
Eurographics/SIGGRAPH Symposium on Computer Animation (2003)
D. Breen, M. Lin (Editors)

Dynapack: Space-Time compression of the 3D animations of
triangle meshes with fixed connectivity

Lawrence Ibarria and Jarek Rossignac

GVU Center, College of Computing, Georgia Institute of Technology
Atlanta, GA, USA

Figure 1: The top 3D frames were taken from the Chicken
Crossing animation (produced at Microsoft, courtesy of Jed
Lengyel) contains400frames of the same connectivity, each
having 41 components with a total of5664 triangles and
3030vertices. Dynapack quantizes the floating point coor-
dinates of the vertices to13 (respectively11, and 7) bits,
shown in rows2 (respectively3, and5). It compresses them
down to2.91 (respectively2.35, and1.37) bits, resulting in
a worst-case geometric error of0.0061(respectively0.024,
and 0.3) percent of the size of the minimum axis-aligned
bounding box of the animation sequence. Note that the re-
sult of the 13-bit quantization is undistinguishable from the
original and yields an 11-to-1 compression ratio over the
floating-point representation with a42.1 dB signal-to-noise
ratio.

1. Abstract

Dynapack exploits space-time coherence to compress the
consecutive frames of the 3D animations of triangle meshes
of constant connectivity. Instead of compressing each frame
independently (space-only compression) or compressing the
trajectory of each vertex independently (time-only compres-
sion), we predict the position of each vertexv of frame f

from three of its neighbors in framef and from the positions
of v and of these neighbors in the previous frame (space-time
compression). We introduce here two extrapolating space-
time predictors: the ELP extension of the Lorenzo predictor,
developed originally for compressing regularly sampled 4D
data sets, and the Replica predictor. ELP may be computed
using only additions and subtractions of points and is a per-
fect predictor for portions of the animation undergoing pure
translations. The Replica predictor is slightly more expen-
sive to compute, but is a perfect predictor for arbitrary com-
binations of translations, rotations, and uniform scaling. For
the typical 3D animations that we have compressed, the cor-
rections between the actual and predicted value of the vertex
coordinates may be compressed using entropy coding down
to an average ranging between1.37 and2.91 bits, when the
quantization used ranges between7 and 13 bits. In com-
parison, space-only compression yields a range of1.90 to
7.19 bits per coordinate and time-only compressions yields
a range of1.77 to 6.91 bits per coordinate. The implemen-
tation of the Dynapack compression and decompression is
trivial and extremely fast. It perform a sweep through the
animation, only accessing two consecutive frames at a time.
Therefore, it is particularly well suited for realtime and out-
of-core compression, and for streaming decompression.

2. Introduction

Although animated 3D models may be produced and repre-
sented in a variety of ways7, they are often stored and trans-
mitted as series of consecutive frames, each represented by a
triangle mesh which is defined by the location of the vertices
and by a triangle/vertex incidence graph, sometimes referred
to as the connectivity or the topology of the mesh. In general,
the connectivity of the triangle mesh and even the topology
(i.e. number of holes, handles, and connected components)
of the surface it represents may evolve with time. Neverthe-
less, in this paper, similarly to several recent pioneering ef-
forts10 in animation compression, we restrict our attention to

c© The Eurographics Association 2003.

Lawrence Ibarria and Jarek Rossignac / Dynapack

a reasonably large class of animations in which the connec-
tivity is identical in all frames. This class comprises many
physic-based animations of cloth deformations21 and ani-
mations produced by warping space18 4 11. Through the rest
of the paper, we assume that the mesh containsT triangles
andV vertices and that the animation hasF frames.

The connectivity of a connected, manifold triangle mesh
with no handles or holes may always be encoded with less
than 4V bits13. Small overheads must be added for each
handle or hole12. More aggressive compressions may be ob-
tained by using entropy or arithmetic codes combined with
any one of a variety of recently developed 3D compression
techniques for static triangle meshes15 20 6 22 3 9. Thus, the
number of bits needed for storing or transmitting the con-
nectivity of the mesh in negligible, when compared to the
storage needed to encode the vertex motions.

Consequently, in the remainder of the paper, we focus on
the compression of the geometry, which basically amounts
to the compression of the three coordinates of each vertex,
v, in the successive frames of the animation.

Most 3D geometry compression schemes use a predictor,
P(v), which, based on previously encoded/decoded informa-
tion, predicts the location of the next vertex,v. Because both
the compression and the decompression algorithm perform
the same predictor using corrected locations of previous ver-
tices, only the three coordinates of the residue,v-P(v), need
to be transmitted. If the predictor is good, the residue coor-
dinates are close to zero. Hence, the statistical distribution of
the coordinates of the residues of a good predictor is biased
towards zero and may be compactly encoded using entropy
or arithmetic codes17. We distinguish three families of pre-
dictors: extrapolating, interpolating, and fitting.

The extrapolating predictor considers previously recov-
ered vertex locations and extrapolates the position of each
new vertex. The trajectory of a simple vertex may be extrap-
olated using a linear or a higher order predictor. Note that
one may chose to use an extrapolation in time, in space, or
both, as discussed below.

The interpolating predictor changes the order of trans-
mission and may for instance start by sending the first and
the last position of a vertex. Then a linear interpolation may
be used to predict an intermediate vertex location. As more
vertex locations are received, they refine this interpolation,
which may be constructed as a piecewise linear, or higher
order, interpolating curve. Thus, the quality of the predictor
in general increases with the number of samples that define
the interpolating curve. A typical example of this approach
is the temporal sub-sampling combined with an interpolation
of the decoded key-frames2.

During compression, afitting predictor performs an a pri-
ori analysis of the data, selects from a set of supported trans-
formations the one that best approximates the global behav-
ior of the vertices, and transmits a description of that trans-

formation first10. The model may for example be a linear
transformation characterized by12 coefficients or a space
warp characterized by2 points and a radius of influence.
Then, the positionv(f) of a vertexv in a framef is predicted
by applying the appropriate fraction of the transformation to
the initial locationv(0) of v.

Although interpolating predictors support progressive
transmission and in the final stage produce smaller residues
than extrapolating predictors of the same degree, they are,
according to our experience, less effective for compression,
because the residues for the early samples are typically large
and thus do not compress well. Furthermore, the interpolat-
ing predictors are less suited for animation streaming than
extrapolating ones.

Fitting predictors may be extremely powerful, but rely on
an expensive optimization and usually require splitting the
data into chunks that are each fit by a different predictor.
The overhead of describing the chunks and the different pre-
dictors decreases the compression ratios of fitting predictors,
especially when high accuracy is desired.

Thus, to explore an alternative to interpolating and to fit-
ting predictor, we focus here on extrapolating predictors.

When compressing the animation of a triangle mesh, we
distinguish three types of extrapolating predictors: space-
only, time-only, and space-time.

A space-onlypredictor compresses each animation frame
independently of the others. It predicts a vertex location from
the location of its previously transmitted neighbors in the
same frame. Thus, it does not exploit the time coherence re-
sent in most animations.

A time-only predictor considers the motion of each vertex
independently of the motions of the other vertices. It extrap-
olates the position of a vertex in frame f from its position in
frame f -1 and possibly other antecedent frames. However,
time-only predictors ignore the spatial coherence between
the motion of one vertex and the motion of its neighbors,
and hence must encode the similar motion changes indepen-
dently.

A space-timepredictor exploits both the space and time
coherence. We advocate the used of space-time predictors
and demonstrate on a few examples that they are about
2.5 times more effective than space-only predictors and2.4
times more effective than time-only predictors. Although
clearly these rations may vary considerably with the nature
of the animation and with the sampling density in time and
space, they are indicative of the benefits of exploiting space
and time coherence together.

Note that, we cannot use a space-time extrapolating pre-
dictor, for the first frame, nor for the first few vertices of
each new frame, because we do not have all of the neigh-
bors needed by the predictor. Thus, the initial frame is com-
pressed using a space-only predictor and a few initial ver-

c© The Eurographics Association 2003.

Lawrence Ibarria and Jarek Rossignac / Dynapack

tices in each component of each frame are compressed using
a time-only predictor.

We propose two new space-time extrapolating predictors.

The first extrapolating predictor introduced here is an
extension of the Lorenzo predictor originally developed
for compressing regularly spaced higher-dimensional scalar
fields 8. We will call it the Extended Lorenzo Predictor, ab-
breviatedELP. It is a perfect predictor† for translations
and provides excellent results for more general deforma-
tions. The trivial formulation of ELP makes it particularly
attractive for real-time decompression of streamed anima-
tions and possibly for hardware assist.

The second extrapolating predictor introduced here will
be referred to as theReplica predictor, because it is capable
of perfectly replicating the local geometry at various posi-
tions, scales and orientations. Although slightly more com-
plex than ELP, it is a perfect predictor for any combination
of translation, rotation, and uniform scaling.

These predictors require that for each new vertex, except
the first 3, a particular configuration of neighboring vertices
be available in the current and previous frame. The availabil-
ity of this configuration requires re-ordering the vertices of
the mesh. We describe here a trivial algorithm, called Dy-
napack, which performs this reordering dynamically, during
a topological traversal of each connected component of the
mesh. It visits the triangles and vertices in the same order as
several connectivity compression schemes19 6 22.

For each new vertex, Dynapack issues a call to a predic-
tor. Thus, it makes it particularly easy to compare various
predictors. We have used this facility to compare four pre-
dictors: time-only, space-only, ELP, and Replica.

Note that this paper is focused on the presentation and
evaluation of two new extrapolating predictors. Hence, to
keep things separate, it does not discuss or evaluate their pos-
sible combinations with other, possibly lossy, compression
schemes, such as an adaptive time sub-sampling or mesh
simplification, which have been discussed elsewhere. To fa-
cilitate comparison with other competing or complementary
techniques, we have used a popular model of Microsoft’s
Chicken Crossing 3D animation, presented at SIGGRAPH
1996, to report our compression ratios.

Most 3D geometry compression techniques are dependent
upon a vertex quantization step, which truncates vertex co-
ordinates to the nearest integer in some unit. The amount of
quantization controls the error and influences compression
ratio. Therefore, we have reported the compression ratios for

† Consider that the motion of a group of vertices, for some time
span, can be perfectly modeled by a transformation M(t,v), which
returns the position of vertexv at timet. We say that predictor P is a
perfect predictor for M if P(v)=M(t,v) for all frame-timest and for
all predicted verticesv, in the neighborhood

Figure 2: This shows the head of the chicken at full precision
(up left), 13-bit quantization (up-right), 11 bit quantization
(down-left) and 7-bit quantization (down-right).

Figure 3: This shows a model build with Twister, courtesy
of Ignacio Llamas. The figure represents the animation that
deforms a sphere into a kangaroo head.

several quantization levels and have produced a video show-
ing their effect side-by-side with the original. A selected set
of frames from the video is shown in Fig. 2.

Furthermore, because the use of shape simplification and
temporal down-sampling may impact the spatial and tem-
poral coherence of the animation, and thus the compression
ratios, we report compression results for various combina-
tions of spatial and temporal sub-sampling of the animated
deformation of a sphere into a Kangaroo’s head, produced
using the Twister system11, see Fig. 3.

The remainder of the paper contains a review of prior art, a
description of the overall Dynapack algorithm, a discussion
of the space-only predictor, of the time-only predictor, and
of the ELP and Replica space-time predictors, and a small
comparative study of their compression power.

3. Prior Art

Several 3D compression techniques for static models exploit
the fact that the decoder has reconstructed a sufficient por-
tion of the connectivity and geometry to know several neigh-

c© The Eurographics Association 2003.

Lawrence Ibarria and Jarek Rossignac / Dynapack

bors of the next vertexv to be decoded. Then, the decoder
uses a predictor P to compute an estimate P(v) of the lo-
cation of v. It receives and decodes a corrective vector,c,
from which it recreatesv as P(v)+c. Several space-only ex-
trapolating predictors have been proposed. Deering5 uses as
P(v) one of the previously decoded neighbors ofv. Taubin
and Rossignac19 use a weighted combination of ancestors
of v in vertex spanning tree, which also defines the order
in which the vertices are transmitted. Touma and Gottsman
have popularized the parallelogram predictor22, which has
been widely adopted13 3. Given triangle (a,b,c), whose ver-
tices have already been decoded, the third vertexv in an ad-
jacent triangle (c,b,v) may is predicted to be the forth cor-
ner of a parallelogram, as P(v)=b+c-a. We compare the two
space-time predictors proposed here to this space-only, pop-
ular parallelogram predictor.

The coherence between neighboring vertices in meshes
of finely tiled smooth surfaces reduces the average magni-
tude of the residues (i.e. of the coordinates ofc). Still, some
of the residues may be large. Thus, good prediction, by it-
self may not lead to compression. However, the distribution
of the residues is usually biased towards zero, which makes
them suitable for statistical compression17. Entropy or arith-
metic compression is particularly effective if the coordinates
or the residues are quantized to a small number of bits, typ-
ically ranging between8 and12. Such a quantization trun-
cates the vertex coordinates to a desired accuracy and maps
them into integers that can be represented with a limited
number of bits. To do this, we first compute a tight (min-
max), axis-aligned bounding box around the space swept
by the model during animation. The minima and maxima
of the x, y, and z coordinates, which define the box, will
be encoded and transmitted with the compressed representa-
tion of he animation of each object. Then, given a desired
accuracy, e, we transform each x coordinate into an inte-
ger i = INT(x−xmin

e(xmax−xmin)), which ranges between0 and2B,

whereB = log2(
xmax−xmin

e) is the maximum number of bits
needed to represent the quantized coordinate i. The y and
z coordinates are quantized similarly. In practice, for static
meshes, the combination of the quantization, prediction, and
statistical coding reduce the storage of vertex location data
to between3 and 9 bits per coordinate, depending on the
quantization and the sampling rate of the surface relative to
the size of its features. Consequently, if we were to encode
the geometry of each frame of the animation independently,
the total cost of geometry would range between19VF bits
and57VF bits. Deering5 has demonstrated that streaming
animations as sequences of independently-compressed 3D
models is a viable approach for rendering compressed ani-
mations on a graphics board that supports real-time decom-
pression. We believe that the proposed Dynapack scheme
will help further reduce the storage and transmission costs of
3D animations and, due to its simplicity, could be considered
as a possible extension of the graphics hardware capabilities
for the real-time decompression of streamed animations.

In order to ensure an apparent continuity in the behavior
of the animated shape, most animations are finely sampled
in time, and hence exhibit a significant amount of temporal
coherence, which is untapped if the frames are compressed
independently of each other. Inspired by this observation,
one may consider encoding the trajectory of each vertex in-
dependently. Because we need not only to encode the path
followed by each vertex, but its position as a function of
time, we can cast this problem as the compression of a curve
in the four-dimensional space-time domain or as the prob-
lem of computing a concise representation of a parametric
curvev(t). A variety of curve fitting approaches, reviewed
in 16, could be considered here. We have decided not to pur-
sue these trajectory compression approaches because they
do not exploit the spatial coherence present in most anima-
tions. For comparison however, we report results on simple
experiments, where the vertex trajectories are compressed
using the simplest time-only extrapolating predictor, which
encodes the displacement between the position of a vertex in
framef and its position in framef−1, or a linear or quadratic
predictor, which take into account the positions of the vertex
in framesf−2 andf−3, assuming constant velocity or con-
stant acceleration.

Several relatively recent efforts have pioneered the space-
time compression of 3D animations of freely deforming sur-
faces, as opposite to rigid body motions or to physically
plausible simulations of articulated bodies.

Lengyel 10 proposed several fitting predictors to com-
press the motion of the vertices of animated triangle meshes
of a constant connectivity. His method divides the ver-
tices of the mesh into groups and computes a transforma-
tion that best matches the average evolution of the ver-
tices in each group. The types of transformations it can fit
include Affine Transformations, Free-Form Deformations,
Key-Shapes, Weighted Trajectories and Skinning. All other
deformations are approximated by one of those. Then it en-
codes the differences (residues) between the real position of
each vertex in each frame and the position predicted by ap-
plying the corresponding transformation. When large por-
tions of the model are subject to perfect instances of these
transformations, the approach is extremely effective. But
the optimal partitioning of the mesh and the fitting of good
transformations remains a delicate and computing intensive
task. Instead of attempting to generate optimal partitions and
optimal transformations, Lengyel proposes a simpler, sub-
optimal approach. It selects a subset of the triangles and,
for each one for these triangles, computes the transforma-
tion that interpolate the evolution of their geometry through
the desired frames. Triangles undergoing similar transfor-
mations may be merged. Then, other vertices are associated
with the triangle whose motion best matches theirs.

Alexa and Müller2 propose an interpolation predictor.
They start by normalizing the animation. To do so, they
translate all frames so that the origin lies at the center of

c© The Eurographics Association 2003.

Lawrence Ibarria and Jarek Rossignac / Dynapack

mass of the model. Then they apply an affine transformation
to it minimizing the sum of the square of the displacement
for each vertex with respect to the initial frame. Put together,
those modified frames form a large matrix, having for di-
mension the number of frames and three times the number
of vertices in the mesh. Using an expensive PCA (Principal
Component Analysis), they compute the eigen values of the
product of that matrix with its transpose. These define eigen
vectors and a coordinate system, whose axes are aligned with
the principal components of the deformation. Thus the defor-
mation is represented by this change of coordinate systems
and by its coefficients in it. By setting to zero most of these
coefficient, except the largest ones, they produce an approx-
imating animation, which may be encoded with fewer bits.
By sending more coefficients, they progressively refine the
animation.

Al-Regib et al.1 propose a combined approach where a
possibly different set of key vertices is selected in each key-
frame. Their trajectory is encoded as along as they retain the
status of key vertices. The trajectories of other vertices are
estimated through the interpolation of these key vertices.

We may think of these various approaches as computing
and encoding a predictor for the motion of each vertex. The
predictor may be phrased in terms of a global transformation
or of the motion of key vertices. Because different portions
of the mesh require different predictors, the vertices must be
divided into groups.

In contrast, Dynapack uses the same trivial predictor for
all of the vertices and for all key frames. Thus, it does not
require segmenting the model nor fitting optimal transfor-
mations to it. In fact, it automatically performs the normal-
ization and recovers rigid body and uniform scaling trans-
formations. Thus it may be viewed as a simple and viable
alternative to the more elaborate approaches listed above, al-
though some of them may, in certain situations, yield better
results.

4. Details of the Dynapack Algorithm

To precisely describe the Dynapack algorithm, we first dis-
cuss in this section the data structure used to represent the
connectivity of the triangle mesh. We then explain the traver-
sal of the mesh and its use to perform calls for the various
predictors when encoding the vertex locations.

4.1. Corner table data structure and operators

We use the Corner Table14 to store the connectivity that is
common to all the frames and to traverse their vertices in an
order suitable for the various predictors discussed here.

The geometry (i.e., vertex coordinates) is stored in the
coordinate table, G, where G[v,f] contains the triplet of the
coordinates of the location of vertex numberv, in frame f.
For conciseness, we denote it by v.g(f).

Triangle-vertexincidence defines each triangle by the
three integer references to its vertices. These references are
stored asconsecutiveinteger entries in theV table. Note that
each one of the 3T entries inV represents acorner (associ-
ation of a triangle with one of its vertices). Let the integer c
define such a corner. (We will abuse the language and speak
of corner c, rather than of the corner number c.) Let c.t de-
note its triangle and c.v its vertex. Remember that c.v and
c.t are integers in[0,V− 1] and [0,T− 1] respectively. Let
c.p and c.n refer to the previous and next corner in the cyclic
order of vertices around c.t.

Although theG andV tables suffice to completely specify
the triangles and thus the surface they represent, they do not
offer direct access to a neighboring triangle or vertex. We
chose to use the reference to theoppositecorner, c.o, which
we cache in theO table to accelerate mesh traversal from
one triangle to its neighbors. For convenience, we also intro-
duce the operators c.l and c.r, which return theleft andright
neighborsof c (see Fig. 4).

Figure 4: Corner operators for traversing a corner table
representation of a triangle mesh.

Note that we do not need to cache c.t, c.n, c.p, c.l, or c.r,
because they may be quickly evaluated as follows: c.t is the
integer division c.t DIV3; c.n isc−2, when c MOD3 is 2,
andc+ 1 otherwise; and c.p is c.n.n; c.l is c.n.o; and c.r is
c.p.o. Thus, the storage of the connectivity is reduced to the
two arrays,O andV, of integers.

We assume that all triangles have been consistentlyori-
ented, so that c.n.v=c.o.p.v for all corners c.

Note thatV may be trivially extracted from most formats
for triangle meshes and thatO may be efficiently recovered
from V 14.

To discuss the traversal of the mesh, we use the Boolean
c.t.m to indicate that triangle c.t has already been visited.
Similarly, the Boolean c.v.m indicates that vertex c.v has
been visited. For each frame, except the first one, and for
each connected component of these frames, we start by en-
coding the 3 vertices of a first triangle, c.t, using a time-only

c© The Eurographics Association 2003.

Lawrence Ibarria and Jarek Rossignac / Dynapack

predictor. (The integer c may be arbitrarily chosen to be for
example 0.) We mark this triangle and its vertices as visited.
Then, we issue three calls: dynapack(c.o), dynapack(c.l), dy-
napack(c.r). These invoke the simple dynapack compression
procedure presented below. It visits the other triangles of this
component of the frame in a depth-first order of the triangle
spanning tree and encodes its vertices. We use the conven-
tion which sets c.0 to−1 for corners that do not have an
opposite corner, because their opposite edge is a border and
has a single incident triangle.

dynapack(c){ #frame’s component compression

IFc ==−1THEN RETURN ; #return if a border is reached

IF NOT c.t.mTHEN{ #if triangle c.t not yet visited

IF NOT c.v.mTHEN{ #if tip vertex not yet visited

encode(c.v.g(f)−predict(c,f)); #encode residue coordinates

c.v.m := TRUE;} #mark the tip vertex as visited

c.t.m := TRUE; #mark the triangle as visited

dynapack(c.r); #try to go to the right neighbor

dynapack(c.l);}} #try to go to the left neighbor

Decompression follows the same pattern. For each frame,
except the first one, and for each connected component of
these frames, it starts by decoding the 3 vertices of a first
triangle, c.t, using a time-only predictor. It marks this tri-
angle and its vertices as visited. Then, it issues three calls:
dynaunpack(c.o), dynaunpack(c.l), dynaunpack(c.r), to the
decompression procedure below.

dynaunpack(c){ #decompress frame’s component

IFc ==−1THEN RETURN ; #return if a border is reached

IF NOT c.t.mTHEN{ #if triangle c.t not yet visited

IF NOT c.v.mTHEN{ #if tip vertex not yet visited

c.v.g(f) := predict(c,f) +decode(); #decode residue, add prediction

c.v.m := TRUE;} #mark the tip vertex as visited

c.t.m := TRUE; #mark the triangle as visited

dynaunpack(c.r); #try to go to the right neighbor

dynaunpack(c.l);}} #try to go to the left neighbor

The first frame is compressed and decompressed using a
space only predictor. We advocate the use of the inexpensive
ELP and of the more general Residue space-time predictors.
However, as discussed earlier, for sake of comparison, we
have also implemented space-only and time-only predictors,
producing the four series of results by simply changing the
formula for predict(). These formulae for the four predictors
are discussed in details below, using the Corner Table nota-
tion.

5. Extrapolating Predictors

We describe here four formulae for computing the extrapo-
lating predictor, predict(c,f), from a selected set of the pre-
viously visited immediate neighbors of c.v in framesf and
possiblyf−1.

5.1. Space-only Predictor

The space-only predictor is used for encoding the first frame
in Dynapack. For comparison, we also provide the result
of using it to encode all the frames independently. It is
exactly the parallelogram predictor popularized by Touma
and Gotsman22. With this approach, predict(c,f) returns
c.n.v.g(f)+c.p.v.g(f)−c.o.v.g(f), as shown Fig. 5.

Figure 5: Space-only predictor: predict(c,f) = c.n.v.g(f)+
c.p.v.g(f)-c.o.v.g(f).

5.2. Time Predictor

We have also implemented a time-only predictor, which
does not exploit any spatial coherence and simply returns
c.n.v.g(f −1), which is the position occupied by the vertex
in the previous frame. This time-only predictor has also been
used by Lengyel10 as a "row Predictor" and is a special case
of Linear Predictive Coding.

5.3. Space-time Extended Lorenzo Predictor (ELP)

The first space-time predictor, proposed here, is a gener-
alization of the Lorenzo predictor8 developed for com-
pressing regular samplings of four-dimensional scalar fields.
The proposed generalization simply evaluates predict(c,f)
as c.n.v.g(f) + c.p.v.g(f) − c.o.v.g(f) + c.v.g(f − 1) −
c.n.v.g(f −1)−c.p.v.g(f −1)+c.o.v.g(f −1), as illustrated
in Fig. 6.

Note that ELP predicts perfectly the locations of the ver-
tices of regions of the mesh that have been transformed by
a pure translation from the previous frame. Indeed, if for all
corners c,c.v.g(f) = c.v.g(f −1)+ d, thenpredict(c, f) =
c.v.g(f −1)+d. Thus, the residues are null.

5.4. Space-time Replica Predictor

To make our predictor capable of perfectly predicting rigid
body motions and uniform scaling transformations, we have
developed the new Replica predictor. It computes the coeffi-
cients a, b, and c, such that the vertex, c.v.g(f-1), can be writ-
ten asc.o.v.g(f −1)+ aA+ bB+ cC, with A = c.p.v.g(f −
1)−c.o.v.g(f −1)), B= c.n.v.g(f −1)−c.o.v.g(f −1), and
C = A×B√

‖A×B‖3
.

c© The Eurographics Association 2003.

Lawrence Ibarria and Jarek Rossignac / Dynapack

Figure 6: ELP: predict(c, f) = c.n.v.g(f) + c.p.v.g(f)−
c.o.v.g(f)+c.v.g(f −1)−c.n.v.g(f −1)−c.p.v.g(f −1)+
c.o.v.g(f −1).

To compute a, b and c, we defineD = c.v.g(f − 1)−
c.o.v.g(f − 1) and writeD = aA+ bB+ cC. Given that C
is orthogonal to A and B, a dot product of both terms of the
equation with vectorA yields A ·D = aA·A+ bA·B and a
dot product with B yieldsB·D = aB·A+bB·B. Solving this
system of linear equations yields:

a =
A ·D∗B ·B−B ·D∗A ·B
A ·A∗B ·B−A ·B∗A ·B (1)

b =
A ·D∗A ·B−B · D∗A ·A
A ·B∗A ·B−B ·B∗A ·A (2)

c = D · A×B
‖A×B‖2 ∗

√
‖A×B‖ (3)

Then, the vertex c.v.g(f) is predicted bypredict(c, f) =
c.o.v.g(f) + aA′ + bB′ + cC′, where A′ = c.p.v.g(f) −
c.o.v.g(f)), B′ = c.n.v.g(f − 1) − c.o.v.g(f), and C′ =

A′×B′√
‖A′×B′‖3

. The situation is illustrated Fig. 7.

Less formally, the Replica predictor looks at the previous
frame and expresses vertex c.v.g(f − 1) as in a coordinate
system derived from triangle (c.o.v.g(f −1), c.n.v.g(f −1),
c.p.v.g(f−1)). More precisely, we compute the projection of
c.v.g(f −1) onto the plane supporting the previous triangle
(c.o.v.g(f −1), c.n.v.g(f −1), c.p.v.g(f −1)). Then we com-
pute the distance from c.v.g(f −1) to that plane and encode
a function of its ratio, c, to the area of the adjacent triangle.
The function we use guarantees that the replica predictor will
not be affected by a change of units. Furthermore, we com-
pute two coefficients, a and b, such that the vector between
c.o.v.g(f −1), and c.v.g(f −1) may be expressed asaA+bB,
whereA andB are the vectors joining c.o.v.g(f − 1) to the
other vertices of the adjacent triangle. Thus, c.o.v.g(f − 1)

Figure 7: Replica Predictor.

and c.v.g(f − 1) are the opposite corner of a parallelogram
with sides parallel toA andB.

Then, we replicate this construction on framef , using the
a, b, and c, and coefficients computed from framef −1, to
estimate c.v.g(f). Because this reconstruction only depends
on the position of the previously visited triangle in frame
f , the Replica is a perfect predictor when both triangles in
frame f were obtained by moving the corresponding trian-
gles in framef −1 by the same rigid body motion. Further-
more, as we pointed out earlier, we have chosen the coef-
ficient c to ensure that the predictor is independent of the
chosen units and this will also be a perfect predictor if frame
f is obtained by a rigid body motion and uniform scaling
from frame f −1.

Clearly, Replica predicts perfectly the locations of the ver-
tices of regions of the mesh that have been transformed by a
rigid body motion, because the construction is relative to the
neighboring triangle and thus is not affected by a rigid body
transformation.

The normalization of C, dividingA×B by
√
‖A×B‖3

was introduced to ensure that Replica is also a perfect pre-
dictor for uniform scaling.

6. Results

To demonstrate the effectiveness of our two time-space pre-
dictors, and to compare them to the time-only and space-
only predictors and to results obtained by others, we have
tested it on two different animations: "Head-Shaping" and
"Chicken Crossing".

c© The Eurographics Association 2003.

Lawrence Ibarria and Jarek Rossignac / Dynapack

For each animation, we report the average number of bits
per coordinate when using each one of the four predictors:
space-only, time-only, ELP, and Replica.

In order to demonstrate the dependency of these results on
the lossy quantization, we provide results for four different
quantizations of the vertex coordinates.

We illustrate the errors that result from these quantizations
by showing several frames of the Chicken Crossing anima-
tion at different degrees of quantization in Fig. 1.

Zoomed images showing the effects of the quantization
on a detail are show in in Fig. 2.

Head Shaping 7 Bit 9 Bit 11 Bit 13 Bit

Space-only 3.07 4.94 6.98 9.16
Time-only 0.80 1.13 1.52 2.02
ELP 0.61 0.96 1.42 2.05
Replica 0.60 0.94 1.39 2.02

Table 1: This shows the compression results in bits per co-
ordinate for the Head Shaping animation. To avoid biasing
the results by over-sampling in space or time, we used a sub-
sampled version having 64 frames and 250 vertices.

Chicken Crossing 7 Bit 9 Bit 11 Bit 13 Bit

Space-only 1.90 3.37 5.20 7.19
Time-only 1.78 3.29 5.03 6.91
ELP 1.37 1.79 2.28 3.01
Replica 1.37 1.83 2.35 2.91

Table 2: This shows the compression results in bits per
coordinate of the Chicken Crossing animation having 41
connected components, 3030 vertices, 5664 triangles, 400
frames.

One may notice that the ELP and Replica predictors yield
nearly identical results. Both are consistently better than
space-only and time-only predictors.

Note that we have been using a zero-order time-only pre-
dictor because we did not want to have to access more than
the current and previous frame. To be fair to time-only ex-
trapolating prediction, we have compared below the zero-
order time-only predictor to higher-order ones, computed as
follows. Running the time-only predictor a second time on
its residues raises it to a first order time-only predictor, which
may also be computed as:2∗c.n.v.g(f −1)−c.n.v.g(f −2).
Repeating this process a third time produces a second order
time-only predictor, which may also be computed directly as
3∗c.n.v.g(f−1)−3∗c.n.v.g(f−2)+3∗c.n.v.g(f −3). The
results are shown in Table 3 for the Chicken Crossing data
set. Notice that second-order time-only prediction does not

improve upon first order. Nor do subsequent passes. First-
order is significantly better than zero-order, but still not com-
petitive with the space-time predictors.

Chicken Crossing 7 Bit 9 Bit 11 Bit 13 Bit

Zero-order Time-only 1.78 3.29 5.03 6.91
First-order 1.62 2.43 3.57 5.01
Second-order 2.19 2.96 3.91 5.07

Table 3: This shows the compression results in bits per
coordinate of the Chicken Crossing animation having 41
connected components, 3030 vertices, 5664 triangles, 400
frames.

To illustrate the dependency of the compression ratios on
the time and space sampling frequencies, we have started
with a very high resolution version of the Head Shaping
animation with 6482 frames and 16000 vertices and have
compared compression results for various combinations of
sub-sampling in time and space. We have used the Replica
predictor with 13-bit quantization. The results are shown in
Table 6. Notice that, as expected, compression results in-
crease with sampling in both time and space. Furthermore,
notice that our approach is capable of exploiting coherence
in time when the animation is super-sampled in time but
not in space; or coherence in space, when the mesh is over-
sampled in space but not in time.

Note that, as demonstrated by our experiment, although
the benefits of time-coherence diminish with temporal sub-
sampling, they are significant (58% savings when 3 frames
out of every 4 are dropped, and 33% savings when 15 out
of every 16 frames are dropped). Therefore, the proposed
extrapolating predictors will be valuable, even if one were
to use them to compress a sub-sampled set of key-frames
and morph between the transmitted key-frames to restore the
missing frames.

Head Shaping 648 Frames 64 Frames 6 Frames

1/4 vertices 0.38 0.92 3.27
1/16 vertices 0.55 1.33 4.83
1/64 vertices 0.78 2.02 7.95

Comparing the compression results achieved with Dyna-
pack to those of other previously published animation com-
pression approaches has proven rather difficult, because the
reported results describe lossy compression and because the
resulting errors, if at all reported, is measured using a va-
riety of ways, which do not easily map into the quantiza-
tion errors used by Dynapack, which guarantee a bound on
the worst case Hausdorff error between the original models
and the compressed ones. In spite of these difficulties, we
can safely conclude the guaranteed maximum error of the

c© The Eurographics Association 2003.

Lawrence Ibarria and Jarek Rossignac / Dynapack

animations compressed with Dynapack is comparable with
the reported error in animations compressed with other ap-
proaches that would yield a similar compressed file size, al-
though it is not clear that these reported errors describe the
conservative worst case deviation (as we do) or a more for-
giving least square statistical measure of it.

Figure 8: Comparision results with Lengyel technique.

Fig. 8 shows a comparison of our method with the results
obtained by Lengyel10, for which the error was expressed
in dB using signal/noise ratio. Note that one dB corresponds
to 10log10(Error/range). Our interpretation of the reported
results is that Lengyel’s approach yield1.0 bit per coordi-
nate when the model is highly quantized. Although Lengyel
uses a different quantization from ours, the magnitude of the
error he reports, which, to give him the benefits of the doubt,
we assume to be the worst case error bound, is similar to the
error we obtain when using an 8-bit quantization, for which
Dynapack yields1.5 bits per coordinate with Replica and
1.45 with ELP. Hence, for such over-quantized models Dy-
napack results in a 45% increase in storage over Lengyel’s
approach. Note that this penalty may still be acceptable, and
that one may chose to trade the better compression results
of Lengyel for the simplicity of Dynapack. When using an
11 bit quantization, Dynapack compressed the entire anima-
tion to 1.06 Mbytes. Lengyel’s approach produces a file of
1.03 Mbytes with a comparable accuracy. Hence, both ap-
proaches yield comparable results in this case. Lengyel does
not report compression results that would match the accu-
racy of our 13-bit quantization. Also, Lengyel’s result with
more accuracy need 6.6 Mbytes, while a comparable com-
pressed mesh of ours would result in 1.35 Mbytes (quantiz-
ing to 15 bits).

Alexa and Müller2 do not provide an explicit error mea-
sure and the small size of the illustrations in their paper pre-
vent us from estimating the accuracy of their compression.
They report compression results between3.85bits per coor-
dinate and0.8 bits per coordinate. The0.8 bits per coordi-
nate animation shows errors that are significantly larger that
those produced by Dynapack for7 bit quantization.

We conclude that Dynapack with either the ELP or the
Replica predictor yields results that are comparable to, and
sometimes better than, results reported in recent animation
compression schemes. Its strength stems from the simplicity
of its implementation, which does not require preprocessing
and works on streaming animations requiring only to buffer
the previous frame.

The two animation sequences for which we were able to
run the tests reported here do not demonstrate the benefits or
Replica over ELP that we were anticipating. Still, we con-
tinue to believe that Replica has considerable advantages
over ELP for animations in which large portions of the sur-
face undergo major rotations and scaling.

7. Conclusion

Dynapack is a very simple compression schemes for the
3D animations of triangle meshes of constant connectivity
that undergo arbitrary deformations. Because Dynapack re-
quires only accessing the previous frame when compress-
ing or decompressing an animation frame, it is particularly
well suited to real-time compression, out-of-core compres-
sion, and decompression of streaming animations. Because
of its simplicity, it may prove to be a good candidate for a
hardware assisted decompression. Dynapack may be imple-
mented using a trivial algorithm that traverses the triangles
of the mesh. It supports two space-time predictors. The Ex-
tended Lorenzo predictor (ELP) reduces to nearly zero the
cost of encoding portions of the animations where a subset
of the mesh undergoes a pure translation. Its main advan-
tage lies in the fact that the predictor formula uses only point
additions and subtractions. The more elaborate Replica pre-
dictor extends the nearly zero-cost prediction capability to
combinations of all rigid body motions and uniform scaling
transformations. The performance of both decays gradually
as the behavior of the mesh departs from these simple trans-
formations and as the space and time sampling density is de-
creased. Still, even for subsampled meshes, these predictors
are superior to space-only and to time-only predictors, and
hence will benefit other compression techniques that sub-
sample the data and rely on interpolation for restoring the
missing frames.

Acknowledgements

We wish to thank the NSF and DARPA/LLNL for their sup-
port of this work. We wish to thank Ignacio Llamas for pro-
viding us with the animation model of the Head Shaping and
John Snyder for giving us access to the Chicken Run anima-
tion data produced by Microsoft. The chicken character was
created by Andrew Glassner, Tom McClure, Scott Benza,
and Mark Van Langeveld. This short sequence of connectiv-
ity and vertex position data is distributed solely for the pur-
pose of comparison of geometry compression techniques.

c© The Eurographics Association 2003.

Lawrence Ibarria and Jarek Rossignac / Dynapack

References

1. AL-REGIB, G., ALTUNBASAK , Y., ROSSIGNAC, J.,
and MERSEREAU, R., “Encoding of 3d animations
for efficient delivery,” inProceedings of International
Conference on Multimedia and Expo (ICME), vol. 1,
pp. 353–356, 2002.

2. ALEXA , M. andMÜLLER, W., “Representing anima-
tions by principal components,” inProceedings of EU-
ROGRAPHICS 2000, pp. 411–418, 2000.

3. ALLIEZ , P.andDESBRUN, M., “Progressive compres-
sion for lossless transmission of triangles meshes,” in
Proceedings of ACM SIGGRAPH(FUIME , E., ed.),
(New York), pp. 198–205, ACM, ACM Press / ACM
SIGGRAPH, 2001.

4. BARR, A. H., “Global and local deformations of solid
primitives,” in Proceedings of the 11th anual confer-
ence on Computer graphics and interactive techniques,
pp. 21–30, 1984.

5. DEERING, M., “Geometry compression,” inProceed-
ings of ACM SIGGRAPH 95, pp. 13–20, ACM, 1995.

6. GUMHOLD , S. and STRASSER, W., “Real time com-
pression of triangle mesh connectivity,” inProceedings
of the 25th annual conference on Computer graphics
and interactive techniques, pp. 133–140, 1998.

7. HODGINS, J. and O’BRIEN, J., “Computer anima-
tion,” Encyclopedia of Computer Science, pp. 301–304,
2000.

8. IBARRIA , L., L INDSTROM, P., ROSSIGNAC, J., and
SZYMCZAK , A., “Out-of-core compression and de-
compression of large n-dimensional scalar fields,” in
Proceedings of EUROGRAPHICS 2003, 2003.

9. ISENBURG, M. and SNOEYINK , J., “Spirale reversi:
Reverse decoding of the edgebreaker encoding,”Cana-
dian Conference on Computational Geometry 2000,
vol. 20, no. 1, pp. 247–256.

10. LENGYEL, J. E., “Compression of time-dependent ge-
ometry,” in Proceedings of the 1999 symposium on In-
teractive 3D Graphics, pp. 89–95, ACM, ACM Press,
1999.

11. LLAMAS , I., K IM , B., GARGUS, J., ROSSIGNAC, J.,
andSHAW, C. D., “Twister: A space-warp operator for
the two-handed editing of 3d shapes,” inProceedings of
ACM SIGGRAPH 03, Computer Graphics Proceedings,
Annual Conference Series, 2003.

12. LOPES, H., TAVARES, G., ROSSIGNAC, J., SZYM -
CZAK , A., andSAFANOVA , A., “Edgebreaker: a simple
compression for surfaces with handles,” inProceedings
of the seventh ACM symposium on Solid modeling and
applications, pp. 289–296, ACM Press, 2002.

13. ROSSIGNAC, J., “Edgebreaker,”IEEE Transactions on
Visualization and Computer Graphics, vol. 5, no. 1,
pp. 47–61, 1999.

14. ROSSIGNAC, J., SAFONOVA, A., andSZYMCZAK , A.,
“3d compression made simple: Edgebreaker on a corner
table,” inProceedings of Shape Modeling International
Conference, pp. 278–283, 2001.

15. ROSSIGNAC, J. and SZYMCZAK , A., “Wrapzip de-
compression of the connectivity of triangle meshes
compressed with edgebreaker,”Computational Geom-
etry, vol. 14, no. 1-3, pp. 119–135, 1999.

16. SAFONOVA, A. and ROSSIGNAC, J., “Compressed
piecewise circular approximation of 3d curves,”
Computer-Aided Design, vol. 35, no. 6, pp. 533–547,
2003.

17. SALOMON , D., Data Compression: The Complete Ref-
erence. Springer Verlag Berlin Heidelberg, 2000.

18. SEDERBERG, T. andPARRY, S., “Free-form deforma-
tion of solid geometric models,” inProceedings of ACM
SIGGRAPH 86, pp. 151–160, ACM, 1986.

19. TAUBIN , G., GUEZIEC, A., HORN, W., and
LAZARUS, F., “Progressive forest split compres-
sion,” in Proceedings of ACM SIGGRAPH 1998,
Computer Graphics Proceedings, Annual Conference
Series, pp. 123–132, ACM, ACM Press / ACM
SIGGRAPH, 1998.

20. TAUBIN , G.andROSSIGNAC, J., “Geometric compres-
sion through topological surgery,”ACM Transactions
on Graphics, vol. 17, no. 2, pp. 84–115, 1998.

21. TERZOPOLOUS, D. and PLATT, J., “Elastically de-
formable models,” inProceedings of ACM SIGGRAPH
87, Computer Graphics Proceedings, Annual Confer-
ence Series, pp. 205–214, 1987.

22. TOUMA , C. andGOTSMAN, C., “Tirangle mesh com-
pression,”Graphics Interface, pp. 26–34, 1998.

c© The Eurographics Association 2003.

