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ABSTRACT

We investigate the transient viscoelastic response of weakly strain­hardening fluids

to imposed elongational deformation in filament stretching devices. We combine time­

dependent finite­element simulations with quantitative experimental measurements on a

rheologically well­characterized test fluid to investigate how well the device reproduces

the ideal transient uniaxial extensional viscosity predicted theoretically. A concentrated

polymer solution containing 5.0 wt.% monodisperse polystyrene is used as the test fluid

and the experiments are conducted using the filament stretching rheometer developed

by Spiegelberg et al. The axisymmetric numerical simulations incorporate the effects

of viscoelasticity, surface tension, fluid inertia and a deformable free surface. Single

and multi­mode versions of the Giesekus constitutive equation are used to model the

rheology of the shear­thinning test fluid. Excellent agreement between the measured

transient Trouton ratio and the numerical predictions over a range of deformation rates

is reported. The numerical simulations also reveal some important aspects of the fluid

kinematics exhibited by weakly strain­hardening fluids during stretching; including a

rapid necking of the filament diameter near the axial mid­plane of the fluid column, and

an associated elastic recoil phenomenon near the rigid end­plates. This necking instability

of a viscoelastic filament can be understood through a generalized Considère criterion, as

recently documented by Hassager et al. As a consequence of this necking, spatial and

temporal homogeneity in the extensional deformation of the filament is never achieved,

even at large Hencky strains. This is in sharp contrast to the numerical and experimental

studies for strongly strain­hardening dilute polymer solutions that have been reported to

date. Nonetheless, the present computational rheology study shows that filament stretching

devices can still be used to accurately extract the transient extensional viscosity function

for weakly strain­hardening fluids, provided that the evolution history of the tensile force

at the end­plate and the filament radius at the mid­plane are carefully measured and that

the experimental data are correctly processed.
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1. INTRODUCTION

The kinematics of many industrial applications, such as fiber­spinning, injection molding,

extrusion and film coating operations, are often dominated by extensional deformations. Accurate

design calculations and numerical simulations for such processes therefore require detailed knowl­

edge of the dynamical response of viscoelastic fluids in strong extensional flows, and the use of

constitutive models which faithfully reproduce the experimentally measured data. The filament

stretching device pioneered by Matta & Tytus [1] and Sridhar et al. [2] is one of the most promising

experimental techniques that has been developed for providing accurate measurements of the tran­

sient extensional viscosity for polymer solutions. Numerous variants of such devices are currently

being developed worldwide by several research groups: Tirtaatmadja & Sridhar [3], Berg et al. [4],

Spiegelberg & McKinley [5], Solomon and S.J. Muller [6], Koelling et al. [7], van Nieuwkoop &

Muller von Czernicki [8] and Verhoef et al. [9].

In the filament stretching apparatus, a cylindrical liquid column is first generated between two

concentric circular plates and then elongated by pulling one or both of the end­plate fixtures at an

exponentially­increasing rate. It is hoped that the resulting flow kinematics in the liquid column

approximate an ideal uniaxial elongational flow; the extensional viscosity function is determined

from the axial force at the end­plate which is measured as a function of time, and the total Hencky

strain applied to the material is computed from the total stretch imposed on the sample [10].

Accompanying the rapid proliferation of filament stretching rheometers, theoretical and nu­

merical efforts have been devoted to studying the complex time­dependent free­surface extensional

deformations which are generated in such devices. In a pioneering numerical study using a free­

surface finite element method and the Oldroyd­B model, Shipman et al. [11] simulated one of the

low­extension­rate falling­plate experiments conducted by Sridhar & co­workers [2]. Reasonable

agreement in terms of free surface shapes was obtained; however, numerical difficulties limited the

range of calculations. Gaudet et al. [12] used the boundary element method to perform a quasi­

steady analysis of a Newtonian fluid filament constrained between two rigid disks (i.e. a ‘liquid

bridge’) for a wide range of aspect ratios and capillary numbers. In this study the end­plates were

separated linearly in time rather than in the exponential manner employed in filament stretching

rheometers. The effects of exponential separation and the role of viscoelastic stresses have also

recently been investigated using the boundary element method [13].

Finite element calculations of elongating liquid bridges were performed by Yao and McKinley

[14] using the Oldroyd­B model to investigate the extensional dynamics of highly elastic materials

such as Boger fluids. Profiles showing the evolution of free surface shape and kinematics within the
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fluid filament were presented, and the resulting evolution of the polymeric contribution to the total

tensile stress was studied in detail. Similar calculations have also been performed by Sizaire et al.

[15] using several variants of the finitely extensible non­linear elastic (FENE) dumbbell model, and

by Kolte et al. [16] using an integral model of K­BKZ type. By integrating the momentum equation

over the upper half of an elongating liquid bridge, Szabo [17] has recently derived a complete force

balance for the liquid filament incorporating the tensile stress differences, the shear stress and the

inertial accelerations in the fluid, plus the curvature of the free surface.

From the experimental and numerical studies of filament stretching devices outlined above, the

overall picture of the evolution of the axial elongation of a liquid column exhibiting pronounced

strain­hardening is now clear. The key observations may be summarized as follows:

i) At short times or small Hencky strains (ε≡ ε̇t≤2), the kinematics generated by the device are

non­homogeneous and consist of a uniaxial elongation plus an additional shearing contribution

arising from the no­slip boundary condition imposed at the rigid end­plates. The stresses in

the fluid arise predominately from the Newtonian solvent, and the filament evolution is well­

described by a lubrication approximation similar to that derived for radial squeeze­flows.

ii) For Deborah numbers De > 0.5, strain hardening occurs beyond ε ≈ 2. Strain hardening

is manifested by three observations: 1) a change in the slope of the mid­point radius vs.

time; 2) the filament radius becomes progressively more axially uniform; and 3) there is a

concomitant rapid increase in the tensile stress in the filament. The strain hardening behavior

predicted in simulations agrees well with available experimental observations [3–9]. The

pronounced strain hardening leads to an increasingly homogeneous extensional deformation

at large strains. Measurements of the extensional viscosity based on the assumption of

homogeneous kinematics are then appropriate. Kolte et al. [16] show that with careful time­

resolved measurements of both the tensile stress difference and the local rate of extensional

deformation, filament stretching devices can provide an accurate measure of the transient stress

growth function in uniaxial elongation.

iii) At very large strains ε≥3.5, the large tensile stresses in the mid­region of the column inhibit

further elongation and the fluid reservoirs near either rigid end­plate are rapidly drained of

fluid. This can lead to non­monotonic axial variations in the local free surface shape, and

the combined effects of the large elastic stresses and sharp interfacial curvature leads exper­

imentally to the onset of a local elastic instability. Two­dimensional numerical calculations

of free surface evolution [14,16] agree well with the experimental observations [18] at large

strains prior to the onset of the axisymmetry­breaking instability. Recent three­dimensional
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time­dependent calculations with the Upper­Convected Maxwell model have also been able to

simulate the growth of periodic azimuthal perturbations near the end­plates [19]

In contrast to the failure mechanism described in (iii) above, Newtonian fluids exhibit no strain­

hardening and the elongating filaments always develop a concave shape with a narrow neck

connecting two quasi­static fluid reservoirs near the rigid end­plates. As the axial length of the

filament is increased, the radius of the fluid column will decrease towards zero at some position

at, or near, the axial mid­point of the fluid column and two unconnected fluid regions will be

formed, each attached to one of the rigid disks. The precise location and dynamic evolution of this

capillary­driven failure depend on the relative importance of the surface tension, the viscosity of

the inner and outer fluid [12] and the fluid inertia [20].

A similarity solution for this finite­time mathematical singularity incorporating capillary and

viscous stresses plus fluid inertia has been given by Eggers & Dupont and a detailed review of

such mechanisms has recently appeared [21]. In general, the tensile stresses that develop during

exponential stretching of a cylindrical column of a viscous Newtonian liquid help to stabilize the

capillarity­driven Rayleigh instability [22]. In a filament stretching device, this stabilization shifts

the capillary­driven necking instability to high Hencky strains, and experiments [5] and numerical

simulations [14,16] have shown that it is possible to obtain the expected Trouton ratio of 3 for

viscous Newtonian filaments at moderate strains (2 ≤ ε ≤ 4). Indeed, in the absence of surface

tension, it has been proven theoretically [23] that a filament of viscous Newtonian fluid does not

‘fail’ (i.e. break) in a finite time

The experiments and calculations performed to date suggest that it is now possible to use

filament stretching devices to systematically investigate differences in the extensional rheology of

different fluid formulations, e.g. the effect of concentration and solvent quality. However, it is

unclear whether the sequence of events described above for the dynamical evolution of the liquid

bridge (based primarily on experimental observations in Boger fluids and computed using constant­

viscosity dumbbell models) is still valid for other viscoelastic fluids. Experimental determination of

the extensional behavior is especially important for semi­dilute or concentrated polymer solutions.

Such materials typically exhibit shear­thinning viscometric rheological properties and significantly

less pronounced strain­hardening in extension (see for example Meissner [24]). It is expected

that the absence of a dominant Newtonian solvent viscosity at short times, the broad spectrum

of relaxation times and a low bound on the maximum extensional viscosity will all affect the

dynamical evolution of the liquid bridge. For such materials, the need for direct comparison

between experiments and numerical simulations is more pressing [25] since the kinematics in
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the device never become spatially or temporally homogeneous [14,16] and it is this issue which

we address in the present work. Experimental measurements by Sridhar and co­workers [3,26]

have shown that in some concentrated polymer solutions which exhibit shear­thinning viscometric

properties (e.g. the ‘A1’ and ‘S1’ fluids), a strain­hardening extensional stress growth function

still exists and Trouton ratios in the range 100 − 1000 are obtained. For such materials, the

computations of Kolte et al. with the Papanastasiou­Scriven­Macosko (PSM) integral model show

that the stress growth measured in a filament stretching device provides a very good agreement

with the ideal extensional viscosity function expected in a homogeneous uniaxial elongation. For

the values of the nonlinear parameters selected in [16] for the PSM constitutive model, Trouton

ratios of O(100) were obtained at moderate Hencky strains ε ∼ 4 and the radial profile of the

elongating fluid column becomes increasingly uniform with time, in agreement with computations

and experiments for strain­hardening Boger fluids. However, in a more recent study, Hassager et

al. [23] show that as the parameter controlling the level of strain­hardening in the fluid is varied and

the ultimate steady­state extensional viscosity is gradually decreased then the filament can undergo

a ductile failure in which the radius of the filament rapidly decreases to zero at the axial mid­plane.

The conditions necessary for rupture of polymeric fluids undergoing elongation have recently

been discussed by Malkin & Petrie [27]. The ductile failure mode observed in [23] and in the

present work is cohesive in nature (i.e. it occurs within the homogeneous bulk of the material and

not at the solid­fluid interface) and may be characterized as an unstable necking of the filament

mid­section. it is important to note that, as a result of the no­slip boundary conditions at the rigid

end­plates of a filament stretching rheometer, a fluid sample that is initially cylindrical at t = 0

and subsequently elongated will develop a concave or ‘necked’ configuration for any imposed

deformation history. Since the original design motivation for filament stretching devices was

predicated on the observation that – at least for elastic fluids – the sample became increasingly

cylindrical at high Hencky strains, it is thus useful to define a dimensionless measure that can be

used to ascertain if the degree of necking in a fluid filament is increasing or decreasing. In the

present work, we report this shape perturbation in terms of a relative difference of the computed

free surface shape with respect to a reference state,

δR(z, ε) ≡ [R(z, ε) − Rref(z, ε)]/Rref(z, ε) (1)

where Rref(z, ε) represents a reference axial profile of the free surface at a specified strain ε. For

experiments with highly elastic Boger fluids and computations with the Oldroyd­B model, we

may select the ideal uniaxial elongational flow as the reference state and thus Rref ≡ Rideal =

R0 exp(−0.5ε). In this case, the variation of δR with increasing Hencky strain reflects the
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discrepancy between the shape of the free surface obtained in the filament rheometer and the ideal

homogeneous uniaxial elongation of a fluid cylinder. A similar definition was used in the numerical

computations of Hassager et al. [23], and – for strongly strain­hardening fluids – the necking

perturbation is observed both experimentally and numerically to decrease with increasing strain. A

recent linear stability analysis of the non­autonomous one­dimensional slender body equations for

an elongating filament of an Oldroyd­B fluid also shows that disturbances are expected to decay

for De > 0.5 [28].

However, for experiments and calculations with a Newtonian or weakly­straining fluid, the

choice of Rideal as the reference state is inappropriate since the fluid filament is never close to the

ideal cylindrical configuration, except at t = 0. For such fluids, we thus choose as a reference

curve the profile obtained from the numerical simulation of a viscous Newtonian fluid with the

same stretching history. In this case, δR describes the relative difference in free surface profiles

between a viscoelastic fluid and a Newtonian fluid under the same flow conditions (i.e. with the

same imposed end­plate boundary conditions and with all material parameters held fixed, except

for the relaxation time which is set to zero). The necking perturbation δR is thus very small for low

Hencky strains before nonlinear viscoelastic effects modify the filament profile. If the magnitude of

the perturbation near the axial mid­plane (located at z = 0) of a viscoelastic fluid filament increases

monotonically with time, we refer to the necking as ‘viscoelastically destabilized’ or ‘unstable’

with respect to the corresponding response of a Newtonian fluid; conversely, if the magnitude of

the shape perturbation for the fluid elements near the mid­plane decreases with time we refer to the

necking as ‘stabilized’ by fluid viscoelasticity.

We realize, of course, that the use of numerical simulations combined with this choice of

necking criterion does not show unambiguously if there is, in fact, a finite time singularity in

the governing equations corresponding to rupture of a viscoelastic fluid filament during exponen­

tial stretching. Such an analysis remains to be performed, possibly using the one­dimensional

Lagrangian formulation of Renardy [29] which we have recently shown provides an accurate de­

scription of stress relaxation and necking breakup of viscoelastic fluid filaments following the

cessation of elongation [30]. However, our definition does form a useful criterion for rheome­

try since this unstable necking phenomenon may be expected to severely compromise the ability

of the filament stretching device to quantitatively measure the extensional viscosity of weakly

strain­hardening fluids such as polymer melts and concentrated polymer solutions. To date, no

experimental data for such materials has been available.

The primary goal of the present work may thus best be described as computational rheometry.
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We combine experimental observations of the axial tensile force and filament profile evolution in

a well­characterized concentrated polymer solution with time­dependent, two­dimensional finite

element simulations using a nonlinear viscoelastic constitutive equation. By quantitatively com­

paring this information, we can investigate how closely the filament stretching device achieves

the rheometric goal of providing a means for measuring the transient uniaxial viscosity of the test

fluid in a hypothetical homogeneous uniaxial elongational deformation. Finally, having demon­

strated both the feasibility of using the filament stretching device to measure the transient uniaxial

extensional viscosity and the accuracy of the finite element simulations, we investigate the role

of constitutive effects on the necking instability of a viscoelastic filament first documented by

Hassager et al. [23]. Calculations with a FENE­P dumbbell model and with a Giesekus model

that predict identical values of the steady elongational viscosity at a given Deborah number, but a

different time evolution, demonstrate that it is the transient uniaxial stress growth in the filament

that governs the dynamical evolution in the elongating and necking filament. These findings can

be understood, at least qualitatively, in terms of a generalized Considère criterion [31]. This con­

struction is commonly used in solid mechanics to understand necking in metallic and polymeric

tensile test specimens [32].

Our experimental measurements are performed using a concentrated solution of 5.0 wt%

polystyrene that has been extensively characterized in steady and transient shear flows by Li et al.

[25]. The linear viscoelastic spectrum and the nonlinear rheological parameters for this fluid were

determined by these authors and numerical calculations (using a multi­mode Giesekus model) of

the stress field in the complex shearing and extensional flow near an axisymmetric stagnation point

were shown to agree well with experimental measurements of the radially­averaged flow­induced

birefringence. The majority of the time­dependent finite­element simulations in the present work

are performed using a single­mode Giesekus model. Although a single relaxation mode does

not represent a perfect fit of the viscometric properties of the test fluid, the predicted transient

Trouton ratio agrees quantitatively well with experimental measurements except at small strains.

Exploratory simulations with a multi­mode model show that this discrepancy can be resolved by

accurately capturing the dynamical response of the shorter time­scales present in the fluid to the

non­homogeneous deformation initially generated in the filament stretching device.
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2. EXPERIMENTAL

2.1 Fluid Characterization

The test fluid used in the present work is a 5.0 wt% solution of high molecular weight, narrow

distribution polystyrene obtained from Pressure Chemical, dissolved in a mixture of tricresyl

phosphate (TCP) and dioctyl phthalate (DOP). The preparation and viscometric characterization

of the fluid is described by Li and Burghardt [25]. Fig. 1 shows the steady­state shear viscosity

and the first normal stress difference of the test fluid measured at a reference temperature of

22◦C together with the predictions of the Giesekus model. As seen from Fig. 1, the experimental

data can be well represented by a 3­mode Giesekus model using the parameter values given in

Table 1. The 3­mode fit was obtained by Li & Burghardt by first fitting the small­amplitude

oscillatory shear data (G′(ω), G′′(ω)) to obtain the linear viscoelastic parameters, ηi & λi, then

by adjusting the values of αi for each mode to describe the first normal stress difference and

the nonlinear fluid response during start­up of steady shear flow. Detailed comparisons among

the Phan­Thien­Tanner (PTT), modified PTT­White­Metzner and Giesekus models presented in

[25] suggest that the 3­mode Giesekus model provides the best approximation for the measured

transient and steady­state rheological data. We do not adjust the parameter values given in Table 1,

but rather seek to evaluate how well they describe the transient uniaxial extensional viscosity of the

5.0 wt% polystyrene solution as measured in a filament stretching rheometer. In our single­mode

finite element simulations, we retain the values of η1 and λ1 given in Table 1 and let λ2 → 0 and

λ3 → 0 such that the total Newtonian solvent viscosity becomes ηs = 0.069 + η2 + η3 = 9.15

Pa.s. The solvent viscosity ratio for the single­mode model thus becomes β=ηs/η0 =0.262. This

value limits the extent of the shear­thinning in the viscosity and leads to the plateau observed at

high shear rates in Figure 1(a). Since the experimental measurements in the filament stretching

device are typically performed at deformation rates in the range 0.1 ­ 10 s−1 this limitation of the

single­mode model appears, at first glance, to be unimportant. However, the reciprocal duality

between deformation rates and time­scales in viscoelastic fluids leads to errors in the modeling

of the transient rheological properties of the material. In particular, the elimination of the shorter

viscoelastic time scales and the introduction of a large, instantaneous viscous response may be

expected to lead to an overly rapid growth of the predicted transient uniaxial stress in simulations

of the filament stretching device.

2.2 Apparatus

The experiments were conducted using the filament stretching rheometer developed by Spiegel­

berg, Ables and McKinley [5]. A schematic diagram of the apparatus and discussion of the ex­
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perimental subsystems are given elsewhere [5]. For the present experiments, the fluid sample is

extruded through a positive­displacement syringe system onto rigid aluminum end­plates. The di­

ameter of the circular end­plates used in this study was d0 =0.7cm. The initial separation between

the two end­plates, L0, is adjusted to ensure the sample configuration is initially cylindrical. The

geometric parameters used in the tests are summarized in Table 2. During each filament stretching

test, the lower plate is held stationary and is attached to a force transducer. A computer­controlled

linear positioning system translates the upper end­plate so that the position and velocity of the

end­plate both increase exponentially with time (i.e. eqn. (3) in ref. [14]). The measured tensile

force Fz(t), corrected for surface tension and gravitational body force contributions [5], and the

filament radius, Rmid(t) are then used to compute the evolution of the tensile stress difference in

the column with time. No velocity compensation algorithm of the type discussed in [3] & [5] is

used in the present work.

Thermal environmental control was not incorporated into the rheometer. All measured results

were shifted to a reference temperature of 22◦C by using the time­temperature superposition

principle with the Arrhenius shift factor given by Li & Burghardt [25].

2.3 Operation Conditions

It is desired to perform rheological measurements in homogeneous flows characterized by a

spatially uniform deformation rate. The key to a successful extensional rheological measurement is

therefore to generate a simple, homogeneous elongational flow. The theoretical operating condition

to be achieved in filament stretching devices is the ideal uniaxial elongational flow. The Eulerian

velocity field in cylindrical coordinate system is well known (e.g. see eq. (26) in [14]), and

the Lagrangian description of this flow field leads to an exponential separation between the two

end­plates (i.e. eq. (3) in [14]).

In the ideal uniaxial elongational flow, the local axial strain rate ∂uz/∂z is homogeneous

everywhere in the liquid and identical to the imposed global extension rate, Ė. However, the flow

kinematics in filament stretching devices are spatially non­homogeneous, as has been shown both

experimentally [2,5] and numerically [14­16]. As a result, the local effective strain rate will vary

throughout the elongating liquid column and the Hencky strain accumulated by material elements

in the filament will be non­homogeneous. For example, the Hencky strain based on the separation

of the two end­plates, i.e.

εp ≡ Ėt = ln(Lp/L0) (2)

in general represents only the average of the local strain and strain rates experienced by all the

fluid particles within the whole domain, as indicated by the first­order lubrication solution [5,14].
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This ‘reverse squeeze flow’ results in a local strain rate at the axial mid­plane between the two

end­plates, z=Lp(t)/2, which is 50% higher than the imposed global extension rate.

Since the local extensional strain rate at the mid­plane is extremely important for the exper­

imental data analysis, the following effective extension rate is defined based on the free surface

deformation at the mid­plane, Rmid,

ε̇eff ≡ −2d(lnRmid)/dt = −2Ur,mid/Rmid (3)

where Ur,mid is the radial velocity component of the free surface at the mid­plane. The first equality

in eq. (3) is widely used in experiments since Rmid can be obtained directly from the evolution

of the free surface profile. The second equality is convenient for numerical analysis when the

velocity­pressure formulation is used. An effective Hencky strain based on ε̇eff can be calculated

directly from eq. (3) by the following integral,

εeff =

∫ t

0

ε̇eff(t′)dt′ = 2 ln[R0/Rmid(t)] . (4)

If the deformation near the axial mid­plane is essentially uniform in the radial direction, then this

effective Hencky strain represents the actual strain experienced by cylindrical fluid elements in the

vicinity of the mid­plane.

2.4 Measurements of Extensional Viscosity

For the ideal homogeneous uniaxial elongational flow, the extensional viscosity can be ex­

pressed in non­dimensional form as a transient Trouton ratio, namely

Tr ≡ η̄+(Ė, t)/η0 = (τzz − τrr)/(η0Ė) (5)

where τzz , τrr are the normal components of the extra stress tensor defined in the next section; η0

is the total zero­shear viscosity. In the ideal uniaxial elongational flow of a Newtonian fluid, the

Trouton ratio is simply a constant with value Tr=3.

In filament stretching devices, the time­dependent quantities to be experimentally measured

are the normal force on the end­plate, Fz(t), and the mid­plane radius of the fluid filament, Rmid(t).

From these experimental measurements, it is necessary to compute the extra stress difference and

the extension rate in the fluid. Since these quantities vary spatially throughout the material, a

number of different formulae for the ‘apparent extensional viscosity’ measured by the device are

thus possible. Such problems have plagued the analysis of experimental data obtained from other

devices proposed as extensional rheometers for polymer solutions (see for example Ref. [33]). For
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filament stretching devices, numerical studies by Kolte et al. [16] and by Gaudet & McKinley [13]

have considered a number of different possible formulae. Following the notation of Kolte et al.

[16] we define two different quantities appropriate for an experiment in which a single exponential

velocity profile is imposed. In a Type I experiment the axial deformation rate Ė and the average,

or idealized, radius is used to compute the extensional viscosity function from the experimentally

measured force,

η̄+
(I)(Ė, t) =

Fz

ĖπR2
ideal

−
σ

ĖRideal

+ O(Fi, Fg) (6a)

where Rideal = R0 exp(−0.5Ėt) is the ideal radial deformation in uniaxial elongational flow. In

the above expression, the second term on the right hand side is the correction term arising from

capillary effects, and σ is the surface tension coefficient. The final term O(Fi, Fg) accounts for

the corrections due to the inertia force Fi and gravitational force Fg , respectively. In the results

presented in this paper, this last term is assumed to be negligibly small.

The use of Rideal in eqn. (6a) implies that in the original type I analysis the filament is assumed

to deform homogeneously as a cylinder throughout the test. This assumption is clearly a poor

one, especially at early times (i.e. small strains), and modification is made in practice by making

use of additional experimental knowledge of the evolution of the filament radius Rmid(t) at the

axial mid­plane z =Lp(t)/2. There are several ways in which this additional information can be

utilized. Firstly, the actual mid­point filament radius can be substituted in eqn. (6a) to provide a

better estimate of the tensile stress in the filament. We refer to this as a modified type I or type IB

analysis

η̄+
(IB)(Ė, t) =

Fz

ĖπR2
mid

−
σ

ĖRmid

+ O(Fi, Fg) (6b)

The experimental data presented in the present work are analyzed using this type IB formulation.

A further improvement for extensional viscosity calculations is to replace the constant axial

extension rate, Ė, in eq. (6b) by the time­dependent local effective extension rate, ε̇eff , defined in

eq. (3). This procedure leads to the Type II formula defined in ref. [16]

η̄+
(II)(Ė, t) =

Fz

π̇εeffR2
mid

−
σ

ε̇effRmid
+ O(Fi, Fg) . (7)

For clarity, the type II analysis is used exclusively in the present work for post­processing numerical

solutions and for comparing with the type IB analysis. As will be seen later, it provides the best

comparison to theoretical predictions of the ideal uniaxial extensional viscosity, η̄+(Ė, t).

Note that the use of local variables in evaluating the kinematics in eq. (7) means that the

computed Tr pertains specifically to the material elements near the mid­plane, even though the
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stress difference is measured through the force transducer located at the rigid end­plate. Similar

problems are faced in analysis of other extensional flow devices; however the benefit of the filament

stretching device is that although the deformation in the filament is spatially non­homogeneous

throughout the experiment, the tensile force transmitted axially along the column is constant at any

instant in time for all 0≤ z ≤L(t) (assuming inertial forces are negligibly small). By symmetry,

shearing deformations are negligible at the axial mid­plane, except for very short times or small

aspect ratios and eq. (7) thus should accurately capture the response of a material element to a

homogeneous uniaxial elongational flow. Kolte et al. [16] found that although the Type I analysis

of eq. (6) gave reasonable predictions (within ±50%) for the stress growth in a strain­hardening

viscoelastic liquid subjected to an ideal homogeneous uniaxial extensional flow, the type II analysis

provided superior, almost quantitative results. In the present work we investigate the applicability of

the type II analysis by comparing the experimental measurements using the weakly­strain­hardening

concentrated polymer solution with two­dimensional time­dependent numerical simulations of the

filament stretching device using the Giesekus model and with the theoretically expected Trouton

ratio obtained in an homogeneous uniaxial elongation.

3. NUMERICAL

3.1 Mathematical Description of the Problem

We consider the extensional flow of a viscoelastic liquid contained between two parallel

coaxial massless circular disks. The liquid column and the end­plates represent the basic elements

comprising a filament stretching apparatus and are usually referred to collectively as a liquid bridge

[12]. The typical arrangement is depicted schematically in Fig. 2.

The initial configuration of the liquid bridge is taken to be a cylinder when t≤ 0−, as shown

in Fig. 2(a). Let R0 denote the radius of the two equal end­plates and L0 the initial separation

between the two end­plates. The initial aspect ratio of the liquid bridge is then defined as

Λ0 ≡ L0/R0 . (8)

At the instant t=0+, the top plate is set into vertical motion. The typical subsequent extensional

deformation in the fluid filament is illustrated schematically in Fig. 2(b). The top plate will be

referred to as the moving end­plate and its axial velocity is L̇p = dLp/dt. The fluid column is

assumed to remain axisymmetric and to wet the end­plates so that the contact line is pinned to the

radial edges of the disks at all times. This assumption agrees with experimental observations of

the filament profile near the end­plates, except at very high tensile stresses and large strains [18].
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The aspect ratio of the filament, Λt≡Lp(t)/R0, increases with time while the volume of the liquid

bridge remains constant. At long times the filament will ‘fail’ or ‘rupture’, leading to the formation

of two separate fluid domains. The location of this singular event depends on the kinematics of the

deformation and the material properties of the liquid filament. We do not attempt to capture the

local dynamics of the breakup process [21] but focus on the global evolution of the filament profile.

The approximate axial location of the failure event can be readily detected from the simulations

since the rate of radial thinning rapidly increases with time in this region.

In the absence of gravitational body forces, fluid inertia and the dynamical effects of an outer

fluid viscosity, the elongating fluid filament will be symmetric about the axial mid­plane and will

fail near the translating origin, z = 0, shown in Figure 2. In our experiments, the small size

of the initial sample and the large viscous and elastic contributions to the total force ensure that

gravitational body forces and inertia are negligible at all strains. In the numerical simulations,

the gravitational body force term in the momentum equation is neglected while the inertia term

is retained in the computations for numerical purposes. Sizaire and Legat [15] have examined

the possible effects of fluid inertia at high strain rates and large axial strains, and Szabo [17] has

considered the perturbative effects of weak gravitational forces (i.e. small Bond numbers) on the

initial (non­cylindrical or ‘sagging’) profile of the filament and on the resulting force balance. A

detailed study of the dynamical effects of gravity and fluid inertia on elongating liquid bridges will

be given in a separate paper [34].

3.2 Governing Equations

To non­dimensionalize the governing equations, we select the radius of the end­plates, R0, as

a characteristic length, and use the imposed axial elongation rate Ė to construct both a time scale

(Ė)−1 and a viscous scale for the stress η0Ė. This leads to a set of dimensionless variables given

by eq. (2) in ref. [30]. With this choice of scaling, the dimensionless time is equivalent to the axial

or end­plate Hencky strain εp defined in eq. (2). This set of variables along with the dimensionless

groups summarized in Table 2 is used in obtaining the non­dimensional governing equations and

boundary conditions given below.

The fluid flow within the liquid bridge is assumed to be isothermal, incompressible, and

axi­symmetric, and is governed by the conservation equations for mass and linear momentum

∇∗ · u∗ = 0 , (9)

Re

(

∂u∗

∂t∗
+ u∗ · ∇∗u∗

)

= ∇∗ · T∗ . (10)
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Here u∗ is the velocity vector and T∗ is the Cauchy stress tensor

T∗ ≡ −p∗I + ττ∗ (11)

where p∗ is an isotropic pressure, I is the unit tensor and ττ∗ is the total extra stress tensor.

The appropriate boundary conditions for this problem include: the no­slip condition along

the interface between the liquid and the end­plates, axi­symmetry along the z­axis, the following

prescribed motion at the moving end­plate

L∗

p(t
∗) = L̇∗

p(t
∗) = Λ0e

t∗ (12)

and the kinematic and dynamic conditions on the deformable free surface boundary described by

eqs. (7) & (8) in [30]. Finally, at time t∗ =0− the initial conditions for the velocity, pressure and

extra stress fields are prescribed by eq. (9) in [30]. For convenience, we drop the asterisk notation

in the remaining of the paper and do not explicitly identify variables as dimensionless.

3.3 Constitutive Equations

Successful simulation and prediction of rheologically complex material behavior depends on

the accuracy of the constitutive equation which provides the tensorial relationship between the extra

stress and the deformation history. In this work, we select the Giesekus model [35], a nonlinear

differential constitutive equation based on the concept of deformation­dependent tensorial mobility.

It can be derived from the Hookean dumbbell model [10,36] by allowing the Brownian motion

and/or the hydrodynamic drag acting on the beads to be anisotropic. In a single­mode formulation

of this model, the solvent contribution ττs and the polymeric contribution ττp to the extra stress are

defined as

ττ = ττs + ττp , (13)

ττs = 2βD , (14)

ττp + Deττp,(1) +
αDe

1 − β
(ττp · ττp) = 2(1 − β)D , (15)

ττp,(1) ≡
∂ττp

∂t
+ u · ∇ττp − (∇u)T · ττp − ττp · (∇u) (16)

where the viscosity ratio β=ηs/η0 and D is the rate­of­strain tensor. The four physical parameters

involved in this model are the solvent viscosity ηs, the polymer contribution to the viscosity ηp,

the fluid relaxation time λ1 and the dimensionless ‘mobility factor’, α associated with anisotropic

effects. Equations (9)­(16) plus the boundary and initial conditions form a complete set of governing

equations for this moving boundary problem.
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For physically meaningful results with the Giesekus model, we require 0 ≤ α ≤ 0.5. In the

limit α→0 the model reduces to the quasi­linear Oldroyd­B model and, in addition to predicting a

constant shear viscosity η0 =ηs +ηp, the transient extensional viscosity function η̄+ grows without

bound for Deborah numbers De=λ1Ė≥1/2. As α is increased the extent of the shear­thinning in

both the viscosity and the first normal stress difference increases while the value of the asymptotic

or steady­state extensional viscosity decreases. For the values of α given in Table 1, the fluid is

heavily shear­thinning (as can be seen in Figure 1) and very weakly strain­hardening.

In order to computationally explore the effects of constitutive non­linearities on the failure

or rupture of the liquid column at long times, we have performed additional simulations with the

finitely extensible nonlinear elastic (FENE­P) dumbbell model [37,38]. This is a simplified version

of the FENE model with the pre­averaging approximation suggested by Peterlin. In this model

the evolution of the non­linear dumbbell behavior over time is governed by the following partial

differential equations:

λ1A(1) +
A

1 − trA/L2
= I (17)

and the polymeric contribution to the stress is given by the Kramers’ expression

ττp =
ηp

λ1

[

A

1 − trA/L2
− I

]

. (18)

Here an additional material parameter is introduced, namely, the FENE extensibility parameter L

which represents the ratio of the length of a fully­extended dumbbell to its equilibrium length.

The convected derivative in (17) is defined as

A(1) ≡
∂A

∂t
+ u · ∇A − [(∇u)T · A + A · ∇u] , (19)

and the configuration tensor A represents a dimensionless ensemble average of the dyadic product,

QQ, of the dumbbell end­to­end vector Q;

A ≡ 〈QQ〉/〈Q2〉eq , (20)

where 〈·〉 denotes the ensemble average value in the phase space [37] and 〈Q2〉eq is the equilibrium

value of the mean squared end­to­end distance between the two beads when there is no fluid motion.

Both the Giesekus and FENE­P models predict shear­thinning in the viscometric functions,

strain­hardening in the transient uniaxial extensional viscosity function η̄+(Ė, t), and a bounded

steady­state uniaxial extensional viscosity η̄(Ė) at large Hencky strains. Asymptotic analysis of

steady homogeneous uniaxial extension at Deborah numbers De > 1/2 for both models leads to
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the following approximations (up to the order of 1/De) for the steady­state uniaxial extensional

viscosity [39]

Giesekus : η̄/ηp ≈
2

α

[

1 −
1 − 2α

2De

]

, (21)

FENE − P : η̄/ηp ≈ 2L2(1 − 1/2De) − 1/De . (22)

Hence it is possible to select values of L2 and α for the two different models which result in

identical values of the steady extensional viscosity at a given value of De. For large De and

strong strain­hardening, the leading­order terms in equations (21) and (22) indicate that we require

approximately α≈L−2, although the precise value varies weakly with De.

Finally, as we have shown in section 2, a single relaxation mode only provides an accurate fit

to the viscometric material properties of the test liquid within a limited range of shear rates. To

investigate the consequences of these limitations in a time­dependent simulation we also explore

briefly a multi­mode simulation with the three­mode Giesekus model using the parameters given in

Table 2. The total polymeric contribution to the extra stress ττp is obtained by adding the individual

modal contributions.

3.4 Numerical Techniques

The finite element model used in this study assumes the solution is symmetric with respect to

the mid­plane between the two end­plates. Consequently, the computational domain is defined by

the region 0≤r≤R(z, t) and 0≤z ≤ Lp(t)/2 shown in Figure 2, and we refer to this configuration

as the ‘half­length model’.

The governing equations are solved using the code POLYFLOW, a commercial finite element

method (FEM) program primarily designed for the analysis of flow problems dominated by non­

linear viscous phenomena and viscoelastic effects. The details of the FEM formulation and

numerical techniques used in POLYFLOW are documented in [40]. Galerkin’s method is adopted

in the FEM discretization for the momentum equations, and the axi­symmetric FEM mesh is built

with the 9­node quadratic quadrilateral element, in which velocity and extra stress are approximated

by quadratic shape functions. The pressure is approximated as piecewise linear and discontinuous

on inter­element boundaries (because the pressure ‘nodes’ do not coincide with the element nodes).

The coordinates of the free surface boundary are interpolated by piecewise linear functions. The

transient problem is solved by a predictor­corrector time integration scheme in which the backward

Euler method is selected for the corrector. At each time step, the non­linear algebraic system

resulting from the FEM discretization is solved by the Newton­Raphson iteration scheme. The
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non­linear iteration termination is controlled by a specified iteration convergence tolerance of 10−5

for the relative error norms of residuals of the governing equations and free surface update.

Another important aspect for moving boundary problems is the remeshing technique which

controls mesh deformation by relocating internal nodes according to the displacement of boundary

nodes in order to avoid unacceptable element distortions. The Thompson transformation remeshing

rule [41] is used in this work. Based on the solution of a partial differential equation of the elliptic

type, the Thompson remeshing technique remains robust even for very large mesh deformations.

Spatial and temporal convergence of the simulations has been verified separately. For the single­

mode simulations presented in the present work, typical meshes contain 15300 degrees of freedom,

and the total number of time steps required to achieve a strain of εp∼5 is about 800­1200 (depending

on Deborah number). A typical computation takes approximately 15­20 hours CPU time on a

Silicon Graphics four­processor IRIX Power Challenge (MIPS R8000) machine. Multiple­mode

solutions require significantly more CPU time. The exploratory 3­mode calculation presented in

section 4.6 took over 40 hours of CPU time on the same machine.

4. RESULTS AND DISCUSSIONS

In this section, we present experimental results and numerical analyses for the weakly strain­

hardening fluid 5.0 wt% concentrated polystyrene solution described in section 2.1. The results are

based on the conventional design of filament stretching devices in which the two circular end­plates

have an equal and fixed diameter throughout the stretching process. As shown in section 2.1, the

shear­thinning viscometric material properties of the test fluid can be very well represented by a

3­mode Giesekus model and the 1­mode fit provides a good approximation over a smaller range of

shear rates. For simplicity, the numerical results for the shear­thinning fluid presented here will be

based mainly on the single­mode Giesekus model, although a short discussion will be presented at

the end of this section to show the potential improvement in accuracy of the numerically predicted

extensional viscosity when a 3­mode Giesekus model is employed. In order to show the dramatic

differences in the extensional rheological behavior between a weakly strain­hardening fluid and

a strongly strain­hardening fluid, numerical results using the Oldroyd­B model and the FENE­P

model will also be presented. In addition, a Newtonian fluid with the same solvent viscosity as that

of the test liquid will serve as a reference for comparison purposes.

The basic geometric parameters and the material properties are listed in Tables 1 and 2. All

calculations are performed in non­dimensional form, in which the dimensionless time is equivalent

to the Hencky strain εp defined in eq. (2). In the variable step time integration, the maximum

time­step is set to be ∆t=∆εp =0.01 for all Deborah numbers considered.
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4.1 Free Surface Evolution

A direct qualitative characterization of extensional deformations of the liquid bridge in a

filament stretching device is the evolution and shape change of the free surface. Due to the pinning

condition at the rigid end­plates, the free surface of the liquid bridge cannot remain cylindrical and

deforms greatly during the stretching history. For pronounced strain­hardening viscoelastic liquids,

such as Boger fluids, previous experimental and numerical studies show that the ‘necking’ in the

central part of the liquid bridge becomes slower than that in the corresponding Newtonian case once

the Hencky strain surpasses a critical value. The pronounced strain hardening in the extensional

viscosity leads to a progressively more uniform filament in the central part of the bridge. The

Newtonian filament, by contrast, does not show any strain hardening, its radius is non­uniform at

all times, and the filament becomes very thin at the mid­point between the two end­plates when the

Hencky strain becomes large.

For the weakly strain­hardening fluid, a logical expectation is that the ‘necking’ rate of the

liquid filament would be faster than the pronounced strain­hardening material but slower than the

Newtonian fluid. However, a principal result of this work suggests that this is not true. In order

to show this, we present in Fig. 3 a comparison of the free surface deformation history for three

different fluids using the same small initial aspect ratio Λ0 =0.54 and an identical extension rate Ė

in each case. The constitutive models considered represent a strongly strain­hardening viscoelastic

liquid (simulated by the Oldroyd­B model), a weakly strain­hardening fluid (simulated by a 1­mode

Giesekus model) and the corresponding Newtonian fluid. The simulation with the Oldroyd­B fluid

model uses the same values of λ1, ηp and β as chosen for the Giesekus simulation. Both models

therefore predict an identical linear viscoelastic response at short times; however, the Oldroyd­B

model predicts unbounded growth in the polymeric stress, whereas the Giesekus model predicts

a small increase in the extensional viscosity and a finite steady­state plateau at large strains. The

initial deformations of the two viscoelastic bridges shown in Fig. 3 are almost identical to that

observed in the Newtonian liquid at small Hencky strains of εp ∼ 1. Differences in the evolution

of the free surfaces of the three liquids are seen for εp ≥ 2. The profiles at εp = 3.0 and εp = 3.4

show that in the simulation with the Giesekus model the mid­point radius becomes even thinner

than the Newtonian fluid. This observation suggests that the necking behavior of the weakly

strain­hardening fluid column is thus faster than for the Newtonian fluid filament which shows no

strain­hardening at all!

Free surface deformations of the shear­thinning viscoelastic liquid also differ dramatically

from those of the pronounced strain­hardening liquid in the vicinity of the ‘foot’ area close to the



18 M. Yao, S.H. Spiegelberg and G.H. McKinley

end­plates when the strain becomes large, as indicated by the profiles at εp = 3.4 in Fig. 3. To

examine the differences, the foot area near the fixed end­plate is shown enlarged in Fig. 4. For the

Oldroyd­B model, the axial curvature of the free surface changes dramatically at large strains and

the fluid reservoir near the end­plates is depleted of more fluid than in the Giesekus model and the

Newtonian fluid. For strongly strain­hardening materials such as Boger fluids, the experimental

observations of Spiegelberg et al. [5] show that additional extensional deformation will further

drain the fluid from these regions and initiate the onset of a non­axisymmetric elastic instability

near the rigid end­plates, which results in the elongating fluid column partially decohering from

the test fixtures. The results in Fig. 4 suggest that this type of elastic instability does not develop

in the weakly strain­hardening liquid. It is interesting to note the difference in free surface shapes

near the end­plates between the Giesekus model and the Newtonian fluid. For the Giesekus model,

the diameter of the liquid filament near the end­plates is, in fact, larger than that of the Newtonian

fluid. This suggests that the macromolecules in the weakly strain­hardening liquid experience

an ‘elastic recoil’ near the end­plates at large strains. A more quantitative description of this

recoil phenomenon is given below in Section 4.2. A comparison of filament shapes observed

experimentally for three different fluids in the filament stretching device is shown in Fig. 5. Due

to the fixed field of view of the CCD camera, the entire column profile cannot be imaged at large

strains; however, comparison of Figs. 3 − 5 suggests that the numerically simulated free surface

evolutions agree qualitatively well with the experimental observations. In contrast to experiments

with Boger fluids, filaments of the 5.0 wt% concentrated polystyrene solution fail (i.e. break) during

the course of the experiment before stretching stops. Video­imaging shows that this failure occurs

in the mid­region of the fluid column well away from the fluid reservoirs at each end­plate.

To further analyze the free surface evolution, we use the dimensionless shape perturbation

δR(z, ε) defined in eq. (1). As discussed in Section 1, for the Oldroyd­B fluid we select the

ideal uniaxial elongational flow as the reference state. A typical example of temporal and spatial

variations of δR is presented in Fig. 6. The shape perturbation δR is spatially non­uniform at

strain εp = 1.0, but becomes increasingly homogeneous with increasing strain. The value of δR

in the central part of the liquid column approaches a constant value δR≈−0.1 at large strains in

agreement with the computations of Hassager et al. [23].

For the Giesekus model, it is clear from Fig. 3 that the filament profile never approaches

the ideal cylindrical configuration and we thus select the corresponding Newtonian profile as the

reference curve. The resulting profiles of the shape defect δR at five strain levels are shown in

Fig. 7. In this case, δR describes the relative difference in the necked filament profiles between
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the weakly­strain­hardening Giesekus model and a constant viscosity Newtonian fluid under the

same flow conditions. The initial deviations are small for low Hencky strains as shown by the

curves at εp = 0.01, 1.0 and 2.0 in Fig. 7. The deviations in δR at εp = 1.0 and 2.0 are positive

in the central part of the filament indicating that the decrease of R(t) in the central part of the

elongating viscoelastic liquid bridge is slightly slower than that of the Newtonian model at small

strains, presumably due to the linear viscoelastic growth of the polymeric stresses. However, at

larger strains εp≥3.0 the shape perturbations become large and negative in the central region of the

filament, corresponding to a greatly accelerated necking in viscoelastic filaments characterized by

the Giesekus model. For εp≥3.0, the value of δR is positive near the two end­plates as a result of

the elastic recoil discussed above, and fluid is drawn into the end­plate regions even in the absence

of a drainage mechanism such as gravity. As we show below, the rate of change in this discrepancy,

i.e. d(δR)/dε, also increases monotonically in time near the axial mid­plane indicating that the

necking process is in fact destabilized by viscoelasticity and becomes increasingly severe at later

times.

4.2 Flow Kinematics

The goal of the filament stretching device is to create a flow field in the fluid sample which

approximates ideal uniaxial elongational flow kinematics. The accuracy of the measurements will

thus depend on the spatial and temporal homogeneity of the kinematics generated in the device.

Since direct experimental measurements of the flow field in a deforming fluid column with a curved

free surface are usually difficult, numerical simulations can play an important role in analyzing the

actual flow field generated in the liquid bridge.

For homogeneous uniaxial elongation of a cylinder, we expect the radius to decrease in the

form

Rideal(t)/R0 = exp(−0.5Ėt) (23)

In reality, the flow kinematics generated in the liquid bridges are much more complicated and

deviate significantly from the ideal irrotational flow field given by eq. (26) in [14]. In experimental

studies, the kinematics in the deforming fluid filament are simply characterized by the radial

displacement of the free surface at the mid­point between the two end­plates. Comparison of the

temporal variations of Rmid(t) with the ideal evolution given by eq. (23) indicates how closely the

actual flow kinematics approximate the ideal case.

In Fig. 8 we show the temporal evolution of the mid­plane radius, Rmid(t), for the three

constitutive models at the same flow conditions used in Figs. 3 and 4. The variation of Rmid(t)

provides a sensitive measure of the extensional flow kinematics in the liquid bridge and the
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results indicate significant differences between the dilute polymer solution (Oldroyd­B model)

and the concentrated polymer solution (Giesekus model). The former shows a pronounced strain­

hardening manifested by a marked decrease in the slope of the Rmid(t) curve while the latter

appears to exhibit a strain softening characterized by a continuous increase in the rate of change

of the radial deformation. The results again suggest that the ‘necking’ in the shear­thinning liquid

column proceeds much faster than a Newtonian fluid, which is consistent with the qualitative

characterization based on the free surface evolutions shown in Fig. 3.

From observations of the radial free surface movement at the mid­plane, we can quantify

the rate of deformation in the elongating liquid filament via the local extensional strain rate, ε̇eff

defined in eq. (3). The effective extension rate represents the evolving extensional strain rate that

the fluid elements experience in the vicinity of the mid­plane during the stretching. It can be shown

analytically that for an incompressible fluid ε̇eff is equivalent to the radially­averaged value of Dzz

at the mid­plane [42], namely

D̄zz ≡
1

πR2
mid

∫ 2π

0

∫ Rmid

0

Dzz(r, 0) rdrdθ = ε̇eff . (24)

Therefore, ε̇eff provides the essential information required in the type II experimental analysis

formulated in eq. (7). To demonstrate how the local extension rate varies with strain for the shear­

thinning test fluid, a typical example is presented in Fig. 9 for a moderate Deborah number of

De=1.68. In this example, the characteristic extensional strain rate at the mid­plane is estimated

in two ways using: 1) the effective extension rate ε̇eff based on the free surface movement, and 2)

the pointwise value of Dzz evaluated at the central point r = z =0. Our numerical computations

verify that, even for the weakly strain­hardening fluid, ε̇eff can be used to accurately characterize the

actual extensional strain rate that fluid elements experience at the mid­plane. The most pronounced

difference between the values of ε̇eff and the ‘pointwise’ Dzz curves occur for εp≤1.5 indicating

that at small strains the extensional strain rate is radially inhomogeneous on the mid­plane with

lower values at the center. For small strains 0< εp <0.5, the pointwise value of Dzz shown in Fig. 9

agrees well with the lubrication prediction, ε̇eff = 1.5Ė [5]. At larger strains when εp > 2, both

curves merge together suggesting that a radially homogeneous extensional strain rate is achieved

and a 1­D slender filament description is increasingly appropriate.

In Fig. 10 we compare the evolution in the effective extensional strain rate as a function of

strain. For the Oldroyd­B model, the strain hardening leads to a gradual decrease in the value

of ε̇eff beyond εp > 0.6 and, at large strains, the effective extension rate approaches the imposed

axial elongation rate. This result indicates that ideal uniaxial elongational flow kinematics can be
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achieved at large strains and that the filament stretching device is especially suitable for polymeric

liquids exhibiting pronounced strain­hardening. Following the initial linear viscoelastic response in

the Giesekus fluid, the value of ε̇eff increases rapidly and the filament evolution differs dramatically

from the Newtonian or Oldroyd­B predictions. At a strain of εp =3.8, the local extension rate for

the shear­thinning fluid is about 5 times higher than the imposed axial extension rate.

If we evaluate the shape perturbation δR(z, ε) at the filament mid­plane (z = 0) and denote

this as δRmid, then it is straightforward to show that

d ln(1 + δRmid)

dε
= −

1

2
(ε̇eff − ε̇ref) (25)

where ε̇ref is defined in terms of the reference radius Rref(z = 0, ε) in the same manner as eq.

(3). From the semi­logarithmic plot shoqn in Fig. 10(b) it is clear that the difference between

the effective extension rate at the mid­point of the Giesekus filament and at the mid­point of the

Newtonian filament is increasing almost exponentially with time (or strain). The difference in

the radii δRmid of the filaments at the mid­plane (corresponding to the ‘necking’ of the fluid

column) thus increases very rapidly indeed. Additional numerical computations performed using

the Giesekus model at the same Deborah number, but without surface tension (i.e. by setting

1/Ca = 0), show that this enhanced necking does not arise due to capillarity, but rather is due

solely to the viscoelasticity of the elongating fluid column. For any real fluid with a finite surface

tension the enhanced rate of ‘necking’ will be enhanced even further, and capillary­driven filament

breakup will occur much more rapidly. Furthermore, as a result of this rapid increase in the local

extension rate, the Hencky strain experienced by fluid elements in the vicinity of the mid­plane

becomes much higher than the average strain based on the axial separation of the two end­plates.

For example, at an average strain εp =3.8, the local strain at the mid­plane defined by eq. (4) may

be as high as εeff =9.8.

The effective extensional strain rate represents the local deformation rate around the mid­plane

only. To investigate how the strain rate varies within the entire liquid column, we consider the rate

of deformation tensor D. Among its components, the axial velocity gradient Dzz is of most interest

since it characterizes spatial variations in extension rate within the deforming fluid filament. For

a homogeneous uniaxial elongational flow, Dzz = Ė everywhere; however, in reality, the flow in

the filament stretching device is non­homogeneous and Dzz varies both spatially and temporally

[14,16]. To demonstrate the significant difference in the deformation history experienced by

a weakly­strain­hardening, shear­thinning viscoelastic fluid and by an ideal elastic fluid showing

pronounced strain­hardening, we compare the variations of Dzz along the centerline at three typical
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strains in Fig. 11. The Dzz curve at εp =0.2 shown in Fig. 11 suggests that the simple lubrication

squeeze­flow solution, valid at small initial aspect ratios for Newtonian fluids, also provides a good

approximation of the flow kinematics for the Giesekus model at small strains. The Dzz profiles

begin to differ when εp >1.0 and the differences becomes quantitatively significant at large strains.

For the Oldroyd­B fluid, the spatial profile at εp =3.0 in Fig. 11 indicates that a uniform cylindrical

column develops in a large central part of the liquid filament and the value of Dzz approaches

Ė with increasing strain. By contrast, the deformation in the shear­thinning fluid filament never

becomes uniform. The variations in Dzz for the Giesekus model at εp =3.0 reveal two important

features of the fluid kinematics in the filament stretching rheometer: firstly, the high extensional

strain rate localization around the mid­plane and the development of the local necking instability;

and secondly, the local recoil phenomenon near the end­plates. As we can see, at a strain of

εp = 3.0, the value of Dzz for the Giesekus model becomes negative over 40% of the filament

length, indicating that the fluid elements near the end­plates in fact undergo recoil (i.e. elastic

unloading of the accumulated deformation) even though the filament as a whole is increasing in

length. This local elastic recoil further accelerates the local extensional rate at the central part of

the liquid column and leads to the ‘necking’ of the liquid filament at a rate that is much faster than

that found in the corresponding Newtonian liquid filament.

4.3 Transient Extensional Viscosity

The primary function of the filament stretching rheometer is to measure the extensional viscos­

ity, η̄+, as a function of Hencky strain and Deborah number. It is known from theoretical analysis

that the extensional viscosity of the weakly strain­hardening fluid (simulated by the Giesekus

model) differs significantly from that of the pronounced strain­hardening fluid (represented by the

Oldroyd­B model). The Oldroyd­B model predicts an unbounded polymer stress growth, whereas

in the Giesekus model the transient stress growth function approaches a steady­state at large strains.

In this subsection, we compare measured values of the transient extensional viscosity for the weakly

strain­hardening test fluid with numerical simulations of the filament stretching device and with

theoretical predictions for homogeneous uniaxial elongation.

The operating conditions and geometric parameters for the three experimental tests considered

in the present work are given in Table 2. The experimental test fluid is a concentrated solution

of 5.0 wt% polystyrene and its material properties are summarized in Table 1. The experimental

observables are the total normal force at the lower (fixed) end­plate, Fz , and the free surface profile

R(z, t) from which the mid­plane radius, Rmid(t), can be extracted. These experimental data

are then used to calculate the transient extensional viscosity based on the type IB formulation
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described in eq. (6b). In Figure 12(a), the transient extensional viscosity η̄+
(IB) measured at an

imposed extension rate of Ė = 2.32 s−1 is plotted as a transient Trouton ratio, versus a non­

dimensional time, or axial Hencky strain εp defined by eq. (2). Also presented in the same figures

are the results of the single­mode numerical simulation post­processed using the same ‘type IB’

analysis. The simulations were performed both including surface tension (corresponding to a

capillary number Ca−1 = 0.106) and without (Ca−1 = 0). Clearly the effects of surface tension

are small and will become progressively less important at higher Deborah numbers as the tensile

viscoelastic stresses in the fluid column become even larger. The agreement between experiments

and simulations is excellent except for short times. The discrepancy between the measurements

and the numerical results within this small strain range arises from the following two sources.

Firstly, in the experiments, there is a finite ramping time (approximately 0.05 s for the present

device) required for the motor to accelerate from rest to its initial velocity, whereas in numerical

calculations it is assumed that the moving plate attains its initial velocity V0 =L0Ė instantaneously.

Secondly, it is known from previous work [5] that errors in the measured force induced by additional

shearing deformation near the rigid end­plates vary inversely with the initial aspect ratio, Λ0. For

the small aspect ratios used in the tests, the error is expected to be appreciable during the initial

stage, especially in the single mode calculation due to the larger initial solvent viscosity. This

second error source can be greatly reduced when the multiple relaxation mode model is used, as

we show later.

As we have pointed out in Section 2, the extensional viscosity calculated in eq. (6) represents

the extensional stress growth of the fluid elements in the vicinity of the mid­plane between the two

end­plates. Consequently, an accurate estimate of the local extensional strain rate at the mid­plane

is necessary. Apparently, the imposed axial extension rate Ė used in the type IB analysis is a poor

approximation, since the computed curve and the experimental measurements do not agree well

with the predicted response of the Giesekus model in homogeneous shear­free flow (shown in Fig

12(b) by the solid line). In particular, Ė underestimates the local extensional strain rate ε̇eff at the

mid­plane, especially at large strains. As a result, the Trouton ratio presented in Fig. 12(a) does

not approach a steady state; instead, it increases monotonically with strain (time). In interpreting

experimental results for filament stretching devices, it should be noted that, in general, the type IB

analysis provides an upper bound of the actual extensional viscosity since the actual deformation

rate is always higher than the imposed axial deformation rate.

The results of numerical simulations can also be post­processed using the type II analysis given

in eq. (7) and the predicted Trouton ratio, η+
II , is plotted in Fig. 12(b) as a function of the effective
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strain εeff accumulated at the mid­plane. As we can see, the local strain εeff is much higher than the

average axial strain εp. The use of ε̇eff in the type II analysis provides a far superior approximation

of the local extensional strain rate at the mid­plane. As a result, the numerical prediction shown in

Fig. 12(b) approaches a steady­state value that agrees well with the theoretical value expected for

α=0.32. The ‘Constant Stretch Rate’ curve shown by the solid line in Fig. 12(b) is the theoretical

prediction of the 1­mode Giesekus model for ideal uniaxial elongational flow at a constant Deborah

number De ≡ λ1 Ė. Of course, the extension rate experienced in the actual experiment by the

fluid element at the mid­plane is temporally inhomogeneous. The ‘Variable Stretch Rate’ curve

(broken line) in Fig. 12(b) shows the predicted transient extensional viscosity of the Giesekus

model obtained by numerically integrating the ordinary differential equations for the axial and

radial stress components in ideal elongational deformation with a time­varying extension rate given

by λ1ε̇eff(t). It can be seen that the difference between these two curves is, in fact, extremely small

since the extensional viscosity predicted by the Giesekus model (and also many other constitutive

models) is primarily a function of the strain and is only a very weak function of λ1ε̇eff , provided

that λ1ε̇eff(t) ≫ 0.5.

Similar results are shown in Figures 13 and 14 at stretch rates of Ė =3.42 s−1 and Ė =4.68 s−1

respectively. In each figure the experimental measurements are again analyzed using the type IB

analysis and are shown as solid circles, whilst the corresponding simulation values are shown

as hollow squares. The same numerically­computed values of force and radius are also used in

conjunction with eq. (7) to compute the transient Trouton ratio using the type II analysis and are

shown as solid diamonds. For clarity, we have chosen not to re­plot the experimental data using

the type II analysis on the same figure; however, it is clear from the good agreement between the

type IB experimental and numerical curves that the resulting data values will follow the theoretical

curve as closely as the numerical computations. In comparing figures 12−14 it should be noted

that for data points computed using the type IB analysis the relevant strain measure for the abscissa

is the total axial strain Ėt, whereas for the data computed using the type II analysis the appropriate

measure is the effective strain εeff experienced by fluid elements near the mid­plane which can be

computed using eq. (4).

The predicted results from the simulations are truncated when numerical convergence is lost, as

indicated by the growth of small­amplitude spatial oscillations in the free surface profile. Attempts

to axially refine the mesh can extend the maximum critical strain slightly, however the elements

near the column midpoint always develop extremely high aspect ratios and large tensile stresses as

the filament necking develops. The dynamical evolution of the column at larger strains is better
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suited to a one­dimensional slender filament theory (see e.g. [28­30]). Furthermore, since the

local extension rate ε̇eff(t) rapidly increases near breakup, viscoelastic contributions to the total

tensile stress in the filament will also arise from the additional ‘fast’ relaxation modes. This will

also retard the ultimate breakup dynamics since the dimensionless stretching rate for these modes

λiDzz(z, t)(where i = 2, 3...) only exceeds the critical value of 0.5 in the middle ‘necked’ region

of the column.

The results shown in Figs. 12−14 indicate that the accurate measurement of Rmid and the

use of ε̇eff in the calculation of Tr are extremely important in quantitative computation of the

transient Trouton ratio for weakly strain­hardening fluids such as concentrated polymer solutions.

The comparisons presented in this subsection also serve as a validation of the choice of constitutive

equation for this polymer solution. As we have shown, numerical simulations based on the 1­

mode Giesekus model provide reasonable kinematic and dynamic predictions which agree both

qualitatively and quantitatively with experimental observations for the test fluid. With this in mind,

we now proceed to investigate numerically some important issues involved in the experimental

design and modeling of filament stretching devices which are difficult to explore experimentally.

4.4 Effects of the Initial Aspect Ratio

In the design of the filament stretching rheometer, the initial aspect ratio Λ0, defined in eq. (8),

is an important geometric parameter that deserves special attention. During experiments the rigid

end­plates and the no­slip constraint at the solid­liquid interface result in a significantly non­

homogeneous flow at short times. This flow inhomogeneity and pre­shear history will, in turn,

affect the dynamic behavior of the viscoelastic liquid filament at large strains. For a Boger fluid

with a constant shear viscosity and pronounced strain hardening, a previous experimental study

[5] and numerical analysis [14] have both shown that the initial non­homogeneous flow and the

induced shear stress depend strongly on the initial aspect ratio of the liquid column. No studies on

the effect of the initial aspect ratio have been reported to date for a weakly strain­hardening fluid

with appreciable shear­thinning in the viscometric functions.

To investigate the effects of Λ0 for the present test fluid, a series of simulations are conducted

at identical imposed axial extension rates, with the initial aspect ratio as the variable parameter. The

three characteristic values of the aspect ratio considered are Λ0 =0.54 (to match the experiments

in Section 4.3) and Λ0 = 1.0 and 2.0. The Deborah number is the same for all the three cases,

De≈2.0. Such tests are difficult to perform experimentally in concentrated polymer solutions since

the maximum axial length of the initial liquid bridge is constrained by gravitational sagging and

the corresponding Plateau stability criterion [17,21]. Conversely, shrinking the end­plate radius
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reduces the total tensile force exerted by the elongating thread below the minimum transducer

sensitivity.

We first examine the effect of Λ0 on the radial flow kinematics by analyzing the profiles of

the non­dimensional mid­plane radius, Rmid/R0, as a function of the Hencky strain εp, as shown

in Fig. 15. It can be seen that the evolution of the filament is greatly affected by the initial aspect

ratio and the necking at the mid­plane in general decreases with increasing Λ0. For small initial

aspect ratios Λ0 ≤ 1.0, the necking in the middle of the test fluid filament is accelerated with

respect to the Newtonian fluid. The smaller the value of Λ0, the faster the rate of necking develops

or, equivalently, the more unstable the homogeneous uniaxial elongation of an initially cylindrical

viscoelastic liquid column is. Increasing the value of Λ0 helps improve the stability of the liquid

column, and for Λ0 = 2.0, the evolution of Rmid(t) is more characteristic of the deformation

observed in an Oldroyd­like fluid as might naively be expected for a weakly strain­hardening fluid

in a uniaxial elongational flow.

A quantitative comparison of the local extensional strain rate, ε̇eff , at the mid­plane is shown in

Fig. 16. In the early stages of deformation there is a similar linear viscoelastic response in all three

geometries, with the characteristic value of ε̇eff set by the aspect ratio. As expected, the simulation

with the smallest value of initial aspect ratio results in an extension rate to the value ε̇eff ≈ 1.5Ė

predicted by lubrication theory. The local extensional strain rate starts to increase for εp >1.0 with

the rate of increase in ε̇eff varying inversely with the initial aspect ratio. Finally for εp > 3.5 we

observe a second stage of strain­hardening for the Λ0 =2.0 case.

This evolution in flow kinematics at the mid­plane has a direct impact on the stress profile

developed in the elongating liquid column as a result of the non­uniform deformation history and

the initial non­homogeneous shear flow. To demonstrate this fact we present in Figure 17 the

radial variations in the axial component of the polymeric stress, τp,zz , at the filament mid­plane.

At a small strain εp = 0.2 the radial stress profile is strongly affected by the initial aspect ratio.

The non­homogeneity in stress develops mainly near the free surface as a consequence of the

non­cylindrical free surface deformation. For small initial aspect ratios Λ0 ≤1, a stress boundary

layer develops directly adjacent to the free surface. The results show that lower values of Λ0 lead

to steeper stress boundary layers and the spatial non­homogeneity in stress can be alleviated by

increasing the initial aspect ratio, as shown by the Λ0 =2 case in Fig. 17(a). The numerical solutions

further indicate that the radial gradients in stress arising from the non­homogeneous deformation

history at short times decay with increasing strain. At a strain of εp = 3.8, the radial profile of

τp,zz becomes uniform for all three initial aspect ratios as can be seen in Fig. 17(b), although the
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magnitude of the polymeric stress is still significantly affected and varies inversely with the aspect

ratio. Furthermore, it should be noted that axial variations of τp,zz within the fluid column persist

throughout the entire stretching history.

The effect of initial aspect ratio on the extensional viscosity computed from measurements of

the end­plate force and the mid­point radius is shown in Fig. 18. Here the calculation of extensional

viscosity is based on the more accurate type II analysis. For the smallest aspect ratio, Λ0 =0.54,

there is a significant discrepancy between the numerical prediction and one­dimensional theory at

small strains. This error arises from the lubrication­like shear flow induced by the initial geometry

of the device and can be effectively eliminated by increasing Λ0. Of the three values of Λ0 shown in

Fig. 18, the Λ0 =2.0 case provides the best comparison to the ideal transient Trouton ratio expected

theoretically, with less than 10% error throughout the imposed deformation history. However, even

an increase in the aspect ratio to Λ0 = 1.0 provides improved accuracy at shorter times, and also

allows larger Hencky strains to be achieved before the filament begins to undergo a necking failure.

Despite the variations in both the effective deformation rate (Fig. 16) and the tensile stress in the

column (Fig. 17), it is clear from Fig. 18 that the transient uniaxial elongation viscosity of the fluid

can be measured for all of the aspect ratios we have considered numerically.

4.5 Effects of the Mobility Factor α

The Giesekus constitutive equation contains a single nonlinear term, weighted by the dimen­

sionless mobility factor α, which is associated with anisotropic Brownian motion and/or anisotropic

hydrodynamic drag on the constituent polymer molecules [36,37]. This nonlinear term controls

both the magnitude of shear­thinning in the viscometric functions and the extent of strain­hardening

in uniaxial elongation. The physically realistic range of the mobility factor is 0 ≤ α ≤ 0.5. In

the limit α→ 0, the Oldroyd­B model is recovered, which predicts a constant shear viscosity and

unbounded stress growth in elongation. For the test fluid considered in this work, the best fit of the

viscometric data to a single­mode Giesekus model yields α = 0.3162 [25] corresponding to pro­

nounced shear­thinning and a very weakly strain­hardening extensional viscosity. By decreasing

the value of α, the extent of shear­thinning can be reduced and, at the same time, the magnitude of

the tensile stress growth can be increased.

To examine the effects of the mobility factor on the predicted kinematic and dynamic response

of the elongating liquid column in a filament stretching device, we present the results of three

simulations with the mobility factor as the variable parameter. The same moderate Deborah

number De = 1.97 and small initial aspect ratio Λ0 = 0.54 are used in all three simulations to

match the experiments discussed in Section 4.3. The values of α for the three simulations are
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α= 0.32 (corresponding to the heavily shear­thinning and weakly strain­hardening test fluid used

in the experiment), plus α = 0.032 and 0.0032, respectively. A comparison of the two geometric

and kinematic measures entering in the definition of the extensional viscosity are presented in

Figure 19. The variation in the temporal history of the mid­plane radius, Rmid, with α is shown

in Fig. 19(a), and the local effective extensional strain rate, ε̇eff is shown in Fig. 19(b). The effect

of the nonlinear mobility factor is not observable within the small strain range ε≤ 0.6 when the

fluid exhibits a purely linear viscoelastic response and all three simulations predict almost identical

kinematics at the mid­plane. At larger strains, the three profiles deviate significantly and the results

show that materials with less shear­thinning and greater strain­hardening exhibit reduced rates of

‘necking’ and the stability of the liquid column is correspondingly enhanced. As we show below

in Section 5, the stability is in fact most influenced by the rate of increase in the tensile stress

with increasing Hencky strain. A comparison of Fig. 19 with Figs. 8 and 10 indicates that the

filament evolution for α= 0.0032 is very similar to the Oldroyd­B fluid response with pronounced

strain­hardening manifested by a distinct decrease in the rate of necking curve and a corresponding

decrease in ε̇eff .

Fig. 20 shows the effect of the mobility factor on the predicted surface shape in the vicinity of

the ‘foot’ near the end­plates. The α = 0.32 case represents the typical, weakly strain­hardening

viscoelastic behavior in which the ultimate filament stability is controlled by the ductile necking

failure in the middle of the filament. The α= 0.0032 case is very close to the typical behavior of an

Oldroyd­B fluid in which the maximum extent of stretching is controlled by the onset of an elastic

instability that develops near the end­plates and leads to the decoherence of the liquid column. In

this regard, the α = 0.32 and α = 0.0032 simulations represent two extreme cases in which the

stretching capability of a filament stretching device is controlled by two entirely distinct instability

mechanisms. The most interesting case is perhaps the intermediate α= 0.032 case which exhibits

more moderate shear­thinning and strain­hardening. From a numerical point of view, this case

is relatively easier for the remeshing scheme and for convergence of the nonlinear iteration. As

we can see from Fig. 19, for a given finite element mesh, this case has the highest numerically

accessible Hencky strain, εp ≈ 4.4. In contrast, the α = 0.0032 case is the most difficult one to

resolve and the numerical solution fails to converge at εp ≈ 3.6. The lack of convergence arises

because the curvature of the free surface changes dramatically with axial position at large strains

and the reservoir near the fixed end­plate is rapidly depleted of more liquid leading to very large

local distortions in the finite elements.

Despite this huge variation in the dynamical evolution of the filament profile, the simulations
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suggest that in each case a filament stretching rheometer can be used to accurately measure the

tensile stress growth in the test fluids. In Fig. 21 we present the transient Trouton ratio computed

using the type II analysis for the three numerical simulations (indicated by symbols) and compare

them to the corresponding theoretical predictions for start­up of ideal uniaxial elongational flow at

constant extension rate (the three curves). It is readily apparent that the value of the steady­state

extensional viscosity plateau, and also the rate of stress growth at moderate strains (1≤ε≤3), both

increase as α decreases; however, in each case the computed Trouton ratio agrees well with theory.

The strain measure used in Fig. 21 is the effective Hencky strain relevant to the mid­plane (eq. 4)

and large strains are attained as α is increased due to the enhanced rate of necking near the filament

midplane.

The numerical calculations presented in Figs. 19­21 suggest that the filament stretching device

is a versatile rheometric tool that can be used for characterizing a wide spectrum of viscoelastic

fluids ranging from dilute solutions with constant shear viscosity and strong strain­hardening char­

acteristics to concentrated solutions and low viscosity melts with heavily shear­thinning viscometric

functions and little strain­hardening.

4.6 An Exploratory Multi­Mode Calculation

The numerical results presented throughout this paper are based on a single­mode Giesekus

model, and it is clear from Figs. 12­14 that we are able to accurately capture the stress growth

observed experimentally, except at very small strains. Furthermore, from examination of Figs. 19­

21 it can be seen that this deviation is not connected with the nonlinear properties of the fluid and,

in fact, the short time response is governed by the linear viscoelastic response of the material. In

a single mode calculation, the short­time responses of the fluid are deliberately not resolved and

the contributions of these modes to the total shear viscosity are collapsed into the instantaneous

‘solvent’ response. This artificially­elevated viscous contribution to the stress masks the true

material response by amplifying the effect of the initial radial ‘squeeze flow’ on the net force

exerted on the end­plate.

To quantify this effect, a numerical test was also conducted using the 3­mode Giesekus

parameters given in Table 1 at a stretch rate of Ė =4.48 s−1 corresponding to a Deborah number

(based on the longest relaxation time λ1) of De = 1.89. We first calculate the extensional

viscosity based on the type IB analysis and compare the results of the two numerical simulations

with experiment in Fig. 22(a). Then we also post­process the numerical solution using the type

II analysis and compare the resulting data with one­dimensional theory in Fig. 22(b). Note

that here the curve denoted ‘theory’ is based on the 3­mode Giesekus model with a constant
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dimensionless rate of stretching (λiĖ) for each mode. As we can see, the multi­mode calculation

provides a much better prediction for the initial stress growth of the material within the small strain

range εp ≤ 0.6, and compares very favorably to both experimental measurement and theoretical

prediction. However, the difference in the predicted Trouton ratio between the 3­mode and the 1­

mode simulations becomes small when εp >0.5. This exploratory calculation suggests that single­

mode calculations can provide adequate accuracy at far lower computational cost for most of the

Hencky strains examined in the present work. A more detailed study of the multi­mode simulations

and comparisons between multi­mode and single­mode solutions are discussed elsewhere [30].

5. NECKING IN ELONGATING VISCOELASTIC FILAMENTS

The experiments and calculations presented above have shown that filament stretching devices

can be used to measure the transient Trouton ratio in weakly strain­hardening materials, even though

the evolution of the filament is markedly different to that observed in either Newtonian liquids or

strongly strain­hardening dilute polymer solutions. Most importantly, numerical simulations show

that the fluid reservoirs near the rigid end­plates undergo an elastic recoil or unloading (i.e. the local

elongation rate is Dzz =∂uz/∂z<0) and the local deformation rate ε̇eff at the filament mid­plane

rapidly increases as the radius decreases towards zero. Following Malkin & Petrie [27] we refer to

this as a ductile necking failure driven by the viscoelasticity of the fluid. This failure mechanism

is distinct from those of either capillary­driven breakup (e.g. in a Newtonian thread) or cohesive

fracture, although all these mechanisms lead to what may generically be defined as rupture of the

filament into two topologically distinct fluid domains.

In contrast to related considerations of ‘intrinsic spinnability’ in fiber spin lines [43] the tensile

force in the elongating filament varies with time, although it is constant along the axis of the

fluid column at any instant in time (provided fluid inertia is negligible). Furthermore, the material

element at the axial mid­plane of the column experiences the entire Lagrangian history of the

deformation in contrast to the finite residence time of material elements and the Eulerian steadiness

of the spin­line. However, despite these differences, the present problem shares much in common

with analyses of ‘spinnability’, in particular the constitutive rheology of the elongating filament

plays a key role in determining whether the maximum Hencky strain that may be imposed on the

material is limited by the onset of a ductile failure near the filament mid­plane [23] or by an elastic

end­plate instability [5,19].

The physical mechanisms leading to the unstable necking observed in our simulations with the

Giesekus model can be simply understood in terms of the Considère criterion commonly employed

in solid mechanics to understand necking in ductile metals and polymers [44]. In its simplest form,
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the criterion states that the homogeneous elongation of a uniform elastic cylinder is unstable and

a ‘neck’ will form if the net tensile force in the column passes through a maximum at a critical

strain εc. Even if a material is strain­hardening, the increase in the true (or Cauchy) stress with

Hencky strain may be insufficient to offset the decrease in the cross­sectional area, and the tensile

force (or ‘engineering stress’) can pass through a maximum. As an example, for a hypothetical

material with radius decreasing at the rate given in eq. (23) and a tensile stress difference given

by ∆τ = Eε (where E is the Young’s modulus and ∆τ is defined as the tensile stress difference

in the column), continued elongation as a uniform cylinder is unstable beyond a critical strain

εc = 1. The Considère criterion is essentially a quasi­static or ‘energy’ stability criterion which

can be derived from the principle of virtual work [45]. Physically, beyond the critical strain,

the sample may lower its total elastically­stored energy by contracting or ‘necking’ in a single

localized region and elastically­unloading elsewhere. Energy arguments have proven useful in

other aspects of viscoelastic flow stability [46] and the close connections between viscoelastic

constitutive equations for polymeric fluids and viscoplastic equations for metals has been noted by

Rubin and Yarin [47].

For a viscoelastic liquid column being elongated in a filament stretching device, the situation

is more complex than the simple example given above, since the initial profile of the filament

is never cylindrical and furthermore the work done in elongating the filament is partially stored

elastically and partially dissipated viscously. Nonetheless, Hassager et al. [23] have shown that for

the K­BKZ model in the limit De→∞ (such that viscous dissipation is negligible) the Considère

criterion can quantitatively predict the onset of a rapid and catastrophic necking in the filament

profile near the mid­plane. The onset of unstable necking observed in the present simulations is

more gradual than observed in [23] since the Deborah number is much lower (De≈2.0 rather than

De=100) and there is a large solvent viscosity. Surprisingly, the Considère criterion can still be

used to rationalize the evolution of the filament profile with strain; however, a quasi­static energy

analysis cannot provide information about the rate of evolution of the unstable necked region.

To incorporate such effects requires either a theoretical linear stability analysis or direct

numerical simulation of the full equations of motion. Ide & White [48] and Olagunju [28]

have considered the former approach for the UCM and Oldroyd­B models for the case of a

uniform cylindrical column and for a one­dimensional slender­body approximation to the governing

equations. However, in the absence of analytical expressions for the filament radius profile R(z, t)

and the corresponding polymeric stress tensor for more complex non­linear constitutive models,

we have instead pursued the latter approach.
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We consider the transient evolution of an initially­cylindrical sample at a Deborah number

De = λ1Ė = 2.0 in which the fluid rheology is characterized by either the Oldroyd­B, Giesekus

or FENE­P model. For the Oldroyd­B model at Deborah numbers De > 1/2 and Hencky strains

ε≥2, the polymeric contribution to the tensile stress difference in the elongating column is given

approximately by the expression

∆τp ≈
2ηp

λ1(2 − 1/De)

[

e(2−1/De)ε −
3

2(De + 1)

]

. (26)

Since the cross­sectional area is decreasing exponentially with Hencky strain, the tensile force in

the column passes through a maximum for De < 1, but grows without bound at larger De. For

the solvent contribution to the total viscosity we retain the value β = 0.262 and for the nonlinear

constitutive equations select α = 0.1 and L2 ≈ 11.0 so that the two models predict identical

steady­state extensional viscosities η̄(Ė)/η0 ≈ 12.6 at De=2.0. The relative propensity of these

constitutive models to undergo ductile failure may then be understood by comparing how the

transient uniaxial stress growth during extension (i.e. the transient Trouton ratio) compares to that

given by eq. (26) for the Oldroyd­B model.

In Figure 23 we show the predicted evolution in the mid­plane radius with strain for each

model. Each simulation is truncated when numerical convergence is lost. At small strains, all

profiles follow the expected Newtonian lubrication profile with an effective strain rate 50% larger

than the imposed elongation rate. However, at larger strains the response of each constitutive model

leads to a uniquely different profile in the mid­point radius. As previously documented in Fig. 10,

the deformation rate in the Newtonian filament slowly increases as the sample undergoes capillary

necking, whereas the deformation rate in the strongly hardening Oldroyd­B fluid decreases and

approaches the imposed ideal value. For the two fluids with bounded elongational viscosities, the

rate of necking is initially slowed by the strain­hardening in the transient elongational viscosity

and the curves of Rmid(t) deviate above the Newtonian simulation and the lubrication solution.

However, as the extensional viscosity saturates, the profiles of Rmid(t) show a downward turn and

the effective extension rate begins to climb as the rate of necking in the column increases. For the

Giesekus model this necking is very rapid due to the elastic recoil in the fluid near both end­plates

shown in Fig. 11(c) and the mid­point radius becomes narrower than the Newtonian filament for

strains εp≥3.5. For the FENE­P filament the rate of necking is much slower (for reasons explained

below); however, it is clear that the filament has begun to fail, and both the effective extension

rate computed from the slope of the Rmid(t) curve according to eq. (3) and the mid­point shape

perturbation δRmid increases monotonically beyond εp≥1.5.
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Since the transient Trouton ratio is directly related to the axial force in the filament, the

Considère stability constraint for stable elongation of the filament with increasing end­plate Hencky

strain may be written as:
dFz

dεp
=

d

dεp
(Tr · η0Ė · R2

0e
−εp) > 0 (27)

or by differentiating and re­arranging, for stable necking we require

dTr

dεp
> Tr . (28)

The left­hand and right­hand sides of eq. (28) are plotted for both the Giesekus and FENE­P

model in Fig. 24(a) and (b) respectively. At short times the Trouton ratio grows rapidly with strain

for both materials and the necking is ‘stable’ in the sense that the column evolves in similar manner

to the Newtonian filament. However, beyond a critical strain εc≈1.4, the transient Trouton ratio for

the Giesekus fluid deviates below the Oldroyd­B curve and approaches a steady state. The criterion

(28) is thus violated and the column begins to rapidly neck down in the middle whilst elastically

unloading near either end­plate. In this case viscoelasticity destabilizes the evolution of the necked

filament. By contrast, for the FENE­P material ­ which strain­hardens even more rapidly than the

exponential dependence of the Oldroyd­B model ­ the necking is initially stabilized by the fluid

viscoelasticity and the effective stretch rate in the middle of the filament begins to decrease with

strain. However, eventually the extensional viscosity in the thread begins to saturate, d(Tr)/dεp

decreases, and the rate of necking begins to increase monotonically. The thinning and eventual

break­up of a FENE­P fluid thread in a ‘micro­filament rheometer’ (in which there is no imposed

exponential stretching) has also been discussed recently by Entov & Hinch [49].

Despite the very different time evolutions in the filament mid­plane radius (and the associated

variations in the time histories of the force Fz(t) and ε̇eff(t)) predicted by the FENE­P and Giesekus

simulations, the filament stretching device is still able to accurately monitor the evolution in the

transient extensional viscosity for each class of fluid. In Fig. 25 we show the predicted transient

Trouton ratios (computed using the type II force balance given in eq. (7)) for each simulation

together with the equivalent theoretical curves expected in a homogeneous uniaxial elongation at

constant extension rate Ė. Clearly the Type II analysis, which incorporates the history of the actual

force, radius and elongation rate experienced by the fluid element at the mid­plane of the elongating

column, provides an accurate estimate of the desired material function. Curves similar to those

computed in Fig. 25 at large strains may be very hard to realize experimentally, however, due to

the rapid decrease in the tensile force and the increasing rate of necking in the mid­plane radius of

the filament.
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An important observation from the constraint in eq. (28) is that any viscoelastic constitutive

model with a bounded extensional viscosity at large strains can undergo a ductile failure near the

middle of the filament. Of course, this failure may only happen at Hencky strains sufficiently large

that it cannot be observed experimentally in a typical filament stretching device. Our numerical

simulations thus suggest that there is an intrinsic limitation to the maximum Hencky strain that can

be obtained in filament stretching devices and other similar elongational rheometers. The transient

Trouton ratio predicted for a single mode Giesekus model at De=0.98 is shown on a linear scale

in Fig. 26 as a function of both the axial Hencky strain εp (i.e. the strain based on the motion of

the end­plates, see eq. (2)) and the effective strain εeff (based on the deformation of the mid­plane

radius). At the end of the simulation the elapsed time is tfinal/λ1 = 3.89, corresponding to a

maximum axial strain of εp =3.8. However, the total effective strain experienced by fluid elements

at the mid­plane is much larger due to the rapid necking in the filament mid­plane radius at later

times and can be computed from equation (4) to be εeff ≈ 9.78. Since the polymeric stress has

saturated, whereas the effective extensional strain rate continues to increase, the apparent Trouton

ratio computed from eq. (7) passes through a maximum at an intermediate value of the Hencky

strain and then begins to decrease before numerical convergence of the solution is ultimately lost

at εp ≈ 3.85. We have never observed such behavior in our experiments, possibly because of

limitations in the minimum measurable tensile force and total attainable strain; however, both

Münstedt & Laun and Meissner have observed similar overshoots in their measurements of the

transient Trouton ratio in LDPE [50]. In these experiments the tensile stress was found to grow,

saturate as the material attained its steady uniaxial extensional viscosity and then, showed a small

decrease immediately before the elongating strip of polymer failed. It thus appears plausible that

the physical mechanism leading to this measured overshoot is the onset of a ductile viscoelastic

failure in the sample.

6. CONCLUSIONS

In this paper we have used computational rheology to investigate the utility of filament stretch­

ing devices in measuring the tensile stress growth of weakly strain­hardening fluids during uniaxial

elongation. Numerical simulations using single and multi­mode formulations of the Giesekus

model coupled with experimental measurements using a 5.0 wt.% monodisperse polystyrene so­

lution have shown that it is possible to quantitatively measure the transient uniaxial extensional

viscosity over a range of strain rates. Although the deformation in the elongating fluid filament is

neither spatially nor temporally homogeneous when a single uniaxial stretching profile is applied to

the end­plate of the device, accurate measurements of the tensile force and the rate of deformation
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of fluid elements near the mid­plane of the filament, in combination with an appropriate force bal­

ance, are sufficient to extract the transient extensional viscosity function. The results are expected

to be even more accurate over a wider range of deformation rates if the experiments are performed

using a modified velocity profile that ensures temporal homogeneity of the mid­plane kinemat­

ics. However such measurements have not been attempted yet for these weakly­strain­hardening

materials.

Excellent agreement is obtained between the experiments and the numerical simulations per­

formed using nonlinear model parameters obtained from regression to independent rheological

experiments in shear and mixed shearing­extensional flows [23]. This indicates that, with careful

analysis, data obtained from filament stretching devices are accurate enough for the a priori fitting

of nonlinear constitutive parameters rather than the a posteriori confirmation of parameter values

that have already been determined in other rheological experiments . This predictive ability will

prove especially useful for fluids that are rheologically more complex than the relatively simple

entangled solution of monodisperse linear homopolymer that was employed in the present study.

Many of the nonlinear constitutive equations that characterize complex fluids (e.g. such as branched

polymeric fluids) frequently contain model parameters which have little or no effect on the steady

or transient shear flow material functions, and accurate measurements of the transient extensional

viscosity using filament stretching devices can thus be used to obtain appropriate values of these

material constants.

Numerical simulations with the Giesekus model at moderate Deborah numbers have also

shown that the rate of necking in the fluid filament increases exponentially with Hencky strain and

thus appear to indicate that the filament will eventually fail or ‘rupture’ in a finite time, although of

course numerical calculations are terminated before this event due to lack of spatial mesh resolution

in the middle of the filament. This necking down in the filament profile can be understood, at least

qualitatively, in terms of a Considére criterion in which homogeneous elongation of a viscoelastic

filament is unstable when the tensile force passes through a maximum. Similar arguments were

first made by Pearson and Connelly [51] and the criterion has been shown to provide quantitative

results at very high Deborah numbers by Hassager et al. [23].

Of course, this simple criterion cannot capture other features of the necking such as the

dependence of the filament evolution on initial aspect ratio nor can it predict the rate of necking that

develops. However, our simulations with FENE­P and Giesekus models having identical steady

state extensional viscosities show that the study of such dynamical phenomena as evolution and

failure of viscoelastic filaments is intimately connected with detailed knowledge of the transient
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extensional rheology of the material.

From an experimental viewpoint, viscoelastic enhancement of the rate of necking (and the

possibility of filament failure at a finite time) places an intrinsic limit on the maximum Hencky

strain that can be achieved for many viscoelastic materials regardless of mechanical limitations in

stage length, motor torque and force transducer sensitivity. Despite this limitation, our numerical

and experimental results show that even during the dynamic event of failure, accurate measurements

of the total viscoelastic force and the rate of necking can be used to monitor the evolution in the

elongational viscosity of the fluid. Furthermore, as pointed by Malkin and Petrie [27], failure and

rupture are some of the least understood features of the rheological behavior of polymeric liquids.

Filament stretching experiments have now documented several modes of material failure (e.g.

gradual cohesive necking near the mid­plane and meniscus instability leading to fibril formation

near a solid substrate) that are commonly observed in adhesives and other viscoelastic materials,

and in the future filament stretching rheometers may prove to be ideal devices to study such

mechanisms under carefully controlled kinematic conditions.
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FIGURE CAPTIONS

Figure 1. Steady viscometric properties of the test fluid at a reference temperature of 22◦C and

non­linear fits using multi­mode Giesekus model. (a) Steady shear viscosity η as a

function of shear rate γ̇; (b) First normal stress difference coefficient, Ψ1.

Figure 2. Mathematical model of the filament stretching device. (a) Initial configuration of the

cylindrical liquid bridge. (b) Subsequent extensional deformation of the liquid bridge.

Figure 3. Comparison of extensional deformations characterized by free surface profiles of the

filament as a function of Hencky strain εp for three typical constitutive models: a viscous

Newtonian fluid (N), a weakly strain­hardening fluid simulated by a 1­mode Giesekus

model (G) and a strongly strain­hardening fluid simulated using the Oldroyd­B model

(O). The material properties of the shear­thinning test fluid are given in Table 1 and the

stretching rate is Ė =4.68s−1 corresponding to De≈2.0 for the viscoelastic fluids.

Figure 4. An enlarged view of the extensional deformations at a Hencky strain of εp = 3.4 in

the local ‘foot’ area near the stationary end­plate for the three different fluid filaments

shown in Fig. 3. The locations of the individual mesh points are shown by the symbols.

Figure 5. Images of the free surface during extensional deformation in the filament stretching

device, recorded using a CCD camera with 640 × 480 pixels and 8 bit gray­scale

resolution.

Figure 6. Evolution of the free surface perturbation δR(z, εp) defined in eq. (1) measuring the

deviation between the actual axial profile computed for the Oldroyd­B fluid and the

ideal uniaxial elongational flow.

Figure 7. Free surface perturbation δR(z, ε) shows the growing difference between the axial free

surface profile computed for the Giesekus model and the corresponding response of a

Newtonian fluid.

Figure 8. Time history of the mid­plane radius, Rmid, for three different constitutive models. The

curve labeled e−0.5ε corresponds to homogeneous deformation in uniaxial elongational

flow. The curve marked e−0.75ε is the prediction from the lubrication solution [5].

Figure 9. Temporal variation of the local extension strain rate at the mid­plane between the two

end­plates at a Deborah number De=1.68. The local strain rate is characterized by the

effective extension strain rate, ε̇eff defined in eq. (3), and the pointwise value of Dzz at

the center of the liquid bridge, r=0, z=0.
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Figure 10. (a) Evolution in the effective extension strain rate for three different constitutive models.

(b) The non­dimensional enhancement in extension rate (ε̇eff−ε̇ref)/ε̇ref for the Giesekus

model, where the Newtonian curve shown in (a) is used as the reference. The imposed

axial extension rate is Ė =4.68s−1 in each case. The difference between the Newtonian

and the viscoelastic deformation rate grows exponentially with Hencky strain.

Figure 11. A quantitative comparison of the flow kinematics for three constitutive models. The

extensional flow kinematics are characterized by the axial velocity gradient Dzz along

the centerline r=0. The relevant parameter values are De=1.97, 1/Ca=0, Λ0 =0.54,

β=0.26 and α=0.3162.

Figure 12. Test run 1: De = 0.98 and Λ0 = 0.58. Comparison of the Trouton ratio predicted by

a 1­mode Giesekus model with the experimental data for a weakly strain­hardening

fluid described in Table 1. (a) Comparison based on the type IB analysis defined in eq.

(6b). The curves 1/Ca = 0.106 and 0 correspond to computations with and without

surface tension, respectively. (b) Comparison based on the type II analysis defined in

eq. (7). The curve denoted ‘Constant Stretch Rate’ refers to the theoretical solution for

the 1­mode Giesekus model under homogeneous uniaxial elongational flow conditions

with a constant extension rate Ė; while the curve labeled ‘Variable Stretch Rate’ is the

theoretical solution calculated using the time­dependent deformation rate ε̇eff .

Figure 13. Test run 2: De = 1.44 and Λ0 = 0.63. Comparison of the Trouton ratio predicted

by a 1­mode Giesekus model with experimental data for the polystyrene solution.

(•) Experimental measurements processed using the type IB analysis; (­ ­ ­) numerical

computation processed using the type IB analysis; (solid triangle) numerical compu­

tation processed using the type II analysis; (—) theoretical solution for homogeneous

uniaxial elongation at constant Deborah number De=1.44.

Figure 14. Test run 3: De = 1.89 and Λ0 = 0.54. Comparison of the Trouton ratio predicted

by a 1­mode Giesekus model with experimental data for the polystyrene solution. (•)

Experimental measurements processed using the type IB analysis; (­ ­ ­) numerical com­

putation processed using the type IB analysis; (solid triangle) numerical computation

processed using the type II analysis; (—) theoretical solution for homogeneous uniaxial

elongation at constant Deborah number De=1.89.

Figure 15. Effects of the initial aspect ratio on the radial deformation of a viscoelastic liquid bridge

simulated using a 1­mode Giesekus model. The non­dimensional mid­plane radius is
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shown as a function of the imposed axial Hencky strain εp defined in eq. (2). The

curves labeled e−0.5ε and e−0.75ε are the same as explained in the caption of Fig. 8.

Figure 16. Effects of the initial aspect ratio on the local extensional deformation at the mid­plane

between the two end­plates. The rate of deformation is characterized by the effective

extensional strain rate ε̇eff .

Figure 17. Effect of the initial aspect ratio on spatial non­homogeneity of polymer stress charac­

terized by the radial variation of the tensile stress component, τp,zz , on the mid­plane

between the end­plates (z = 0). The radial profiles are shown at (a) a small Hencky

strain of εp =0.2 and (b) a large strain of εp =3.8.

Figure 18. Effect of the initial aspect ratio on the predicted transient Trouton ratio analyzed using

the type II formulation given in eq. (7). The ‘Theory’ curve refers to the theoretical

prediction of the 1­mode Giesekus model for ideal uniaxial flow kinematics at constant

De. The local strain εeff pertains to fluid elements at the mid­plane and is calculated

according to eq. (4).

Figure 19. Effect of the mobility factor α in the 1­mode Giesekus model on flow kinematics

characterized by; (a) the mid­plane radius, Rmid; (b) The effective extensional strain

rate ε̇eff defined in eq. (3). The broken lines labeled e−0.5ε and e−0.75ε are explained

in the caption of Fig. 8.

Figure 20. Effect of the mobility factor on the free surface shape in the ‘foot’ area near the end­

plates at a large Hencky strain of εp =3.6.

Figure 21. Effect of the mobility factor on the transient Trouton ratio. Numerical solutions are

post­processed using the type II analysis and the resulting values of the transient Trouton

ratio are shown by the symbols. The three curves are theoretical predictions for the

1­mode Giesekus model based on ideal uniaxial elongational flow kinematics. The

dashed line corresponding to α = 0 is the Oldroyd­B limit.

Figure 22. Comparison of the predicted transient Trouton ratio for the multi­mode model versus

the single­mode model. The experiment refers to test run 3 in Table 2. (a) Using the

type IB analysis; (b) Based on the type II analysis.

Figure 23. Comparison of the simulated evolution in the mid­plane radius, Rmid for four different

fluid models. The same axial extensional strain rate of Ė =4.68 s−1 is imposed for all

the cases. The lines labeled e−0.5ε and e−0.75ε are explained in the caption of Fig. 8.
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Figure 24. Two examples of the generalized Considère stability criterion for (a) the Giesekus

model and (b) the FENE­P model, with model parameters chosen so that the steady

state extensional viscosity of the two fluids is the same.

Figure 25. The predicted transient Trouton ratios for the two test simulations in which the values of

α and L2 are selected such that the two models have the same steady­state asymptotic

value of extensional viscosity. The type II formulation is used for the data analysis.

The curves labeled ‘Theory’ correspond to predictions for ideal uniaxial elongation at

a constant Deborah number.

Figure 26. The local maximum in the transient Trouton ratio predicted by the 1­mode Giesekus

model. The numerical results are plotted on a linear scale as a function of both the axial

Hencky strain εp imposed by the end­plates and also as a function of the effective strain

εeff experienced near the mid­plane of the filament.



TABLE 1. Material properties of a weakly strain­hardening, 5 wt% solution of polystyrene and

parameters of a three relaxation­mode Giesekus model fit given by Li and Burghardt

[25]

Parameter Symbol [Unit] Mode 1 Mode 2 Mode 3

Relaxation Time �i [s] 0.421 0.0563 0.00306

Polymer Viscosity �i [Pa�s] 25.8 7.71 1.37

Mobility Factor �i [­] 0.3162 0.2422 0.0993

Density � [kg/m3] 1030

Solvent Viscosity �s [Pa�s] 0.069

Surface Tension Coef. � [N/m] 0.030



TABLE 2. Geometric Parameters and Non­Dimensional Numbers

Parameter Symbol [Unit] Test 1 Test 2 Test 3

Plate Radius R0 [m] 0.0035 0.0035 0.0035

Initial Aspect Ratio �0 [­] 0.583 0.629 0.54

Extension Rate _E [s�1] 2.32 3.42 4.48

Reynolds Number Re=� _ER2

0
=�0 8.4�10�4 1.2�10�3 1.6�10�3

Capillary Number Ca=�0 _ER0=� 9.46 13.94 18.27

Bond Number Bo=�gR2

0
=� � 0 � 0 � 0

Deborah Number De=�1 _E 0.98 1.44 1.89
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