
����������
�������

Citation: Dong, C. Dynamics,

Periodic Orbit Analysis, and Circuit

Implementation of a New Chaotic

System with Hidden Attractor.

Fractal Fract. 2022, 6, 190. https://

doi.org/10.3390/fractalfract6040190

Academic Editor: Viorel-Puiu Paun

Received: 25 February 2022

Accepted: 26 March 2022

Published: 30 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Dynamics, Periodic Orbit Analysis, and Circuit Implementation
of a New Chaotic System with Hidden Attractor
Chengwei Dong

Department of Physics, North University of China, Taiyuan 030051, China; dongchengwei@tsinghua.org.cn

Abstract: Hidden attractors are associated with multistability phenomena, which have considerable
application prospects in engineering. By modifying a simple three-dimensional continuous quadratic
dynamical system, this paper reports a new autonomous chaotic system with two stable node-
foci that can generate double-wing hidden chaotic attractors. We discuss the rich dynamics of the
proposed system, which have some interesting characteristics for different parameters and initial
conditions, through the use of dynamic analysis tools such as the phase portrait, Lyapunov exponent
spectrum, and bifurcation diagram. The topological classification of the periodic orbits of the system
is investigated by a recently devised variational method. Symbolic dynamics of four and six letters
are successfully established under two sets of system parameters, including hidden and self-excited
chaotic attractors. The system is implemented by a corresponding analog electronic circuit to verify
its realizability.
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1. Introduction

Chaos theory, which is regarded as the third scientific theory revolution in the 20th
century, has been extensively and intensively studied since the meteorologist Lorenz
discovered chaotic phenomena for three-dimensional (3D) autonomous quadratic systems
in 1963 [1]. As chaotic states in nonlinear dynamic systems are extremely sensitive to initial
values, a large amount of research work shows that chaos is closely related to engineering
technology, with wide application in fields such as circuit control [2], image encryption [3],
secure communications [4], and neural networks [5].

Many chaotic systems have been constructed [6–9] that include both self-excited
and hidden attractors [10]. Self-excited attractors have a basin of attraction related to
the unstable equilibrium, whereas those of hidden attractors do not intersect with small
neighborhoods of any equilibria [11,12]. Most well-known dynamical systems have self-
excited chaotic attractors [13–15]. As hidden attractors cannot be calculated from the
initial conditions in the neighborhood of the equilibrium point, they were not introduced
until recently, and there are some new studies on how to locate them [16,17]. Hidden
attractors have attracted great interest in recent years due to their considerable importance
in both theory and engineering, because they allow unexpected and potentially catastrophic
responses to structural disturbances such as to bridges or aircraft wings. It has been shown
that attractors in a dynamical system with stable equilibria [18–20], an infinite number of
equilibria [21–23], or no equilibrium points [24–29] are hidden attractors. These are also
represented in a 3D continuous dynamical system with only one unstable node as the
equilibrium point [30].

Hidden attractors have been broadly investigated in the literature. Wang and Chen
constructed a chaotic system with only one stable equilibrium via a constant control
parameter added to the Sprott E system [31]. Wei found a new chaotic system with no
equilibrium by adding a simple constant to the Sprott D system [32]. Two modified
Sprott systems that have only stable node-focus points with hidden chaotic attractors were
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analyzed [33]. The generalized Sprott C system with two stable equilibrium points was
proposed [34], and its chaotic and complex dynamic behaviors in the parametric space were
investigated. Hidden chaos and hyperchaos have been found in the jerk system [35–37],
meminductor-based chaotic system [38], extended Rikitake system [39], 4D Rabinovich
system [40], 4D modified Lorenz-Stenflo system [41], and 5D homopolar disc dynamo [42].
Self-excited and hidden attractors can also be generated in a modified Chua’s circuit and in
a 3D memristive Hindmarsh–Rose neuron model [43,44]. Moreover, some 3D dynamical
systems with three different families of hidden attractors have been discovered [45–47].
A 4D autonomous chaotic system that has two types of hidden attractors with a line
of equilibria or no equilibria was derived [48]. A 5D chaotic system with both hidden
attractors and extreme multistability was introduced [49], and coexisting self-excited and
hidden attractors in a Lorenz-like system with two equilibria were found [50].

This paper proposes a hidden chaotic attractor system with two stable fixed points.
With the change of parameters, its complex dynamical behaviors are analyzed using multi-
ple dynamical tools, such as phase portraits, time sequence, power spectrum, and Lyapunov
exponents. We establish two symbolic dynamics in the system, and classify the unstable
periodic orbits embedded in hidden and self-excited chaotic attractors topologically for
two sets of parameters. The electronic circuit of the system is designed and simulated by
Multisim software, which proves the existence of chaos. Compared to the above contribu-
tions in the literature, the novelty of the work lies in the unstable periodic orbits of the new
system showing a complexity of significant differences with different parameter values.
For the system with hidden chaotic attractors, which is determined by four parameters, the
complexity is relatively simple; however, the system with self-excited chaotic attractors,
which contains only two parameters, unexpectedly has more complex dynamics.

The rest of this paper is arranged as follows. Section 2 introduces the mathematical
model of the system, and its nonlinear dynamic characteristics are investigated. In Section 3,
observation of chaotic and complex dynamics in the system is implemented by varying
different parameters. To locate the unstable cycles in the system, we review the variational
method in Section 4, which can be effectively utilized in calculations. We systematically
calculate all short unstable cycles of the new system under two parameters. To establish
appropriate symbolic dynamics, one needs four letters, and the other needs six. Section 5
presents a circuit implementation of the system to validate its feasibility. Section 6 discusses
our conclusions.

2. The New System and Its Dynamic Characteristics

Inspired by the chaotic system proposed by [51], a new system can be easily con-
structed by adding a nonlinear term of cross-product kxz to the first equation,

dx
dt

= a(y− x) + kxz

dy
dt

= −cy− xz (1)

dz
dt

= −b + xy,

where x, y, and z are state variables, and a, b, c, and k are the control parameters. Note that
adding a cross-product nonlinear term is not a general method to realize chaos in a 3D
quadratic system. In addition, the proposed system (1) has three nonlinear terms, where
notably each equation has one single cross-product term, so it certainly does not belong to
algebraic simple chaotic flows, but is suitable for practical implementation as an electronic
circuit. When the parameters of system (1) are assigned as (a, b, c, k) = (10, 100, 11.2,−0.2),
and the initial values (x0, y0, z0) are set as (1, 1, 1), a fourth-order Runge–Kutta method is
adopted in the numerical integration, which reveals the chaotic behaviors characterized
by strange attractors, as shown in Figure 1a–c, and the power spectrum with continuous
broadband characteristics (Figure 1d) verifies the emergence of chaos. Correspondingly,
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the Lyapunov exponents are calculated based on the Wolf algorithm [52], which gives
LE1 = 0.7457, LE2 = −0.0057, LE3 = −26.8144 (see Figure 2). The positive Lyapunov
exponent indicates that the phase volume of the system is expanding and folding in a
certain direction, which means that the system is in a chaotic state. The Kaplan–Yorke
dimension is DKY = 2 + (LE1 + LE2)/|LE3| = 2.0276, which also verifies the chaoticity of
system (1).
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Figure 1. Projections of chaotic attractor onto various planes at time t = 200: (a) x–z phase space;
(b) y–z phase space; (c) x–y phase space; (d) continuous broadband frequency spectrum.
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Figure 2. Lyapunov exponent spectrum of system (1) for (a, b, c, k) = (10, 100, 11.2,−0.2).
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The new system has the following fundamental dynamic properties:
(1) System (1) is rotationally symmetric versus the z-axis, which is invariant under the

coordinate transformation (x, y, z) → (−x,−y, z). Any attractors are either a symmetric
pair or symmetric under a 180-degree rotation around the z-axis;

(2) Since the divergence of system (1) is

∇ ·V =
∂
·
x

∂x
+

∂
·
y

∂y
+

∂
·
z

∂z
= −a + kz− c, (2)

under the condition −a + kz− c < 0, it is dissipative and can converge to a set of zero
measure in exponential form,

dV
dt

= e−a+kz−c; (3)

(3) System (1) possesses two equilibrium points:

E1 : (−
√

ab− bck
a

,− b√
ab−bck

a

,
ac

ck− a
),

E2 : (

√
ab− bck

a
,

b√
ab−bck

a

,
ac

ck− a
). (4)

Linearizing the system gives the Jacobian matrix

A =

−a + kz a kx
−z −c −x
y x 0

. (5)

For the parameters (a, b, c, k) = (10, 100, 11.2,−0.2), the Jacobian eigenvalues at E1
and E2 can be calculated by solving the corresponding characteristic equations, and they
have the same values: λ1 = −18.7413, λ2,3 = −0.314± 11.424i. From the eigenvalues, we
can see that E1 and E2 are both stable node-focus points.

Since the new system can generate strange attractors, it is implied that system (1)
under current parameters has hidden chaotic attractors. Figure 3a displays the coexistence
of chaotic motion and stable node-foci in 3D phase space. We can see clearly that the
trajectory starting from initial conditions I1 = (1, 1, 1) becomes a disordered state; however,
orbits starting from initial conditions I2 = (−20,−10,−10) and I3 = (20, 10,−10) spirally
converge to E1 and E2, respectively. Figure 3b displays the time-domain waveform diagram
for initial conditions I1, I2, and I3; an apparently chaotic waveform of x(t) illustrates that
hidden chaotic attractors exist in system (1). To avoid transient chaos, we also confirmed
the existence of a hidden chaotic attractor, since the orbit remains on it for t = 106.

The graphics of the basin of attraction, which is defined as the initial condition set that
the orbits converge to a given attractor, can clearly exhibit the initial point distributions of
different attractors. To further check whether the chaotic attractor in Figure 3 is hidden, a
section z = −9.1503, including E1 and E2, is selected, and the initial condition regions of
coexisting attractors are explored, as shown in Figure 4. Three types of basins of attraction
on the cross section are colored yellow, blue, and red. Yellow areas with black stripes
represent the basin of attraction of a chaotic attractor and the Poincaré section concerning
the chaotic attractor with two wings, while blue and red areas denote that the movement
from these initial conditions will converge to equilibria E1 and E2, respectively. From
Figure 4, we find that the basin of attraction has the expected symmetric similarity and
a smooth boundary. Moreover, in view of the topology of basins in Figure 4, the basins
of attraction of chaotic attractors do not intersect with small neighborhoods of stable
equilibrium points E1 and E2, which also illustrates that there is a hidden chaotic attractor
in system (1).
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Figure 3. (a) 3D phase portrait of system (1) for (a, b, c, k) = (10, 100, 11.2,−0.2). Initial conditions
I1 lead to hidden chaotic attractor, and initial conditions I2, I3 lead to asymptotically converging
behaviors to equilibrium point E1 and E2, respectively; (b) coexisting time series diagram of x(t).

Figure 4. Basins of attraction for system (1) at z = −9.1503. Blue and red basins represent attractors
of two stable node-focus points E1 and E2, yellow region denotes basin of chaotic attractor, and black
stripes denote crossing trajectories of chaotic attractor.

3. Chaotic and Complex Dynamics in New System

The system parameters can significantly influence the dynamics, and the qualitative or
topological variety in the behavior of dynamic systems means that a bifurcation occurs [53].
We discuss the chaotic and complex dynamics of the proposed system (1) through varying
the parameters, taking the initial values as (x0, y0, z0) = (1, 1, 1). The bifurcation diagram,
largest Lyapunov exponent, and division diagram are adopted as tools to observe the
impacts of parameters.
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3.1. Fix a = 10, c = 11.2, k = −0.2 and Vary b

To investigate the effect of the parameters on the dynamics of system (1), we first take
parameters (a, c, k) = (10, 11.2,−0.2) and vary b ∈ [10, 140]. When altering b, the system
shows many complex dynamic behaviors that can be explored in the parameter space.
The typical Benettin method is employed to calculate the maximum Lyapunov exponent
spectrum, and the corresponding bifurcation diagram versus parameter b is displayed in
Figure 5. Obviously, a positive maximum Lyapunov exponent implies that the system is
chaotic over a wide range of parameters. It is clear that the bifurcation diagram with the
variation of parameter b matches well with the largest Lyapunov exponent spectrum. We
can see that the state of system (1) becomes chaotic through pitchfork and period-doubling
bifurcations, then periodic, and chaotic again. The bifurcation diagram in Figure 5b
demonstrates that the system evolves smoothly from a periodic solution to a chaotic region
through a typical period-doubling route; hence, no clear boundary exists between a periodic
phase portrait and chaos. When b is in the interval [125, 140], the largest Lyapunov exponent
quickly becomes negative, and the corresponding bifurcation diagram suddenly changes
to no cutoff points, which both mean that the trajectory of system (1) finally converges to
a fixed point. More details are presented through the 3D projections of phase portraits of
system (1) at different b values, as shown in Figure 6.

20 40 60 80 100 120 140

b

-1

-0.5

0

0.5

1

1.5

T
he

 la
rg

es
t L

ya
pu

no
v 

ex
po

ne
nt

s

20 40 60 80 100 120 140

b

0

5

10

15

20

25

30

35

40

|y
|

(a) (b)

Figure 5. Largest Lyapunov exponent spectrum (a) and bifurcation diagram (b) of system (1) versus
b, where a = 10, c = 11.2, k = −0.2.
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Figure 6. 3D view of phase portraits of system (1), where a = 10, c = 11.2, k = −0.2: (a) b = 20,
(b) b = 80, (c) b = 130.

3.2. Fix b = 100, c = 11.2, k = −0.2 and Vary a

Now, we fix (b, c, k) = (100, 11.2,−0.2) and vary a ∈ [6, 20] and explore the dynamical
evolution of system (1). Figure 7a shows the largest Lyapunov exponent spectrum with
respect to a, and Figure 7b displays the bifurcation diagram of the whole evolution process.
As can be seen from Figure 7, these results are consistent with each other and demonstrate
that the dynamical behaviors vary when a undergoes change. Obviously, when a is in the
interval [6, 9.7], the system converges to one stable equilibrium, as shown in Figure 8a,
where a = 7. When a ∈ (9.7, 12.1], the system has a chaotic status. Near a = 12.2, the
largest Lyapunov exponent is about zero, which implies that system (1) is periodic in a
small parameter range, as demonstrated in Figure 8b, where a = 12.2. However, the system
becomes chaotic again when a is in the interval [12.6, 13.7] (see Figure 8c). Then, when
a > 13.7, the system experiences an inverse period-doubling bifurcation process with the
increase of a, and eventually becomes periodic again. Figure 8d displays the 3D phase
diagram for a = 20.
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Figure 7. Parameter values (b, c, k) = (100, 11.2,−0.2), largest Lyapunov exponent spectrum (a), and
bifurcation diagram (b) of system (1) for a ∈ [6, 20].
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Figure 8. 3D view of phase portraits of system (1), b = 100, c = 11.2, k = −0.2: (a) a = 7; (b) a = 12.2;
(c) a = 13; (d) a = 20.

3.3. Fix a = 10, b = 100, k = −0.2 and Vary c

Here, we fix the parameters a = 10, b = 100, k = −0.2, and vary c. The Lyapunov
exponent spectrum and bifurcation diagram presented in Figure 9 reveal that the limit
cycle, chaos, and equilibrium point appear alternately as c increases from −30 to 20. We
can see that the system shows complex dynamic behavior in this region, and generates
chaos via period-doubling bifurcation. Moreover, periodic windows exist in such a pa-
rameter region. An attractor of system (1) becomes a limit cycle from chaos through a
process of reverse period-doubling bifurcations, then becomes chaotic again through period-
doubling bifurcations, and finally converges to a stable equilibrium point. With initial
values (x0, y0, z0) = (−1,−1, 1), the system will undergo the same bifurcation process, and
the orbits in the phase space will eventually converge toward another stable fixed point.

When the parameters a = 10, b = 100, k = −0.2, the emergence of a hidden chaotic
attractor is dependent on the value of c > 0. When we take c ∈ [−10.7, 0], the system
generates a self-excited chaotic attractor. It is worth noting that the periodic regions do
not share the same dynamical characteristics; diverse limit cycles appear in four periodic
regions, as shown in Figure 10.
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Figure 9. Parameter values (a, b, k) = (10, 100,−0.2), largest Lyapunov exponent spectrum (a) and
bifurcation diagram (b) of system (1) for c ∈ [−30, 20].
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Figure 10. 2D view of different limit cycles of system (1), a = 10, b = 100, k = −0.2: (a) c = −12;
(b) c = −7.74; (c) c = −7.2; and (d) c = 3.

3.4. Fix a = 10, b = 100, c = 11.2 and Vary k

The Lyapunov exponent spectrum and bifurcation diagram shown in Figure 11 reveal
that equilibrium point and chaotic orbit appear alternately with k increasing gradually
from −2 to 0.9. When we take parameters (a, b, c, k) = (10, 100, 11.2, 0), system (1) becomes
the system with a hidden chaotic attractor in Ref. [51]. As shown in Figure 11, when k
becomes slightly positive or negative, chaotic attractors can still be generated. However,
the type of chaotic attractors will depend on the positive or negative value of k; these
are the new structures that have emerged. As required by the Routh–Hurwitz stability
criterion, when we take parameters (a, b, c) = (10, 100, 11.2), hidden chaotic attractors can
exist if the following inequalities are satisfied: a + c− ack

ck−a > 0, which requires k < 0 or
k > 1.69. Hence, when k is slightly positive, the chaotic attractor is self-excited, while when
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k is slightly negative, it generates a hidden chaotic attractor with two stable node-foci. It is
noteworthy that, with k increasing in the range k > 0.9, the orbit finally leads to infinity.
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Figure 11. Largest Lyapunov exponent spectrum (a) and bifurcation diagram (b) of system (1) versus
k, where a = 10, b = 100, c = 11.2.

3.5. Fix a = 10, b = 100 and Vary k and c

We draw a division diagram to capture different kinds of dynamical modes of system
(1) with respect to parameters k–c. Varying k and c within the region of k ∈ [−4, 0],
c ∈ [0, 25], by calculating the largest Lyapunov exponents, we obtain a pseudo-colored map
on a 300× 250 grid of parameters (k, c) (see Figure 12a). Colors correspond to magnitudes of
the largest Lyapunov exponents, where green and blue imply equilibrium, yellow indicates
a limit cycle, and red represents a state of chaos. It can be observed from Figure 12a
that the dynamical mode of system (1) evolves as k and c change. To more clearly show
the evolution of chaos, we fix k = −0.2, take c ∈ [5, 15], and plot a vertical line A–B–C,
presented in Figure 12a for A = 5, B = 10, C = 15. The rich dynamics of the evolution
process in the division diagram are shown in Figure 9. Starting with the periodic region
A, as c increases, the chaos degenerates through period-doubling bifurcations in line A–B,
and the system abruptly changes to one equilibrium through the chaotic status in line B–C.
Similarly, we plot a horizontal line, D–E, fix c at 11.2, and take k ∈ [−2,−1]. The system
changes from one stable equilibrium to a chaotic state at k = −1.5.
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Figure 12. Division of parameters k and c with different initial conditions: (a) (x0, y0, z0) = (1, 1, 1);
(b) (x0, y0, z0) = (1, 10, 1).

Taking initial conditions (x0, y0, z0) = (1, 10, 1), the numerical results in Figure 12b
illustrate that the other initial conditions have an impact on the division diagram, leading
to expansion of the regions of stable equilibrium. The original chaotic state regions become
an equilibrium state, indicating the existence of a hidden attractor in the corresponding
parameters. If the regions remain in a chaotic state, a self-excited attractor might exist
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under the corresponding parameters, as the regions may become one equilibrium at other
initial values.

Inspired by the k–c division diagram, it is clear that the parameter values k = 0 and
c = 0 at the lower-right corner are dark red, which means the chaos is most complex. As
will be discussed shortly, system (1) has a self-excited chaotic attractor at parameter values
(a, b, c, k) = (10, 64, 0, 0).

4. Diverse Symbolic Dynamics for Unstable Periodic Orbits

We employ the variational method for the cycle search in system (1) and establish
appropriate symbolic dynamics for the found periodic orbits. We first introduce the
variational method, which can be effectively used in the calculations. After that, we aim to
accurately find the surrounding mode of the orbit in system (1), and develop a universal
approach for the symbolic encodings of cycles. We select two sets of parameters, one
corresponding to the hidden chaotic attractor, and the other to the self-excited chaotic
attractor. The symbolic encoding method based on orbit topology will enable us to analyze
periodic orbits by establishing diverse symbolic dynamics.

As shown in Figure 1, the strange attractor of system (1) is composed of numerous
unstable periodic orbits. The 3D continuous flow can be transformed to a 2D discrete
mapping by an appropriate Poincaré section. The idea is to select a section properly in a
high-dimensional phase space, on which a pair of conjugate variables are fixed; then, the
information about the motion characteristics can be obtained by observing the intersection
points of the motion trajectory and cross section. Figure 13a shows the first return map of
system (1) for (a, b, c, k) = (10, 100, 11.2,−0.2). When we choose a special Poincaré section
z = −9.1503, the initial values are [1, 1, 1], where a dense point with a four-branch structure
is presented under these parameters, which indicates the necessity to encode all short cycles
by symbolic dynamics with four letters. For the parameters (a, b, c, k) = (10, 64, 0, 0), which
also correspond to a chaotic state, the first return map with a Poincaré section z = 0 with
the same initial values is shown in Figure 13b. We can see more branches in this case, which
means that more symbols are needed to encode the periodic orbits, and demonstrates better
complexity in the topological structure of periodic orbits. To the best of our knowledge,
investigations of such complex unstable cycles in the chaotic attractor have rarely been
reported. The Lyapunov exponents under the parameters (a, b, c, k) = (10, 64, 0, 0) are also
calculated, which gives LE1 = 1.4456, LE2 = 0.0017, and LE3 = −11.4473 (see Figure 14).
Correspondingly, the Kaplan–Yorke dimension is DKY = 2.1264. Compared with the largest
Lyapunov exponent, i.e., 0.7457, under the parameters (a, b, c, k) = (10, 100, 11.2,−0.2), the
largest Lyapunov exponent becomes larger, which indicates that the chaotic characteristics
of the system are more complex for the parameters (a, b, c, k) = (10, 64, 0, 0).

(a) (b)

Figure 13. First return map of system (1) under different parameters: (a) Poincaré section z = −9.1503,
(a, b, c, k) = (10, 100, 11.2,−0.2); (b) Poincaré section z = 0, (a, b, c, k) = (10, 64, 0, 0).
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Figure 14. Lyapunov exponent spectrum of system (1) for (a, b, c, k) = (10, 64, 0, 0).

4.1. Variational Method

Periodic orbits play important roles in physical and engineering applications. It is rela-
tively easy to locate the unstable cycles in low-dimensional chaotic systems in general [54].
When we locate them in a high-dimensional state space, because the topological structure
of the dynamical system is difficult to perceive, even if points on the cycle are guessed, the
shooting method may fail. This problem can be solved by initializing a complete orbit with
similar topology, and making it gradually evolve into a real cycle. This is also the basic idea
for the variational method to calculate unstable periodic orbits of dynamical systems. For
the calculations of unstable cycles, a discretization equation was derived as [55]

∧A −∧v
∧
a 0

(δ
∼
x

δλ

)
= δτ

(
λ
∧
v−

∧
∼
v

0

)
, (6)

where τ is the virtual time related to iteration times. We use λ to adjust the period, which
has the relationship with the period T = 2πλ when the periodic orbit converges. We

want to match the vector fields
∧
v = (v1, v2, . . . , vN)

t,
∧
∼
v = (

∼
v1,
∼
v2, . . .

∼
vN)

t everywhere
along the loop, and v and

∼
v represent the flow velocity and loop velocity vector, re-

spectively.
∧
a is an Nd-dimensional row vector that restricts coordinate alterations.

∧
A =

∧
D − λdiag[A1, A2, . . . , AN ], where Aij =

∂vi
∂xj

, is the gradient matrix of the velocity field,
and the five-point approximation matrix is

∧
D =

N
24π



0 8 −1 1 −8
−8 0 8 −1 1
1 −8 0 8 −1

· · ·
1 −8 0 8 −1

−1 1 −8 0 8
8 −1 1 −8 0


, (7)

where each matrix element is d × d dimensional, and blanks are filled with zeros. The
[(Nd + 1)× (Nd + 1)] matrix on the left side of Equation (6) must be inverted to solve for
δ
∼
x and δλ, and the banded lower-upper decomposition method for accelerated computing

and the Woodbury formula are adopted. In addition, because the virtual time steps are
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sometimes not significant, we may choose larger time steps for numerical integration, so as
to effectively search the real periodic orbit.

To utilize the variational method, as a first step, a loop guess which is fit to the cycle
calculations is a prerequisite, and the loop guess can be initialized in many ways in the
numerical calculations [55]. For example, we can use a fast Fourier transform of a nearly
closed orbital fragment obtained from the numerical integration, keep only the lowest-
frequency components, and use a reverse fast Fourier transform back to the phase space,
in which emerges a glossy loop guess that can be used to initialize. We can also easily
construct the initial loop guess by utilizing the homotopy evolution method [56]. We
mention other initialization methods below.

The flexibility of the variational method for cycle searching has been verified by many
examples [57–59], including conservative systems and low- or high-dimensional dissipative
systems. The method can also locate other invariant sets in dynamical systems with proper
modification [60,61]. The method cannot only find cycles with fixed parameters, but can
be used to study the deformations of cycles when changing some parameters, i.e., to
investigate the bifurcation behaviors of a dynamical system [62,63]. Hence, this approach
can be used to study the generation or disappearance of periodic orbits and the change of
cycle stability.

4.2. Unstable Cycles Embedded in Hidden Chaotic Attractor for (a, b, c, k) = (10, 100, 11.2,−0.2)

The unstable periodic orbits in system (1) when (a, b, c, k) = (10, 100, 11.2,−0.2) are
investigated based on the variational method. In the process, establishing appropriate
symbolic dynamics is important for locating all short cycles without missing any [64]. To
obtain the topological shape of the periodic orbit to be calculated, we perform numerical
simulations, intercepting part of the simple orbital fragment to construct the initial loop
guess. Several short periodic orbits with uncomplicated topological structures are found,
as shown in Figure 15. Figure 15a shows a periodic orbit that revolves one turn around the
left equilibrium E1 with an elliptical shape, which has a relatively small extension in the
z-axis with shortest period T = 0.635920. We mark it as cycle 0. Figure 15b shows a cycle
that rotates once around the right equilibrium E2 with an elliptical shape, and mark it as
cycle 1. It can be seen that the two periodic orbits are symmetric to each other. Similarly,
we mark the cycle with a wing shape rotating around the fixed point on the left once as
cycle 2, as shown in Figure 15c, and its symmetric cycle with reasonably large extension
in the z orientation is denoted as cycle 3 (see Figure 15d). The above four cycles can be
regarded as the building blocks, and other periodic orbits can be calculated systematically
by the symbolic dynamics of four letters.

There are four situations in which an orbit revolves one turn both around the left and
right fixed points, and they are the cycles with topological length 2, as listed in Figure 16a–d.
The rotationally symmetric property of system (1) implies the exchange symmetry 0 and 1
or 2 and 3 of the symbol sequence. Consequently, it is shown that the symmetry partner
of cycle 12 is 03, and they have the same period. Cycles 01 or 23 are conjugated with
themselves, so that no other orbit has the same period. Figure 16e–h display four cycles
with topological length 3. Utilizing symbolic dynamics, we can calculate the cycles up to
any topological length, i.e., we first construct the loop guess of the corresponding symbol
sequence, and use the variational technique to verify its existence. Altogether, we found 20
periodic orbits with topological length 3, as listed in Table 1.
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Figure 15. Four basic building blocks in system (1) for parameters (a, b, c, k) = (10, 100, 11.2,−0.2):
(a) cycle 0; (b) cycle 1; (c) cycle 2; and (d) cycle 3.

Table 1. Twenty unstable periodic orbits embedded in hidden chaotic attractor of system (1) for
(a, b, c, k) = (10, 100, 11.2,−0.2), showing topological length, itinerary p, period Tp, and three coordi-
nates of a point on the periodic orbit.

Length p Tp x y z

1 0 0.635920 −7.028076 0.430355 1.092913
1 0.635920 7.028076 −0.430355 1.092913
2 1.192933 2.544434 12.123766 20.650672
3 1.192933 −2.544434 −12.123766 20.650672

2 12 1.752388 2.807407 6.313538 12.146665
03 1.752388 −2.807407 −6.313538 12.146665
01 1.467965 0.100280 1.271667 −7.073590
23 2.383824 −14.090307 17.922194 33.086632

3 001 2.174153 −7.214950 4.081725 7.082844
011 2.174153 7.214950 −4.081725 7.082844
003 2.361334 −1.162938 −0.669254 −14.983886
112 2.361334 1.162938 0.669254 −14.983886
132 2.940945 −2.570910 −0.291669 11.591391
023 2.940945 2.570910 0.291669 11.591391
021 2.554559 −0.016908 −0.016629 −31.681837
013 2.554559 0.016908 0.016629 −31.681837
033 2.946229 0.291076 0.540818 −60.155264
122 2.946229 −0.291076 −0.540818 −60.155264
223 3.954898 −5.509519 −11.111451076 −71.906347
233 3.954898 5.509519 11.111451076 −71.906347
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Figure 16. Unstable cycles in system (1) under parameters (a, b, c, k) = (10, 100, 11.2,−0.2): (a) cycle
12; (b) 03; (c) 01; (d) 23; (e) 001; (f) 112; (g) 023; and (h) 233.
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4.3. Unstable Periodic Orbits Embedded in Self-Excited Chaotic Attractor for
(a, b, c, k) = (10, 64, 0, 0)

If we make the third and fourth parameters in the chosen set (a, b, c, k) zero, according
to the Routh–Hurwitz stability criterion, a2b2 < 0 must be satisfied, so there is no solution,
which means that there will be no hidden chaotic attractors in the system. Only when c and
k are not zero is it possible to satisfy the Routh–Hurwitz stability criterion and a hidden
chaotic attractor with stable equilibrium points can exist. When we take another set of
parameters, (a, b, c, k) = (10, 64, 0, 0), system (1) becomes a dynamical system with only
five terms and also exhibits the existence of a chaotic state. As with some simple chaotic
flows, namely the Sprott system, listed in Ref. [15], system (1) is simpler, but it has more
complex dynamics, which is worthy of further research. For these parameter values, the two
equilibrium points yield E1 = (−

√
b,−
√

b, 0) and E2 = (
√

b,
√

b, 0), and three eigenvalues
of the fixed points E1,2 are λ1,2 = 1.4034± 9.8983i and λ3 = −12.8068. Since E1,2 are two
saddle-foci, system (1) has a self-excited chaotic attractor under current parameters.

We locate the unstable periodic orbits via the variational method, which brings great
convenience. Here, we numerically integrate Equation (1) and extract approximate closed
trajectories with different shapes, then artificially connect them so as to initialize the search.
Figure 17 displays our calculated results for some short periodic orbits. We can also record
the cycle swirling around the left fixed point E1 once with a wing shape in Figure 17a by
cycle 2, and its symmetric partner in Figure 17b with cycle 3. However, we did not find
cycle 0 and cycle 1 to exist. The cycles in Figure 17c,d both have a knot, which indicates that
they have a self-linking number of 1, which can conveniently be calculated [65]. We mark
them as cycle 4 and cycle 5, respectively. Noting that they are symmetric to each other, the
commutative symmetry 4 and 5 of the symbol sequence is satisfied.
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Figure 17. Four building blocks in system (1) for parameters (a, b, c, k) = (10, 64, 0, 0): (a) cycle 2;
(b) cycle 3; (c) cycle 4; (d) cycle 5.

We can use the above cycles as building blocks to find more complicated cycles, and
the symbolic dynamics is established successfully. Figure 18 shows part of the found



Fractal Fract. 2022, 6, 190 17 of 23

cycles together with equilibria E1 and E2. According to the symbolic dynamics, we find
41 unstable cycles with topological lengths up to 3, and sort them in Table 2. A total of
14 cycles are pruned, e.g., cycles 02, 002, and 123. Compared with the two sets of parameters,
for the same periodic orbits, the cycles embedded in the hidden chaotic attractor have
longer periods than those embedded in the self-excited chaotic attractor. The unstable cycles
of system (1), as discussed under current parameters, must invoke symbolic dynamics for
six letters, which is usually complicated. The topological classification approach used here
indicates its flexibility. Additionally, although the symbolic dynamics of six letters can
produce many symbol sequences within the topological length of 3, it is found that the
2 and 3 building blocks can be combined with all the other building blocks, while the 0 and
1 building blocks cannot be combined with the 4 or 5 building blocks. These behaviors are
surely unusual. Therefore, the number of cycles actually allowed by the symbol sequence
is greatly reduced. Whether this empirical pruning rule is applicable to longer periodic
orbits is an open problem worthy of further investigation.
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Figure 18. Unstable periodic orbits in system (1) for parameters (a, b, c, k) = (10, 64, 0, 0). Two
equilibria are marked with “+". (a) cycle 24; (b) cycle 25; (c) cycle 45; (d) cycle 033; (e) cycle 021;
(f) cycle 132; (g) cycle 324; (h) cycle 255; (i) cycle 335; (j) cycle 325; (k) cycle 225; (l) cycle 254.

Table 2. Forty-one unstable periodic orbits embedded in self-excited chaotic attractor of system (1)
for (a, b, c, k) = (10, 64, 0, 0).

Length p Tp Self-Linking Length p Tp Self-Linking p Tp Self-Linking

1 2 1.016946 0 3 223 2.994130 0 031 2.447450 2
3 1.016946 0 233 2.994130 0 012 2.447450 2

2 01 1.358438 1 033 2.609712 2 132 2.505368 0
23 1.965825 1 122 2.609712 2 023 2.505368 0
12 1.587528 1 021 2.323226 0
03 1.587528 1 013 2.323226 0

1 4 1.312552 1 445 4.235720 3 354 3.955079 2
5 1.312552 1 455 4.235720 3 234 3.263831 1

2 24 2.289914 2 344 3.667897 1 325 3.263831 1
25 2.354458 0 255 3.667897 1 225 3.367249 1
34 2.354458 0 335 3.312270 1 334 3.367249 1
35 2.289914 2 224 3.312270 1 254 3.606269 3
45 2.642183 1 244 3.600833 3 345 3.606269 3

3 235 3.349139 1 355 3.600833 3
324 3.349139 1 245 3.955079 2

Regarding the system’s overall dynamical complexity from the two sets of parameters
chosen in the study, we can draw the following conclusions:

(1) The proposed system (1) with two parameters has more complex dynamics than
the system with four parameters.

(2) The system with a self-excited attractor has more complex dynamics than the
system with a hidden attractor.

(3) The system with periodic orbits containing building blocks of self-linking number 1
has more complex dynamics than that containing building blocks of self-linking number 0.

5. Circuit Simulation

We discuss the circuit implementation of system (1) to confirm the realizability of the
mathematical model. Because all the values of state variables (x, y, z) in system (1) are out
of the dynamic range, they should be scaled down to avoid problems during simulation.
We set the amplitude scaling factor to 10, where X = 1

10 x, Y = 1
10 y, and Z = 1

10 z. The time
scale factor is set to τ0 = 1

R0C0
= 2500 to better match the system, a new time variable τ

is defined instead of t, and t = τ0τ. As a result, system (1) after scale transformation is
described as

R0C0
·

X = a(Y− X) + 10kXZ

R0C0
·
Y = −cY− 10XZ (8)

R0C0
·
Z = − b

10
+ 10XY,
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where a = 10, b = 100, c = 11.2, and k = −0.2.
The proposed circuit design is depicted in Figure 19, in which X, Y, and Z are the

voltages at the outputs of operational amplifiers U2, U5, and U8, respectively. The circuit
consists of nine AD811AN operational amplifiers, whose supply voltage is ±18 V; three
multipliers with an output coefficient of 0.1; three capacitors; and 19 resistors. Based on
Kirchhoff’s law, we can get

·
X =

R4

R2R5C1
Y− R4

R1R5C1
X− R4

R3R5C1
0.1XZ

·
Y = − R10

R8R11C2
Y− R10

R9R11C2
0.1XZ (9)

·
Z =

R16

R15R17C3
V1 +

R16

R14R17C3
0.1XY.

Comparing Equation (8) with Equation (9), we select all the capacitors Ci = 40 nF
(i = 1, 2, 3) and V1 = −1 V. The resistors R9 = R14 = 1 kΩ, R3 = 5 kΩ, R8 = 8.93 kΩ,
Ri = 10 kΩ (i = 1, 2, 5, 6, 7, 11, 12, 13, 15, 17, 18, 19), and Ri = 100 kΩ (i = 4, 10, 16). We
used NI Multisim 14.0 to simulate the circuit, as shown in Figure 20. It can be seen
that the circuit well emulates the proposed system, which is in good agreement with the
numerical results in Figure 1. Therefore, we can conclude that system (1) can be realized in
physical experiments.

Figure 19. Schematic of circuit.
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(a) (b)

Figure 20. Phase portraits in Multisim of circuit: (a) X–Z plane; (b) X–Y plane.

6. Conclusions and Discussion

We constructed a new 3D autonomous chaotic system with coexisting self-excited and
hidden attractors, in which the generation of different types of attractors depends on its
parameters. The complex dynamics of the system were analyzed by different tools, and it
was proved to be chaotic in the sense of having a fractional Kaplan–Yorke dimension, a
phase portrait of a strange attractor, and a period-doubling route to chaos. Moreover, an
applicable generic procedure for topological classification of unstable cycles in the proposed
system was addressed. Guessing an entire orbit, we utilized the variational method for the
calculation of cycles, and the initial conjecture loop could be gradually evolved into a real
cycle. Diverse symbolic dynamics based on orbital topology was successfully established
in the phase space, including four and six letters, corresponding to hidden and self-excited
chaotic attractors. Periodic orbits up to certain topological lengths were found accordingly,
which indicates the utility of the topological classification approach in the periodic orbit
taxonomy. A Multisim circuit simulation of the system was implemented to further verify
the mathematical model.

The symbolic encoding method employed here could also be applied to discrete
dynamical systems, such as the memristive Rulkov neuron model [66], discrete memristor
hyperchaotic maps [67], 2D memristive hyperchaotic maps [68], and 2D sine map [69].
Quotienting symmetries of a given dynamical system prior to the symbolic dynamics
analysis is an attractive research direction. Symmetry reduction could not only reduce the
multiple-letter symbolic encodings of periodic orbits to a single letter, but could visualize
self-linking in the symmetry-reduced state space, which requires further investigation. The
new system still contains rich and complex dynamic behavior, and its topology requires
comprehensive and deep exploration. Moreover, as the system proposed in Ref. [51], the
newly proposed system (1) is a mathematical model at present and does not correspond to
any physical phenomena. It is hoped that more detailed theoretical analysis and application
investigations will be carried out in the future.
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