the dimensionless parameters A, B, C j, and D j where
these last two are functions of the Reynolds numbers in flu-
ids 1 and 2. The presence of the Coriolis force term in Eq.
�3� introduces an explicit dependence of the linear growth
rate ��n� and also of the mode-coupling terms F�n ,n�� and
G�n ,n�� on Rej and A. The Reynolds numbers work as con-
trolling parameters that regulate the strength of the Coriolis
effects, which are absent when Rej =0 �or equivalently when
C j =1 and D j =0�. In fact, when Rej =0, Eqs. �10�–�12� repro-
duce the results obtained in Ref. �13� for the corresponding
problem without Coriolis effects. We also point out that, after
appropriate reintroduction of dimensions, our linear disper-
sion relation �10� agrees with the Waters-Cummings equiva-
lent formula in the case A=−1 �15�. Throughout this work,
unless otherwise stated, we focus on the situation in which
the centrifugally induced instability is maximized, where the
inner fluid is much denser than the outer one ��1��2�, so
that we take �2=0. Under such circumstances the Coriolis
effects are associated with C=C�Re� and D=D�Re�, which
are functions of the Reynolds number Re of fluid 1 �hereafter
we will drop the subscript 1�.

We conclude this section by briefly discussing a connec-
tion between our linear dispersion relation �10� and the one
very recently obtained in Ref. �16�. Waters and co-workers
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�16� derived a linear dispersion relation for the more compli-
cated case where the “standard” inertial terms are retained
�Eq. �3.26� in Ref. �16��. Notice that it is not exactly straight-
forward to relate this directly to the results of the present
work, because in Ref. �16� the two fluids are contained
within a bounded disk �where a no-flux condition is applied
on the averaged fluid velocity�, with dimensionless radius 1
and inner fluid domain radius R0. Conversely, our current
results neglect the “standard” inertial terms and consider an
unbounded outer fluid. In the notation of Ref. �16� a relation
can be obtained by considering the limit in which A=O�1�,
while S→
, with the combination AS�1−1/ �̃�=O�1�,
where A, S, and �̃ are a Strouhal number, the ratio of time
scales for flow and rotation, and the density ratio, respec-
tively. Such a comparison still requires some rescaling of
lengths �by sending the rigid cell boundary off to infinity in
Ref. �16�, while keeping R0 finite� �24�. We have imple-
mented such a limit and have indeed verified a perfect agree-
ment between our Eq. �10� and Eq. �3.26� in Ref. �16�. A
more complete study of the nontrivial comparison between
our system and the one studied in Ref. �16� goes beyond the
scope of the present work and could be investigated else-
where.

III. LINEAR AND WEAKLY NONLINEAR DYNAMICS

A. Linear stage

In this section we investigate the consequences of the
changes introduced by the generalized Darcy’s law �3� in
both linear and weakly nonlinear stages of the interface evo-
lution. We get started by discussing some noteworthy fea-
tures of the linear regime. Note that the linear growth rate
��n�=Real���n�� �see Eq. �10�� is written as the product of a
prefactor which depends on Re and A, by �n��1−B�n2−1��,
which incidentally is the linear growth rate for the case with-
out Coriolis effects �13�. An immediate consequence of the
existence of such a prefactor is the fact that both the critical
mode number nc=�1+1/B �defined by setting ��n�=0� and
the fastest-growing mode nmax=nc /�3, which maximizes
��n�, show no dependence on either Re or A. As a result, the
band of unstable modes �characterized by nc� and the typical
number of fingers at the linear stage �specified by nmax� are
not affected by the Coriolis effects. Despite having an evi-
dent influence on the typical number of fingers shown by the
patterned structures, the parameter B will not have much
influence on the major results presented in this work. It just
introduces some rescaling when varied �smaller B tends to
increase the overall magnitude of the effects�. Throughout
this work and without loss of generality, we take the charac-
teristic value B=2.0
10−4. It is worth mentioning that the
values of the relevant dimensionless parameters used in our
current study �B, A, and Re� are absolutely consistent with
the typical values of the corresponding physical quantities
used in existing experiments in rotating Hele-Shaw cells per-
formed by Carillo et al. �2,4,5� and Alvarez-Lacalle, and
co-workers �12,20�.

Figure 2 depicts the linear growth rate as a function of
mode n for A=−1 �black curve�, A=0 �dark gray�, and A=

+1 �light gray� and three different values of Re: �a� 0; �b�
0.25, and �c� 1. If Coriolis effects are not included, it can be
verified from Eq. �10� that ��n� is completely insensitive to
changes in A. So in Fig. 2�a� the cases for A=−1,0 , +1 are
all depicted by the same curve. However, if Re�0, the linear
growth rate becomes dependent on A and this single curve

FIG. 2. Linear growth rate ��n� as a function of n, for A=
−1,0 , +1 and three different values of Re: �a� 0, �b� 0.25, and �c� 1.
The color labeling refers to the values of the viscosity contrast: A
=−1 �black�, A=0 �dark gray�, and A= +1 �light gray�. Note that
hidden in the solid light gray curve in �a� there are in fact three
coincident curves �the other two curves lie hidden�.
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splits into others �one for each value of A� due to Coriolis
effects. If Re=0.25 �Fig. 2�b��, we indeed obtain three
curves, where the curve for A= +1 �A=−1� has the highest
�lowest� peak. So, if Re is nonzero and is kept fixed while A
is modified, the patterns become more unstable as A varies
from −1 to +1. This makes perfect physical sense since when
A=−1 �inner viscous fluid pushing an outer inviscid fluid�
we have the most stable situation regarding the Saffman-
Taylor instability. It is also evident from Fig. 2�c� that larger
Reynolds numbers �Re=1� tend to result in curves presenting
typically lower peaks for A� +1, indicating the stabilizing
nature of the Coriolis effects. Therefore, if A is kept un-
changed and is not equal to +1, larger Re tend to restrain the
growth of interfacial fingering. All these linear stability find-
ings are consistent with recent numerical simulations of the
problem �17,18�.

By inspecting Eq. �10� it can be verified that Coriolis
effects do vanish in the limit of highest positive viscosity
contrast A= +1, even for nonzero Re. This is the reason why
the light gray curve for A= +1 depicted in Figs. 2�a�–2�c�
remains unchanged as the Reynolds number is modified.
Therefore, the zero-Coriolis-force situation can be achieved
either by taking Re=0 for any A or by assuming that A=
+1 for any Re�0.

It is clearly illustrated in Fig. 2 that despite the stabilizing
action of the Coriolis effects, the peak location and width of
the band of unstable modes remain unchanged, indepen-
dently of the values of Re and A. A simple physical expla-
nation for this stabilizing role can be given based on the fact
that the Coriolis force tends to move the fingers “backwards”
in the � direction, deviating them from the purely radial
growth. Therefore, it inhibits the radial stretching due to cen-
trifugal forces, leading to a decrease in the growth of the
interfacial perturbations. Even though the number of fingers
is not altered by the Coriolis forces, their radial growth rate
is certainly affected.

The aspects highlighted above are also observed in Fig. 3
where the magnitude of the maximum growth rate ��nmax� is
plotted as a function of 0�Re�1 for the same values of A
and B used in Fig. 2. If A= +1, the height of the peak does

not change as Re is varied, meaning that the Coriolis effects
play no role. Otherwise, the growth rate of the fastest-
growing mode decreases with increasing Re. This drop of
��nmax� with Re is stronger for smaller values of A. One
important general conclusion is that, in order to induce in-
creasingly larger contributions from the Coriolis force, one
needs not merely to consider large values of Re, but also
smaller values of A. On the other hand, the very presence of
A in Eq. �10� comes through the inclusion of Coriolis forces,
so that if Re=0, the linear growth rate is completely inde-
pendent of A. These results suggest an interesting coupling
between Re and A when Coriolis effects are taken into ac-
count in the rotating Hele-Shaw cell problem.

B. Weakly nonlinear stage

Now we turn our attention to the weakly nonlinear flow
stage, focusing on finger competition events, the prominent
nonlinear phenomena occurring in rotating Hele-Shaw cells.
It is well known that the viscosity contrast A has a crucial
role in determining interfacial behavior for flow in rotating
cells when Coriolis effects are neglected �12–14,19�. Consid-
ering the length variability as a measure of the finger com-
petition, it has been verified that competition among the fin-
gering structures is dramatically modified as A varies:
increasingly larger values of the magnitude of A�0 �A
�0� lead to enhanced competition among outward �inward�
fingers. It has been also shown that competition is signifi-
cantly suppressed when A→0. When Coriolis effects are sig-
nificant, in addition to the parameter A, it is of interest to
examine how finger competition dynamics is affected by the
Coriolis control parameter Re.

As in Refs. �13,25�, to study finger competition we con-
sider the influence of a fundamental mode n on the growth of
its subharmonic n /2. To do that we rewrite the net perturba-
tion �7� in terms of cosine and sine modes, where the cosine
an=	n+	−n and sine bn= i�	n−	−n� amplitudes are real val-
ued. Then, for consistent second-order expressions, we re-

place the time derivative terms ȧn and ḃn on the right-hand
side of Eq. �9� by ��n�an and ��n�bn, respectively. Without
loss of generality we may take an�0 and bn=0. Under these
circumstances, the following equations of motion for the sine
and cosine subharmonics are obtained:

ȧn/2 = ���n/2� + C�n�an�an/2, �14�

ḃn/2 = ���n/2� − C�n�an�bn/2, �15�

where

C�n� =
1

2
�F
−

n

2
,
n

2
� + ��n/2�G
n

2
,−

n

2
�� . �16�

The function C�n� measures the strength of the competition
such that increasingly larger values of C�n��0 �C�n��0�
lead to enhanced competition of outward �inward� fingers.

We begin our study of the finger competition dynamics by
examining the weakly nonlinear results depicted in Fig. 4. It
plots C�n� given by Eq. �16� as a function of viscosity con-
trast A �with −1�A�1� for five different values of Rey-

FIG. 3. Maximum growth rate ��nmax� as a function of Reynolds
number Re and A=−1 �black�, A=0 �dark gray�, and A= +1 �light
gray�.
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nolds number Re. To observe growth of the fundamental
mode and also to allow growth of its subharmonic, we carry
out our analysis considering that n=nc. The most evident
feature of Fig. 4 is the fact that the finger competition behav-
ior is strongly dependent on Re and can be very different
from the equivalent behavior described when Coriolis effects
are absent �13�. In Fig. 4, when Re=0 �light gray straight
line� we reproduce exactly what has been observed in Refs.
�12–14,19� for the case without Coriolis effects.

The situation is significantly changed when the Coriolis
effects are taken into account. The first relevant feature when
Re�0 is the fact that, in contrast to the case Re=0, the
finger competition does not vanish when A tends to zero.

Rather, C�n�=0 at a specific positive viscosity contrast Ā

= Ā�Re�. In fact, when Coriolis effects are considered and Re
is increased, the competition tends to vanish at increasingly

larger values of Ā, such that Ā→1 for very large values of
Re. Consequently, if Coriolis effects are not neglected in
rotating Hele-Shaw cells, one could produce a pretty sym-
metric pattern in which the average length of all fingers is
roughly the same, without necessarily imposing that A=0. As
a matter of fact, depending on the value of Re one could
access a situation in which finger competition is practically
absent at considerably high A. This last conclusion exempli-
fies how the inclusion of Coriolis effects can introduce sig-
nificant changes into the nonlinear pattern formation scenario
in rotating Hele-Shaw cells.

The competition behavior of the fingers is more complex
and richer when Coriolis effects are considered. By examin-
ing Fig. 4 and contrasting the case for Re=0 �no Coriolis� to
those with Re�0 �nonzero Coriolis effect�, we identify some
distinct finger competition behaviors. In general, if A�0 we
notice that the curves for Re�0 lie below the straight line
for Re=0, so that a decrease in the finger competition of the
outward fingers is expected. On the other hand, if A�0 we
notice that the curves for Re�0 lie above the straight line
for Re=0. Consequently, within this last interval the compe-
tition between inward fingers is decreased �even more

strongly than when A�0�. The overall effect of the Coriolis
forces is to restrain finger competition, regardless of whether
they are going inward or outward. We have also verified that
for large values of Re, all curves C�n� asymptotically ap-
proach zero, except for values of A close to +1.

IV. PARALLEL WITH SCHWARTZ’S APPROACH

In this section we make a parallel between our main linear
and nonlinear findings �which have been calculated based on
the model proposed by Waters and Cummings �15�� with
those obtained by using Schwartz’s model �1�. By employing
Schwartz’s approach it is also possible to arrive to a Darcy
law equation like the one shown in Eq. �3�, however, with
different coefficients given by �1�

C jS =
1

1 + 4Rej
2 ,

D jS

C jS
= 2Rej .

By substituting these coefficients into Eq. �3� and following
the same steps described in Sec. II, we obtain a mode-
coupling differential equation similar to Eq. �9�, where the
linear growth rate ��n�S and the mode-coupling terms
F�n ,n��S and G�n ,n��S for the Schwartz’s approach can be
directly calculated from Eqs. �10�–�12� simply by replacing
C j by C jS and D j by D jS.

First, we compare both growth rates ��n� and ��n�S for
the case of interest here ��2=0�, as the parameters Re and A
are changed. We perform such a comparative study in Fig. 5
which plots the relative percentual error �=100���n�S

−��n�� /��n� as a function of Re for some values of the vis-
cosity contrast. One obvious feature is that, for a given A, the
error � undergoes significant changes as the Reynolds num-
ber is varied. Of course, if A= +1, the growth rates for the
two models are coincident and �=0. However, if −1�A�
+1, the values of the growth rates coincide only at two spe-

cific magnitudes of Re: 0 and Rē=Rē�A�. For a given A, the

error � is positive in the interval 0�Re�Rē and negative

for Re�Rē. This indicates that Schwartz’s approach overes-
timates the value of the growth rate for the interval 0�Re

�Rē and underpredicts it for Re�Rē. These findings are in
agreement with similar results obtained in Ref. �15� for the

high-viscosity-contrast case A=−1, where Rē=2.84.
It is also evident in Fig. 5 that � presents a very strong

dependence on the viscosity contrast. As A is varied from −1
to +1, the curves tend to approach the �=0 line, indicating
that the value for ��n�S tends to a better agreement with ��n�
as A is increased. For the range of Reynolds numbers con-
sidered in Fig. 5 �0�Re�5�, the largest errors of Schwartz’s
approach occur precisely at A=−1 ���28% for Re=0.92
and ��23% for Re=5�. However, these errors tend to de-
crease as the viscosity contrast varies from −1 to +1. It is
worth noting that the error for underestimation ���0� can
be much more significant for larger values of Re �for in-
stance, we have verified that � can be as large as 45% for
A=−1 and Re=10�. We also point out that, for A=−1 in Fig.
5, the error is approximately 5% for Re=0.17, rising to
roughly 10% around for Re=0.25. This last value of the

FIG. 4. Competition function C�n� plotted in terms of the vis-
cosity contrast A and five different values of the Reynolds number:
Re=0,0.4,1 ,2.5,5. Darker colors refer to higher Re.
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Reynolds number has been considered in Ref. �15� �where
A=−1� as the largest value of Re for which the Schwartz’s
prediction for the linear growth rate would be considered as
“good.” However, we believe that a 10% disagreement is a
bit too sizable. This indicates that � can be appreciable al-
ready at very small Reynolds numbers.

We proceed by contrasting our approach with Schwartz’s
at the weakly nonlinear stage. We do this in Figs. 6 and 7.
Figure 6 illustrates how the finger competition function be-
haves as a function of A for three characteristic values of the
Reynolds number Re: �a� 0.25, �b� 0.92, and �c� 2.84. The
back solid curve refers to C�n� calculated from Eq. �16�, and
the back dashed one is related the equivalent function C�n�S

we derived based on Schwartz’s model. Complementary in-
formation can be obtained in Fig. 7, where we plot the dif-
ference C�n�S−C�n� as a function of A for the same values of
Re used in Fig. 6.

As one can easily observe in Fig. 6�a� for low Re, in
general the mismatch between the two descriptions is rela-
tively small for most values of the viscosity contrast A, but
increases significantly as A→−1. This feature is also clearly
illustrated in Fig. 7�a�, where the difference between the
models is particularly large within the interval −1�A�0. As
far as finger competition is concerned, it can be noted that
even if Re is as low as 0.25 the difference between the two
approaches at the weakly nonlinear level can still be pretty
significant, depending on the value of A.

A different scenario is depicted in Figs. 6�b� and 7�b�
when Re=0.92: now the discrepancies between the two ap-
proaches are significantly larger for A�0 �relative to what
happens for the case Re=0.25� and are indeed present along
the whole range of values for the viscosity contrast �−1�A
� +1�. It is also noticed in Fig. 6�b� that as A is varied the
dashed curve can be located above or below the solid one,
indicating that Schwartz’s model can be misleading regard-
ing the finger competition dynamics. This behavior is even
more clear in Fig. 7�b�. As the Reynolds number is further
increased as in Figs. 6�c� and 7�c� in which Re=2.84 we

notice a behavior that is kind of the inverse of the one shown
in Figs. 6�a� and 7�a�: now the disagreements between the
models are very small for −1�A�0, but notably increased
within the interval 0�A� +1.

By inspecting Figs. 6 and 7 it is apparent that, for a given
Re, the difference between the two approaches is quite de-
pendent on the value of the viscosity contrast. It is also in-
teresting to note that the regions of the largest discrepancy
migrate from values around A=−1 for lower Reynolds num-
ber to the vicinity of A= +1 for larger Re. On the other hand,
regardless the value of Re there exist some values of A in
which there is no difference between the two approaches

FIG. 5. Percentual error � as a function of Re, for several values
of A. Darker colors refer to higher A.

FIG. 6. Competition functions C�n� �black solid curve� and
C�n�S �black dashed curve� as a function of A for three different
values of Re: �a� 0.25, �b� 0.92, and �c� 2.84.
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�given by the zero of C�n�S−C�n��. All these results indicate
that Schwartz’s approach may result in significant errors at
weakly nonlinear stages.

V. CONCLUSIONS

We have investigated the effect of Coriolis force on the
flow and interfacial pattern formation in rotating Hele-Shaw
cells. The system is described by a generalized 2D Darcy’s
law, derived by a gap-averaging process of the 3D Navier-
Stokes equation properly including Coriolis effects. We car-
ried out a mode-coupling approach for the system and de-
rived an equation of motion for the interfacial perturbations
up to second order. This equation is conveniently written in
terms of the viscosity contrast A and the Reynolds numbers
of the fluids.

Our analytical study extends the previous contributions of
the problem �1,15,17,18� in several directions. First, the vis-
cosity contrast may assume arbitrary values. This allowed us
to reveal the interplay between A and Re in determining the
action of Coriolis effects on the behavior of the evolving
fluid-fluid interface. Some noteworthy behaviors can be al-
ready identified at the linear level, including the stabilizing
nature of the Coriolis force and the mentioned connection
between Re and A when such forces are present. We have
shown that the magnitude of the Coriolis effects is not ex-
clusively dependent on the intensity of the Reynolds number.
Consequently, stronger Coriolis effects are achieved not only
by setting high values of Re, but also by taking smaller val-
ues of A. We have also verified that when �2=0, regardless
the value of Re1, the Coriolis effects completely vanish if
A= +1.

In addition, our study goes beyond the purely linear stages
of the dynamics and addresses relevant nonlinear aspects re-
lated to the finger competition phenomena. One interesting

finding was the fact that, in contrast to the rotating flow case
without Coriolis effects, if Re�0, the finger competition
does not vanish when A=0. In fact, we have found that if
Coriolis effects are significant, competition is absent only for
relatively large values of the viscosity contrast. We have also
been able to contrast our main results with similar ones we
obtained from the simplified Coriolis approach proposed
sometime ago by Schwartz �1�. We have demonstrated that
the neglect of Coriolis effects �at the level of the 3D Navier-
Stokes equation� in deriving a 2D Darcy’s law for the prob-
lem can lead to significant errors at both linear and weakly
nonlinear levels.

In a more general sense, our work is related to some other
recent efforts that try to introduce inertial corrections into the
Saffman-Taylor problem �26–29�. These studies and our own
are necessary to provide a better understanding of the emerg-
ing fingering instabilities for the high-Reynolds-number
limit. In our case the inertial corrections associated with the
Coriolis force can be included into a Darcy’s-law-type equa-
tion in a relatively simple fashion, a fact that greatly facili-
tated the study of Coriolis effects at both linear and nonlinear
levels. We hope our study will be useful in the investigation
of other pattern-forming systems involving similar swirling
effects, where spiral patterns arise in magnetic fluids �30–34�
and lipid monolayer domains �35�.
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APPENDIX: FUNCTIONS H� and I�

This short appendix presents the complicated expressions
for the functions H� and I� appearing in the second-order
mode-coupling coefficient G�n ,n�� in Eq. �12�:

H� =

�A1−�
E2�

E1
C1 +

E1�

E2
C2� − A�
E2�

E1
C1 −

E1�

E2
C2��

f�E1�,E2�,A�
,

�A1�

I� =

�A1−�
E2�

E1
D1 +

E1�

E2
D2� − A�
E2�

E1
D1 −

E1�

E2
D2��

f�E1�,E2�,A�
,

�A2�

where f�E1� ,E2� ,A�= ��E1�−E2��+A�E1�+E2��� and �=0,1.

FIG. 7. Difference C�n�S−C�n� as a function of A for three
different values of Re: �a� 0.25, �b� 0.92, and �c� 2.84. Darker colors
refer to higher Re.
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