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We start by brie�y surveying a research on optimal stopping games since their introduction by Dynkin more than 40 years ago.
Recent renewed interest toDynkin’s games is due, in particular, to the study of Israeli (game) options introduced in 2000.We discuss
the work on these options and related derivative securities for the last decade. Among various results on game options we consider
error estimates for their discrete approximations, swing game options, game options in markets with transaction costs, and other
questions.

1. Introduction

Optimal stopping games were introduced in 1969 by Dynkin
in [1] as an extension of the optimal stopping problem
which has been already actively studied since 1950. Optimal
stopping and, in particular, its game version was o�en
discussed on Dynkin’s undergraduate seminar at Moscow
State University in the end of 1960 which resulted in papers
[2–5].

�e original setup of optimal stopping games consisted of
a probability space (Ω,F,P), a �ltration of �-algebras {F�},
F� ⊂ F with either � ∈ N = {0, 1, 2, . . .} (discrete time case)
or � ∈ R+ = [0,∞) (continuous time case), {F�}-adapted
payo� process {��}, and a pair of {F�}-adapted 0-1 valued

“permission” processes 	(�)
� , 
 = 1, 2, such that the player 


is allowed to stop the game at time � if and only if 	(�)
� = 1.

If the game is stopped at time � then the �rst player pays to

the second one the sum ��. Clearly, if 	1
� ≡ 1 and 	(2)

� ≡0, we arrive back at the usual optimal stopping problem.
Observe that in the one-player optimal stopping problem the
goal is maximization of the payo�, and the corresponding
supremum always exists (may be in�nite), so only optimal
or almost optimal stopping times remain to be found while
in the game version already existence of the game value is the
question which should be resolved �rst, and only then we can
look for optimal (saddle point) or almost optimal stopping
times of the players.

Few years later Neveu suggested in [6] a very useful
generalization of the above setupwhich turned out to bemore
convenient for both further study and applications. Namely,
now the “permission” processes were dropped o� and the
players could stopwhenever theywant, but instead two payo�
adapted processes�� ≥ 
� were introduced. It was prescribed
that if the �rst player stops the game at time � and the second
one at time �, then the former pays to the latter the amount�� or 
� if � ≤ � or � > �, respectively. If desired we can have
virtual “permission” processes within this setup not by direct
regulations but by “market economy” tools. Namely, in order
to accomplish this it su�ces to prescribe very high payment�� or a very low (may be negative) payment 
� where we
“forbid” to stop the game by the �rst player or by the second
one, respectively.

We observe that from a bit di�erent perspective di�er-
ential games with stopping times were studied in the 1970
in a series of papers (see [7, 8] and references there). Game
versions of optimal stopping of a Markov process and of a
di�usionwere considered in [9, 10], respectively. It seems that
the term “Dynkin’s game” appeared �rst in [11].

Israeli or game options were introduced �rst in [12]
though some special callable derivative security LION was
discussed before in [13] in a kind of game framework without
any rigorous justi�cation. An option or a contingent claim is
a certain contract and an American option enables its buyer
(holder) to exercise it at any time up to the maturity. A game
option gives additionally the right to the option seller (writer,
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issuer) to cancel it early paying for this a prescribed penalty.
�e rationale behind this provision comes from an idea that
essentially any contract stipulates conditions for a way out so
that the �nancial market should not be an exception.

�e classical approach to pricing of options is based on
hedging arguments. Namely, the price is de�ned as aminimal
initial amount of a self-�nancing portfolio which can provide
protection (hedging) against any exercising strategy of the
option buyer. So, somehow heuristically, this leads to the
in�mumover the seller’s strategies and to the supremumover
the buyer’s strategies; that is, we arrive at a game-type infsup
representation which still should be rigorously justi�ed.

�e structure of this paper is as follows. In Section 2
we brie�y survey main results concerning Dynkin’s games.
In Section 3 we discuss the up-to-date research on game
options and related derivative securities. In Sections 4 and 5
we exhibit more special results concerning discrete approxi-
mations of game options and game options in markets with
transaction costs, respectively.

2. Dynkin’s Games

�e general modern setup for a Dynkin’s game consists of a
probability space (Ω,F,P), a right continuous �ltration of
complete �-algebras {F�}, and three {F�}-adapted stochastic
processes��, 
�, and�� so that when the �rst player stops the
game at time � and the second one stops at time �, then the
former pays to the latter the amount

�(�, �) = ��I�<� + 
�I�>� + ��I�=�, (1)

where IΓ = 1 if an event Γ occurs and= 0, otherwise.We allow
the time � to run either along nonnegative integersN or along
nonnegative reals R+ up to some horizon � ≤ ∞ when the
game is stopped and the �rst player pays to the second one
the amount

�(�, �) = �� = 
� = ��, (2)

where in case � = ∞, we assume that

0 = �∞ = lim
�→∞

�� = 
∞ = lim
�→∞


� = �∞ = lim
�→∞

��. (3)

In the continuous time case; that is, when � runs overR+, the
processes��, 
�, and �� are supposed to be right continuous.

Next, assume that for any � ∈ [0, �],

� ≤ �� ≤ �� P-almost surely, (4)

E sup
0≤�≤�

(����
�
���� + ������

���� + ������
����) < ∞. (5)

Denote by T�,�. � ≤ � the collection of all stopping times� with values between � and � (i.e., nonnegative random
variables such that {� ≤ �} ∈ F
 for all �). Introduce the
upper and the lower values of the game starting at time � ≤ �
by

�� = ��� inf
�∈T��

��� sup

∈T��

E (� (�, �) | F�) ,
�� = ��� sup


∈T��
��� inf

�∈T��
E (� (�, �) | F�) . (6)

It turns out that we can choose these processes {��} and{��} to be right upper semicontinuous which is a su�cient
regularity in order to proceed here.

�eorem 1. Under the above conditions�

def= �
 = �
 almost

surely for any stopping time � ∈ T0� and, in particular, the
Dynkin’s game has a value

� = �0 = �0 = �0. (7)

Furthermore, for any � > 0 the stopping times

�� = inf {� ≤ � : �� ≥ �� − �} ,
�� = inf {� ≤ � : �� ≤ 
� + �} , (8)

are �-optimal, that is, for any �, � ∈ T0�,

E (� (��, �)) − � ≤ E (� (��, ��)) ≤ E (� (�, ��)) + �. (9)

Under additional regularity conditions (say, ��, 
�, and ��
are continuous stochastic processes), the inequality (9) remains
true for � = 0 with some �0, �0; that is, there exists a saddle
point for the Dynkin’s game above. In the discrete time case
we have also the following backward recursive (dynamical
programming) relation:

�� = min (��,max (
�,E (��+1 | F�))) . (10)

�e theorem above follows from [6, 14–16] in the discrete
time case and from [17–19] in the continuous time case.
Observe that (6), (7), and (9) imply

�����0 − E (� (��, ��))���� ≤ �. (11)

If the condition (4) does not hold true, then the above
game value may not exist (i.e., �0 > �0) if the players
are restricted to usual (pure) stopping times, and to have
the game value, they should be allowed to use randomized
stopping times (see [20–24]). Other results on Dynkin’s
games leading to randomized stopping times can be found
in [25–28].

Remark 2. We observe that randomized stopping times used
in the above mentioned papers in order to obtain Dynkin’s
game value without the condition (4) look somewhat di�er-
ent from randomized stopping times we employ in Section 5
in order to study game options in markets with transac-
tion costs. Namely, the above papers deal with randomized
stopping times having (in the discrete time case) the form�(�) = min{ ≥ 0 : !� ≤ ��}, where � = (�0, �1, . . .)
is an adapted to the �ltration {F�} process with �� ∈ [0, 1]
for all  and !0, !1, !2, . . . is a sequence of independent
identically uniformly distributed on [0, 1] random variables
independent of payo� processes. Sometimes, it is assumed
additionally (see [21]) that !� is F�+1-measurable and
independent of F�. If " = ("0,"1,"2, . . .) is an adapted
stochastic process, then we can write

"�(�) = ∞∑
�=0

$�"� where $� = I{��≤��}

�−1∏
�=0

I{��>��}. (12)
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On the other hand, randomized stopping times employed
in Section 5 are determined by an adapted nonnegative
sequence & = (&0, &1, &2, . . .) such that ∑∞

�=0 &� = 1 and

for an adapted stochastic process " as above we write"� = ∑∞
�=0 &�"�. Here {&�} is an adapted sequence but

not necessarily indicators of events while the above sequence{$�} is not adapted (unless the �ltration is properly enlarged)
and it consists of indicators of events. Still, with respect
to the enlarged �ltration, �(�) is a usual (pure) stopping
time while randomized stopping times of Section 5 look
rather di�erently. Nevertheless, it turns out that these two
approaches to randomized stopping times are essentially
equivalent if ∏�≥0(1 − ��) = 0 (see [29] in the discrete
time case and the corresponding discussion in [22] for the
continuous time case).

Among other works on Dynkin’s games we can men-
tion results concerning nonzero-sum games (see [30–33]),
Dynkin’s games with asymmetric information (see [34]),
more than 2 person optimal stopping games (see [35–37]),
optimal stopping games driven by Markov processes (see
[2, 9, 38, 39]), Dynkin’s games via backward stochastic
di�erential equations with re�ection (see [40–42]) and via
Dirichlet forms (see [43]), and some other results onDynkin’s
and similar games (see [44–55]).

3. Game Options and Their Shortfall Risk

A game (Israeli) option (or contingent claim) studied in [12]
is a contract between a writer and a holder at time � = 0 such
that both have the right to exercise at any stopping time before
the expiry date �. If the holder exercises at time �, he or she
receives the amount 
� ≥ 0 from the writer and if the writer,
exercises at time � before the holder hemust pay to the holder,
the amount�� ≥ 
� so that -� = �� −
� is viewed as a penalty
imposed on the writer for cancellation of the contract. If both
exercise at the same time �, then the holder may claim 
�, and
if neither exercised until the expiry time �, then the holder
may claim the amount 
�. In short, if the writer will exercise
at a stopping time � ≤ � and the holder at a stopping time� ≤ �, then the former pays to the latter the amount�(�, �)
where

�(�, �) = ��I�<� + 
�I�≤�. (13)

We consider such game options in a standard securities mar-
ket consisting of a nonrandom component /� representing the
value of a savings account at time � with an interest rate 3
and of a random component 4� representing the stock price
at time �. As usual, we view 4�, � > 0, as a stochastic process
on a complete probability space (Ω,F, 5), and we assume
that it generates a right continuous �ltration {F�} and that
the payo� processes�� and 
� are right continuous processes
adapted to this �ltration and satisfying the integrability
conditions (5).

�e classical approach suggests that valuation of options
should be based on the notions of a self-�nancing port-
folio and on hedging. We start with a portfolio strategy

6 = {6�}0≤�≤� which is a collection of pairs 6� = (7�, 8�) so
that the portfolio value"� at time � equals

"�
� = 7�/� + 8�4�, (14)

where the process (7�, 8�), 0 ≤ � ≤ �, is supposed to
be predictable in the discrete time case and progressively
measurable in the continuous time case. A portfolio strategy6 is called self-�nancing if all changes in the portfolio value
are due to capital gains or losses but not due to withdrawal or
infusion of funds. �is can be expressed by the relations (see
[56])

/�−1 (7� − 7�−1) + 4�−1 (8� − 8�−1) = 0 for � = 1, 2, . . . , �
(15)

in the discrete time case and

"�
� = "�

0 + ∫�

0
7
;/
 + ∫�

0
8
;4
 (16)

in the continuous time case. We assume also in the continu-
ous time case that with probability one:

∫�

0

����/�7�
���� ;� < ∞, ∫�

0
(8�4�)2;� < ∞. (17)

A pair (�, 6) of a stopping time � ≤ � and a self-�nancing
portfolio strategy 6 is called a hedge (against the game
contingent claim) if "�

�∧� ≥ �(�, �) with probability one for
any � ∈ [0, �]. Now the fair price of the game option is de�ned
as the in�mum of capitals ? for which there exists a hedge(�, 6) with "�

0 = ?. In a complete market (i.e., having a
unique martingale measure) this is a widely acceptable fair
price of the option while in an incomplete market or in a
market with transaction costs this de�nition leads to what is
known as superhedging (see [56]).

Two popular models of complete markets were consid-
ered in [12] for pricing of game options. First, the discrete
time Cox, Rox, Rubinstein (CRR) binomial model (see [57])
was treated there where the stock price 4� at time @ is equal
to

4� = 40 �∏
�=1

(1 + B�) , 40 > 0, (18)

where B�, D = 1, 2, . . . are independent identically distributed
(i.i.d.) random variables such that B� = / > 0with probability� > 0 and B� = E < 0, E > −1 with probability F = 1 − � > 0.
Secondly, [12] deals with the continuous time Black-Scholes
(BS) market model where the stock price 4� at time � is given
by the geometric Brownian motion:

4� = 40 exp((H − I2

2 ) � + IK�) , 40 > 0, (19)

where {K�}�≥0 is the standard one-dimensional continuous-
in-time Brownian motion (Wiener process) starting at zero
and I > 0, H ∈ (−∞,∞) are some parameters. In addition
to the stock which is a risky security, the market includes in
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both cases also a savings account with a deterministic growth
given by the formulas

/� = (1 + 3)�/0, /� = /0���, /0, 3 > 0 (20)

in the CRR model (where we assume in addition that 3 < /)
and in the BS model, respectively.

Recall (see [56]) that a probability measure describing
the evolution of a stock price in a stochastic �nancial market
is called martingale (risk-neutral) if the discounted stock

prices ((1 + 3)−�4� in the CRR model and �−��4� in the BS
model) become martingales. Relying on the above hedging
arguments the following result was proved in [12].

�eorem 3. �e fair price� of the game option is given by the
formulas

� = min
�∈T0�

max

∈T0�

L ((1 + 3)−�∧
�(�, �)) (21)

in the CRR market (with usual notations E ∧ / = min(E, /),E ∨ / = max(E, /)) and
� = inf

�∈T0�
sup


∈T0�
L (�−��∧
�(�, �)) (22)

in the BS market, where the expectations are taken with
respect to the corresponding martingale probabilities, which
are uniquely de�ned since these markets are known to be
complete (see [56]), � is the expiry time, and T�� is the space
of corresponding stopping times with values between � and �
taking into account that in the CRR model � and � are allowed
to take only integer values.

Observe that the formulas (21) and (22) represent also
the values of corresponding Dynkin’s (optimal stopping)
games with payo�s (1 + 3)−�∧
�(�, �) and �−��∧
�(�, �),
respectively, when the �rst and the second players stop the
game at stopping times � and �, respectively. �e continuous
time BS model is generally considered as a better description
of the evolution of real stocks, in particular, since the CRR
model allows only two possible values (1 + /)4� and (1 + E)4�
for the stock price 4�+1 at time @ + 1 given its price 4� at
time @.�emain advantage of the CRRmodel is its simplicity
and the possibility of easier computations of the value � in
(21), in particular, by means of the dynamical programming
recursive relations (see [12]),

� = �0,�, ��,� = (1 + 3)−�
�,
��,�

=min((1 + 3)−���, max((1 + 3)−�
�, L (��+1,� |F�))) ,
(23)

where a positive integer O is an expiry time and {F�}�≥0 is
the corresponding �ltration of �-algebras. By this reason it
makes sense to study approximations of the BSmodel by CRR
models which we describe in the next section.

�ough game options do not appear explicitly yet as a
trading security in contemporary �nancialmarkets, it became

popular recently to employ game options as a framework
for the study of convertible (callable) bonds (see [58–65]). A
holder of such bond either does nothing or decides to convert
it into a predetermined number of stocks which can be
considered as a cash payment depending on the current stock
price, especially, in a market without transaction costs. On
the other hand, the �rmwhich issued this callable convertible
bond may redeem it any time at a call price or force its
conversion into stocks, and so this situation can be treated
within the setup of game options.

Several papers deal with computation of the fair price
of game options in special situations when the underlying
stock price evolves according to a Markov process which
usually, as in the BS model, turns out to be the geometric
Brownian motion and when the payo�s depend only on the
current stock price, usually just for the put and call options’
payo�s arriving at a study of the free boundary problem with
buyer’s and seller’s exercise boundaries (see [66–73]). For
other callable derivative securities which were studied within
the game options framework and its generalizations, we refer
the reader to [74–79].

In real market conditions an investor (seller) may not be
willing for various reasons to tie in a hedging portfolio the
full initial capital required for a (perfect) hedge. In this case
the seller is ready to accept a risk that his portfolio value at an
exercise timemay be less than his obligation to pay and hewill
need additional funds to ful�l the contract. �us a portfolio
shortfall comes into the picture and it is important to estimate
the corresponding risk.We consider here a certain type of risk
called the shortfall risk which was de�ned for game options
in [80] by

P (?) = inf
(�,�)

P (6, �) ,
where P (6, �) = sup



E((� (�, �) − /0"�

�∧
)+/�∧
 ) , (24)

where the in�mum is taken over all self-�nancing portfolio
strategies 6 with an initial capital ?, and in both in�mum
and supremum the stopping times � and � do not exceed
the option expiration date (horizon) �. It was shown in [80]
that in the discrete time case both the shortfall risk and the
corresponding minimizing portfolio strategies and stopping
times could be obtained by means of a backward induction
(dynamical programming) algorithm. In the continuous time
case the situation is more complicated. For the shortfall
risk in the American options case [81] obtained existence
of minimizing strategies relying on some convex analysis
arguments which are not available in the game options
case, and so existence of minimizing portfolio strategies and
stopping times in (24) remains an open question.

�e papers [82, 83] deal with the, so-called, swing game
options which are, in fact, multiple exercise game options.
�is question was studied before for American options in
[84] but the option price obtained there was not justi�ed by
classical hedging arguments. �is justi�cation was done in
[82, 83] for multiple exercise game options in the discrete
and continuous time cases, respectively, which by simpli�-
cation yields the result for American options as well. �is
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investigation required the study of Dynkin’s games with
multiple stopping which did not appear in the literature
before. Observe that multiple exercise options may appear
in their own rights when an investor wants to buy or sell
an underlying security in several instalments at times of
his choosing and, actually, any usual American or game
option can be naturally extended to the multiexercise setup
so that they may emerge both in commodities, energy and
in di�erent �nancial markets. Suppose, for instance, that
a European car producer (having most expenses in euros
or pounds) plans to supply autos to USA during a year
in several shipments and buys a multiple-exercise option
which guarantees a favorable dollar-euro (or dollar-pound)
exchange rate at time of shipments (of his choice). �e seller
of such option can use currencies as underlying securities
for his hedging portfolio. A multiple exercise option could
be cheaper than a basket of usual one-exercise options if
the former stipulates certain delay time between exercises
which is quite natural in the above example. Furthermore,
the acting sides above may prefer to deal with game rather
than American multiple-exercise options since the former
is cheaper for the buyer and safer (because of cancellation
clause) for the seller.

Next, we describe more precisely game swing (multiple-
exercise) options in the CRR market where the stock price
evolves according to (18). We consider a swing option of the
game type which has the 
th payo�, 
 ≥ 1, having the form

�(�) (Q,  ) = �� (Q) I�<� + 
� ( ) I�≤�, ∀Q,  , (25)

where ��( ), 
�( ) are F�-adapted and 0 ≤ 
�( ) ≤ ��( ) <∞. �us for any 
,  there exist functions S(�)
� , T(�)

� : {E, /}� →
R+ such that


� ( ) = S(�)
� (B1, . . . , B�) ,

�� ( ) = T(�)
� (B1, . . . , B�) .

(26)

For any 1 ≤ 
 ≤ V − 1 let W� be the set of all pairs((E1, . . . , E�), (;1, . . . , ;�)) ∈ {0, . . . , O}� × {0, 1}� such thatE�+1 ≥ O ∧ (E� + 1) for any D < 
. Such sequences represent
the history of payo�s up to the 
th one in the following way.
If E� = @ and ;� = 1 then the seller cancelled the Dth claim at
the moment @ and if ;� = 0 then the buyer exercised the Dth
claim at the moment @ (may be together with the seller). For ≥ 1 denote by Γ� the set of all stopping times with respect to

the �ltration {F�}��=0 with values from  toO and set Γ = Γ0.
De�nition 4. A stopping strategy is a sequence � = (�1, . . . , ��)
such that �1 ∈ Γ is a stopping time and for 
 > 1, �� : W�−1 →Γ is a map which satis�es ��((E1, . . . , E�−1), (;1, . . . , ;�−1)) ∈Γ�∧(1+��−1).

In other words for the 
th payo� both the seller and the
buyer choose stopping times taking into account the history
of payo�s so far. Denote byS the set of all stopping strategies

and de�ne the map X : S × S → Γ� × Γ� by X(�, /) =((�1, . . . , ��), (�1, . . . , ��))where �1 = �1, �1 = /1 and for 
 > 1,
�� = �� ((�1 ∧ �1, . . . , ��−1 ∧ ��−1) , (I�1<
1 , . . . , I��−1<
�−1)) ,
�� = /� ((�1 ∧ �1, . . . , ��−1 ∧ ��−1) , (I�1<
1 , . . . , I��−1<
�−1)) .

(27)

Set Y� (�, /) = �∑
�=1
I��∧
�≤� (28)

which is a random variable equal to the number of payo�s
until the moment @.

For swing options the notion of a self-�nancing portfolio
involves not only allocation of capital between stocks and the
bank account but also payo�s at exercise times. At the time@ the writer’s decision how much money to invest in stocks
(while depositing the remaining money into a bank account)
depends not only on his present portfolio value but also on
the current claim. Denote by Ξ the set of functions on the
(�nite) probability spaceΩ.

De�nition 5. A portfolio strategy with an initial capital ? > 0
is a pair 6 = (?, 8), where 8 : {0, . . . , O−1}×{1, . . . , V}×R →Ξ is a map such that 8(@, 
, \) is an F�-measurable random
variable which represents the number of stocks which the
seller buys at the moment @ provided that the current claim
has the number 
 and the present portfolio value is \. At
the same time the sum \ − 8(@, 
, \)4� is deposited to the
bank account of the portfolio. One calls a portfolio strategy6 = (?, 8) admissible if for any \ ≥ 0,

− \4�/ ≤ 8 (@, 
, \) ≤ − \4�E . (29)

For any \ ≥ 0 denote^(\) = [−\//, −\/E].
Notice that if the portfolio value at the moment @ is\ ≥ 0 then the portfolio value at the moment @ + 1 before

the payo�s (if there are any payo�s at this time) is given by\+8(@, 
, \)4�(4�+1/4� −1), where 
 is the number of the next
payo�. In view of independency of 4�+1/4�−1 and 8(@, 
, \)4�
we conclude that the inequality (29) is equivalent to the
inequality\+8(@, 
, \)4�(4�+1/4�−1) ≥ 0, that is, the portfolio
value at the moment @ + 1 before the payo�s is nonnegative.
Denote by A(?) the set of all admissible portfolio strategies
with an initial capital ? > 0. Denote A = ⋃�>0 A(?).
Let 6 = (?, 8) be a portfolio strategy and �, / ∈ S. Set((�1, . . . , ��), (�1, . . . , ��)) = X(�, /) and Y� = Y�(�, /). �e
portfolio value at the moment @ a�er the payo�s (if there are
any payo�s at this moment) is given by

"(�,�,�)
0 = ? − �(1) (�1, �1) I�1∧
1=0, for @ > 0,

"(�,�,�)
� = "(�,�,�)

�−1 + I �−1<�

× [8 (@ − 1, Y�−1 + 1,"(�,�,�)
�−1 ) (4� − 4�−1)

− �∑
�=1
�(�) (��, ��) I��∧
�=�] .

(30)
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De�nition 6. A (perfect) hedge is a pair (6, �) which consists
of a portfolio strategy and a stopping strategy such that"(�,�,�)

� ≥ 0 for any / ∈ S and @ ≤ O.

As usual, the option price�∗ is de�ned as the in�mum of" ≥ 0 such that there exists a hedge with an initial capital". �e following result from [82] provides a dynamical
programming algorithm for computation of both the option
price and the corresponding hedge.

�eorem 7. For any  ≤ O set

�(1)
� = �� ( ) , 
(1)

� = 
� ( ) ,
�(1)
� = min

�∈Γ�
max

∈Γ�

L̃ (�(�) (�, �) | F�) , (31)

and for 1 < @ ≤ V,
�(�)

� = ��−�+1 ( ) + L̃ (�(�−1)
(�+1)∧� | F�) ,


(�)
� = 
�−�+1 ( ) + L̃ (�(�−1)

(�+1)∧� | F�) ,
�(�)
� = min

�∈Γ�
max

∈Γ�

L̃ (�(�)
� I�<
 + 
(�)


 I�≥
 | F�) ,
(32)

where L̃ is the expectationwith respect to the uniquemartingale
measure. �en

�∗ = �(�)
0 = min

�∈S
max
�∈S

d (�, /) , (33)

where d(�, /) = L̃∑�
�=1 �(�)(��, ��) and ((�1, . . . , ��),(�1, . . . , ��)) = X(�, /). Furthermore, the stopping strategies�∗ = (�∗1 , . . . , �∗�) ∈ 4 and / = (/∗1 , . . . , /∗� ) given by

�∗1 = O ∧min {@ | �(�)
� = �(�)

� } ,
/∗1 = min {@ | 
(�)

� = �(�)
� } ,

�∗� ((E1, . . . , E�−1) , (;1, . . . , ;�−1))
= O ∧min {@ > E�−1 | �(�−�+1)

� = �(�−�+1)
� } ,

/∗� ((E1, . . . , E�−1) , (;1, . . . , ;�−1))
= O ∧min {@ > E�−1 | 
(�−�+1)

� = �(�−�+1)
� } , 
 > 1,

(34)

satisfy the saddle point inequalities

d (�∗, /) ≤ d (�∗, /∗) ≤ d (�, /∗) ∀�, /, (35)

and there exists a portfolio strategy 6∗ ∈ A(�(�)
0 ) such that(6∗, �∗) is a hedge.

4. Approximations of Game Options and of
Their Shortfall Risk

Following [85] we will consider here approximations of the
BSmodel by a sequence of CRRmodels with the interest rates

3 = 3(�) from (20) and with random variables B� = B(�)
� from

(18) given by

3 = 3(�) = exp (3� ) − 1,
B� = B(�)

� = exp(3� + I(� )
1/2i�) − 1,

(36)

where i� = i(�)� , D = 1, 2, . . . are i.i.d. random variables

taking on the values 1 and −1 with probabilities �(�) =(exp(I√�/ ) + 1)−1 and 1 − �(�) = (exp(−I√�/ ) + 1)−1,
respectively. �is choice of random variables i�, 
 ∈ N,

determines already the probability measures 5"
� = {�(�), 1 −�(�)}∞ for the above sequence of CRR models and sinceL"

�B(�)
� = 3(�), where L"

� is the expectation with respect to

5"
� , we conclude that 5"

� is the martingale measure for the

corresponding CRR market and the fair price � = �(�) of
a game option in this market is given by the formula (21) withL = L"

�.
Let � be the fair price of the game option in the

BS market. It turns out that for a certain natural class of
payo�s �� and 
� which may depend on the whole path
(history) of the stock price evolution (as in integral or

Russian-type options), the error |� − �(�)| does not exceedW −1/4(ln  )3/4 where W > 0 does not depend on  and it
can be estimated explicitly. Moreover, we will see that the
rational exercise times of our CRR binomial approximations

yield near rational (W −1/4(ln  )3/4-optimal stopping times
for the corresponding Dynkin’s games) exercise times for

game options in the BS market. Since the values �(�) and the
optimal stopping times of the corresponding discrete time
Dynkin’s games can be obtained directly via the dynamical
programming recursive procedure (23) our results provide
a justi�cation of a rather e�ective method of computation
of fair prices and exercise times of game options with path-
dependent payo�s. �e standard construction of a self-
�nancing hedging portfolio involves usually the Doob-Meyer
decomposition of supermartingales which is explicit only in
the discrete but not in the continuous time case. We will see
how to construct a self-�nancing portfolio in the BS market
with a small average (maximal) shortfall and an initial capital
close to the fair price of a game option using hedging self-
�nancing portfolios for the approximating binomial CRR
markets. �e latter problem does not seem to have been
addressed before [85] in the literature on this subject. Having
in mind that hedging self-�nancing portfolio strategies can
be computed only approximately, their possible shortfalls
come naturally into the picture and they should be taken
into account in option pricing even if a perfect hedging
exists theoretically. Note that these results require not only an
approximation of stock prices and the corresponding payo�s,
but alsowe have to take care of the di�erent nature of stopping
times in (21) and (22).

�e main tool here is the Skorokhod-type embedding
(see [86]) of sums of i.i.d. random variables into a Brownian
motion (with a constant dri�, in this case). �is tool was
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already employed for similar purposes in [87, 88]. �e �rst
paper treats an optimal stopping problem which can be
applied to an American style option with a payo� function
depending only on the current stock price and, more impor-
tantly, this function must be bounded and have two bounded
derivatives which excludes usual put and call options cases.
�e second paper deals only with European options and,
again, only payo�s (though with some discontinuities) deter-
mined by the current stock price are allowed.We observe that
the Skorokhod embedding does not provide optimal error
estimates in strong approximation theorems and it would be
interesting to understand whether other approaches such as
the quantile method (see [89–91]) and Stein’s method (see
[92]) can be employed for approximation of optimal stopping
game values with better estimates of errors. Skorokhod
embedding does not work also in the multidimensional
situation, and for this case another method from [93] was
employed in [94] where, actually, more general and not
only binomial approximationswere considered.More general
approximation results for game options were obtained in [95]
where only continuity of payo�s was assumed, but as a result
no error estimates could be obtained there.

For each � > 0 denote by k[0, �] the space of Borel
measurable functions on [0, �] with the uniform metric;0�(l, l̃) = sup0≤�≤�|l� − l̃�|. For each � > 0, let X� and Δ � be
nonnegative functions onk[0, �] such that for some constantV ≥ 1 and for any � ≥ � ≥ 0 and l, l̃ ∈ k[0, �],����X� (l) − X� (l̃)���� + ����Δ � (l) − Δ � (l̃)���� ≤ V (� + 1) ;0� (l, l̃) ,

(37)

����X� (l) − X� (l)���� + ����Δ � (l) − Δ � (l)����
≤ V(|� − �| (1 + sup


∈[0,�]

����l
����)

+ sup

∈[�,�]

����l
 − l�����) .
(38)

By (37), X0(l) = X0(l0) and Δ 0(l) = Δ 0(l0) are functions ofl0 only. By (38),
X� (l) + Δ � (l) ≤ X0 (l0) + Δ 0 (l0)

+ V (� + 2) (1 + sup
0≤�≤�

����l�����) . (39)

Next, we consider the BS market on a complete proba-
bility space together with its martingale measure 5# which
exists and is unique as a corollary of the Girsanov theorem
(see [56]). Let K�, � ≥ 0 be the standard one-dimensional
continuous in time Brownian motion with respect to the
martingale measure 5#. Set

K∗
� = −I2 � + K�, � ≥ 0. (40)

�en the stock price 4#� (n) at time � in the BS market can be
written in the form

4#� (n) = n exp (3� + IK∗
� ) , 4#0 (n) = n > 0, (41)

where 3 > 0 is the interest rate and I > 0 is the, so called,
volatility. We will consider game options in the BS market
with payo� processes in the form


� = X� (4# (n)) , �� = d� (4# (n)) , � ∈ [0, �] , � > 0,
(42)

where d� = X� + Δ �, X, Δ satis�es (37) and (38), 4#(n) =4#(n, o) ∈ k[0, �] is a random function taking the value4#� (n) = 4#� (n, o) at � ∈ [0, �], and in the notationsX�(4#(n)) d�(4#(n)) for � < � we take the restriction of 4#(n)
to the interval [0, �]. �e fair price � = �(n) of this option
with an initial value n > 0 of the stock is given by (22).

Next, we consider a sequence of CRR markets on a
complete probability space such that for each  = 1, 2, . . . the
stock prices 4(�)� (n) at time � are given by the formula

4(�)� (n) = n exp([��/�]∑
�=1

(3� + I(� )
1/2i�)) , � ≥ � ,

4(�)� (n) = 4(�)0 (n) = n > 0, � ∈ [0, � ) ,
(43)

where, recall, i1, i2, . . . are i.i.d. random variables taking the

values 1 and −1 with probabilities �(�) = (exp(I√�/ ) + 1)−1
and 1−�(�) = (exp(−I√�/ )+1)−1, respectively. Namely, we

consider CRRmarkets where stock prices 4� = 4(�)�/�(n), Q =0, 1, 2, . . . satisfy (18) with B� = B�
� given by (36), and, in

addition, in place of the interest rate 3 in the �rst formula in
(20) we take the sequence of interest rates 3� = exp(3�/ )−1,
where 3 is the interest rate of the BS market appearing in the

second formula of (20) and in (22). We consider 4(�)(n) =4(�)(n, o) as a random function on [0, �], so that 4(�)(n, o) ∈k[0, �] takes the value 4(�)� (n) = 4(�)� (n, o) at � ∈ [0, �]. For@ = 0, 1, 2, . . . ,  put

� = 
(�)

� (n) = X��/� (4(�) (n)) ,
�� = �(�)

� (n) = d��/� (4(�) (n)) .
(44)

�en for each  the fair price � = �(�)(n) of the game option
in the corresponding CRR market with an initial value n > 0
of the stock is given by (21).

Set

�#
$ (�, �) = X� (4# (n)) I�≥� + d� (4# (n)) I�<�,

s#
$ (�, �) = �−��∧�P#

$ (�, �) ,
(45)

�(�)
$ (�, �) = X� (4(�) (n)) I�≥� + d� (4(�) (n)) I�<�,

s(�)
$ (�, �) = �−��∧�P(�)

$ (�, �) . (46)

Denote by T
#
0� and T

"
0� the sets of stopping times with

respect to the Brownian �ltration F
#
� , � ≥ 0, with values in
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[0, �] and with respect to the �ltration F
"
� = �{i1, . . . , i�}

with values in {0, 1, . . . ,  }. Set
� (n) = inf

�∈T�0�
sup


∈T�0�
L#s#

$ (�, �) , (47)

�(�) (n) = min
%∈T	0�

max
&∈T	0�

L"
�s(�)

$ (u� , v� ) , (48)

where L# and L"
� are the expectations with respect to the

probability measures 5# and 5"
� , respectively, and we observe

thatT"
0� is a �nite set so that we can usemin andmax in (48).

Recall, thatwe choose5# to be themartingalemeasure for

the BS market and observe that 5"
� is the martingale measure

for the correspondingCRRmarket since a direct computation

shows that L"
�B(�)

� = 3�. �us, (47) and (48) give fair prices
of the game options in the corresponding markets. We note

also that all our formulas involving the expectations L#, in
particular, (47) giving the fair price � of a game option, do
not depend on a particular choice of a continuous-in-time
version of the Brownian motion since all of them induce
the same probability measure on the space of continuous
sample paths which already determines all expressions with

the expectations L# appearing in this paper.
�e following result from [96] provides an estimate for

the error term in approximation of the fair price of a game
option in the BSmarket by fair prices of the sequence of game
options and prices of Dynkin’s games de�ned above.

�eorem 8. Suppose that �(n) and �(�)(n) are de�ned by
(46)–(48) with functions X and d = X + Δ satisfying (37) and
(38).�en there exists a constantW > 0 (which can be explicitly
estimated) such that������ (n) − �(�) (n)����� ≤ W (X0 (n) + Δ 0 (n) + n + 1)  −1/4(ln  )3/4

(49)

for all n,  > 0.
We can choose more general i.i.d. random variablesi1, i2, . . . appearing in the de�nition of �(�) as well, but these

generalizations do not seem to have a �nancial mathematics
motivation since we want to approximate game options in
the BS market by the simplest possible models which are, of
course, game options in the CRR market.

Among main examples of options with path-dependent
payo� we have in mind integral options where

X� (l) = (∫�

0
S
 (l
) ;� − V)+ (call option case) , (50)

or

X� (l) = (V − ∫�

0
S
 (l
) ;�)

+ (put option case) , (51)

where, as usual, E+ = max(E, 0). �e penalty functional may
also have here the integral form

Δ � (l) = ∫�

0
-
 (l
) ;�. (52)

In order to satisfy the conditions (37) and (38), we can assume
that for some^ > 0 and all ?, \, �,

����S
 (?) − S
 (\)���� + ����-
 (?) − -
 (\)���� ≤ ^ ����? − \���� ,����S
 (?)���� + ����-
 (?)���� ≤ ^ |?| . (53)

Observe also that the Asian-type (averaged integral)
payo�s of the form

X� (l)=(1� ∫
�

0
S
 (l
) ;� − V)+

or =(V − 1� ∫
�

0
S
 (l
) ;�)

+

(54)

do not satisfy the condition (38) if arbitrarily small exercise
times are allowed though the latter seems to have only some
theoretical interest as it hardly happens in reality. Still, also in
this case, the binomial approximation errors can be estimated
in a similar way considering separately estimates for small
stopping times and for stopping times bounded away from

zero. Namely, de�ne ��(n) and �(�)
� (n) for � ≥ 0 by (47) and

(48), where s(#)
$ (�, �) and s(�)

$ (u�/ , v�/ ) are replaced bys(#)
$ (� ∨ �, � ∨ �) and s(�)

$ (u�/ ∨ �, v�/ ∨ �), respectively.
Assuming that S
 and -
 are Lipschitz continuous also in �
(at least for � close to 0) in the form |S�(?) − S
(?)| + |-�(?) −-
(?)| ≤ ^(?+ 1)|� − �| for some^ > 0 and all �, �, ? ≥ 0, we
obtain that if l0 = n andX0(l) = (S0(n)−V)+ or= (V−S0(n))+,
then

����X� (l) − X0 (n)���� ≤ ^�(1 + sup
0≤
≤�

����l
����) + ^ sup
0≤
≤�

����l
 − n���� .
(55)

It is not di�cult to see from here that |�(n) − ��(n)| and|�(�)(n)−�(�)
� (n)| do not exceedW(1+n)√� for all small � and

some constantW. On the other hand, similar to�eorem8,we
see that for some constant W > 0 and all  , � > 0,������� (n) − �(�)

� (n)����� ≤ W (1 + n) �−1 −1/4(ln  )3/4. (56)

Choosing � =  −1/6√ln  , we obtain that under the above

conditions in the case of Asian options, |�(n) − �(�)(n)| can
be estimated by 3W(1 + n) −1/12(ln  )1/4.

Another important example of path-dependent payo�s
are the, so-called, Russian options where, for instance,

X� (l) = max(Q, sup

∈[0,�]

l
) , Δ � (l) = -l�. (57)

Such payo�s satisfy the conditions of�eorem 8. Indeed, (37)
is clear in this case and (38) follows since for � ≥ �,
max(Q, sup


∈[0,�]
z
) −max(Q, sup


∈[0,�]
z
) ≤ sup


∈[0,�]
z
 − sup


∈[0,�]
z


≤ sup

∈[�,�]

z
 − z�
≤ sup


∈[�,�]

����z
 − z����� .
(58)
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In order to compare �(n) and �(�)(n) in the case of
path-dependent payo�s, we have to consider both BS and
CRRmarkets on one probability space in an appropriate way,
and the main tool in achieving this goal will be here the
Skorokhod-type embedding (see, for instance, [86], Section
37). In fact, for the binomial i.i.d. random variables i1, i2, . . .
appearing in the setup of the CRR market models above, the
embedding is explicit and no general theorems are required,
but if we want to extend the result for other sequences of i.i.d.
random variables, we have to rely upon the general result.
Namely, de�ne recursively

~(�)
0 = 0, ~(�)

�+1 = inf{� > ~(�)
� : ������K∗

� − K∗
'(�)�

������ = √� } , (59)
where, recall, K∗

� = −(I/2)�+K�. �e standard strongMarkov
property-based arguments (cf. [86], Section 37) show that~(�)
� − ~(�)

�−1, @ = 1, 2, . . . are i.i.d. sequences of random

variables such that (~(�)
�+1 − ~(�)

� , K∗
'(�)�+1

− K∗
'(�)�

) are independent
ofF#

'(�)�
(where, recall,F#

� = �{K�, � ≤ �}).
It turns out (see [85, 88]) that K∗

'(�)1
has the same distribu-

tion as√�/ i1. Set
Ξ(�)

� = (� )
1/2 �∑

�=1
i�, (60)

then Ξ(�)
� has the same distribution as K∗

'(�)�
.

�eorem 8 provides an approximation of the fair price
of game options in the BS market by means of fair prices of
game options in the CRR market which becomes especially
useful if we can provide also a simple description of rational
(or --rational) exercise times of these options in the BS
market via exercise times of their CRR market approxima-
tions which are, by the de�nition, optimal (or --optimal)
stopping times for the Dynkin’s game whose price is given
by (48). For each @ = 1, 2, . . . introduce the �nite �-algebra
G

#,�
� = �{K∗

'(�)1
, K∗

'(�)2
− K∗

'(�)1
, . . . , K∗

'(�)�
− K∗

'(�)�−1
} which is, clearly,

isomorphic toF"
� = �{i�, 
 ≤ @} considered before since each

element ofG#,�
� and ofF"

� is an event of the form

!#,�
*(�) = {K∗

'(�)�
− K∗

'(�)�−1
= ��√� , D = 1, . . . , @} ,

!"
*(�) = {i� = ��, D = 1, . . . @} ,

(61)

respectively, where �(�) = (�1, . . . , ��) ∈ {−1, 1}�, ~(�)
0 = 0, andK0 = 0. Let S#,� be the set of stopping times with respect

to the �ltration G
#,�
� , @ = 0, 1, 2, . . ., where G#,�

0 = {0, Ω#}
is the trivial �-algebra, and Ω# is the sample space of the
Brownian motion. �e subset of these stopping times with

values in {0, 1, . . . ,  } will be denoted by S#,�
0,� . For each �(�) =

(�1, . . . , ��) ∈ {−1, 1}� and @ <  we set �(�) = (�1, . . . , ��) ∈{−1, 1}�. Denote by J0,� the set of functions � : {−1, 1}� →{0, 1, . . . ,  } such that if �(�(�)) = @ ≤  and �̃(�) = �(�) for

some �̃ (�) ∈ {−1, 1}�, then �(̃� (�)) = @, as well. De�ne the
functions �(�)

" : Ω" → {−1, 1}� and �(�)
# : Ω# → {−1, 1}� by

�(�)
" (o) = (i1(o), . . . , i�(o)) and

�(�)
# (o) = √  � (K∗

'(�)1 (-) (o) , K∗
'(�)2 (-) (o)

−K∗
'(�)1 (-) (o) , . . . , K∗

'(�)� (-) (o) − K∗
'(�)�−1(-) (o)) ,

(62)

where Ω" and Ω# are sample spaces on which the sequencei1, i2, . . . and the Brownian motion K� are de�ned, respec-

tively. It is clear that any u ∈ T
"
0� and v ∈ S

#,�
0,� can be

represented uniquely in the form u = � ∘ �(�)
" and v = � ∘ �(�)

#
for some �, � ∈ J0,�.

�eorem 9. �ere exists a constant W > 0 (which can be
estimated explicitly) such that if u∗� = �∗

� ∘ �(�)
" and v∗

� =
�∗
� ∘ �(�)

" , �∗
� , �∗

� ∈ J0� are rational exercise times for the game

option in the CRR market de�ned by (43); that is,

�(�) (n) = min
%∈T	0�

L"s(�)
$ (u� , v∗

�
� )

= max
&∈T	0�

L"s(�)
$ (u∗� � , v� ) ,

(63)

then 	∗
� = ~(�)

.∗� ∘�
(�)
�
and $∗

� = ~(�)
7∗� ∘�
(�)
�
are -�(n)-rational exercise

times for the game option in the BS market de�ned by (39) and
(41); that is,

sup

∈T�0�

L#s#
$ (	∗

� , �) − -� (n)
≤ � (n) ≤ inf

�∈T�0�
L#s#

$ (�, $∗
� ) + -� (n) ,

(64)

where -�(n) = W(X0(n) + Δ 0(n) + n + 1) −1/4(ln  )3/4.
It is well known (see, for instance, [6]) that when payo�s

depend only on the current stock price (a Markov case), --
optimal stopping times of Dynkin’s games can be obtained as
�rst arrival times to domainswhere the payo� is --close to the
value of the game (as a function of the initial stock price). For
path-dependent payo�s the situation is more complicated,
and, in general, in order to construct --optimal stopping
times, we have to know the stochastic process of values of
the games starting at each time � ∈ [0, �] conditioned
to the information up to �. It is not clear what kind of
approximation of this process can provide some information
about --rational exercise times, and the convenient alterna-
tive method of their construction exhibited in �eorem 9
seems to be important for both the theory and applications.
Moreover, this construction is e�ective and can be employed
in practice since �∗

� and �∗
� are functions on sequences

of 1’s and −1’s which can be computed (and stored in a
computer) using the recursive formulas (23) even before the
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stock evolution begins. In order to compute �(�)
# , we have to

watch the discounted stock price ̌4#� (n) = �−��4#� (n) evolution
of a real stock at moments ~(�)

� which are obtained recursively

by ~(�)
0 = 0 and
~(�)
�+1 = inf {� > ~(�)

� : ̌4#� (n) = �±8(�/�)1/2 ̌4#'(�)� (n)} (65)

and to construct the {1, −1} sequence �(�)
# (o) by writing1 or −1 on @th place depending on whether ̌4#'(�)� (n) =

�8(�/�)1/2 ̌4#'(�)�−1(n) or ̌4#'(�)� (n) = �−8(�/�)1/2 ̌4#'(�)�−1(n), respectively.
Recall (see [56]) that a sequence 6 = (61, . . . , 6�) of

pairs 6� = (7�, 8�) of F"
�−1-measurable random variables7�, 8�, @ = 1, . . . ,  , is called a self-�nancing portfolio

strategy in the CRR market determined by (18), (20), (36),
and (43) if the price of the portfolio at time @ is given by the
formula

"�,�
� = 7�/� + 8�4(�)��/� (n) = 7�+1/� + 8�+14(�)��/� (n) , (66)

and the latter equality means that all changes in the portfolio
value are due to capital gains and losses but not due to
withdrawal or infusion of funds. A pair (u, 6) of a stopping
time u ∈ T

"
0� and a self-�nancing portfolio strategy6 is called

a hedge for (against) the game option with the payo� P(�)
$

given by (46) if (see [12])

"�,�
%∧� ≥ �(�)

$ (u� , @� ) , ∀@ = 0, 1, . . . ,  . (67)

It follows from [12] that for any u ∈ T
"
0� there exists a self-

�nancing portfolio strategy 6% so that (u, 6%) is a hedge. In
particular, if we take the rational exercise time u = u∗� of the

writer, then such 6% exists with the initial portfolio capital�(�)(n). �e construction of 6% goes directly via the Doob-
Meyer decomposition of supermartingales and a martingale
representation lemma (see [12, 56]), both being explicit in
the CRR market case. In the continuous time BS market
we cannot write the corresponding portfolio strategies in an
explicit way, and so some approximations are necessary.

�eorem 10. Let u ∈ T
"
0�, 6 = 6%, and (66) together with

(67) hold true with F
"
�-measurable 7� = 7%

� and 8� = 8"
� , so

that (u, 6%) is a hedge. �en 7%
� = S� ∘ �(�−1)

" , 8%
� = T� ∘ �(�−1)

" ,

and u = � ∘ �(�)
" for some uniquely de�ned functions S�, T�

on {−1, 1}�−1 and some � ∈ J0�. Let 	 = � ∘ �(�)
# and set79

� = S� ∘ �(�−1)
# and 89

� = T� ∘ �(�−1)
# whenever � ∈ (~(�)

�−1, ~(�)
� ].

�en

"#
� = 79

� /� + 89
� 4#� (n) (68)

is a self-�nancing portfolio in the BS market and there exists a
constant W > 0 such that

L# sup
0≤�≤�

(�#
$ (~(�)

9 , �) − "#
'(�)� ∧�)+

≤ W (X0 (n) + Δ 0 (n) + n + 1)  −1/4(ln  )3/4,
(69)

where E+ = max(E, 0). In particular, there exists a self-
�nancing portfolio of this form satisfying (69) with the initial

value �(�)(n) (which according to (49) is close to the fair price�(n) of the game option) taking 	∗ = �∗ ∘ �(�)
# if u∗ = �∗ ∘ �(�)

"
is the rational exercise time and 6 = 6%∗ is the corresponding
optimal self-�nancing hedging portfolio strategy for the CRR
market.

�e inequality (69) estimates the expectation of the
maximal shortfall (risk) of certain (nearly hedging) portfolio
strategy which can be constructed e�ectively in applications
since the functions S:, T:, and � are determined by a self-
�nancing hedging strategy in the CRR market which can be
computed directly and stored in a computer even before the
real stock evolution begins or in case of computer memory
limitations we can compute these functions each time when
needed using corresponding algorithms for the CRR market.

�e functions �(�)
# or, in other words, the sequences from{−1, 1}� which should be plugged into the functions S:,T:, and � should be obtained in practice by watching the

evolution of the discounted stock price �−��4#� atmoments ~(�)
�

as described a�er �eorem 9.
�e paper [96] studied approximations of the shortfall

risk P(?) given by (24) for game options in the BS market
by the shortfall risks P�(?) of game options in the sequence
of CRR markets de�ned above where the initial capital ? of
all portfolios under consideration is kept the same and the
payo�s satisfy the same conditions as above.�e convergence
lim�→∞P�(?) = P(?) was proved in [96] but only the one
sided error estimate

P (?) ≤ P� (?) + W −1/4(ln  )3/4 (70)

was obtained there for game options. On the other hand,
relying on some convexity arguments, it was possible to
obtain for American options two-sided estimates with the
same error term.

In [97] similar approximation results as above were
extended to barrier game options. Namely, [97] deals with
double knock-out barrier option with two constant barriersV, P such that 0 ≤ V < 40 < P ≤ ∞ which means
that the option becomes worthless to its holder (buyer) at
the �rst time �; the stock price 4� exits the open interval� = (V, P). �us for � ≥ �(�,?) the payo� is �� = 
� = 0.
For � < �(�,?) path-dependent payo�s satisfying (38) and (39)
are considered. Such a contract is of potential value to a buyer
who believes that the stock price will not exit the interval � up
to a maturity date and to a seller who does not want to worry
about hedging if the stock price will reach one of the barriersV, P. Such an option is equivalent to the usual game option

when the payo�s �� and 
� are replaced by �;
� = ��I�<
�

and 
;
� = 
�I�<
� , respectively. Now, these new payo�s lose

regularity conditions (38) and (39), but still it turns out that
the error estimates in (49) remain true when we approximate
the price of the above barrier game options in the BS market
by the prices of corresponding barrier game options in the
CRR markets as in �eorem 8 above. �e results concerning
approximation of the shortfall risk turn out to be very similar
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for barrier game options to the corresponding results for
usual game options described above.

When payo�s depend only on the current stock price
(and not path-dependent as in (45) and (46)) then in some
special cases it is possible to obtain better error estimates for
binomial approximations of prices of game options relying on
partial di�erential equations methods in the free boundary
problem. In [98] this was done for American put options in
the BS market, and in [99] this was extended to game put

options with error estimates of order  −1/2 in comparison to −1/4(ln  )3/4 obtained in�eorem 8.

5. Incomplete Markets and Transaction Costs

Both in incomplete markets and in markets with transaction
costs there is no one arbitrage free price of each deriva-
tive which can be considered as its fair price, and one of
approaches in these circumstances is to study superhedging.
Game options in incomplete markets were studied in several
papers; in particular, in [100] theywere studied from the point
of view of utility maximization which leads to non-zero-sum
Dynkin’s games while in [101] they were studied from the
point of view of superhedging and arbitrage free prices.

Next, we concentrate in this section on superhedging
pricing of game options in discrete markets with transaction
costs. �e market model here will consist of a �nite proba-

bility space Ω with the �-�eld F = 2Ω of all subspaces of Ω
and a probability measure P on F giving a positive weight
P(o) to each o ∈ Ω. �e setup includes also a �ltration{0, Ω} = F0 ⊂ F1 ⊂ ⋅ ⋅ ⋅ ⊂ F� = F where � is a positive
integer called the time horizon. It is convenient to denote byΩ� the set of atoms inF� so that anyF�-measurable random
variable (vector) � can be identi�ed with a function (vector
function) de�ned on Ω� and its value at � ∈ Ω� will be
denoted either by �(�) or by �..

�e market model consists of a risk-free bond and a
risky stock. Without loss of generality, we can assume that
all prices are discounted so that the bond price equals 1 all
the time, and a position in bonds is identi�ed with cash
holding. On the other hand, the shares of the stock can be
traded which involves proportional transaction costs. �is
will be represented by bid-ask spreads; that is, shares can be

bought at an ask price 4�� or sold at the bid price 4�� , where4�� ≥ 4�� > 0, � = 0, 1, . . . , � are processes adapted to the

�ltration {F�}��=A.
�e liquidation value at time � of a portfolio (8, -)

consisting of an amount 8 of cash (or bond) and - shares of
the stock equals

~� (8, -) = 8 + 4��-+ − 4�� -− (71)

which in case - < 0 means that a portfolio owner should
spend the amount 4�� -− in order to close his short position.
Observe that fractional numbers of shares are allowed here so
that both 8 and - in a portfolio (8, -) could be, in principle,
any real numbers. By de�nition, a self-�nancing portfolio
strategy is a predictable process (H�, 7�) representing positions

in cash (or bonds) and stock at time �, � = 0, 1, . . . , � such
that

~� (H� − H�+1, 7� − 7�+1) ≥ 0 ∀� = 0, 1, . . . , � − 1, (72)

and the set of all such portfolio strategies will be denoted byΦ.
As before, we consider here a game option which is a

contract between its seller and buyer such that both have
the right to exercise it at any time up to a maturity date
(horizon) �. In the presence of transaction costs there is a
di�erence whether we stipulate that the option to be settled
in cash or both in cash and shares of stock while in the
former case an assumption concerning transaction costs in
the process of portfolio liquidation should bemade.We adopt
here the setup where the payments �� and 
� are made
both in cash and shares of the stock, and transaction costs
take place always when a portfolio adjustment occurs. �us,
the payments are, in fact, adapted random 2-vectors �� =(�(1)

� , �(2)
� ) and
� = (
(1)

� , 
(2)
� )where the �rst and the second

coordinates represent, respectively, a cash amount to be paid
and a number of stock shares to be delivered, and as we allow
also fractional numbers of shares, both coordinates can take
on any nonnegative real value. �e inequality �� ≥ 
� in the
zero transaction costs case is replaced in our present setup by

Δ � = ~� (�(1)
� − 
(1)

� , �(2)
� − 
(2)

� ) ≥ 0, (73)

andΔ � is interpreted as a cancellation penalty.We impose also

a natural assumption that�(1)
� = 
(1)

� and�(2)
� = 
(2)

� ; that is,
on thematurity date there is no penalty.�erefore, if the seller
cancels the contract at time �while the buyer exercises at time�, the former delivers to the latter a package of cash and stock
shares which can be represented as a 2-vector in the form

�(�, �) = (�(1) (�, �) ,�(2) (�, �)) = ��I�<� + 
�I�≤�, (74)

where I� = 1 if an event ! occurs and I� = 0 if not. It will

be convenient to allow the payment components �(1)
� , �(2)

�
and 
(1)

� , 
(2)
� to take on any real (and not only nonnegative)

values which will enable us to demonstrate complete duality
(symmetry) between the seller’s and the buyer’s positions.

A pair (�, 6) of a stopping time � ≤ � and of a

self-�nancing strategy 6 = (H�, 7�)��=0 will be called a
superhedging strategy for the seller of the game option with
a payo� given by (74) if for all � ≤ �,

~�∧� (H�∧� − �(1) (�, �) , 7�∧� − �(2) (�, �)) ≥ 0, (75)

where, as usual, Y ∧ ; = min(Y, ;) and Y ∨ ; = max(Y, ;).
�e seller’s (ask or upper hedging) price �� of a game option
is de�ned as the in�mum of initial amounts required to start
a superhedging strategy for the seller. Since in order to getH0 amount of cash and 70 shares of stock at time 0, the seller
should spend

−~0 (−H0, −70) = H0 + 7+
0 4�0 − 7−

0 4�0 (76)
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in cash, we can write

�� = inf�,� {−~0 (−H0, −70) : (�, 6) with

6 = (H�, 7�)��=0 being a superhedging

strategy for the seller} .
(77)

On the other hand, the buyer may borrow from a bank
an amount ~0(−H0, −70) to purchase a game option with the
payo� (74) and begining with the negative valued portfolio(H0, 70) to manage a self-�nancing strategy 6 = (H�, 7�)��=0 so
that for a given stopping time � ≤ � and all � ≤ �,

~�∧
 (H�∧
 + �(1) (�, �) , 7�∧
 + �(2) (�, �)) ≥ 0. (78)

In this case the pair (�, 6) will be called a superhedging
strategy for the buyer.�ebuyer’s (bid or lower hedging) price�� of the game option above is de�ned as the supremum of
initial bank loan required to purchase this game option and
to manage a superhedging strategy for the buyer. �us,

�� = sup

,�

{~0 (−H0, −70) : (�, 6) with
6 = (H�, 7�)��=0 being a superhedging
strategy for the buyer} .

(79)

It follows from the representations of �eorem 11 that �� ≥��.
First, we recall the notion of a randomized stopping time

(see [102–104] and references there) which is de�ned as a
nonnegative adapted process & such that ∑�

�=0 &� = 1. �e set
of all randomized stopping times will be denoted byX while
the set of all usual or pure stopping times will be denoted by
T. It will be convenient to identify each pure stopping time �
with a randomized stopping time &
 such that &


� = I{
=�} for
any � = 0, 1, . . . , �, so that we could write T ⊂ X. For any
adapted process � and each randomized stopping time & the
time-& value of � is de�ned by

(�)� = �� = �∑
�=0

&���. (80)

Considering a game option with a payo� given by (74) we
write also

�(&, &̃) = �∑
�,�=0

&�&̃��(�, �) (81)

which is the seller’s payment to the buyer when the former
cancels and the latter exercises at randomized stopping times& and &̃, respectively. In particular, if � and � are pure
stopping times, then

�(&, &
) = �∑
�=0

&��(�, �) ,

� (&�, &) = �∑
�=0

&��(�, �) .
(82)

Next, we introduce the notion of an approximate martingale
which is de�ned for any randomized stopping time & as a
pair (5, 4) of a probability measure 5 onΩ and of an adapted
process 4 such that for each � = 0, 1, . . . , �,

4�� ≤ 4� ≤ 4�� , &∗
�+14�� ≤ EB (4�∗�+1 | F�) ≤ &∗

�+14�� , (83)

where EB is the expectation with respect to 5,
&∗
� = �∑

�=�
&�, ��∗

� = �∑
�=�
&���, &∗

�+1 = 0, ��∗
�+1 = 0. (84)

Given a randomized stopping time& the space of correspond-
ing approximate martingales (5, 4) will be denoted by P(&)
and we denote by P(&) the subspace of P(&) consisting of
pairs (5, 4) with 5 being equivalent to the original (market)
probability P.

Next, we introduce some convex analysis notions and
notations (see [104, 105] for more details). Denote by Θ the
family of functions S : R → R ∪ {−∞} such that eitherS ≡ −∞ or S is a (�nite) real valued polyhedral (continuous
piecewise linear with �nite number of segments) function. IfS, T ∈ Θ, then, clearly, S ∧ T, S ∨ T ∈ Θ. �e epigraph ofS ∈ Θ is de�ned by epi(S) = {(?, \) ∈ R

2 : ? ≥ S(\)}. For
any Y ≥ ; the function ℎ[C, ](\) = Y\− − ;\+, clearly, belongs
to Θ. Observe that the self-�nancing condition (72) can be
rewritten in the form

(H� − H�+1, 7� − 7�+1) ∈ epi (ℎ[D
� ,D�� ]) . (85)

For each S ∈ Θ and Y ≥ ; there exists a unique function
gr[C, ] (S) ∈ Θ such that

epi (gr[C, ] (S)) = epi (ℎ[C, ]) + epi (S) . (86)

For any \ ∈ R, � ∈ Ω�, and � = 0, 1, . . . , � de�ne F�
� (\) =F�

� (�, \), F�
� (\) = F�

� (�, \), 3�� (\) = 3�� (�, \), 3�� (\) = 3�� (�, \)
by

F�
� (\) = �(1)

� + ℎ[D
� ,D�� ] (\ − �(2)
� ) ,

3�� (\) = 
(1)
� + ℎ[D
� ,D�� ] (\ − 
(2)

� ) ,
F�
� (\) = −�(1)

� + ℎ[D
� ,D�� ] (\ + �(2)
� ) ,

3�� (\) = −
(1)
� + ℎ[D
� ,D�� ] (\ + 
(2)

� )
(87)

with ℎ[C, ] the same as in (85) and (86). Observe that if Y ≥; ≥ 0, then either ℎ[C, ] ≡ 0 or ℎ[C, ] is a monotone decreasing
function, and so

F�
� ≥ 3�� , F�

� ≤ 3�� . (88)

Introduce also

d�
�,� (\) = �(1) (�, �) + ℎ[D
�∧� ,D��∧�] (\ − �(2) (�, �))

= F�
� (\) I�<� + 3�� (\) I�≤�, d�

�,� (\)
= −�(1) (�, �) + ℎ[D
�∧� ,D��∧�] (\ + �(2) (�, �))
= F�

� (\) I�<� + 3�� (\) I�≤�.

(89)
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Clearly, the superhedging conditions (75) of the seller and
(78) of the buyer are equivalent to

(H�∧�, 7�∧�) ∈ epi (d�
�,�) ∀� = 0, 1, . . . , �,

(H�∧
, 7�∧
) ∈ epi (d�
�,
) ∀� = 0, 1, . . . , �, (90)

respectively. Observe also that

F�
� (0) = −F�

� (0) = ~� (�(1)
� , �(2)

� ) ,
3�� (0) = −3�� (0) = ~� (
(1)

� , 
(2)
� ) . (91)

We recall that�(1)
� = 
(1)

� and�(2)
� = 
(2)

� , and so F�
� = 3�� andF�

� = 3��. In [106] the following results were obtained.

�eorem 11. (I) Price Representations. In the above notations,

�� = min
�∈T

max
�∈X

max
(B,D)∈P(�)EB(�(1) (�, ⋅) + 4�(2) (�, ⋅))�

= min
�∈T

max
�∈X

sup
(B,D)∈P(�)EB(�(1) (�, ⋅) + 4�(2) (�, ⋅))�,

(92)

�� = max

∈T

min
�∈X

min
(B,D)∈P(�)EB(�(1) (⋅, �) + 4�(2) (⋅, �))�

= max

∈T

min
�∈X

inf
(B,D)∈P(�)EB(�(1) (⋅, �) + 4�(2) (⋅, �))�,

(93)

where �(1)(�, ⋅), �(2)(�, ⋅) and �(1)(⋅, �), �(2)(⋅, �) denote
functions on {0, 1, . . . , �} whose values at � are obtained by
replacing ⋅ by �.

(II) Recurrent Price Computations

(i) For any ? ∈ R, � ∈ Ω� and � ∈ T de�ne

n.
� (?) = �.

� (?) = 3�� (�, ?) . (94)

Next, for � = 1, 2, . . . , � and each � ∈ Ω�−1 de�ne by
backward induction

z
.
�−1 = max

7⊂.,7∈Ω�
n7
� ,

�.
�−1 = gr[D
�−1(.),D��−1(.)] (z.�−1) ,

n.
�−1 (?) = min (F�

�−1 (�, ?) , max (3��−1 (�, ?) , �.
�−1 (?))) .

(95)

�en n0(0) = ��.

(ii) For any ? ∈ R, � ∈ Ω� and � ∈ T de�ne

�.
� (?) = z.� (?) = 3�� (�, ?) . (96)

Next, for � = 1, 2, . . . , � and each � ∈ Ω�−1 de�ne by
the backward induction

u
.
�−1 = max

7⊂.,7∈Ω�
�7
� , z.�−1 = gr[D
�−1(.),D��−1(.)] (u.

�−1) ,
�.
�−1 (?) = min (3��−1 (�, ?) , max (F�

�−1 (�, ?) , z.�−1 (?))) .
(97)

�en �0(0) = −��.

(III) Superhedging Strategies

(i) Construct by induction a sequence of (pure) stopping
times �� ∈ T and a self-�nancing strategy (H, 7) such
that

(H�, 7�) ∈ epi (n�) \ epi (F�
� ) � {� < ��} (98)

for each � = 0, 1, . . . , � in the following way. First, take
any F0-measurable portfolio (H0, 70) ∈ epi (n0) and
set

�0 = {{{
0 
S (H0, 70) ∈ epi (F�

0) ,
� 
S (H0, 70) ∉ epi (F�

0) . (99)

Suppose that an F�-measurable portfolio (H�, 7�) ∈
epi(n�) and a stopping time �� ∈ T have already been
constructed for some � = 0, 1, . . . , � − 1 so that (98)
holds true. By (86) and (96),

(H�, 7�) ∈ epi (��) = epi (ℎ[D
� ,D�� ]) + epi (z�) � {� < ��}
(100)

and so there exists an F�-measurable portfolio(H�+1, 7�+1) such that
(H�+1, 7�+1) ∈ epi (z�) ,

(H� − H�+1, 7� − 7�+1) ∈ epi (ℎ[D
� ,D�� ]) � {� < ��} ,
(101)

and (H�+1, 7�+1) = (H�, 7�) on {� ≥ ��} which provides
the self-�nancing condition (85) both on {� < ��} and
on {� ≥ ��}. By (96) it follows also that (H�+1, 7�+1) ∈
epi(n�+1) on {� < ��} ⊃ {� + 1 < ��+1}. Set

��+1 =
{{{{{{{{{

�� if � ≥ ��,
� + 1 if � < �� and (H�+1, 7�+1) ∈ epi (F�

�+1) ,
� if � < �� and (H�+1, 7�+1) ∉ epi (F�

�+1) .
(102)

Finally, set � = �� ∈ T. �en the pair (�, 6) with6 = (H, 7) constructed by the above algorithm with(H0, 70) = (��, 0) is a superhedging strategy for the
seller.

(ii) Construct by induction a sequence of (pure) stopping
times �� ∈ T and a self-�nancing strategy (H, 7) such
that

(H�, 7�) ∈ epi (��) \ epi (3�� ) � {� < ��} (103)

for each � = 0, 1, . . . , � in the following way. First, take
anyF0-measurable portfolio (H0, 70) ∈ epi(�0) and set

�0 = {{{
0 if (H0, 70) ∈ epi (3�0) ,
� if (H0, 70) ∉ epi (3�0) . (104)
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Suppose that an F�-measurable portfolio (H�, 7�) ∈
epi (��) and a stopping time �� ∈ T have already been
constructed for some � = 0, 1, . . . , � − 1 so that (98)
holds true. By (86) and (98),

(H�, 7�) ∈ epi (z�) = epi (ℎ[D
� ,D�� ]) + epi (u�) � {� < ��} ,
(105)

and so there exists an F�-measurable portfolio(H�+1, 7�+1) such that
(H�+1, 7�+1) ∈ epi (u�) ,

(H� − H�+1, 7� − 7�+1) ∈ epi (ℎ[D
� ,D�� ]) � {� < ��} , (106)

and (H�+1, 7�+1) = (H�, 7�) on {� ≥ ��} which provides
the self-�nancing condition (85) both on {� < ��} and
on {� ≥ ��}. By (98) it follows also that (H�+1, 7�+1) ∈
epi(��+1) on {� < ��} ⊃ {� + 1 < ��+1}. Set

��+1 =
{{{{{{{

�� if � ≥ ��,� + 1 if � < �� and (H�+1, 7�+1) ∈ epi (3��+1) ,
� if � < �� and (H�+1, 7�+1) ∉ epi (3��+1) .

(107)

Finally, set � = �� ∈ T. �en the pair (�, 6) with6 = (H, 7) constructed by the above algorithm with(H0, 70) = (−��, 0) is a superhedging strategy for the
buyer.

�ere are by now very few papers on game options with
transaction costs. In [107] it is shown that the cheapest
superhedging strategy for a game option in a Black-Scholes
market with transaction costs is the buy-and-hold portfolio
strategy together with a hitting time of a Borel set. �e
shortfall risk for a game option in a Black-Scholes market
with transaction costs is obtained in [108] as a limit of
corresponding expressions for a sequence of binomialmodels
in the spirit of Section 4.
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[26] V. K. Domanskĭı, “Dynkin’s games with randomized optimal
stopping rules,” inAdvances in Dynamic Games, vol. 7 ofAnnals
of the International Society of Dynamic Games, pp. 247–262,
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[40] J. Cvitanić and I. Karatzas, “Backward stochastic di�erential
equations with re�ection and Dynkin games,” �e Annals of
Probability, vol. 24, no. 4, pp. 2024–2056, 1996.

[41] S. Hamadène and J. P. Lepeltier, “Re�ected BSDEs and mixed
game problem,” Stochastic Processes and their Applications, vol.
85, no. 2, pp. 177–188, 2000.

[42] S. Hamadène and H. Wang, “BSDEs with two RCLL re�ecting
obstacles driven by Brownian motion and Poisson measure and
a related mixed zero-sum game,” Stochastic Processes and their
Applications, vol. 119, no. 9, pp. 2881–2912, 2009.

[43] M. Fukushima and M. Taksar, “Dynkin games via Dirichlet
forms and singular control of one-dimensional di�usions,”
SIAM Journal on Control and Optimization, vol. 41, no. 3, pp.
682–699, 2002.

[44] M. Yasuda, “Explicit optimal value for Dynkin’s stopping game,”
Mathematical and Computer Modelling, vol. 22, no. 10–12, pp.
313–324, 1995.

[45] Y. Ohtsubo, “Pareto optimum in a cooperative Dynkin’s stop-
ping problem,”Nihonkai Mathematical Journal, vol. 6, no. 2, pp.
135–151, 1995.

[46] Y. Ohtsubo, “�e values inDynkin stopping problemwith some
constraints,” Mathematica Japonica, vol. 51, no. 1, pp. 75–81,
2000.

[47] I. Karatzas, “A pathwise approach to Dynkin games,” in Statis-
tics, Probability and Game�eory, vol. 30 of IMS Lecture Notes–
Monograph Series, pp. 115–125, IMS, Hayward, Calif, USA, 1996.

[48] I. Karatzas and H. Wang, “Connections between bounded-
variation control and Dynkin games,” in Optimal Control and
Partial Di�erential Equations, J. I. Menaldi, E. Rofman, and
A. Sulem, Eds., pp. 363–373, IOS Press, Amsterdam, �e
Netherlands, 2001.

[49] G. Peskir, “Optimal stopping games and Nash equilibrium,”
�eory of Probability and Its Applications, vol. 53, no. 3, pp. 558–
571, 2008.

[50] E. Baurdoux and A. E. Kyprianou, “�e McKean stochastic
game driven by a spectrally negative Lévy process,” Electronic
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