/

Dynare Working Papers Series
https://www.dynare.org/wp/

Dynare: Reference Manual Version 4

Stéphane Adjemian
Houtan Bastani
Michel Juillard
Fréderic Karamé
Junior Maih
Ferhat Mihoubi
Willi Mutschler
George Perendia
Johannes Pfeifer
Marco Ratto
Sébastien Villemot

Working Paper no. 1

Initial revision: April 2011
This revision: March 2021

CEPREMAP

CENTRE POUR LA RECHERCHE ECONOMIQUE ET SES APPLICATIONS

48, boulevard Jourdan — 75014 Paris — France
https://www.cepremap.fr

https://www.dynare.org/wp/
https://www.cepremap.fr

Dynare Reference Manual
Release 4.6.4

Dynare team

Mar 18, 2021

Contents

1 Introduction 3
I.1 Whatis Dynare? e e e e e e e e 3

1.2 Documentation SOUICES . . .« v v v v v v v vt e e e e e e e e e e e e e e e e e e 4

1.3 Citing Dynareinyourresearch L 4

2 Installation and configuration 5
2.1 Software requirementso e e e e e e 5
2.2 Installation of Dynare 5
221 OnWINdows oo e e e e e 5

222 OnGNU/LINUX o vttt e e e e e e e e e e e e e e e 6

223 0nmacOS e 6

224 ForothersyStems i e e 6

2.3 Compilerinstallation oL e e e e e e e 7
2.3.1 Prerequisites on Windows o e 7

2.3.2 Prerequisites on GNU/LINUX oot 7

2.3.3 PrerequisitesonmacOS e e e e e 7

24 Configuration L. e e e e e e e e e e 7
24.1 ForMATLAB e 7

242 ForOctave e e e e e e e e e 8

243 Somewordsof warningo e e 8

3 Running Dynare 9
3.1 Dynare invocationo e e e e e e e e 9
32 Dynare hooks e e 14

3.3 Understanding Preprocessor Error Messages o v it 15

4 The model file 17
4.1 Conventions v i e e e e e e e e e e e e 17
4.2 Variabledeclarations L e e e e 18
4.2.1 On-the-fly Model Variable Declaration 21

43 EXPIessiOns v v v vt e 22
43.1 Parameters and variables e e e 23

43.1.1 Insidethemodel 23

43.1.2 Outsidethemodel 23

432 OPerators v v i e e e e e e e e e e e e e e e e e e e 23

433 Functionst i it e e e e e e e e e 24

43.3.1 Built-infunctions e e e e 24

4332 External functions Lo 25

43.4 A few words of warning in stochastic context 26

4.4 Parameter initialization oL e e 26
4.5 Model declaration L. e e e e e e e e 26

4.6 Auxiliary variables 31
4.7 Initial and terminal conditions L Lo e 31
4.8 Shocks on exogenous variableso e e e 38
4.9 Other general declarations L Lo e e e e e 41
410 Steady State e e e e e e e e e e e e e e e 41
4.10.1 Finding the steady state with Dynare nonlinear solver 41
4.10.2 Providing the steady stateto Dynare 44
4.10.3 Replace some equations during steady state computations 46

4.11 Getting information aboutthemodel oo Lo oL 46
4.12 Deterministic simulation Ll 48
4.13 Stochastic solution and simulation 51
4.13.1 Computing the stochastic solution 52
4.13.2 Typology and ordering of variables, 59
4.13.3 First-order approximation oo e e e 60
4.13.4 Second-order approximation Lo 61
4.13.5 Third-order approXimationo e 61
4.13.6 Higher-order approximation e 62

414 Estimationo e e e e e e e e e e 62
4.15 Model Comparison v vttt e e e e e e e e e e e e e e e 94
4.16 Shock Decomposition L e e 95
4.17 Calibrated Smoother e 102
418 Forecasting i i i e e e e e 103
419 Optimal policy o e e e e e e e e e e e e e e 110
4.19.1 Optimal policy under commitment (Ramsey) 110
4.19.2 Optimal policy under discretion Lo 112
4.19.3 Optimal Simple Rules (OSR) o 112

4.20 Sensitivity and identification analysiso oL 115
4.20.1 Performing sensitivity analysis o oL 116
4.20.2 IRF/Moment calibration e 119
4.20.3 Performing identification analysis oL oL 120
4.20.4 Typesof analysisandoutputfiles. L oL, 122
4.204.1 Sampling 122

4.20.4.2 Stability Mapping e 123

4.20.4.3 IRF/Moment restriCtions v v v vt it e e e 123

4.20.4.4 Reduced Form Mapping o o i 124

42045 RMSE . . . o 125

4.20.4.6 Screening Analysis 126

4.20.4.7 Identification Analysis 127

421 Markov-switching SBVAR e e 127
422 Epilogue Variables L e e e e e e e 136
4.23 Displaying and savingresults oL e 136
4.24 Macro processing languageo Lol 137
4.24.1 Macro eXpresSSions v v v e e e e e e e e e e e e e e e e e 137
4242 Macro direCtives oo e e e e e e e e 141
4243 Typical USAZES . . . v v v v i e e e e e e e e e e e e e e 144
4.24.3.1 Modularization oL e e 144

42432 Indexed sumsof products oL 144

42433 Multi-country models 145

42434 Endogeneizing parameters e e v e e e e e e 145

4.24.4 MATLAB/Octave loops versus macro processor loops. oo v ... 146

4.25 Verbatiminclusion e 147
426 Misccommands oL e e e e e 147
The configuration file 151
5.1 Dynare Configuration e e 152
5.2 Parallel Configuration L e e e e e e e 152
5.3 Windows Step-by-Step Guide L 154

6 Time Series

6.1 Dates e e e
6.1.1 Datesinamodfile
6.1.2 Thedatesclass e e e
6.2 Thedseriesclass e

7 Reporting

8 Examples

9 Dynare misc commands
10 Bibliography

Index

157
157
157
159
169

193

205

207

211

215

Dynare Reference Manual, Release 4.6.4

Currently the development team of Dynare is composed of:
» Stéphane Adjemian (Université du Maine, Gains)
* Houtan Bastani
¢ Michel Juillard (Banque de France)
¢ Sumudu Kankanamge (Toulouse School of Economics)
e Frédéric Karamé (Université du Maine, Gains and CEPREMAP)
¢ Junior Maih (Norges Bank)
« Ferhat Mihoubi (Université Paris-Est Créteil, Erudite)
» Willi Mutschler (University of Miinster)
* Johannes Pfeifer (Universitit der Bundeswehr Miinchen)
¢ Marco Ratto (European Commission, Joint Research Centre - JRC)
* Sébastien Villemot (CEPREMAP)
The following people used to be members of the team:
* Abdeljabar Benzougar
* Alejandro Buesa
* Fabrice Collard
* Assia Ezzeroug
* Doéra Kocsis
 Stéphane Lhuissier
* George Perendia
Copyright © 1996-2020, Dynare Team.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Docu-
mentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license can be found at http://www.gnu.org/licenses/fdl.txt.

Contents 1

http://www.gnu.org/licenses/fdl.txt

Dynare Reference Manual, Release 4.6.4

2 Contents

cHAPTER 1

Introduction

1.1 What is Dynare?

Dynare is a software platform for handling a wide class of economic models, in particular dynamic stochastic gen-
eral equilibrium (DSGE) and overlapping generations (OLG) models. The models solved by Dynare include those
relying on the rational expectations hypothesis, wherein agents form their expectations about the future in a way
consistent with the model. But Dynare is also able to handle models where expectations are formed differently: on
one extreme, models where agents perfectly anticipate the future; on the other extreme, models where agents have
limited rationality or imperfect knowledge of the state of the economy and, hence, form their expectations through
a learning process. In terms of types of agents, models solved by Dynare can incorporate consumers, productive
firms, governments, monetary authorities, investors and financial intermediaries. Some degree of heterogeneity
can be achieved by including several distinct classes of agents in each of the aforementioned agent categories.

Dynare offers a user-friendly and intuitive way of describing these models. It is able to perform simulations of the
model given a calibration of the model parameters and is also able to estimate these parameters given a dataset. In
practice, the user will write a text file containing the list of model variables, the dynamic equations linking these
variables together, the computing tasks to be performed and the desired graphical or numerical outputs.

A large panel of applied mathematics and computer science techniques are internally employed by Dynare: mul-
tivariate nonlinear solving and optimization, matrix factorizations, local functional approximation, Kalman filters
and smoothers, MCMC techniques for Bayesian estimation, graph algorithms, optimal control, ...

Various public bodies (central banks, ministries of economy and finance, international organisations) and some
private financial institutions use Dynare for performing policy analysis exercises and as a support tool for fore-
casting exercises. In the academic world, Dynare is used for research and teaching purposes in postgraduate
macroeconomics courses.

Dynare is a free software, which means that it can be downloaded free of charge, that its source code is freely
available, and that it can be used for both non-profit and for-profit purposes. Most of the source files are covered by
the GNU General Public Licence (GPL) version 3 or later (there are some exceptions to this, see the file license.txt
in Dynare distribution). It is available for the Windows, macOS, and Linux platforms and is fully documented
through a reference manual. Part of Dynare is programmed in C++, while the rest is written using the MATLAB
programming language. The latter implies that commercially-available MATLAB software is required in order to
run Dynare. However, as an alternative to MATLAB, Dynare is also able to run on top of GNU Octave (basically
a free clone of MATLAB): this possibility is particularly interesting for students or institutions who cannot afford,
or do not want to pay for, MATLAB and are willing to bear the concomitant performance loss.

The development of Dynare is mainly done at CEPREMAP by a core team of researchers who devote part of their
time to software development. Increasingly, the developer base is expanding, as tools developed by researchers

https://www.mathworks.com/products/matlab/
https://www.octave.org/
https://www.cepremap.fr/

Dynare Reference Manual, Release 4.6.4

outside of CEPREMAP are integrated into Dynare. Financial support is provided by CEPREMAP, Banque de
France and DSGE-net (an international research network for DSGE modeling).

Interaction between developers and users of Dynare is central to the project. A web forum is available for users
who have questions about the usage of Dynare or who want to report bugs. Current known and fixed bugs are
listed on the Dynare wiki. Issues or whishes can be reported on our Git repository. Training sessions are given
through the Dynare Summer School, which is organized every year and is attended by about 40 people. Finally,
priorities in terms of future developments and features to be added are decided in cooperation with the institutions
providing financial support.

1.2 Documentation sources

The present document is the reference manual for Dynare. It documents all commands and features in a systematic
fashion.

Other useful sources of information include the Dynare wiki and the Dynare forums.

1.3 Citing Dynare in your research

You should cite Dynare if you use it in your research. The recommended way todo this is to cite the present
manual, as:

Stéphane Adjemian, Houtan Bastani, Michel Juillard, Frédéric Karamé, Junior Maih, Ferhat Mihoubi,
Willi Mutschler, George Perendia, Johannes Pfeifer, Marco Ratto and Sébastien Villemot (2011),
“Dynare: Reference Manual, Version 4,” Dynare Working Papers, 1, CEPREMAP

For convenience, you can copy and paste the following into your BibTeX file:

@TechReport {Adjemianetal2011,
author = {Adjemian, St\'ephane and Bastani, Houtan and
Juillard, Michel and Karam\'e, Fr\'ederic and
Maih, Junior and Mihoubi, Ferhat and Mutschler, Willi
and Perendia, George and Pfeifer, Johannes and
Ratto, Marco and Villemot, S\'ebastien},

title = {Dynare: Reference Manual Version 4},
year = {2011},

institution = {CEPREMAP},

type = {Dynare Working Papers},

number = {1},

If you want to give a URL, use the address of the Dynare website: https://www.dynare.org.

4 Chapter 1. Introduction

https://forum.dynare.org/
https://git.dynare.org/Dynare/dynare/wikis
https://git.dynare.org/Dynare/dynare
https://git.dynare.org/Dynare/dynare/wikis
https://forum.dynare.org/
https://www.dynare.org

CHAPTER 2

Installation and configuration

2.1 Software requirements

Packaged versions of Dynare are available for Windows (7, 8.1, 10), several GNU/Linux distributions (Debian,
Ubuntu, Linux Mint, Arch Linux) and macOS 10.11 or later. Dynare should work on other systems, but some
compilation steps are necessary in that case.

In order to run Dynare, you need one of the following:
¢ MATLAB version 7.9 (R2009b) or above;

e GNU Octave version 4.2.1 or above, with the statistics package from Octave-Forge. Note however that the
Dynare installers for Windows and macOS require a more specific version of Octave, as indicated on the
download page.

The following optional extensions are also useful to benefit from extra features, but are in no way required:
¢ If under MATLAB: the Optimization Toolbox, the Statistics Toolbox, the Control System Toolbox;

e If under Octave, the following Octave-Forge packages: optim, io, control.

2.2 Installation of Dynare

After installation, Dynare can be used in any directory on your computer. It is best practice to keep your model
files in directories different from the one containing the Dynare toolbox. That way you can upgrade Dynare and
discard the previous version without having to worry about your own files.

2.2.1 On Windows

Execute the automated installer called dynare-4.x.y-win.exe (where 4.x.y is the version number), and
follow the instructions. The default installation directory is c: \dynare\4.x.y.

After installation, this directory will contain several sub-directories, among which are mat lab, mex and doc.
The installer will also add an entry in your Start Menu with a shortcut to the documentation files and uninstaller.

Note that you can have several versions of Dynare coexisting (for example in c:\dynare), as long as you
correctly adjust your path settings (see see Some words of warning).

https://octave.sourceforge.io/
https://octave.sourceforge.io/

Dynare Reference Manual, Release 4.6.4

Also note that it is possible to do a silent installation, by passing the /S flag to the installer on the command line.
This can be useful when doing an unattended installation of Dynare on a computer pool.

2.2.2 On GNU/Linux

On Debian, Ubuntu and Linux Mint, the Dynare package can be installed with: apt install dynare. This
will give a fully-functional Dynare installation usable with Octave. If you have MATLAB installed, you should
also do: apt install dynare-matlab (under Debian, this package is in the contrib section). Docu-
mentation can be installed with apt install dynare-doc. The status of those packages can be checked at
those pages:

» Package status in Debian
» Package status in Ubuntu
» Package status in Linux Mint

On Arch Linux, the Dynare package is not in the official repositories, but is available in the Arch User Repository.
The needed sources can be downloaded from the package status in Arch Linux.

Dynare will be installed under /usr/lib/dynare. Documentation will be under /usr/share/doc/
dynare-doc (only on Debian, Ubuntu and Linux Mint).

2.2.3 On macOS

To install Dynare for use with MATLAB, execute the automated installer called dynare—-4.x.y.pkg (where
4.x.y is the version number), and follow the instructions. The default installation directory is /Applications/
Dynare/4.x.y. After installation, this directory will contain several sub-directories, among which are
matlab, mex, and doc.

Note that several versions of Dynare can coexist (by default in /Applications/Dynare), as long as you
correctly adjust your path settings (see Some words of warning).

By default, the installer installs a version of GCC (for use with use_ d11) in the installation directory, under the
.brew folder. To do so, it also installs a version of Homebrew in the same folder and Xcode Command Line
Tools (this is an Apple product) in a system folder.

All of this requires a bit of time and hard disk space. The amount of time it takes will depend on your computing
power and internet connection. To reduce the time the Dynare installer takes, you can install Xcode Command
Line Tools yourself (see Prerequisites on macOS). Dynare, Homebrew, and GCC use about 600 MB of disk space
while the Xcode Command Line Tools require about 400 MB.

If you do not use the use_d11 option, you have the choice to forgo the installation of GCC and hence Dynare
will only take about 50 MB of disk space.

Dynare for Octave works with Octave installed via the package located here: https://octave-app.org.

2.2.4 For other systems

You need to download Dynare source code from the Dynare website and unpack it somewhere.

Then you will need to recompile the pre-processor and the dynamic loadable libraries. Please refer to
README.md.

6 Chapter 2. Installation and configuration

https://packages.debian.org/sid/dynare
https://launchpad.net/ubuntu/+source/dynare
https://community.linuxmint.com/software/view/dynare
https://wiki.archlinux.org/index.php/Arch_User_Repository
https://aur.archlinux.org/packages/dynare/
https://brew.sh
https://octave-app.org
https://www.dynare.org/
https://git.dynare.org/Dynare/dynare/blob/master/README.md

Dynare Reference Manual, Release 4.6.4

2.3 Compiler installation

2.3.1 Prerequisites on Windows

There are no prerequisites on Windows. Dynare now ships a compilation environment that can be used with the
use_d11 option.

2.3.2 Prerequisites on GNU/Linux
Users of MATLAB under GNU/Linux need a working compilation environment installed. Under Debian, Ubuntu
or Linux Mint, it can be installed via apt install build-essential.

Users of Octave under GNU/Linux should install the package for MEX file compilation (under Debian, Ubuntu
or Linux Mint, it can be done via apt install liboctave-dev).

2.3.3 Prerequisites on macOS

Dynare now ships a compilation environment that can be used with the use_d11 option. To install this environ-
ment correctly, the Dynare installer ensures that the Xcode Command Line Tools (an Apple product) have been
installed on a system folder. To install the Xcode Command Line Tools yourself, simply type xcode—-select
——install into the Terminal (/Applications/Utilities/Terminal.app) prompt.

2.4 Configuration

2.4.1 For MATLAB

You need to add the mat1ab subdirectory of your Dynare installation to MATLAB path. You have two options
for doing that:

e Using the addpath command in the MATLAB command window:

Under Windows, assuming that you have installed Dynare in the standard location, and replacing 4 .x .y
with the correct version number, type:

>> addpath c:/dynare/4.x.y/matlab

Under GNU/Linux, type:

>> addpath /usr/lib/dynare/matlab

Under macOS, assuming that you have installed Dynare in the standard location, and replacing 4 . x . y with
the correct version number, type:

>> addpath /Applications/Dynare/4.x.y/matlab

MATLAB will not remember this setting next time you run it, and you will have to do it again.
* Via the menu entries:

Select the “Set Path” entry in the “File” menu, then click on “Add Folder...”, and select the matlab
subdirectory of ‘your Dynare installation. Note that you should not use “Add with Subfolders...”. Apply
the settings by clicking on “Save”. Note that MATLAB will remember this setting next time you run it.

2.3. Compiler installation 7

Dynare Reference Manual, Release 4.6.4

2.4.2 For Octave

You need to add the mat 1ab subdirectory of your Dynare installation to Octave path, using the addpath at the
Octave command prompt.

Under Windows, assuming that you have installed Dynare in the standard location, and replacing “4.x.y” with the
correct version number, type:

octave:1> addpath c:/dynare/4.x.y/matlab

Under Debian, Ubuntu or Linux Mint, there is no need to use the addpath command; the packaging does it for
you. Under Arch Linux, you need to do:

octave:1> addpath /usr/lib/dynare/matlab

Under macOS, assuming you have installed Octave via https://octave-app.org, type:

octave:1> addpath /Applications/Dynare/4.x.y/matlab

If you don’t want to type this command every time you run Octave, you can put it in a file called .octaverc
in your home directory (under Windows this will generally be c: \Users\USERNAME while under macOS it is
/Users/USERNAME/). This file is run by Octave at every startup.

2.4.3 Some words of warning

You should be very careful about the content of your MATLAB or Octave path. You can display its content by
simply typing path in the command window.

The path should normally contain system directories of MATLAB or Octave, and some subdirectories of your
Dynare installation. You have to manually add the mat lab subdirectory, and Dynare will automatically add a
few other subdirectories at runtime (depending on your configuration). You must verify that there is no directory
coming from another version of Dynare than the one you are planning to use.

You have to be aware that adding other directories (on top of the dynare folders) to your MATLAB or Octave path
can potentially create problems if any of your M-files have the same name as a Dynare file. Your routine would
then override the Dynare routine, making Dynare unusable.

Warning: Never add all the subdirectories of the mat 1ab folder to the MATLAB or Octave path. You must
let Dynare decide which subdirectories have to be added to the MATLAB or Octave path. Otherwise, you may
end up with a non optimal or un-usable installation of Dynare.

8 Chapter 2. Installation and configuration

https://octave-app.org

CHAPTER 3

Running Dynare

In order to give instructions to Dynare, the user has to write a model file whose filename extension must be .mod
or .dyn. This file contains the description of the model and the computing tasks required by the user. Its contents
are described in The model file.

3.1 Dynare invocation

Once the model file is written, Dynare is invoked using the dynare command at the MATLAB or Octave prompt
(with the filename of the .mod given as argument).

In practice, the handling of the model file is done in two steps: in the first one, the model and the processing
instructions written by the user in a model file are interpreted and the proper MATLAB or Octave instructions are
generated; in the second step, the program actually runs the computations. Both steps are triggered automatically
by the dynare command.

MATLAB/Octave command: dynare FILENAME[.mod] [OPTIONS...]

This command launches Dynare and executes the instructions included in FILENAME .mod. This
user-supplied file contains the model and the processing instructions, as described in The model file.
The options, listed below, can be passed on the command line, following the name of the .mod file
or in the first line of the . mod file itself (see below).

dynare begins by launching the preprocessor on the .mod file. By default (unless the use dil
option has been given to mode 1), the preprocessor creates three intermediary files:

* +FILENAME/driver.m
Contains variable declarations, and computing tasks.
* +FILENAME/dynamic.m

Contains the dynamic model equations. Note that Dynare might introduce auxiliary
equations and variables (see Auxiliary variables). Outputs are the residuals of the
dynamic model equations in the order the equations were declared and the Jacobian
of the dynamic model equations. For higher order approximations also the Hessian
and the third-order derivatives are provided. When computing the Jacobian of the
dynamic model, the order of the endogenous variables in the columns is stored in M__.
lead_lag_incidence. The rows of this matrix represent time periods: the first
row denotes a lagged (time t-1) variable, the second row a contemporaneous (time t)
variable, and the third row a leaded (time t+1) variable. The columns of the matrix

Dynare Reference Manual, Release 4.6.4

represent the endogenous variables in their order of declaration. A zero in the matrix
means that this endogenous does not appear in the model in this time period. The
value in the M_ . lead_lag_incidence matrix corresponds to the column of that
variable in the Jacobian of the dynamic model. Example: Let the second declared
variable be c and the (3, 2) entryof M_.lead_lag_incidence be 15. Then the
15th column of the Jacobian is the derivative with respectto c (+1) .

¢ +FILENAME/static.m

Contains the long run static model equations. Note that Dynare might introduce auxil-
iary equations and variables (see Auxiliary variables). Outputs are the residuals of the
static model equations in the order the equations were declared and the Jacobian of the
static equations. Entry (i, j) of the Jacobian represents the derivative of the ith static
model equation with respect to the jth model variable in declaration order.

These files may be looked at to understand errors reported at the simulation stage.

dynare will then run the computing tasks by executing +FILENAME /driver .m. If a user needs
to rerun the computing tasks without calling the preprocessor (or without calling the dynare com-
mand), for instance because he has modified the script, he just have to type the following on the
command line:

>> FILENAME.driver

A few words of warning are warranted here: under Octave the filename of the .mod file should be
chosen in such a way that the generated . m files described above do not conflict with . m files provided
by Octave or by Dynare. Not respecting this rule could cause crashes or unexpected behaviour. In
particular, it means that the . mod file cannot be given the name of an Octave or Dynare command. For
instance, under Octave, it also means that the . mod file cannot be named test .mod or example.
mod.

Note: Note on Quotes

When passing command line options that contains a space (or, under Octave, a double quote), you
must surround the entire option (keyword and argument) with single quotes, as in the following ex-
ample.

Example

Call Dynare with options containing spaces

>> dynare <<modfile.mod>> '-DA=[i in [1,2,3] when 1 > 1]'
—'conffile=C:\User\My Documents\config.txt'

Options

noclearall
By default, dynare will issue a clear all command to MATLAB (<R2015b) or Octave,
thereby deleting all workspace variables and functions; this option instructs dynare not to
clear the workspace. Note that starting with MATLAB 2015b dynare only deletes the global
variables and the functions using persistent variables, in order to benefit from the JIT (Just
In Time) compilation. In this case the option instructs dynare not to clear the globals and
functions.

onlyclearglobals
By default, dynare will issue a clear all command to MATLAB versions before
2015b and to Octave, thereby deleting all workspace variables; this option instructs dynare
to clear only the global variables (i.e. M_, options_, oo_, estim_params_,
bayestopt_, and dataset_), leaving the other variables in the workspace.

debug
Instructs the preprocessor to write some debugging information about the scanning and parsing

10 Chapter 3. Running Dynare

Dynare Reference Manual, Release 4.6.4

of the .mod file.

notmpterms
Instructs the preprocessor to omit temporary terms in the static and dynamic files; this generally
decreases performance, but is used for debugging purposes since it makes the static and dynamic
files more readable.

savemacro [=FILENAME]
Instructs dynare to save the intermediary file which is obtained after macro processing (see
Macro processing language); the saved output will go in the file specified, or if no file is specified
in FILENAME-macroexp.mod. See the note on quotes for info on passing a FILENAME
argument containing spaces.

onlymacro
Instructs the preprocessor to only perform the macro processing step, and stop just after. Useful
for debugging purposes or for using the macro processor independently of the rest of Dynare
toolbox.

linemacro
Instructs the macro preprocessor include @# 1 ine directives specifying the line on which macro
directives were encountered and expanded from. Only useful in conjunction with savemacro.

onlymodel
Instructs the preprocessor to print only information about the model in the driver file; no Dynare
commands (other than the shocks statement and parameter initializations) are printed and hence
no computational tasks performed. The same ancillary files are created as would otherwise be
created (dynamic, static files, etc.).

nolog
Instructs Dynare to no create a logfile of this run in FILENAME . 1og. The default is to create
the logfile.

output=dynamic|first|second|third
Instructs the preprocessor to output derivatives at the given order. Only works when
language=7julia has been passed.

language=matlab| julia
Instructs the preprocessor to write output for MATLAB or Julia. Default: MATLAB

params_derivs_order=0]1]2
When identification, dynare_sensitivity (with identification), or estima-
tion_cmd are present, this option is used to limit the order of the derivatives with respect to
the parameters that are calculated by the preprocessor. 0 means no derivatives, 1 means first
derivatives, and 2 means second derivatives. Default: 2

nowarn
Suppresses all warnings.

transform_unary_ops
Transform the following operators in the model block into auxiliary variables: exp, log,
logl0, cos, sin, tan, acos, asin, atan, cosh, sinh, tanh, acosh, asinh, atanh,
sqgrt, cbrt, abs, sign, erf. Default: no obligatory transformation

json = parse|check|transform|compute
Causes the preprocessor to output a version of the .mod file in JSON format to <<M_.
dname>>/model/json/. When the JSON output is created depends on the value passed.
These values represent various steps of processing in the preprocessor.

If parse is passed, the output will be written after the parsing of the . mod file to a file called
FILENAME. json but before file has been checked (e.g. if there are unused exogenous in the
model block, the JSON output will be created before the preprocessor exits).

If check is passed, the output will be written to a file called FILENAME . json after the model
has been checked.

3.1. Dynare invocation 11

Dynare Reference Manual, Release 4.6.4

If transform is passed, the JSON output of the transformed model (maximum lead
of 1, minimum lag of -1, expectation operators substituted, etc.) will be written to a
file called FILENAME. json and the original, untransformed model will be written in
FILENAME_ original. json.

And if compute is passed, the output is written after the computing pass. In this
case, the transformed model is written to FILENAME. json, the original model is writ-
ten to FILENAME_original. json, and the dynamic and static files are written to
FILENAME_dynamic. json and FILENAME_static. json.

jsonstdout
Instead of writing output requested by json to files, write to standard out, i.e. to the MAT-
LAB/Octave command window (and the log-file).

onlyjson
Quit processing once the output requested by json has been written.

jsonderivsimple
Print a simplified version (excluding variable name(s) and lag information) of the static and
dynamic files in FILENAME_static. json and FILENAME_dynamic..

warn_uninit
Display a warning for each variable or parameter which is not initialized. See Parameter ini-
tialization, or load_params_and_steady_state for initialization of parameters. See
Initial and terminal conditions, or 1oad_params_and_steady_state for initialization
of endogenous and exogenous variables.

console
Activate console mode. In addition to the behavior of nodisplay, Dynare will not use graph-
ical waitbars for long computations.

nograph

Activate the nograph option (see nograph), so that Dynare will not produce any
graph.

nointeractive
Instructs Dynare to not request user input.

nopathchange
By default Dynare will change MATLAB/Octave’s path if dynare /mat 1ab directory is not on
top and if Dynare’s routines are overriden by routines provided in other toolboxes. If one wishes
to override Dynare’s routines, the nopathchange options can be used. Alternatively, the path
can be temporarly modified by the user at the top of the .mod file (using MATLAB/Octave’s
addpath command).

nopreprocessoroutput
Prevent Dynare from printing the output of the steps leading up to the preprocessor as well as
the preprocessor output itself.

mexext=mex |mexw32 |mexw64 |mexmaci64 |mexab64
The mex extension associated with your platform to be used when compiling output associated
with use_d11. Dynare is able to set this automatically, so you should not need to set it yourself.

matlabroot=<<path>>
The path to the MATLAB installation for use with use_d11. Dynare is able to set this auto-
matically, so you should not need to set it yourself. See the note on quotes for info on passing a
<<path>> argument containing spaces.

parallel [=CLUSTER_NAME]
Tells Dynare to perform computations in parallel. If CLUSTER_NAME is passed, Dynare will
use the specified cluster to perform parallel computations. Otherwise, Dynare will use the first
cluster specified in the configuration file. See The configuration file, for more information about
the configuration file.

12 Chapter 3. Running Dynare

Dynare Reference Manual, Release 4.6.4

conffile=FILENAME
Specifies the location of the configuration file if it differs from the default. See The configuration
file, for more information about the configuration file and its default location. See the note on
quotes for info on passing a F ILENAME argument containing spaces.

parallel_slave_open_mode
Instructs Dynare to leave the connection to the slave node open after computation is complete,
closing this connection only when Dynare finishes processing.

parallel test
Tests the parallel setup specified in the configuration file without executing the .mod file. See
The configuration file, for more information about the configuration file.

—DMACRO_VARIABLE=MACRO_EXPRESSION
Defines a macro-variable from the command line (the same effect as using the Macro directive
@#define in a model file, see Macro processing language). See the note on quotes for info on
passing a MACRO_EXPRESSION argument containing spaces. Note that an expression passed
on the command line can reference variables defined before it.

Example

Call dynare with command line defines

wo
[

>> dynare <<modfile.mod>> -DA=true '-DB="A string with space
—~-DC=[1,2,3] '-DD=[1 in C when i > 1]'

—I<<path>>
Defines a path to search for files to be included by the macro processor (using the @#include
command). Multiple - T flags can be passed on the command line. The paths will be searched
in the order that the — T flags are passed and the first matching file will be used. The flags passed
here take priority over those passed to @#includepath. See the note on quotes for info on
passing a <<path>> argument containing spaces.

nostrict
Allows Dynare to issue a warning and continue processing when

1. there are more endogenous variables than equations.
2. an undeclared symbol is assigned in initval or endval.

3. anundeclared symbol is found in the mode1 block in this case, it is automatically declared
exogenous.

4. exogenous variables were declared but not used in the mode1 block.

fast
Only useful with model option use_d11. Don’t recompile the MEX files when running again
the same model file and the lists of variables and the equations haven’t changed. We use a 32
bit checksum, stored in <model filename>/checksum. There is a very small probability
that the preprocessor misses a change in the model. In case of doubt, re-run without the fast
option.

minimal_workspace
Instructs Dynare not to write parameter assignments to parameter names in the .m file produced
by the preprocessor. This is potentially useful when running dynare on a large . mod file that
runs into workspace size limitations imposed by MATLAB.

compute_xrefs
Tells Dynare to compute the equation cross references, writing them to the output . m file.

stochastic
Tells Dynare that the model to be solved is stochastic. If no Dynare commands related to
stochastic models (stoch_simul, estimation,...) are present in the .mod file, Dynare
understands by default that the model to be solved is deterministic.

3.1.

Dynare invocation

13

Dynare Reference Manual, Release 4.6.4

These options can be passed to the preprocessor by listing them after the name of the . mod file. They
can alternatively be defined in the first line of the . mod file, this avoids typing them on the command
line each time a . mod file is to be run. This line must be a Dynare one-line comment (i.e. must begin
with //) and the options must be whitespace separated between ——+ options: and +--. Note
that any text after the +—— will be discarded. As in the command line, if an option admits a value the
equal symbol must not be surrounded by spaces. For instance json = compute is not correct, and
should be written json=compute. The nopathchange option cannot be specified in this way, it
must be passed on the command-line.

Output

Depending on the computing tasks requested in the .mod file, executing the dynare command
will leave variables containing results in the workspace available for further processing. More de-
tails are given under the relevant computing tasks. The M_,*‘0o_*‘, and options__ structures are
savedin afile called FILENAME_results.mat. If they exist, estim_params_,bayestopt_,
dataset_, oo_recursive_ and estimation_info are saved in the same file.

MATLAB/Octave variable: M _
Structure containing various information about the model.

MATLAB/Octave variable: options_
Structure contains the values of the various options used by Dynare during the computation.

MATLAB/Octave variable: oo
Structure containing the various results of the computations.

MATLAB/Octave variable: dataset_
A dseries object containing the data used for estimation.

MATLAB/Octave variable: oo _recursive
Cell array containing the oo__ structures obtained when estimating the model for the different
samples when performing recursive estimation and forecasting. The oo__ structure obtained for
the sample ranging to the i -th observation is saved in the i -th field. The fields for non-estimated
endpoints are empty.

Example

Call dynare from the MATLAB or Octave prompt, without or with options:

>> dynare ramst
>> dynare ramst.mod savemacro

Alternatively the options can be passed in the first line of ramst . mod:

// ——+ options: savemacro, json=compute +—-—

and then dynare called without passing options on the command line:

>> dynare ramst

3.2 Dynare hooks

It is possible to call pre and post Dynare preprocessor hooks written as MATLAB scripts. The script
MODFILENAME/hooks/priorprocessing.m is executed before the call to Dynare’s preprocessor, and
can be used to programmatically transform the mod file that will be read by the preprocessor. The script
MODFILENAME/hooks/postprocessing.m is gexecuted just after the call to Dynare’s preprocessor, and
can be used to programmatically transform the files generated by Dynare’s preprocessor before actual computa-
tions start. The pre and/or post dynare preprocessor hooks are executed if and only if the aforementioned scripts
are detected in the same folder as the the model file, FILENAME . mod.

14 Chapter 3. Running Dynare

Dynare Reference Manual, Release 4.6.4

3.3 Understanding Preprocessor Error Messages

If the preprocessor runs into an error while processing your . mod file, it will issue an error. Due to the way that a
parser works, sometimes these errors can be misleading. Here, we aim to demystify these error messages.

The preprocessor issues error messages of the form:

1. ERROR: <<file.mod>>: 1line A, col B: <<error message>>
2. ERROR: <<file.mod>>: 1line A, cols B-C: <<error message>>
3. ERROR: <<file.mod>>: 1line A, col B - line C, col D: <<error message>>

The first two errors occur on a single line, with error two spanning multiple columns. Error three spans multiple
TOWS.

Often, the line and column numbers are precise, leading you directly to the offending syntax. Infrequently how-
ever, because of the way the parser works, this is not the case. The most common example of misleading line and
column numbers (and error message for that matter) is the case of a missing semicolon, as seen in the following
example:

varexo a, b
parameters c, ...;

In this case, the parser doesn’t know a semicolon is missing at the end of the varexo command until it begins
parsing the second line and bumps into the parameters command. This is because we allow commands to span
multiple lines and, hence, the parser cannot know that the second line will not have a semicolon on it until it gets
there. Once the parser begins parsing the second line, it realizes that it has encountered a keyword, parameters,
which it did not expect. Hence, it throws an error of the form: ERROR: <<file.mod>>: line 2, cols
0-9: syntax error, unexpected PARAMETERS. In this case, you would simply place a semicolon
at the end of line one and the parser would continue processing.

It is also helpful to keep in mind that any piece of code that does not violate Dynare syntax, but at the same time
is not recognized by the parser, is interpreted as native MATLAB code. This code will be directly passed to the
driver script. Investigating driver .m file then helps with debugging. Such problems most often occur when
defined variable or parameter names have been misspelled so that Dynare’s parser is unable to recognize them.

3.3. Understanding Preprocessor Error Messages 15

Dynare Reference Manual, Release 4.6.4

16 Chapter 3. Running Dynare

cHAPTER 4

The model file

4.1 Conventions

A model file contains a list of commands and of blocks. Each command and each element of a block is terminated
by a semicolon (;). Blocks are terminated by end; .

If Dynare encounters an unknown expression at the beginning of a line or after a semicolon, it will parse the rest of
that line as native MATLAB code, even if there are more statements separated by semicolons present. To prevent
cryptic error messages, it is strongly recommended to always only put one statement/command into each line and
start a new line after each semicolon. !

Most Dynare commands have arguments and several accept options, indicated in parentheses after the command
keyword. Several options are separated by commas.

In the description of Dynare commands, the following conventions are observed:
* Optional arguments or options are indicated between square brackets: ‘[]’;

i)

* Repeated arguments are indicated by ellipses: “..."”;

4|,,
’

* Mutually exclusive arguments are separated by vertical bars:
* INTEGER indicates an integer number;

* INTEGER_VECTOR indicates a vector of integer numbers separated by spaces, enclosed by square brack-
ets;

* DOUBLE indicates a double precision number. The following syntaxes are valid: 1.1e3,1.1E3,1.1d3,
1.1D3. In some places, infinite Values Inf and —Inf are also allowed;

* NUMERICAL_VECTOR indicates a vector of numbers separated by spaces, enclosed by square brackets;
* EXPRESSION indicates a mathematical expression valid outside the model description (see Expressions);

* MODEL_EXPRESSION (sometimes MODEL_EXP) indicates a mathematical expression valid in the
model description (see Expressions and Model declaration);

» MACRO_EXPRESSION designates an expression of the macro processor (see Macro expressions);

I' A .mod file must have lines that end with a line feed character, which is not commonly visible in text editors. Files created on Windows
and Unix-based systems have always conformed to this requirement, as have files created on OS X and macOS. Files created on old, pre-OS
X Macs used carriage returns as end of line characters. If you get a Dynare parsing error of the form ERROR: <<mod file>>: 1line
1, cols 341-347: syntax error, ... and there’s more than one line in your .mod file, know that it uses the carriage return as
an end of line character. To get more helpful error messages, the carriage returns should be changed to line feeds.

17

Dynare Reference Manual, Release 4.6.4

* VARIABLE_NAME (sometimes VAR_NAME) indicates a variable name starting with an alphabetical char-
acter and can’t contain: ‘()+-*/°=!;:@#.” or accentuated characters;

* PARAMETER_NAME (sometimes PARAM_NAME) indicates a parameter name starting with an alpha-
betical character and can’t contain: ‘()+-*/"=!;:@#. or accentuated characters;

e LATEX_NAME (sometimes TEX_NAME) indicates a valid LaTeX expression in math mode (not including
the dollar signs);

e FUNCTION_NAME indicates a valid MATLAB function name;

¢ FILENAME indicates a filename valid in the underlying operating system; it is necessary to put it between
quotes when specifying the extension or if the filename contains a non-alphanumeric character;

4.2 Variable declarations

While Dynare allows the user to choose their own variable names, there are some restrictions to be kept in mind.
First, variables and parameters must not have the same name as Dynare commands or built-in functions. In this
respect, Dynare is not case-sensitive. For example, do not use Ln or Sigma_e to name your variable. Not con-
forming to this rule might yield hard-to-debug error messages or crashes. Second, to minimize interference with
MATLAB or Octave functions that may be called by Dynare or user-defined steady state files, it is recommended
to avoid using the name of MATLAB functions. In particular when working with steady state files, do not use
correctly-spelled greek names like alpha, because there are MATLAB functions of the same name. Rather go for
alppha or alph. Lastly, please do not name a variable or parameter i. This may interfere with the imaginary
number i and the index in many loops. Rather, name investment invest. Using inv is also not recommended
as it already denotes the inverse operator. Commands for declaring variables and parameters are described below.

Command: var VAR _NAME [S$STEX_NAMES] [(long_name=QUOTED_STR|NAME=QUOTED_STR)]...;

Command: var (deflator=MODEL_EXPR) VAR_NAME (... same options apply)

Command: var (log_deflator=MODEL_EXPR) VAR _NAME (... same options apply)
This required command declares the endogenous variables in the model. See Conventions for the syntax
of VAR_NAME and MODEL_EXPR. Optionally it is possible to give a LaTeX name to the variable or, if
it is nonstationary, provide information regarding its deflator. The variables in the list can be separated by
spaces or by commas. var commands can appear several times in the file and Dynare will concatenate
them. Dynare stores the list of declared parameters, in the order of declaration, in a column cell array
M_.endo_names.

Options

If the model is nonstationary and is to be written as such in the model block, Dynare will need the trend
deflator for the appropriate endogenous variables in order to stationarize the model. The trend deflator must
be provided alongside the variables that follow this trend.

deflator = MODEL_EXPR
The expression used to detrend an endogenous variable. All trend variables, endogenous variables
and parameters referenced in MODEL_EXPR must already have been declared by the t rend_var,
log_trend_var, var and parameters commands. The deflator is assumed to be multiplica-
tive; for an additive deflator, use 1og_deflator.

log_deflator = MODEL_EXPR
Same as deflator, except that the deflator is assumed to be additive instead of multiplicative (or, to
put it otherwise, the declared variable is equal to the log of a variable with a multiplicative trend).

long_name = QUOTED_STR
This is the long version of the variable name. Its value is stored in M_.endo_names_long (a
column cell array, in the same order as M_ .endo_names). In case multiple 1ong_name options
are provided, the last one will be used. Default: VAR_NAME.

NAME = QUOTED_STR
This is used to create a partitioning of variables. It results in the direct output in the . m file analogous
to: M_.endo_partitions.NAME = QUOTED_STR;.

18 Chapter 4. The model file

Dynare Reference Manual, Release 4.6.4

Example (variable partitioning)

var c gnp cva (country= US', state= VA')

cca (country="US', state="CA', long_name= Consumption CA');
var (deflator=A) i b;
var ¢ C (long_name= Consumption') ;

Command: varexo VAR _NAME [TEX_NAMES] [(long_name=QUOTED_STR|NAME=QUOTED_STR) ...];
This optional command declares the exogenous variables in the model. See Conventions for the syntax of
VAR_NAME. Optionally it is possible to give a LaTeX name to the variable. Exogenous variables are re-
quired if the user wants to be able to apply shocks to her model. The variables in the list can be separated by
spaces or by commas. varexo commands can appear several times in the file and Dynare will concatenate
them.

Options

long _name = QUOTED_STRING
Like long_name but value stored in M_ . exo_names_long.

NAME = QUOTED_STRING
Like partitioning but QUOTED_STRING stored in M_.exo_partitions.NAME.

Example

varexo m gov;

Remarks

An exogenous variable is an innovation, in the sense that this variable cannot be predicted from the knowl-
edge of the current state of the economy. For instance, if logged TFP is a first order autoregressive process:

Gy = par—1 + €

then logged TFP a; is an endogenous variable to be declared with var, its best prediction is pa;—_, while
the innovation ¢; is to be declared with varexo.

Command: varexo_det VAR _NAME [$TEX_NAMES] [(long_name=QUOTED_STR|NAME=QUOTED_STR) ...
This optional command declares exogenous deterministic variables in a stochastic model. See Conventions
for the syntax of VARIABLE_NAME. Optionally it is possible to give a LaTeX name to the variable. The
variables in the list can be separated by spaces or by commas. varexo_det commands can appear several
times in the file and Dynare will concatenate them.

It is possible to mix deterministic and stochastic shocks to build models where agents know from the start
of the simulation about future exogenous changes. In that case stoch_simul will compute the ratio-
nal expectation solution adding future information to the state space (nothing is shown in the output of
stoch_simul) and forecast will compute a simulation conditional on initial conditions and future infor-
mation.

Options

long_name = QUOTED_STRING
Like long_name but value stored in M__.exo_det_names_long.

NAME = QUOTED_STRING
Like partitioning but QUOTED_STRING stored in M_.exo_det_partitions.NAME.

Example

varexo m gov;
varexo_det tau;

Command: parameters PARAM _NAME [S$TEX_NAMES] [(long_name=QUOTED_STR|NAME=QUOTED_STR) ...

This command declares parameters used in the model, in variable initialization or in shocks declarations.
See Conventions for the syntax of PARAM_NAME. Optionally it is possible to give a LaTeX name to the
parameter.

4.2. Variable declarations 19

Dynare Reference Manual, Release 4.6.4

The parameters must subsequently be assigned values (see Parameter initialization).

The parameters in the list can be separated by spaces or by commas. parameters commands can appear
several times in the file and Dynare will concatenate them.

Options

long_name = QUOTED_STRING
Like long_name but value stored in M__. param_names_long.

NAME = QUOTED_STRING
Like partitioning but QUOTED_STRING stored in M_ . param_partitions.NAME.

Example

parameters alpha, bet;

Command: change_type (var|varexo|varexo_det |parameters) VAR_NAME | PARAM NAME...;
Changes the types of the specified variables/parameters to another type: endogenous, exogenous, exogenous
deterministic or parameter. It is important to understand that this command has a global effect on the . mod
file: the type change is effective after, but also before, the change_type command. This command is
typically used when flipping some variables for steady state calibration: typically a separate model file is
used for calibration, which includes the list of variable declarations with the macro processor, and flips some
variable.

Example

var y, w;
parameters alpha, beta;

change_type (var) alpha, beta;
change_type (parameters) y, w;

Here, in the whole model file, alpha and beta will be endogenous and y and w will be param-
eters.

Command: predetermined _variables VAR_NAME...;
In Dynare, the default convention is that the timing of a variable reflects when this variable is decided. The
typical example is for capital stock: since the capital stock used at current period is actually decided at the
previous period, then the capital stock entering the production function is k (-1), and the law of motion of
capital must be written:

k =1 + (1-delta)x*k(-1)

Put another way, for stock variables, the default in Dynare is to use a “stock at the end of the period” concept,
instead of a “stock at the beginning of the period” convention.

The predetermined_variables is used to change that convention. The endogenous variables de-
clared as predetermined variables are supposed to be decided one period ahead of all other endogenous
variables. For stock variables, they are supposed to follow a “stock at the beginning of the period” conven-
tion.

Note that Dynare internally always uses the “stock at the end of the period” concept, even when the model
has been entered using the predetermined_variables command. Thus, when plotting, computing
or simulating variables, Dynare will follow the convention to use variables that are decided in the current
period. For example, when generating impulse response functions for capital, Dynare will plot k, which
is the capital stock decided upon by investment today (and which will be used in tomorrow’s production
function). This is the reason that capital is shown to be moving on impact, because it is k and not the
predetermined k (-1) that is displayed. It is important to remember that this also affects simulated time
series and output from smoother routines for predetermined variables. Compared to non-predetermined
variables they might otherwise appear to be falsely shifted to the future by one period.

Example

20 Chapter 4. The model file

Dynare Reference Manual, Release 4.6.4

The following two program snippets are strictly equivalent.
Using default Dynare timing convention:

var y, k, 1i;

model;

y = k(-1)“alpha;

k =i + (l-delta)*k(-1);

end;

Using the alternative timing convention:

var y, k, 1i;
predetermined variables k;

model;

y = k”alpha;
k(+1) = i + (l-delta) xk;
end;
Command: trend_var (growth_factor = MODEL_EXPR) VAR_NAME [SLATEX_NAMES]...;

This optional command declares the trend variables in the model. See ref:conv for the syntax of
MODEL_EXPR and VAR_NAME. Optionally it is possible to give a LaTeX name to the variable.

The variable is assumed to have a multiplicative growth trend. For an additive growth trend, use
log_trend_var instead.

Trend variables are required if the user wants to be able to write a nonstationary model in the mode1 block.
The t rend_var command must appear before the var command that references the trend variable.

trend_var commands can appear several times in the file and Dynare will concatenate them.

If the model is nonstationary and is to be written as such in the model block, Dynare will need the growth
factor of every trend variable in order to stationarize the model. The growth factor must be provided within
the declaration of the trend variable, using the growth_factor keyword. All endogenous variables
and parameters referenced in MODEL_EXPR must already have been declared by the var and parameters
commands.

Example

trend var (growth_factor=gA) A;

Command: 1log_trend _var (log_growth_factor = MODEL_EXPR) VAR_NAME [SLATEX_NAMES]...;
Same as t rend_var, except that the variable is supposed to have an additive trend (or, to put it otherwise,
to be equal to the log of a variable with a multiplicative trend).

Command: model_ local_variable VARIABLE_NAME [LATEX NAME]... ;
This optional command declares a model local variable. See Conventions for the syntax of VARI-
ABLE_NAME. As you can create model local variables on the fly in the model block (see Model dec-
laration), the interest of this command is primarily to assign a LATEX_NAME to the model local variable.

Example

model_ local_ variable GDP_US S$SGDPUSS;

4.2.1 On-the-fly Model Variable Declaration

Endogenous variables, exogenous variables, and parameters can also be declared inside the model block. You can
do this in two different ways: either via the equation tag or directly in an equation.

4.2. Variable declarations 21

Dynare Reference Manual, Release 4.6.4

To declare a variable on-the-fly in an equation tag, simply state the type of variable to be declared (endogenous,
exogenous, or parameter followed by an equal sign and the variable name in single quotes. Hence, to declare
a variable c as endogenous in an equation tag, you can type [endogenous="c"'].

To perform on-the-fly variable declaration in an equation, simply follow the symbol name with a vertical line (|,
pipe character) and either an e, an x, or a p. For example, to declare a parameter named alphaa in the model
block, you could write alphaa | p directly in an equation where it appears. Similarly, to declare an endogenous
variable c in the model block you could write c | e. Note that in-equation on-the-fly variable declarations must be
made on contemporaneous variables.

On-the-fly variable declarations do not have to appear in the first place where this variable is encountered.
Example

The following two snippets are equivalent:

model;
[endogenous="k',name="'law of motion of capital']
k(+1l) = 1i]le + (l-deltalp) *k;

yle = k”alphalp;

end;

delta = 0.025;
alpha = 0.36;

var k, i, y;

parameters delta, alpha;
delta = 0.025;

alpha = 0.36;

model;

[name="'law of motion of capital']
k(1) = ile + (l-deltalp) xk;

yle = k|e”alphalp;

end;

4.3 Expressions

Dynare distinguishes between two types of mathematical expressions: those that are used to describe the model,
and those that are used outside the model block (e.g. for initializing parameters or variables, or as command
options). In this manual, those two types of expressions are respectively denoted by MODEL_EXPRESSION and
EXPRESSION.

Unlike MATLAB or Octave expressions, Dynare expressions are necessarily scalar ones: they cannot contain
matrices or evaluate to matrices.”

Expressions can be constructed using integers (INTEGER), floating point numbers (DOUBLE), parameter names
(PARAMETER_NAME), variable names (VARIABLE_NAME), operators and functions.

The following special constants are also accepted in some contexts:

Constant: inf
Represents infinity.

Constant: nan
“Not a number”: represents an undefined or unrepresentable value.

2 Note that arbitrary MATLAB or Octave expressions can be put in a . mod file, but those expressions have to be on separate lines, generally
at the end of the file for post-processing purposes. They are not interpreted by Dynare, and are simply passed on unmodified to MATLAB or
Octave. Those constructions are not addresses in this section.

22 Chapter 4. The model file

Dynare Reference Manual, Release 4.6.4

4.3.1 Parameters and variables

Parameters and variables can be introduced in expressions by simply typing their names. The semantics of param-
eters and variables is quite different whether they are used inside or outside the model block.

4.3.1.1 Inside the model

Parameters used inside the model refer to the value given through parameter initialization (see Parameter initial-
ization) or homot opy_setup when doing a simulation, or are the estimated variables when doing an estimation.

Variables used in a MODEL_EXPRESSION denote current period values when neither a lead or a lag is given.
A lead or a lag can be given by enclosing an integer between parenthesis just after the variable name: a positive
integer means a lead, a negative one means a lag. Leads or lags of more than one period are allowed. For example,
if ¢ is an endogenous variable, then c (+1) is the variable one period ahead, and c (-2) is the variable two
periods before.

When specifying the leads and lags of endogenous variables, it is important to respect the following convention:
in Dynare, the timing of a variable reflects when that variable is decided. A control variable — which by definition
is decided in the current period — must have no lead. A predetermined variable — which by definition has been
decided in a previous period — must have a lag. A consequence of this is that all stock variables must use the
“stock at the end of the period” convention.

Leads and lags are primarily used for endogenous variables, but can be used for exogenous variables. They have
no effect on parameters and are forbidden for local model variables (see Model declaration).

4.3.1.2 Outside the model

When used in an expression outside the model block, a parameter or a variable simply refers to the last value
given to that variable. More precisely, for a parameter it refers to the value given in the corresponding parameter
initialization (see Parameter initialization); for an endogenous or exogenous variable, it refers to the value given
in the most recent initval or endval block.

4.3.2 Operators

The following operators are allowed in both MODEL_EXPRESSION and EXPRESSION:
* Binary arithmetic operators: +, —, %, /, *
e Unary arithmetic operators: +, —
* Binary comparison operators (which evaluate to either O or 1): <, >, <=, >=, ==, | =

Note the binary comparison operators are differentiable everywhere except on a line of the 2-dimensional real
plane. However for facilitating convergence of Newton-type methods, Dynare assumes that, at the points of non-
differentiability, the partial derivatives of these operators with respect to both arguments is equal to O (since this is
the value of the partial derivatives everywhere else).

The following special operators are accepted in MODEL_EXPRESSION (but not in EXPRESSION):

Operator: STEADY_ STATE (MODEL_EXPRESSION)
This operator is used to take the value of the enclosed expression at the steady state. A typical usage is in
the Taylor rule, where you may want to use the value of GDP at steady state to compute the output gap.

Exogenous and exogenous deterministic variables may not appear in MODEL_EXPRESSION.

Operator: EXPECTATION (INTEGER) (MODEL_EXPRESSION)
This operator is used to take the expectation of some expression using a different information set than
the information available at current period. For example, EXPECTATION (-1) (x (+1)) is equal to the
expected value of variable x at next period, using the information set available at the previous period. See
Auxiliary variables for an explanation of how this operator is handled internally and how this affects the
output.

4.3. Expressions 23

Dynare Reference Manual, Release 4.6.4

4.3.3 Functions

4.3.3.1 Built-in functions

The following standard functions are supported internally for both MODEL_EXPRESSION and EXPRESSION:

Function: exp(x)

Natural exponential.

Function: 1log(x)

Function: 1ln(x)

Natural logarithm.

Function: 1loglO (x)

Base 10 logarithm.

Function: sqgrt (x)

Square root.

Function: cbrt (x)

Cube root.

Function: sign (x)

Signum function, defined as:

-1 ifx <0
sign(z) =<0 ifz=0
1 ifz >0

Note that this function is not continuous, hence not differentiable, at x = 0. However, for facilitating
convergence of Newton-type methods, Dynare assumes that the derivative at x = 0 is equal to 0. This
assumption comes from the observation that both the right- and left-derivatives at this point exist and are
equal to 0, so we can remove the singularity by postulating that the derivative at z = 0 is 0.

Function: abs (x)

Absolute value.

Note that this continuous function is not differentiable at z = 0. However, for facilitating convergence of
Newton-type methods, Dynare assumes that the derivative at + = 0 is equal to O (even if the derivative
does not exist). The rational for this mathematically unfounded definition, rely on the observation that the
derivative of abs(x) is equal to sign(x) for any = # 0 in R and from the convention for the value of sign(z)
atx = 0).

Function: sin (x)

Function: cos (x)

Function: tan (x)

Function: asin(x)

Function: acos(x)

Function: atan (x)

Trigonometric functions.

Function: max(a, b)

Function: min(a, b)

Maximum and minimum of two reals.

Note that these functions are differentiable everywhere except on a line of the 2-dimensional real plane
defined by a = b. However for facilitating convergence of Newton-type methods, Dynare assumes that,
at the points of non-differentiability, the partial derivative of these functions with respect to the first (resp.

24

Chapter 4. The model file

Dynare Reference Manual, Release 4.6.4

the second) argument is equal to 1 (resp. to 0) (i.e. the derivatives at the kink are equal to the derivatives
observed on the half-plane where the function is equal to its first argument).

Function: normcdf (x)

Function: normcdf(x, mu, sigma)
Gaussian cumulative density function, with mean mu and standard deviation sigma. Note that
normcdf (x) is equivalent to normcdf (x,0,1).

Function: normpdf (x)

Function: normpdf (x, mu, sigma)
Gaussian probability density function, with mean mu and standard deviation sigma. Note that
normpdf (x) is equivalent to normpdf (x,0,1).

Function: erf (x)
Gauss error function.

4.3.3.2 External functions

Any other user-defined (or built-in) MATLAB or Octave function may be used in both a MODEL_EXPRESSION
and an EXPRESSION, provided that this function has a scalar argument as a return value.

To use an external function in a MODEL_EXPRESSION, one must declare the function using the
external_function statement. This is not required for external functions used in an EXPRESSION out-
side of amodel block or steady_state_model block.

Command: external_function (OPTIONS...);
This command declares the external functions used in the model block. It is required for every unique
function used in the model block.

external_function commands can appear several times in the file and must come before the model
block.

Options

name = NAME
The name of the function, which must also be the name of the M-/MEX file implementing it. This
option is mandatory.

nargs = INTEGER
The number of arguments of the function. If this option is not provided, Dynare assumes nargs =
1.

first_deriv_provided [= NAME]
If NAME is provided, this tells Dynare that the Jacobian is provided as the only output of the M-
/MEX file given as the option argument. If NAME is not provided, this tells Dynare that the M-/MEX
file specified by the argument passed to NAME returns the Jacobian as its second output argument.
When this option is not provided, Dynare will use finite difference approximations for computing the
derivatives of the function, whenever needed.

second_deriv_provided [= NAME]
If NAME is provided, this tells Dynare that the Hessian is provided as the only output of the M-/MEX
file given as the option argument. If NAME is not provided, this tells Dynare that the M-/MEX
file specified by the argument passed to NAME returns the Hessian as its third output argument.
NB: This option can only be used if the first_deriv_provided option is used in the same
external_ function command. When this option is not provided, Dynare will use finite differ-
ence approximations for computing the Hessian derivatives of the function, whenever needed.

Example
external function (name = funcname) ;
external function (name = otherfuncname, nargs = 2, first_deriv_
—provided, second_deriv_provided);
external function (name = yetotherfuncname, nargs = 3, first_deriv_
—provided = funcname_deriv);

4.3. Expressions 25

Dynare Reference Manual, Release 4.6.4

4.3.4 A few words of warning in stochastic context

The use of the following functions and operators is strongly discouraged in a stochastic context: max, min, abs,
sign, <, >, <=,>=,==, |=

The reason is that the local approximation used by stoch_simul or estimation will by nature ignore the
non-linearities introduced by these functions if the steady state is away from the kink. And, if the steady state is
exactly at the kink, then the approximation will be bogus because the derivative of these functions at the kink is
bogus (as explained in the respective documentations of these functions and operators).

Note that extended_path is not affected by this problem, because it does not rely on a local approximation of
the mode.

4.4 Parameter initialization

When using Dynare for computing simulations, it is necessary to calibrate the parameters of the model. This is
done through parameter initialization.

The syntax is the following:

PARAMETER_NAME = EXPRESSION;

Here is an example of calibration:

parameters alpha, beta;

beta = 0.99;
alpha = 0.36;
A = l-alphaxbeta;

Internally, the parameter values are stored in M__ . params:

MATLAB/Octave variable: M_.params
Contains the values of model parameters. The parameters are in the order that was used in the parameters
command, hence ordered as in M__ . param_names.

The parameter names are stored in M_ . param_names:

MATLAB/Octave variable: M_.param names
Cell array containing the names of the model parameters.

MATLAB/Octave command: get_param by name ('PARAMETER_NAME') ;
Given the name of a parameter, returns its calibrated value as it is stored in M__ . params.

MATLAB/Octave command: set_param value ('PARAMETER_NAME', MATLAB_EXPRESSION) ;
Sets the calibrated value of a parameter to the provided expression. This does essentially the same as the pa-
rameter initialization syntax described above, except that it accepts arbitrary MATLAB/Octave expressions,
and that it works from MATLAB/Octave scripts.

4.5 Model declaration

The model is declared inside a model block:

Block: model ;
Block: model (OPTIONS...);

The equations of the model are written in a block delimited by model and end keywords.

There must be as many equations as there are endogenous variables in the model, except
when computing the unconstrained optimal policy with ramsey_model, ramsey_policy
ordiscretionary_policy.

26 Chapter 4. The model file

Dynare Reference Manual, Release 4.6.4

The syntax of equations must follow the conventions for MODEL_EXPRESSION as described
in Expressions. Each equation must be terminated by a semicolon (;’). A normal equation looks
like:

MODEL_EXPRESSION = MODEL_EXPRESSION;

When the equations are written in homogenous form, it is possible to omit the ‘=0 part and write
only the left hand side of the equation. A homogenous equation looks like:

MODEL_EXPRESSION;

Inside the model block, Dynare allows the creation of model-local variables, which constitute a
simple way to share a common expression between several equations. The syntax consists of a
pound sign (#) followed by the name of the new model local variable (which must not be declared
as in Variable declarations, but may have been declared by model_local_variable), an
equal sign, and the expression for which this new variable will stand. Later on, every time this
variable appears in the model, Dynare will substitute it by the expression assigned to the variable.
Note that the scope of this variable is restricted to the model block; it cannot be used outside.
To assign a LaTeX name to the model local variable, use the declaration syntax outlined by
model_local variable. A model local variable declaration looks like:

#VARIABLE_NAME = MODEL_EXPRESSION;

It is possible to tag equations written in the model block. A tag can serve different purposes
by allowing the user to attach arbitrary informations to each equation and to recover them at
runtime. For instance, it is possible to name the equations with a name-tag, using a syntax like:

model;

[name 'Budget constraint'];
c + k = k”“thetaxA;

end;

Here, name is the keyword indicating that the tag names the equation. If an equation of the model
is tagged with a name, the resid command will display the name of the equations (which may
be more informative than the equation numbers) in addition to the equation number. Several tags
for one equation can be separated using a comma:

model;

[name="'Taylor rule',mcp = 'r > —-1.94478"]
r = rhoxr(-1) + (l-rho)* (gpixInfl+gy*xYGap) + e;

end;

More information on tags is available on the Dynare wiki.
Options

linear
Declares the model as being linear. It spares oneself from having to declare initial values
for computing the steady state of a stationary linear model. This option can’t be used with
non-linear models, it will NOT trigger linearization of the model.

use_dll
Instructs the preprocessor to create dynamic loadable libraries (DLL) containing the model
equations and derivatives, instead of writing those in M-files. You need a working com-
pilation environment, i.e. a working mex command (see Compiler installation for more
details). Using this option can result in faster simulations or estimations, at the expense of
some initial compilation time.’

3 In particular, for big models, the compilation step can be very time-consuming, and use of this option may be counter-productive in those

cases.

4.5. Model declaration

27

https://archives.dynare.org/DynareWiki/

Dynare Reference Manual, Release 4.6.4

block
Perform the block decomposition of the model, and exploit it in computations (steady-state,
deterministic simulation, stochastic simulation with first order approximation and estima-
tion). See Dynare wiki for details on the algorithms used in deterministic simulation and
steady-state computation.

bytecode
Instead of M-files, use a bytecode representation of the model, i.e. a binary file containing a
compact representation of all the equations.

cutoff = DOUBLE
Threshold under which a jacobian element is considered as null during the model normal-
ization. Only available with option block. Default: 1e-15

mfs = INTEGER
Controls the handling of minimum feedback set of endogenous variables. Only available
with option block. Possible values:

0
All the endogenous variables are considered as feedback variables (Default).

1
The endogenous variables assigned to equation naturally normalized (i.e. of the
form z = f(Y') where x does not appear in Y) are potentially recursive variables.
All the other variables are forced to belong to the set of feedback variables.

2
In addition of variables with mfs = 1 the endogenous variables related to linear
equations which could be normalized are potential recursive variables. All the other
variables are forced to belong to the set of feedback variables.

3

In addition of variables with mfs = 2 the endogenous variables related to non-
linear equations which could be normalized are potential recursive variables. All
the other variables are forced to belong to the set of feedback variables.

no_static
Don’t create the static model file. This can be useful for models which don’t have a steady
state.

differentiate_forward vars

differentiate_ forward vars = (VARIABLE _NAME [VARIABLE NAME ...])
Tells Dynare to create a new auxiliary variable for each endogenous variable that ap-
pears with a lead, such that the new variable is the time differentiate of the original
one. More precisely, if the model contains x (+1), then a variable AUX_DIFF_VAR
will be created such that AUX_DIFF_VAR=x-x(-1), and x (+1) will be replaced with
X+AUX_DIFF_VAR (+1).

The transformation is applied to all endogenous variables with a lead if the option is given
without a list of variables. If there is a list, the transformation is restricted to endogenous
with a lead that also appear in the list.

This option can useful for some deterministic simulations where convergence is hard to
obtain. Bad values for terminal conditions in the case of very persistent dynamics or per-
manent shocks can hinder correct solutions or any convergence. The new differentiated
variables have obvious zero terminal conditions (if the terminal condition is a steady state)
and this in many cases helps convergence of simulations.

parallel local files = (FILENAME [, FILENAME]...)
Declares a list of extra files that should be transferred to slave nodes when doing a parallel
computation (see Parallel Configuration).

balanced growth_test_tol = DOUBLE
Tolerance used for determining whether cross-derivatives are zero in the test for bal-
anced growth path (the latter is documented on https://archives.dynare.org/DynareWiki/
RemovingTrends). Default: 1e-6

28 Chapter 4. The model file

https://archives.dynare.org/DynareWiki/
https://archives.dynare.org/DynareWiki/RemovingTrends
https://archives.dynare.org/DynareWiki/RemovingTrends

Dynare Reference Manual, Release 4.6.4

Example (Elementary RBC model)

var c k;
varexo Xx;
parameters aa alph bet delt gam;

model;

c = - k + aaxxxk(-1)"alph + (1-delt)*k(-1);

c” (-gam) = (aaralph*x(+1)*k”(alph-1) + 1 - delt)=c(+1l)”" (—gam)/
— (l+bet);

end;

Example (Use of model local variables)

The following program:

model;

gamma = 1 - 1/sigma;
ul = cl”gamma/gamma;
u2 = c2”gamma/gamma;
end;

...1s formally equivalent to:

model;

ul = cl”(1-1/sigma)/ (1-1/sigma) ;
u2 = c2”(1l-1/sigma)/ (1-1/sigma);
end;

Example (A linear model)

model (linear) ;

x = a*x(—1)+b*y (+1) +te_x;
y = dxy(-1)+e_y;

end;

Dynare has the ability to output the original list of model equations to a LaTeX file, us-
ing the write_latex_original_model command, the list of transformed model equations us-
ing the write_latex_dynamic_model command, and the list of static model equations using the

write_latex_static_model command.

Command:

write_latex original_model (OPTIONS) ;

This command creates two LaTeX files: one containing the model as defined in the model block and one

containing the LaTeX document header information.

If your .mod file is FILENAME.mod, then Dynare will create a file called FILENAME/latex/
original.tex, which includes a file called FILENAME/latex/original_content.tex (also
created by Dynare) containing the list of all the original model equations.

If LaTeX names were given for variables and parameters (see Variable declarations), then those will be

used; otherwise, the plain text names will be used.

Time subscripts (t, t+1, t—1,...) will be appended to the variable names, as LaTeX subscripts.

Compiling the TeX file requires the following LaTeX packages: geometry, fullpage, bregn.

Options

write_equation_tags

Write the equation tags in the LaTeX output. The equation tags will be interpreted with LaTeX

markups.

Command: write_latex dynamic model ;

4.5. Model declaration

29

Dynare Reference Manual, Release 4.6.4

Command: write_latex_dynamic_model (OPTIONS) ;

This command creates two LaTeX files: one containing the dynamic model and one containing the LaTeX
document header information.

If your .mod file is FILENAME .mod, then Dynare will create a file called FILENAME/latex/
dynamic.tex, which includes a file called FILENAME /latex/dynamic_content .tex (also cre-
ated by Dynare) containing the list of all the dynamic model equations.

If LaTeX names were given for variables and parameters (see Variable declarations), then those will be
used; otherwise, the plain text names will be used.

Time subscripts (t, t+1, t—1,...) will be appended to the variable names, as LaTeX subscripts.

Note that the model written in the TeX file will differ from the model declared by the user in the following
dimensions:

» The timing convention of predetermined variables (see predetermined variables) will have
been changed to the default Dynare timing convention; in other words, variables declared as predeter-
mined will be lagged on period back,

e The EXPECTATION operators will have been removed, replaced by auxiliary variables and new equa-
tions (as explained in the documentation of EXPECTATION),

* Endogenous variables with leads or lags greater or equal than two will have been removed, replaced
by new auxiliary variables and equations,

* For a stochastic model, exogenous variables with leads or lags will also have been replaced by new
auxiliary variables and equations.

For the required LaTeX packages, see write latex original model.
Options

write_equation_tags
See write_equation_tags

Command: write_latex_static_model (OPTIONS) ;

This command creates two LaTeX files: one containing the static model and one containing the LaTeX
document header information.

If your . mod file is FILENAME . mod, then Dynare will create a file called FILENAME /latex/static.
tex, which includes a file called FILENAME / latex/static_content.tex (also created by Dynare)
containing the list of all the steady state model equations.

If LaTeX names were given for variables and parameters (see Variable declarations), then those will be
used; otherwise, the plain text names will be used.

Note that the model written in the TeX file will differ from the model declared by the user in the some
dimensions (see write latex_dynamic_model for details).

Also note that this command will not output the contents of the optional steady_state_model block
(see steady_state_model); it will rather output a static version (i.e. without leads and lags) of the dy-
namic model declared in the model block. To write the LaTeX contents of the steady_state_model
see write latex_steady_state_model.

For the required LaTeX packages, see write latex_original_model.
Options

write_equation_tags
See write equation_tags.

Command: write_latex_steady_state_model ()

This command creates two LaTeX files: one containing the steady state model and one containing the LaTeX
document header information.

If your .mod file is FILENAME .mod, then Dynare will create a file called FILENAME/latex/
steady_state.tex, which includes a file called FILENAME /latex/steady_state_content.
tex (also created by Dynare) containing the list of all the steady state model equations.

30

Chapter 4. The model file

Dynare Reference Manual, Release 4.6.4

If LaTeX names were given for variables and parameters (see Variable declarations), then those will be
used; otherwise, the plain text names will be used.

Note that the model written in the .tex file will differ from the model declared by the user in some
dimensions (see write_ latex_dynamic_mode]l for details).

For the required LaTeX packages, see write latex original_model.

4.6 Auxiliary variables

The model which is solved internally by Dynare is not exactly the model declared by the user. In some cases,
Dynare will introduce auxiliary endogenous variables—along with corresponding auxiliary equations—which
will appear in the final output.

The main transformation concerns leads and lags. Dynare will perform a transformation of the model so that there
is only one lead and one lag on endogenous variables and, in the case of a stochastic model, no leads/lags on
exogenous variables.

This transformation is achieved by the creation of auxiliary variables and corresponding equations. For example, if
x (+2) exists in the model, Dynare will create one auxiliary variable AUX_ENDO_LEAD = x (+1), and replace
x (+2) by AUX_ENDO_LEAD (+1).

A similar transformation is done for lags greater than 2 on endogenous (auxiliary variables will have a name
beginning with AUX_ENDO_LAG), and for exogenous with leads and lags (auxiliary variables will have a name
beginning with AUX_EXO_LEAD or AUX_EXO_ LAG respectively).

Another transformation is done for the EXPECTATION operator. For each occurrence of this operator, Dynare
creates an auxiliary variable defined by a new equation, and replaces the expectation operator by a reference
to the new auxiliary variable. For example, the expression EXPECTATION (-1) (x (+1)) is replaced by
AUX_EXPECT_LAG_1 (-1), and the new auxiliary variable is declared as AUX_EXPECT_LAG_1 = x (+2).

Auxiliary variables are also introduced by the preprocessor for the ramsey_model and ramsey_policy
commands. In this case, they are used to represent the Lagrange multipliers when first order conditions of the
Ramsey problem are computed. The new variables take the form MULT_ i, where i represents the constraint with
which the multiplier is associated (counted from the order of declaration in the model block).

The last type of auxiliary variables is introduced by the di fferentiate_forward_vars option of the model
block. The new variables take the form AUX_DIFF_FWRD_1i, and are equal to x—x (—1) for some endogenous
variable x.

Once created, all auxiliary variables are included in the set of endogenous variables. The output of decision rules
(see below) is such that auxiliary variable names are replaced by the original variables they refer to.

The number of endogenous variables before the creation of auxiliary variables is storedinM_ . orig_endo_nbr,
and the number of endogenous variables after the creation of auxiliary variables is stored in M_ . endo_nbr.

See Dynare wiki for more technical details on auxiliary variables.

4.7 Initial and terminal conditions

For most simulation exercises, it is necessary to provide initial (and possibly terminal) conditions. It is also
necessary to provide initial guess values for non-linear solvers. This section describes the statements used for
those purposes.

In many contexts (deterministic or stochastic), it is necessary to compute the steady state of a non-linear model:
initval then specifies numerical initial values for the non-linear solver. The command resid can be used to
compute the equation residuals for the given initial values.

Used in perfect foresight mode, the types of forward-looking models for which Dynare was designed require
both initial and terminal conditions. Most often these initial and terminal conditions are static equilibria, but not
necessarily.

4.6. Auxiliary variables 31

https://archives.dynare.org/DynareWiki/

Dynare Reference Manual, Release 4.6.4

One typical application is to consider an economy at the equilibrium at time 0, trigger a shock in first period, and
study the trajectory of return to the initial equilibrium. To do that, one needs initval and shocks (see Shocks
on exogenous variables).

Another one is to study how an economy, starting from arbitrary initial conditions at time 0 converges towards
equilibrium. In this case models, the command histval permits to specify different historical initial values for
variables with lags for the periods before the beginning of the simulation. Due to the design of Dynare, in this
case initval is used to specify the terminal conditions.

Block: initval ;

Block: initwval (OPTIONS...);
The initval block has two main purposes: providing guess values for non-linear solvers in the con-
text of perfect foresight simulations and providing guess values for steady state computations in both per-
fect foresight and stochastic simulations. Depending on the presence of histval and endval blocks
it is also used for declaring the initial and terminal conditions in a perfect foresight simulation exer-
cise. Because of this interaction of the meaning of an initwval block with the presence of histval
and endval blocks in perfect foresight simulations, it is strongly recommended to check that the con-
structed oo_.endo_simul and oo_.exo_simul variables contain the desired values after running
perfect_foresight_setup and before running perfect_foresight_solver. Inthe presence
of leads and lags, these subfields of the results structure will store the historical values for the lags in the
first column/row and the terminal values for the leads in the last column/row.

The initval block is terminated by end; and contains lines of the form:
VARIABLE_NAME = EXPRESSION;
In a deterministic (i.e. perfect foresight) model

First, both the oo_.endo_simul and co_.exo_simul variables storing the endogenous and exoge-
nous variables will be filled with the values provided by this block. If there are no other blocks present, it
will therefore provide the initial and terminal conditions for all the endogenous and exogenous variables,
because it will also fill the last column/row of these matrices. For the intermediate simulation periods it
thereby provides the starting values for the solver. In the presence of a histval block (and therefore
absence of an endval block), this histval block will provide/overwrite the historical values for the
state variables (lags) by setting the first column/row of co_.endo_simul and oo_.exo_simul. This
implies that the initval block in the presence of histval only sets the terminal values for the variables
with leads and provides initial values for the perfect foresight solver.

Because of these various functions of initval it is often necessary to provide values for all the endoge-
nous variables in an initval block. Initial and terminal conditions are strictly necessary for lagged/leaded
variables, while feasible starting values are required for the solver. It is important to be aware that if some
variables, endogenous or exogenous, are not mentioned in the initwval block, a zero value is assumed. It
is particularly important to keep this in mind when specifying exogenous variables using varexo that are
not allowed to take on the value of zero, like e.g. TFP.

Note that if the initwval block is immediately followed by a st eady command, its semantics are slightly
changed. The steady command will compute the steady state of the model for all the endogenous vari-
ables, assuming that exogenous variables are kept constant at the value declared in the initval block.
These steady state values conditional on the declared exogenous variables are then written into oo_ .
endo_simul and take up the potential roles as historical and terminal conditions as well as starting values
for the solver. An initval block followed by steady is therefore formally equivalent to an initval
block with the specified values for the exogenous variables, and the endogenous variables set to the associ-
ated steady state values conditional on the exogenous variables.

In a stochastic model

The main purpose of initval is to provide initial guess values for the non-linear solver in the steady state
computation. Note that if the initval block is not followed by steady, the steady state computation
will still be triggered by subsequent commands (stoch_simul, estimation...).

It is not necessary to declare O as initial value for exogenous stochastic variables, since it is the only possible
value.

32 Chapter 4. The model file

Dynare Reference Manual, Release 4.6.4

The subsequently computed steady state (not the initial values, use histval for this) will be used as the initial
condition at all the periods preceeding the first simulation period for the three possible types of simulations
in stochastic mode:

e stoch_simul, if the periods option is specified.

* forecast as the initial point at which the forecasts are computed.

e conditional_forecast as the initial point at which the conditional forecasts are computed.
To start simulations at a particular set of starting values that are not a computed steady state, use histval.
Options

all_values_required
Issues an error and stops processing the .mod file if there is at least one endogenous or exogenous
variable that has not been set in the initval block.

Example

initval;
c =1.2;
k = 12;
x = 1;
end;

steady;

Block: endval ;
Block: endval (OPTIONS...);
This block is terminated by end; and contains lines of the form:

VARIABLE_NAME = EXPRESSION;

The endval block makes only sense in a deterministic model and cannot be used together with histval.
Similar to the initval command, it will fill both the oo_ .endo_simul and co_ .exo_simul vari-
ables storing the endogenous and exogenous variables with the values provided by this block. If no
initwval block is present, it will fill the whole matrices, therefore providing the initial and terminal con-
ditions for all the endogenous and exogenous variables, because it will also fill the first and last column/row
of these matrices. Due to also filling the intermediate simulation periods it will provide the starting values
for the solver as well.

If an initwval block is present, initval will provide the historical values for the variables (if there are
states/lags), while endval will fill the remainder of the matrices, thereby still providing i) the terminal
conditions for variables entering the model with a lead and ii) the initial guess values for all endogenous
variables at all the simulation dates for the perfect foresight solver.

Note that if some variables, endogenous or exogenous, are NOT mentioned in the endval block, the
value assumed is that of the last initval block or steady command (if present). Therefore, in contrast
to initval, omitted variables are not automatically assumed to be O in this case. Again, it is strongly
recommended to check the constructed oo_ .endo_simul and oo_.exo_simul variables after running
perfect_foresight_setup and before running perfect_foresight_solver to see whether
the desired outcome has been achieved.

Like initwval, if the endval block is immediately followed by a steady command, its semantics are
slightly changed. The steady command will compute the steady state of the model for all the endoge-
nous variables, assuming that exogenous variables are kept constant to the value declared in the endval
block. These steady state values conditional on the declared exogenous variables are then written into
oo_.endo_simul and therefore take up the potential roles as historical and terminal conditions as well
as starting values for the solver. An endval block followed by steady is therefore formally equivalent
to an endval block with the specified values for the exogenous variables, and the endogenous variables
set to the associated steady state values.

Options

4.7. Initial and terminal conditions 33

Dynare Reference Manual, Release 4.6.4

all_values_required
See all_values_required

Example

var c k;
varexo X;

model;

c + k — aa*xxk(-1)"alph - (l-delt)x*k(-1);

c” (—~gam) — (l+bet)”(-1)+* (aaxalph*x(+1)*k” (alph-1) + 1 — delt)*c(+1)" (-~
—gam) ;

end;

initval;
c =1.2;
k = 12;
x = 1;
end;

steady;

endval;
c = 2;
k = 20;
X = 2;
end;

steady;

perfect_ foresight_setup (periods=200) ;
perfect_ foresight_solver;

In this example, the problem is finding the optimal path for consumption and capital for the
periods t = 1 to T" = 200, given the path of the exogenous technology level x. c is a forward-
looking variable and the exogenous variable x appears with a lead in the expected return of
physical capital, while k is a purely backward-looking (state) variable.

The initial equilibrium is computed by st eady conditional on x=1, and the terminal one condi-
tional on x=2. The initval block sets the initial condition for k (since it is the only backward-
looking variable), while the endval block sets the terminal condition for c (since it is the only
forward-looking endogenous variable). The starting values for the perfect foresight solver are
given by the endval block. See below for more details.

Example

var c k;
varexo Xx;

model;

c + k — aaxxxk(-1)"alph - (l-delt)xk(-1);

c” (-gam) - (l+bet)” (-1)~* (aaxalph*x(+1)*k” (alph-1) + 1 - delt)x*c(+1)" (-~
—gam) ;

end;

initval;
k = 12;
end;

endval;
c = 2;

x = 1.1;
end;

(continues on next page)

34

Chapter 4. The model file

Dynare Reference Manual, Release 4.6.4

(continued from previous page)

perfect_foresight_setup (periods=200) ;
perfect_foresight_solver;

In this example, there is no steady command, hence the conditions are exactly those specified in
the initval and endval blocks. We need terminal conditions for ¢ and x, since both appear with a
lead, and an initial condition for k, since it appears with a lag.

Setting x=1. 1 in the endval block without a shocks block implies that technology is at 1.1
int = 1 and stays there forever, because endval is filling all entries of oo_.endo_simul
and oo__.exo_simul except for the very first one, which stores the initial conditions and was
set to 0 by the initwval block when not explicitly specifying a value for it.

Because the law of motion for capital is backward-looking, we need an initial condition for k at
time 0. Due to the presence of endval, this cannot be done via a histwval block, but rather
must be specified in the initval block. Similarly, because the Euler equation is forward-
looking, we need a terminal condition for c at t = 201, which is specified in the endval block.

As can be seen, it is not necessary to specify ¢ and x inthe initval block and k in the endval
block, because they have no impact on the results. Due to the optimization problem in the first
period being to choose ¢, k at ¢ = 1 given the predetermined capital stock k inherited from¢ = 0
as well as the current and future values for technology x, the values for c and x at time ¢ = 0
play no role. The same applies to the choice of ¢, k at time ¢ = 200, which does not depend on
k att = 201. As the Euler equation shows, that choice only depends on current capital as well as
future consumption ¢ and technology x, but not on future capital k. The intuitive reason is that
those variables are the consequence of optimization problems taking place in at periods ¢ = 0
and t = 201, respectively, which are not modeled here.

Example
initval;
c =1.2;
k = 12;
x = 1;
end;
endval;
c = 2;
k = 20;
x = 1.1;
end;

In this example, initial conditions for the forward-looking variables x and c are provided, to-
gether with a terminal condition for the backward-looking variable k. As shown in the previous
example, these values will not affect the simulation results. Dynare simply takes them as given
and basically assumes that there were realizations of exogenous variables and states that make
those choices equilibrium values (basically initial/terminal conditions at the unspecified time
periods ¢t < 0 and ¢ > 201).

The above example suggests another way of looking at the use of steady after initval
and endval. Instead of saying that the implicit unspecified conditions before and after the
simulation range have to fit the initial/terminal conditions of the endogenous variables in those
blocks, steady specifies that those conditions at ¢ < 0 and ¢ > 201 are equal to being at the steady
state given the exogenous variables in the initval and endval blocks. The endogenous
variables at ¢ = 0 and ¢ = 201 are then set to the corresponding steady state equilibrium values.

The fact that c at ¢ = 0 and k at t = 201 specified in initval and endval are taken as given
has an important implication for plotting the simulated vector for the endogenous variables, i.e.
the rows of oo__.endo_simul: this vector will also contain the initial and terminal conditions
and thus is 202 periods long in the example. When you specify arbitrary values for the initial
and terminal conditions for forward- and backward-looking variables, respectively, these values

4.7. Initial and terminal conditions 35

Dynare Reference Manual, Release 4.6.4

can be very far away from the endogenously determined values at ¢ = 1 and ¢ = 200. While the
values at t = 0 and ¢ = 201 are unrelated to the dynamics for 0 < ¢t < 201, they may result in
strange-looking large jumps. In the example above, consumption will display a large jump from
t = 0tot = 1 and capital will jump from ¢ = 200 to ¢ = 201 when using rplot or manually
plotting co_.endo_val.

Block: histval ;
Block: histval (OPTIONS...);
In a deterministic perfect foresight context

In models with lags on more than one period, the histval block permits to specify different historical
initial values for different periods of the state variables. In this case, the initval block takes over the role
of specifying terminal conditions and starting values for the solver. Note that the histval block does not
take non-state variables.

This block is terminated by end; and contains lines of the form:
VARIABLE_NAME(INTEGER) = EXPRESSION;

EXPRESSION is any valid expression returning a numerical value and can contain already initialized vari-
able names.

By convention in Dynare, period 1 is the first period of the simulation. Going backward in time, the first
period before the start of the simulation is period 0, then period -1, and so on.

State variables not initialized in the histwval block are assumed to have a value of zero at period 0 and
before. Note that histval cannot be followed by steady.

Example

model;

x=1.5+%x(-1)-0.6%x(-2) +tepsilon;
log(c)=0.5%xx+0.5«x1log(c(+1));
end;

histval;
x(0)=-1;
x(-1)=0.2;
end;

In this example, histval is used to set the historical conditions for the two lags of the en-
dogenous variable x, stored in the first column of co__.endo_simul. The initval block is
used to set the terminal condition for the forward looking variable c, stored in the last column of
oo_.endo_simul. Moreover, the initval block defines the starting values for the perfect
foresight solver for both endogenous variables c and x.

In a stochastic simulation context

In the context of stochastic simulations, histval allows setting the starting point of those simulations in
the state space. As for the case of perfect foresight simulations, all not explicitly specified variables are set
to 0. Moreover, as only states enter the recursive policy functions, all values specified for control variables
will be ignored. This can be used

e In stoch_simul, if the periods option is specified. Note that this only affects the starting point
for the simulation, but not for the impulse response functions. When using the loglinear option, the
histwval block nevertheless takes the unlogged starting values.

e In forecast as the initial point at which the forecasts are computed. When using the loglinear
option, the histwval block nevertheless takes the unlogged starting values.

36 Chapter 4. The model file

Dynare Reference Manual, Release 4.6.4

e In conditional forecast for a calibrated model as the initial point at which the conditional
forecasts are computed. When using the loglinear option, the histval-block nevertheless takes the
unlogged starting values.

e In Ramsey policy, where it also specifies the values of the endogenous states at which the ob-
jective function of the planner is computed. Note that the initial values of the Lagrange multipliers
associated with the planner’s problem cannot be set (see evaluate planner objective).

Options

all values_required
See all values_required.

Example

var x y;
varexo e;

model;
x = y(-1)“alphaxy(-2) " (1-alpha) te;

end;

initval;
x = 1;

steady;

histval;
y(0) = 1.1;
y(-1) = 0.9;
end;

stoch_simul (periods=100) ;

Command: resid ;

This command will display the residuals of the static equations of the model, using the values given for the
endogenous in the last initval or endval block (or the steady state file if you provided one, see Steady
state).

Command: initval_ file(filename = FILENAME) ;

In a deterministic setup, this command is used to specify a path for all endogenous and exogenous variables.
The length of these paths must be equal to the number of simulation periods, plus the number of leads and
the number of lags of the model (for example, with 50 simulation periods, in a model with 2 lags and 1 lead,
the paths must have a length of 53). Note that these paths cover two different things:

* The constraints of the problem, which are given by the path for exogenous and the initial and terminal
values for endogenous

* The initial guess for the non-linear solver, which is given by the path for endogenous variables for the
simulation periods (excluding initial and terminal conditions)

The command accepts three file formats:

* M-file (extension .m): for each endogenous and exogenous variable, the file must contain a row or
column vector of the same name. Their length must be periods + M_.maximum_lag + M_.
maximum_lead

¢ MAT-file (extension .mat): same as for M-files.

* Excel file (extension .x1s or .x1sx): for each endogenous and exogenous, the file must contain a
column of the same name. NB: Octave only supports the . x1sx file extension and must have the io
package installed (easily done via octave by typing ‘pkg install -forge 1i0’).

4.7.

Initial and terminal conditions 37

https://octave.sourceforge.io/io/

Dynare Reference Manual, Release 4.6.4

Warning: The extension must be omitted in the command argument. Dynare will automatically figure
out the extension and select the appropriate file type. If there are several files with the same name but
different extensions, then the order of precedence is as follows: first .m, then .mat, .x1s and finally
.xlsx.

Command: histval file(filename = FILENAME) ;
This command is equivalent to histwval, except that it reads its input from a file, and is typically used in
conjunction with smoother2histval.

4.8 Shocks on exogenous variables

In a deterministic context, when one wants to study the transition of one equilibrium position to another, it is
equivalent to analyze the consequences of a permanent shock and this in done in Dynare through the proper use
of initval and endval.

Another typical experiment is to study the effects of a temporary shock after which the system goes back to the
original equilibrium (if the model is stable...). A temporary shock is a temporary change of value of one or
several exogenous variables in the model. Temporary shocks are specified with the command shocks.

In a stochastic framework, the exogenous variables take random values in each period. In Dynare, these random
values follow a normal distribution with zero mean, but it belongs to the user to specify the variability of these
shocks. The non-zero elements of the matrix of variance-covariance of the shocks can be entered with the shocks
command. Or, the entire matrix can be directly entered with Sigma_e (this use is however deprecated).

If the variance of an exogenous variable is set to zero, this variable will appear in the report on policy and transition
functions, but isn’t used in the computation of moments and of Impulse Response Functions. Setting a variance to
zero is an easy way of removing an exogenous shock.

Note that, by default, if there are several shocks or mshocks blocks in the same .mod file, then they are
cumulative: all the shocks declared in all the blocks are considered; however, if a shocks or mshocks block is
declared with the overwrite option, then it replaces all the previous shocks and mshocks blocks.

Block: shocks ;
Block: shocks (overwrite);
See above for the meaning of the overwrite option.

In deterministic context

For deterministic simulations, the shocks block specifies temporary changes in the value of exogenous
variables. For permanent shocks, use an endval block.

The block should contain one or more occurrences of the following group of three lines:

var VARIABLE_NAME;
periods INTEGER[:INTEGER] [[,] INTEGER[:INTEGER]]...;
values DOUBLE | (EXPRESSION) [[,] DOUBLE | (EXPRESSION)]...;

It is possible to specify shocks which last several periods and which can vary over time. The periods
keyword accepts a list of several dates or date ranges, which must be matched by as many shock values in
the values keyword. Note that a range in the periods keyword can be matched by only one value in the
values keyword. If values represents a scalar, the same value applies to the whole range. If values
represents a vector, it must have as many elements as there are periods in the range.

Note that shock values are not restricted to numerical constants: arbitrary expressions are also allowed, but
you have to enclose them inside parentheses.

Example (with scalar values)

shocks;

(continues on next page)

38 Chapter 4. The model file

Dynare Reference Manual, Release 4.6.4

(continued from previous page)
var e;
periods 1;
values 0.5;
var u;
periods 4:5;
values 0;
var v;
periods 4:5 6 7:9;
values 1 1.1 0.9;
var w;
periods 1 2;
values (l+p) (exp(z));

end;

Example (with vector values)

shocks;

var e;
periods 1:3;
values (xx);
end;

In stochastic context

For stochastic simulations, the shocks block specifies the non zero elements of the covariance matrix of
the shocks of exogenous variables.

You can use the following types of entries in the block:

 Specification of the standard error of an exogenous variable.

var VARIABLE_NAME; stderr EXPRESSION;

 Specification of the variance of an exogenous variable.

var VARIABLE_NAME = EXPRESSION;

 Specification the covariance of two exogenous variables.

var VARIABLE_NAME, VARIABLE_NAME = EXPRESSION;

* Specification of the correlation of two exogenous variables.

corr VARIABLE_NAME, VARIABLE_NAME = EXPRESSION;

In an estimation context, it is also possible to specify variances and covariances on endogenous variables: in
that case, these values are interpreted as the calibration of the measurement errors on these variables. This
requires the varobs command to be specified before the shocks block.

Example

shocks;
var e = 0.000081;
var u; stderr 0.009;

corr e, u = 0.8;
var v, w = 2;
end;

Mixing deterministic and stochastic shocks

4.8. Shocks on exogenous variables 39

Dynare Reference Manual, Release 4.6.4

It is possible to mix deterministic and stochastic shocks to build models where agents know from the start
of the simulation about future exogenous changes. In that case stoch_simul will compute the ratio-
nal expectation solution adding future information to the state space (nothing is shown in the output of
stoch_simul) and forecast will compute a simulation conditional on initial conditions and future
information.

Example

varexo_det tau;
varexo e;

shocks;

var e; stderr 0.01;
var tau;

periods 1:9;

values -0.15;

end;

stoch_simul (irf=0) ;

forecast;

Block: mshocks ;

Block: mshocks (overwrite);
The purpose of this block is similar to that of the shocks block for deterministic shocks, except that the
numeric values given will be interpreted in a multiplicative way. For example, if a value of 1. 05 is given
as shock value for some exogenous at some date, it means 5% above its steady state value (as given by the
last initval or endval block).

The syntax is the same as shocks in a deterministic context.
This command is only meaningful in two situations:

* on exogenous variables with a non-zero steady state, in a deterministic setup,

* on deterministic exogenous variables with a non-zero steady state, in a stochastic setup.
See above for the meaning of the overwrite option.

Special variable: Sigma_e
This special variable specifies directly the covariance matrix of the stochastic shocks, as an upper (or lower)
triangular matrix. Dynare builds the corresponding symmetric matrix. Each row of the triangular matrix,
except the last one, must be terminated by a semi-colon ;. For a given element, an arbitrary EXPRESSION
is allowed (instead of a simple constant), but in that case you need to enclose the expression in parentheses.
The order of the covariances in the matrix is the same as the one used in the varexo declaration.

Example

varexo u, e;

Sigma_e = [0.81 (phi*x0.9%x0.009);
0.0000817;

This sets the variance of u to 0.81, the variance of e to 0.000081, and the correlation between e and u to
phi.

Warning: The use of this special variable is deprecated and is strongly discouraged. You should
use a shocks block instead.

MATLAB/Octave command: get_shock_stderr_by_ name ('EXOGENOUS_NAME') ;
Given the name of an exogenous variable, returns its standard deviation, as set by a previous shocks block.

40 Chapter 4. The model file

Dynare Reference Manual, Release 4.6.4

MATLAB/Octave command: set_shock_stderr_ value ('EXOGENOUS_NAME', MATLAB_EXPRESSION) ;
Sets the standard deviation of an exgonous variable. This does essentially the same as setting the standard
error via a shocks block, except that it accepts arbitrary MATLAB/Octave expressions, and that it works
from MATLAB/Octave scripts.

4.9 Other general declarations

Command: dsample INTEGER [INTEGER];
Reduces the number of periods considered in subsequent output commands.

Command: periods INTEGER
This command is now deprecated (but will still work for older model files). It is not necessary when
no simulation is performed and is replaced by an option periods in perfect_foresight_setup,
simul and stoch_simul.

This command sets the number of periods in the simulation. The periods are numbered from 1 to INTEGER.
In perfect foresight simulations, it is assumed that all future events are perfectly known at the beginning of
period 1.

Example

periods 100;

4.10 Steady state

There are two ways of computing the steady state (i.e. the static equilibrium)