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1 Introduction

Maximal gauged supergravity in four dimensions often admits continuous or discrete sym-

plectic deformations that respect N = 8 supersymmetry and the gauge group [1, 2]. The

simplest type of deformation introduces a dependence on a dimensionless parameter c in

the gauging-dependent couplings of the theory. The covariant derivatives, for example,

acquire a new coupling to the magnetic vectors proportional to c,

D = d− g
(
AΛ − c ÃΛ

)
, (1.1)

thus leading to a dyonic gauging. The role of this parameter, in a passive picture, is to tune

the electric/magnetic symplectic frame prior to introducing the gauging. In the ungauged

limit, c can be set to zero without loss of generality by a symplectic transformation. At

finite gauge coupling g, however, electric/magnetic duality is broken and the theory typ-

ically becomes sensitive to the symplectic frame specified by c. Various aspects of this

deformation for different gauge groups have now been studied, including its effect on the

vacuum structure [1, 3–6], on domain-wall [7–9] and black hole solutions [10–12], or on

inflationary models [13, 14].

An immediate question is whether these N = 8 dyonic gaugings descend from higher

dimensions. This was recently answered positively when the gauge group is chosen to be

ISO(7)c ≡ CSO(7, 0, 1)c ≡ SO(7) n R7
c [15]. Here and often in the following, we have

followed the notation of [1] and have sticked in a subscript c to denote that ISO(7) (more

precisely, only its seven translations) is gauged dyonically. In [15, 16] we showed that

D = 4 N = 8 ISO(7)-dyonically-gauged supergravity arises as a consistent truncation of

massive type IIA supergravity [17] on the six-sphere, with the magnetic coupling constant

m ≡ gc identified upon reduction with the Romans mass, F̂(0) = m. All solutions of the

D = 4 theory uplift to solutions of massive type IIA by the consistency of the trunca-

tion. In particular, its vacua (all known ones are AdS) give rise to AdS4 backgrounds of

massive type IIA string theory. Quantitative evidence was also given in [15] that these

AdS4 vacua are dual to the simplest type of Chern-Simons theories with a single gauge

group and adjoint matter [18]. The answer to the question of the higher-dimensional ori-

gin of these dyonic gaugings is of course gauge group dependent. Arguments have been

recently given [19] against an M-theory origin of the dyonic deformation [1] of the SO(8)

gauging [20].

The distinct higher-dimensional origin of the dyonic ISO(7) gauging singles it out and

makes it worth of further detailed investigation. This is what we set up to do in this
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paper from a purely four-dimensional perspective, leaving further research on the precise

connection with ten dimensions for separate publications. Various aspects of the ISO(7)

gauging have already been studied. The purely electric, c = 0 (i.e. m = 0), ISO(7)-gauged

theory was constructed long ago [21] from the SO(8)-gauged theory [20] by a limiting

procedure that implements the Inönü-Wigner contraction from SO(8) to ISO(7) directly

in the supergravity. The symplectic deformations corresponding to various gauge groups,

including ISO(7), were studied in [2]. The ISO(7)c family of gaugings was found to be

discrete, containing only two members: the purely electric c = 0 theory [21], and the

dyonic c 6= 0 theory. All non-vanishing values of c lead to equivalent theories [2].

The basic formalism to deal with generic gaugings of D = 4 N = 8 supergravity has

been laid out in [22], see also [23]. The gauging is encoded in an embedding tensor that

governs both the non-Abelian coupling of the vectors to themselves and to the rest of the

supergravity fields, and the embedding of the gauge group into the global U-duality group,

E7(7). Gaugings that involve minimal couplings to the magnetic vectors in a given sym-

plectic frame necessarily require the presence of two-form potentials. These appear both

sourcing the field strengths of the vectors and in new topological terms in the Lagrangian,

without upsetting the count of degrees of freedom. More generally, a larger set of p-form

potentials, p = 1, . . . , 4, of a so-called tensor hierarchy [24, 25] can be considered. These

include all vectors in the theory, a larger set of two-forms than a given gauging would typ-

ically require, and three- and four-forms, all of them in irreducible E7(7) representations.

Except for the four-form potentials, the fields up the tensor hierarchy are definitely dy-

namical as they typically cannot be gauged away: they do carry degrees of freedom, albeit

not independent ones. Indeed, bringing the metric and scalars into the picture, the higher

rank forms can be Hodge-dualised into (of course, dynamical) combinations of scalars and

their derivatives. The N = 8 tensor hierarchy equipped with these dualisations has been

referred to as the ‘duality hierarchy’ [26]. See [27, 28] for the hierarchies in less super-

symmetric contexts. In this paper we will specify the Lagrangian for the ISO(7)c gaugings

following the embedding tensor formalism [22]. We will also be interested in the duality

hierarchy [26], paying particular attention to a subsector with closed field equations and

supersymmetry transformations. This subsector arises upon suitable restriction of the full

E7(7)-covariant duality hierarchy. Although it is only SL(7)-covariant, rather than E7(7),

this subsector is still N = 8.

We will also study the vacuum structure of the ISO(7)c gaugings. More concretely,

we provide a systematic classification of the critical points of the scalar potential that

preserve at least SU(3) and at least a particular SO(4) within SO(7) ⊂ ISO(7). We do

this by working out the truncations of the N = 8 theory to the SU(3)- and that particular

SO(4)-invariant sectors, and then extremising the resulting potentials. Although the G2-

invariant sector is contained within the SU(3) sector, we find it useful to provide a separate

treatment for it too. All these sectors are supersymmetric and, as a crosscheck on our

calculations, we cast them in the corresponding N = 2 or N = 1 canonical form. We

provide explicit parameterisations for the scalars in these subsectors. This allows us to

give the location of the critical points in the full scalar space E7(7)/SU(8) relative to those

parameterisations. This result is new even for the critical points that were already known
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(see below), which had been found using a method [3, 29] whose power resides, precisely,

in its being insensitive to their actual location.

Quite surprisingly, the vacuum structure of the electric and dyonic ISO(7) gaugings

turns out to be very different. In fact, while the former has no known vacua, the lat-

ter displays a rich (AdS) vacuum structure. Some of these critical points were already

known, including points with N = 1, G2 [4], and N = 3, SO(4) [30] symmetry, and

non-supersymmetric points with SO(7), SO(6) [3] and G2 [4] symmetry. Among the non-

supersymmetric points, only the latter is stable, at least within the full N = 8 theory.

Our classification recovers all these extrema and finds new ones with N = 2, SU(3)×U(1)

symmetry (which we already reported on in [15]), a point with SU(3), N = 1 symmetry,

and stable non-supersymmetric points with SU(3) and SO(4) symmetry. Some, but not

all, of these points have counterparts in either the electric [20] or dyonic [1] SO(8) gauging,

with the same residual supersymmetry, bosonic symmetry and mass spectrum. See table 1

for a summary of the known critical points of the dyonic ISO(7) supergravity.

In section 2, we construct the ISO(7)c theory using the embedding tensor formalism,

and specify the bosonic Lagrangian, an N = 8 subsector of the duality hierarchy and

the supersymmetry transformations. In the rest of the paper we flesh out some interest-

ing subsectors with less supersymmetry and bosonic symmetry: see sections 3, 4 and 5

for discussions of the SU(3), G2 and an SO(4)-invariant sectors, respectively. Canonical

supersymmetric formulations are given and the critical points of the scalar potential in

these sectors are computed. Four appendices close the paper. The first two offer fur-

ther discussion. Appendix A contains the truncation of the N = 8 theory to yet another

subsector, with N = 1 supersymmetry and Z2×SO(3) bosonic symmetry, relevant to non-

geometric type IIA orientifold reductions. Appendix B comments on the relation of the

SU(3)-invariant sector of the ISO(7)c theory to the N = 2 supergravity that arises from

consistent truncation of M-theory on an arbitrary Sasaki-Einstein manifold. The last two

are technical: appendix C gives some details of the construction of the N = 8 ISO(7)c the-

ory, while appendix D gives explicit parameterisations for the supergravity scalar kinetic

matrix in the invariant sectors discussed in the main text.

2 Maximal supergravity with dyonic ISO(7) gauging

We will now present the D = 4 N = 8 supergravity theory with a dyonically-gauged ISO(7)

gauge group, focusing on its bosonic sector. We review the embedding tensor and the field

content, including the tensor hierarchy, in section 2.1. An interesting subsector of the latter

is discussed in 2.2. The bosonic Lagrangian and supersymmetry transformations can be

found in 2.3 and 2.5. See also appendix C for some details of the construction of the theory

from the general formalism of [22, 23].

2.1 Tensor hierarchy and ISO(7) embedding tensor

The bosonic field content of maximal supergravity in four dimensions includes the vielbein

eµ
α, scalars that parameterise a coset representative VMij , M = 1, . . . , 56, i = 1, . . . , 8,

of E7(7)/SU(8) and vectors AM, M = 1, . . . , 56, in the fundamental representation of the
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SUSY bos. sym. M2L2 stability ref.

N = 3 SO(4) 3(1±
√

3)(1) , (1±
√

3)(6) , −9
4

(4)
, −2(18) , −5

4

(12)
, 0(22) yes [30]

(3±
√

3)(3) , 15
4

(4)
, 3

4

(12)
, 0(6)

N = 2 U(3) (3±
√

17)(1) , −20
9

(12)
, −2(16) , −14

9

(18)
, 2(3) , 0(19) yes [15] , [here]

4(1) , 28
9

(6)
, 4

9

(12)
, 0(9)

N = 1 G2 (4±
√

6)(1) , −1
6(11±

√
6)(27) , 0(14) yes [4]

1
2(3±

√
6)(7) , 0(14)

N = 1 SU(3) (4±
√

6)(2) , −20
9

(12)
, −2(8) , −8

9

(12)
, 7

9

(6)
, 0(28) yes [here]

6(1) , 28
9

(6)
, 25

9

(6)
, 2(1) , 4

9

(6)
, 0(8)

N = 0 SO(7)+ 6(1) , −12
5

(27)
, −6

5

(35)
, 0(7) no [3]

12
5

(7)
, 0(21)

N = 0 SO(6)+ 6(2) , −3(20) , −3
4

(20)
, 0(28) no [3]

6(1) , 9
4

(12)
, 0(15)

N = 0 G2 6(2) , −1(54) , 0(14) yes [4]

3(14) , 0(14)

N = 0 SU(3) see (3.44) yes [here]

see (3.45)

N = 0 SU(3) see (3.46) yes [here]

see (3.47)

N = 0 SO(4) see (5.12) yes [here]

see (5.13)

Table 1. All critical points of D = 4 N = 8 dyonically-gauged-ISO(7) supergravity, that preserve

at least SU(3) and at least a certain SO(4) (see section 5) within SO(7) ⊂ ISO(7). All points are

AdS. For each point it is indicated the residual supersymmetry and bosonic symmetry, the scalar

(upper row) and vector (lower row) mass spectra with the corresponding multiplicities, its stability

and the reference where it was first found. See tables 3 and 4 for their location in scalar space and

for their cosmological constants.

– 4 –



J
H
E
P
0
2
(
2
0
1
6
)
0
7
9

U-duality group E7(7), with two-form field strengths HM
(2). In the presence of magnetic

charges, as it will be the case in this work, a set of two-form potentials1 Bα, α = 1, . . . , 133,

in the adjoint of E7(7) and with three-form field strengths H(3)α, is generically required by

gauge invariance [22, 23]. A gauging-dependent projection of the two-form potentials Bα
typically enters the D = 4 Lagrangian and the field strengths HM

(2) of the vectors.

More generally, these 56 vectors AM and 133 two-forms Bα are the first two sets of

fields in an E7(7)-covariant tensor hierarchy [24, 25] that further includes 912 three-form

potentials CαM with four-form field strengths H(4)α
M, and 133+8645 four-form potentials.

Like for the lower rank forms, certain gauging-dependent projections of the three-form

potentials CαM enter the three-form field strengths H(3)α, and so on. Obviously, not all the

fields in the tensor hierarchy carry independent degrees of freedom: the higher rank forms

can be dualised into scalars and their derivatives. This was discussed at length in [26], where

the tensor hierarchy equipped with these dualisations was dubbed the ‘duality hierarchy’.

It is possible to write a generic N = 8 gauged supergravity Lagrangian that includes higher-

rank fields in the E7(7) tensor hierarchy [26]. This Lagrangian reduces, after imposing the

duality relations, to the conventional Lagrangian [22] containing only the metric, scalars,

vectors and the two-forms switched on by magnetic gaugings. In section 2.3 we will write

the Lagrangian for the dyonic ISO(7) gauging in the formulation of [22], although we will

still find it useful to consider, in section 2.2, a (restricted) duality hierarchy containing

forms of higher rank.

To conclude this summary of the N = 8 field content, recall that the fermionic sector

contains the gravitino ψiµ and spin 1/2 fields χijk, in the 8 and 56 of the R-symmetry

group SU(8), respectively. Both fermions are chiral, e.g., γ5 ψ
i
µ = ψiµ, with γ5 = iγ0γ1γ2γ3

the chirality operator and γα the Cliff(1, 3) matrices. Recall that, in four dimensions,

charge conjugation reverses the fermion chirality. Following convention, we denote negative

chirality spinors with lower SU(8) indices, γ5 ψµi = −ψµi.
In order to formulate the ISO(7) gauging, it is natural to branch out the above E7(7)-

covariant bosonic field content into representations of SL(7), given that ISO(7) is contained

in E7(7) through the chain2

ISO(7) ≡ SO(7) nR7 ⊂ SL(7) nR7 ⊂ GL(7) nR7 ⊂ SL(8) ⊂ E7(7) . (2.1)

For this purpose, we find it useful to introduce fundamental SL(8) indices A,B = 1, . . . , 8,

and a collective index Λ ≡ [AB] = 1, . . . , 28. For SL(7), we only need to introduce funda-

mental indices, I = 1, . . . , 7. The 56 vectors, for example, branch as

AM = (AΛ , ÃΛ) = (AAB , ÃAB) = (AIJ ,AI , ÃIJ , ÃI) . (2.2)

We have dropped the ‘8’ label in AI8 and ÃI8, and have put tildes on the magnetic

vectors. Although the tildes are redundant with the lower position of the indices, we find

1The flat, SO(1, 3) index α on eµ
α should not cause any confusion with the E7(7) adjoint index on Bα.

Note also that D = 4 vectors and two-form potentials were denoted with straight, rather than calligraphic,

characters in [15].
2We will not keep track of charges under the SO(1, 1) that extends SL(7) into GL(7) in the chain (2.1).

This SO(1, 1) does not play a role in the gauged ISO(7)c theory. See nevertheless (C.43), (C.44).
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this emphatic notation visually useful. Similarly, the 133 two-form, Bα, and 912 three-

form, CαM, potentials branch as well into SL(7) representations: see equation (C.43) for

the relevant decompositions.

In N = 8 supergravity, gaugings are completely specified by the embedding tensor

ΘM
α [22]. This determines the embedding of the gauge group into the E7(7) duality group.

Linear constraints enforce ΘM
α to lie generically in the 912 of E7(7), and quadratic con-

straints (see equation (C.6)) ensure the consistency of the gauging [22, 23]. Fixing the

gauge group to be ISO(7), the linear constraint reduces the embedding tensor to lie in

the 28 + 1 of SL(7) and the quadratic constraint allows for the following non-vanishing

components of ΘM
α = ( ΘΛ

α , ΘΛα ) only:

Θ
K

[IJ ] L = 2 δK[I δJ ]L , Θ
8

[I8] K = −δIK and Θ[I8] 8
K = c δIK , (2.3)

see [3]. Here, c is an arbitrary real constant. It was shown in [2] that all non-vanishing

values of c lead to equivalent theories up to a rescaling of the gauge coupling g. Therefore,

for g 6= 0, there exist two possible ISO(7) gaugings of D = 4 N = 8 supergravity [2]: c = 0

and c 6= 0. The first two components in (2.3), associated to the 28, couple to the electric

vectors, while the last component, related to the singlet, couples to the magnetic vectors.

Strictly speaking, only SO(7) singlets enter (2.3). In particular, in the first two components,

only the singlet in the decomposition of the 28 of SL(7) under SO(7) is involved, and is

realised as a Kronecker delta with two lower indices. We nevertheless find it useful to refer

to the electric, ΘΛ
α, and magnetic, ΘΛα, components of (2.3) as the 28 and singlet of

SL(7), respectively.

The physical difference between the c = 0 and c 6= 0 ISO(7) gaugings is most easily

seen by looking at the covariant derivatives. Denoting by g the (electric) gauge coupling

and introducing a magnetic gauge coupling m through

m ≡ g c , (2.4)

the covariant derivatives induced by the ISO(7) embedding tensor (2.3) are

D = d − gAIJ t[IK δJ ]K +
(
g δIJ AI −m ÃJ

)
t8
J . (2.5)

The AIJ terms can be equivalently written using the 48 SL(7) generators tI
J − 1

7 tK
K δJI .

These, together with the 7′ generators t8
J , generate the SL(7) n R7 subgroup of E7(7)

in (2.1). See (C.3), (C.4) for the expressions of the E7(7) generators (tα)M
N in the funda-

mental representation, in the SL(8) basis. In agreement with the table on page 37 of [22],

the embedding tensor components in the 28 couple the 21′ electric vectors AIJ to the 48

generators tI
J − 1

7 tK
K δJI , and the 7′ electric vectors AI to the 7′ generators t8

J , while the

singlet component of the embedding tensor couples the 7 magnetic vectors ÃI to the 7′

generators t8
J whenever c 6= 0. The choice c = 0 in (2.3) thus leads to the purely electric

ISO(7) gauging constructed in [21] by other methods. For c 6= 0, the gauging is dyonic in

the symplectic frame where (2.3) is expressed: the R7 translations of ISO(7) are gauged

dyonically. The rotations SO(7) are only gauged electrically, though: the constraints on

the ISO(7) embedding tensor set to zero the 28′ components that would induce a magnetic

– 6 –
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gauging of SO(7), as well as the 7′, see the table in [22]. Thus, the 21 magnetic vectors ÃIJ
do not participate in the gauging. Observe, finally, that the combinations TIJ ≡ 2 t[I

K δJ ]K

and TI ≡ t8
J δJI in (2.5) correspond to the SO(7) and R7 generators of the gauge group

ISO(7) = SO(7) nR7, see (C.12).

Indices of SL(7) cannot be raised or lowered. For the ISO(7) gauging, these can be

identified with SO(7) indices upon contraction with the embedding tensor. Even in this

case, we will refrain from raising and lowering them with the SO(7) metric δIJ .

2.2 A restricted duality hierarchy

In this section, we consider a certain subset of fields in the SL(7)-branched out tensor

hierarchy that includes all 56 → (21′ + 7′) + (21 + 7) electric and magnetic vectors, but

excludes all of the four-forms and most of the SL(7)-covariant two-forms and three-forms

that respectively arise in the branching of the 133 and 912 of E7(7) under SL(7). It only

includes the two-forms associated to the generators of SL(7) n R7 and the three-forms in

the conjugate representation of the electric part of the embedding tensor. Specifically, we

wish to consider the following N = 8 bosonic field content, in SL(7) representations,

1 metric : ds2
4

21′ + 7′ + 21 + 7 coset representatives : VIJ ij , VI8 ij , ṼIJ ij , ṼI8ij ,
21′ + 7′ + 21 + 7 vectors : AIJ , AI , ÃIJ , ÃI ,

48 + 7′ two-forms : BIJ , BI ,
28′ three-forms : CIJ ,

(2.6)

along with the fermions ψiµ and χijk in the 8 and 56 of SU(8). Note that AIJ ≡ A[IJ ], but

CIJ ≡ C(IJ). The vectors AIJ and AI can alternatively be considered to lie respectively in

the adjoint and fundamental of SO(7), as they must for the ISO(7) = SO(7) nR7 gauging.

The representations shown for the coset representatives correspond to their SL(7) indices

I = 1, . . . , 7. Unlike for the vectors and two-forms, we have kept the label ‘8’ in them that

comes from the branching (2.1) through SL(8). Their antisymmetric upper (lower) indices

ij label the 28 (28) of SU(8).

Considering the field content (2.6) requires some justification, since it contains more

fields than necessary to write the ISO(7)-gauged Lagrangian in the formulation of [22] (see

section 2.3), yet does not include all the fields in the full tensor hierarchy. The relevance

of this field content will only become apparent when we discuss the full embedding of

the ISO(7) gauging into type IIA [16]. It is nevertheless still possible to justify the self-

consistency of the field content (2.6) from a purely four-dimensional perspective. As we

will next show, for the gm 6= 0 ISO(7) gauging, (2.6) defines a consistent subsector of the

full E7(7) duality hierarchy [26], in the conventional sense. Namely, the Bianchi identities

of the p-forms, p = 1, 2, 3 in (2.6), the duality relations that these forms satisfy together

with the metric and scalars, their equations of motion and supersymmetry variations, all

close among themselves. This restricted field content preserves, of course, full N = 8

supersymmetry since we are also keeping the 8 gravitini. The rest of this subsection will

be devoted to show the closure of the Bianchi identities and duality relations, while the

closure of the supersymmetry variations will be verified in section 2.5.

– 7 –
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In order to show the closure of the Bianchi identities, we first compute the field

strengths of the p-form potentials in (2.6) specified by the ISO(7)c gauging (2.3). The

two-form field strengths of the vectors are given by

HIJ(2) = dAIJ−g δKLAIK ∧ ALJ ,

HI(2) = dAI−g δJK AIJ ∧ AK+
1

2
mAIJ ∧ ÃJ+mBI ,

H̃(2)IJ = dÃIJ+g δK[I AKL ∧ ÃJ ]L+g δK[I AK ∧ ÃJ ]−m ÃI ∧ ÃJ+2g δK[I BJ ]
K ,

H̃(2)I = dÃI−
1

2
g δIJ AJK ∧ ÃK+g δIJ BJ ,

(2.7)

the three-form field strengths of the two-form potentials are

H(3)I
J = DBIJ +

1

2
AJK ∧ dÃIK +

1

2
AJ ∧ dÃI +

1

2
ÃIK ∧ dAJK +

1

2
ÃI ∧ dAJ

− 1

2
g δKLAJK ∧ ALM ∧ ÃIM −

1

2
g δKLAJK ∧ AL ∧ ÃI

+
1

6
g δIK AJL ∧ AKM ∧ ÃLM −

1

3
g δIK A(J ∧ AK)L ∧ ÃL

− 1

2
mAJK ∧ ÃI ∧ ÃK − 2g δIK CJK −

1

7
δJI (trace) ,

HI(3) = DBI − 1

2
AIJ ∧ dÃJ −

1

2
ÃJ ∧ dAIJ +

1

2
g δJK AIJ ∧ AKL ∧ ÃL ,

(2.8)

and the four-form field strengths of the three-form potentials read

HIJ(4) = DCIJ −HK(I
(2) ∧ BKJ) +H(I

(2) ∧ BJ) − 1

2
mBI ∧ BJ − 1

6
AK(I ∧ ÃKL ∧ dAJ)L

+
1

6
AIK ∧ AJL ∧ dÃKL −

1

6
AK(I ∧ ÃK ∧ dAJ) − 1

3
AK(I ∧ AJ) ∧ dÃK

− 1

6
A(I ∧ ÃK ∧ dAJ)K − 1

6
g δKLAK(I ∧ AJ)M ∧ ALN ∧ ÃMN

+
1

6
g δKLAK(I ∧ AJ) ∧ ALM ∧ ÃM −

1

6
g δKLAK(I ∧ AJ)M ∧ AL ∧ ÃM

− 1

8
mAIK ∧ AJL ∧ ÃK ∧ ÃL .

(2.9)

Following (2.5), in (2.8)–(2.9) we have defined the covariant derivatives

DBIJ ≡ dBIJ − g δKLAJK ∧ BIL − g δIK AKL ∧ BLJ − g δIK AK ∧ BJ

+m ÃI ∧ BJ −
1

7
δJI (trace) ,

DBI ≡ dBI − g δJK AIJ ∧ BK ,

DCIJ ≡ dCIJ + 2g δKLAK(I ∧ CJ)L .

(2.10)

We have obtained the two- and three-form field strengths (2.7), (2.8) by particularising to

the ISO(7)c embedding tensor (2.3) the generic expressions [23, 26] dictated by the D = 4

embedding tensor formalism (see appendix C). On the other hand, we obtained the four-

form field strength (2.9) from the IIA truncation formulae [16]. This expression is also
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compatible with that dictated by the D = 4 embedding tensor formalism, see appendix B

of [26]. Note the pure Yang-Mills form of the electric field strengths HIJ(2), in agreement

with the purely electric gauging of the SO(7) subgroup of ISO(7) when g 6= 0. The electric

field strengths HI(2) contain the contribution expected from the semidirect action of the

electric SO(7) rotations on the electric abelian translations R7, plus contributions of the

magnetic vectors ÃI and the two-forms BI due to the dyonic gauging when m 6= 0.

Introducing, from (2.5) with the generators in the appropriate representation, the

following covariant derivatives of the two-form field strengths

DHIJ(2) ≡ dHIJ(2)−2 g δKLAK[I ∧HJ ]L
(2) ,

DHI(2) ≡ dHI(2)−g δJKAIJ ∧HK(2)+g δJK AJ ∧HIK(2) −m ÃJ ∧HIJ(2) ,

DH̃(2)IJ ≡ dH̃(2)IJ+2 g δK[IAKL ∧ H̃(2)J ]L+2 g δK[IAK ∧ H̃(2)J ]−2m Ã[I ∧ H̃(2)J ] ,

DH̃(2)I ≡ dH̃(2)I−g δIJ AJK ∧ H̃(2)K ,

(2.11)

and of the three-form field strengths,

DH(3)I
J ≡ dH(3)I

J − g δKLAJK ∧H(3)I
L − g δIK AKL ∧H(3)L

J − g δIK AK ∧HJ(3)

+ m ÃI ∧HJ(3) −
1

7
δJI (trace) ,

DHI(3) ≡ dHI(3) − g δJK AIJ ∧HK(3) ,

(2.12)

we find that the Bianchi identities corresponding to the form potentials in (2.6) can be

written as

DHIJ(2) = 0 , DHI(2) = mHI(3) , DH̃(2)IJ = −2 gH(3)[I
K δJ ]K , DH̃(2)I = g δIJ HJ(3) ,

DH(3)I
J = HJK(2) ∧ H̃(2)IK +HJ(2) ∧ H̃(2)I − 2g δIK HJK(4) −

1

7
δJI (trace) , (2.13)

DHI(3) = −HIJ(2) ∧ H̃(2)J , DHIJ(4) ≡ 0 .

The Bianchi identities (2.13) indeed close among themselves, as we wanted to show. An

equivalent way of phrasing this is that (2.13) defines a free differential algebra (FDA) which

is a sub-FDA of the FDA defined by the Bianchi identities of the full tensor hierarchy.

We now turn to discuss the closure of the field content (2.6) under Hodge duality. Clo-

sure is really automatic: the magnetic two-form field strengths are dual to scalar-dependent

combinations of the electric two-form field strengths; the three-form field strengths are

dual to scalar dependent combinations of covariant derivatives of scalars; the four-form

field strengths are dual to combinations of scalars; and all vectors and scalars have been

retained in (2.6). It is nevertheless useful to write the explicit duality relations. For the

vectors and two-form potentials, these have been given in [23, 26], while for the three-form

potentials the duality relations have been given in [26]. In particular, the four-form field

strengths are dual to the derivative of the scalar potential (see (2.27) below) with respect

to the embedding tensor.

In order to write the duality relations, we need to introduce two scalar-dependent

symmetric matrices, M, real, and N , complex, respectively E7(7)- and SL(8)-covariant.
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The former is the square of the E7(7)/SU(8) coset representative, M = V Vt, and is also

related to the real and imaginary parts of the latter,

NΛΣ = RΛΣ + i IΛΣ , (2.14)

where IΛΣ is invertible and negative definite. More concretely,

MMN = 2V(M
ij VN) ij ≡

(
MΛΣ MΛ

Σ

MΛ
Σ MΛΣ

)
=

−(I +RI−1R)ΛΣ (RI−1)Λ
Σ

(I−1R)Λ
Σ −(I−1)ΛΣ

 . (2.15)

The inverse of MMN is MMN = ΩMPΩNQMPQ, with ΩMN the Sp(56,R)-invariant matrix.

From [23, 26], we obtain the following duality relations for the 56, 133 and 912 E7(7)-

covariant two-, three- and four-form field strengths,

H̃(2)Λ = RΛΣHΣ
(2) + IΛΣ ∗ HΣ

(2) , (2.16)

H(3)α =
1

12
(tα)M

PMNP ∗DMMN , (2.17)

H(4)α
M = − 1

84
(tα)P

RXNQ
SMMN

(
MPQMRS + 7 δPS δ

Q
R

)
vol4 . (2.18)

Here, XMN
P ≡ ΘM

α
(tα)N

P, see (C.8), is the contraction of the ISO(7) embedding ten-

sor (2.3) with the generators (tα)N
P of E7(7) in the fundamental representation, see (C.3),

(C.4). The duality relations for the restricted field content (2.6) simply follow from (2.16)–

(2.18) by branching the adjoint SL(8) index on the vectors as in (2.2), and restricting the

E7(7) generators to only those of SL(7) nR7:

H̃(2)IJ =
1

2
I[IJ ][KL] ∗ HKL(2) + I[IJ ][K8] ∗ HK(2) +

1

2
R[IJ ][KL]HKL(2) +R[IJ ][K8]HK(2) , (2.19)

H̃(2)I =
1

2
I[I8][KL] ∗ HKL(2) + I[I8][K8] ∗ HK(2) +

1

2
R[I8][KL]HKL(2) +R[I8][K8]HK(2) , (2.20)

H(3)I
J =

1

12
(tI

J)M
PMNP ∗DMMN − 1

7
δJI (trace) , (2.21)

H(3)
I =

1

12
(t8

I)M
PMNP ∗DMMN , (2.22)

HIJ(4) =
1

84
XNQ

S
(
(tK

(I|)P
RM|J)K N+(t8

(I|)P
RM|J)8N

)(
MPQMRS+7 δPS δ

Q
R
)
vol4 . (2.23)

In (2.23), only components MΛN in the notation of (2.15), and not MΛ
N, are contracted

with the SL(7)nR7 generators. The combination of these duality relations with the Bianchi

identities (2.13) reproduces a subset of the equations of motion: see section 2.4.

Extensions of the duality hierarchy (2.6) may be considered that are still smaller than

the full E7(7) hierarchy. A natural extension includes, besides the 28′ CIJ three-form poten-

tials in (2.6) conjugate to the electric embedding tensor, also the SL(7)-singlet three-form

potential C̃ conjugate to the singlet magnetic component of the embedding tensor. Consis-

tency then requires that the singlet two-form potential B that renders BIJ traceful is also
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retained. The extension of the Bianchi identities (2.13) to also include these singlets reads

DH(3) = HIJ(2) ∧ H̃(2)IJ +HI(2) ∧ H̃(2)I − 2g δIJ HIJ(4) − 14m H̃(4) ,

DH̃(4) ≡ 0 ,
(2.24)

while their duality relations are, from (2.17) and (2.18),

H(3) = − 1

12
(t8

8)M
PMNP ∗DMMN ,

H̃(4) =
1

84
XNQ

S(t8
K)P

RM8K
NMPQMRS vol4 .

(2.25)

We have used tI
I = −t88 and Tr(tI

J t8
K) = Tr(t8

J t8
K) = 0 to simplify the results.

For H̃(4) in (2.25), components MΛ
N, and not MΛN, in the notation of (2.15), are now

contracted with the R7 generators, opposite to what happened for HIJ(4) in (2.23). Although

the singlet C̃ does not play a role in the restricted duality hierarchy (2.6), its dualised field

strength H̃(4) in (2.25) is still crucial to recover the scalar potential, as we will show in the

next subsection. The significance of this asymmetric role of C̃ for the massive type IIA

embedding of dyonic ISO(7) supergravity will be discussed in [16].

2.3 Bosonic Lagrangian

We will now write the Lagrangian of N = 8 dyonically gauged ISO(7) supergravity, focusing

on the bosonic terms. While it is possible to write a Lagrangian that includes higher rank

fields in the E7(7) tensor hierarchy (or in the restricted hierarchy (2.6)) supplemented by

duality relations [26], we will instead write a Lagrangian in the formulation of [22]. The

latter includes, besides the metric and scalars, only some of the vectors and two-forms

in (2.6). More concretely, the Lagrangian can be expressed in terms of the 21′+ 7′ electric

vectors AΛ = (AIJ ,AI ) and their field strengths HΛ
(2) = (HIJ(2) , HI(2) ), the 7 magnetic

vectors ÃI and their field strengths H̃(2)I , and the 7′ two-form potentials BI .
The bosonic Lagrangian of N = 8 dyonically gauged ISO(7) supergravity is

L = R vol4 −
1

48
DMMN ∧ ∗DMMN +

1

2
IΛΣHΛ

(2) ∧ ∗H
Σ
(2) +

1

2
RΛΣHΛ

(2) ∧H
Σ
(2) (2.26)

− V vol4 −m
[
BI ∧

(
H̃(2)I −

g

2
δIJBJ

)
− 1

4
ÃI ∧ ÃJ ∧

(
dAIJ +

g

2
δKLAIK ∧ AJL

)]
.

See appendix C for some details of its derivation. The second line of (2.26) is entirely due

to the ISO(7) gauging. It contains, on the one hand, a scalar potential,

V =
g2

168
XMP

RXNQ
SMMN

(
MPQMRS + 7 δPS δ

Q
R

)
, (2.27)

with the X-tensor in (C.8) particularised for the ISO(7)c embedding tensor (2.3). Upon

using (2.4), this scalar potential contains pieces in g2, gm and m2. On the other hand, the

second line of (2.26) contains some topological terms whenever m 6= 0. Note, in particular,

the topological mass gmδIJ BI ∧ BJ , which generalises a similar term in N = 2 compact-

ifications of massive type IIA on Calabi-Yau [31]. In the first line, the only contributions
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from the gauging appear in the covariant derivatives (2.5) and the gauging-modified field

strengths of the electric vectors given in (2.7). In the SL(7) symplectic frame we are using,

the scalar-dependent matrices M, R and I given in (2.15) are independent of the gauging

and, in particular, of the dyonically-gauging parameter c = m/g.

The generic 912 four-form field strengths (2.18) and the scalar potential (2.27) are

related through the embedding tensor via

ΘM
αH(4)α

M = −2V vol4 . (2.28)

Combining (2.23) and the second equation in (2.25), it is easy to show that this relation

simplifies for the ISO(7)c gauging to

g δIJ HIJ(4) +m H̃(4) = −2V vol4 . (2.29)

In particular, the dualisation of both four-forms HIJ(4) and H̃(4) contains terms linear in g

and m; only when combined through (2.29) is the quadratic dependence of V on g and m

reproduced.

The theory (2.26) with (2.5), (2.7) admits three different smooth limits of the coupling

constants g and m. In the limit m→ 0, g 6= 0, Hull’s purely electric ISO(7) gauging [21] is

recovered. This theory arises from consistent truncation of massless type IIA supergravity

on S6 [32]. The limit g → 0, m 6= 0 corresponds to a purely magnetic gauging of a nilpotent

extension of U(1)6 × R with 21 non-compact central charges. This theory arises as a T 6

truncation of massive type IIA. Finally, the g → 0, m→ 0 limit yields the ungauged N = 8

supergravity [33], which is well known to arise from D = 11 supergravity on T 7 [33], or

massless type IIA on T 6.

2.4 SO(7)-covariant critical point conditions

The combination of the duality relations with the Bianchi identities of the N = 8 tensor

hierarchy gives rise to the vector equations of motion and (projections of) the scalar equa-

tions of motion [26]. In the restricted duality hierarchy (2.6), all vectors were retained.

Accordingly, the duality conditions (2.19), (2.20) reproduce all of the vector equations of

motion, as derived from the Lagrangian (2.26), upon substitution into (the first line of)

the Bianchi identities (2.13). In contrast, not all of the three-form field strengths of the

full hierarchy were retained in (2.6). Thus, it is interesting to enquire to which scalar equa-

tions of motion are their Bianchi identities related to when combined with the dualisation

conditions. As we will now show, these are related to the equations of motion of the proper

(parity even) scalars of E7(7)/SU(8). We will focus on maximally symmetric solutions for

which the scalar equations of motion reduce to the extremisation conditions for the scalar

potential V .

For this particular discussion, we will incorporate the singlet three-form H(3) in (2.24),

(2.25) along with the three-forms H(3)I
J , HI(3) of the restricted duality hierarchy (2.6). Sub-

stituting the duality relations (2.21)–(2.23), (2.25) into the Bianchi identities (2.13), (2.24),

we obtain a set of 1 + 48 + 7′ equations, in representations of SL(7). From the discussion

of [26] adapted to our context, these correspond to the projections to the generators of
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GL(7)nR7 ⊂ E7(7) of the equations of motion of the E7(7)/SU(8) scalars. Further branch-

ing into representations of SO(7) and restricting to zero tensors and constant scalars (thus,

critical points of V ), these projections become

1 :
(
g δIJ HIJ(4) + 7m H̃(4)

)
|0 = 0 , (2.30)

27 :

(
HIJ(4) −

1

7
δIJ δKLHKL(4)

)
|0 = 0 , (2.31)

21 : identically zero , (2.32)

7 : identically zero , (2.33)

where |0 denotes evaluation at a critical point of V . In these equations, we have used the

four-form field strengths HIJ(4) and H̃(4) as shorthand for the scalar functions on the r.h.s. of

the duality relations (2.23), (2.25). Equations (2.32), (2.33) correspond to projections to

the 21 + 7 generators of the gauge group ISO(7). They turn out to be identically zero, in

agreement with the scalar potential being invariant under the gauge group.

Although originally obtained as projections, the SO(7)-covariant equations (2.30)–

(2.33) are in fact in one-to-one correspondence with extremisation conditions with respect

to definite scalars. The singlet equation (2.30) corresponds3 to the extremisation condition

with respect to the SO(1, 1) dilaton that extends SL(7) into GL(7). Equation (2.31), in

the symmetric traceless of SO(7), corresponds to the extremisation of the potential with

respect to the 27 scalars of SL(7)/SO(7). The 7 scalars of R7 ⊂ ISO(7) are Stückelberg

and therefore do not enter the scalar potential, hence they do not give rise to extremisation

conditions. Put together, equations (2.30), (2.31), (2.33) thus correspond to the conditions

of extremisation of the potential V with respect to the 35 (parity even) scalars4 of GL(7)n
R7/SO(7) ⊂ E7(7)/SU(8). Note, incidentally, that these equations also depend typically

on the (parity odd) pseudoscalars. Finally, the 21 identities (2.32) can be reinterpreted as

being trivial in that the corresponding compact SO(7) scalars have been modded out from

the coset E7(7)/SU(8).

2.5 Supersymmetry transformations

We conclude our characterisation of ISO(7)-dyonically-gauged N = 8 supergravity with

the supersymmetry transformations. The only effects of the gauging on the supersym-

metry variations of the ungauged theory occur in the fermion variations, through the

gauging-modified field strengths of the vectors and new (‘shift’) scalar-dependent terms.

The supersymmetry variations of the bosons are the same in gauged and in ungauged su-

pergravity. We will nevertheless find it useful to spell out the supersymmetry variations of

the SL(7)-covariant bosonic fields in (2.6) to show that they only involve fields within the

same set. See [22] for the N = 8 supersymmetry transformations of the fermions.

3We thank Gianluca Inverso for pointing out to us this interpretation of eq. (2.30).
4Alternatively, these scalars can be viewed as parameterising the coset SL(8)/SO(8) ⊂ E7(7)/SU(8).
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The N = 8 supersymmetry transformations for the vectors AM are linear in the scalar

coset representative5 VMij [33], which also sits in the 56 of E7(7). The transformations

of the 133 two-form potentials Bα were worked out in [22], where they were shown to be

quadratic in the coset representative. In order to write the variations of the 48 + 7′ two-

forms in (2.6) we will only have to branch the result of [22] accordingly and select these

SL(7) representations. The N = 8 supersymmetry variations of the 912 three-forms CαM

have not appeared in the literature.6 We conjecture these variations to be

δCµνραM = (tα)R
P ΩRQ ΩMN

(4i

7
VN jl VPlk VQ ik ε̄i γ[µν ψ

j
ρ] − i

√
2

6
VNhi VP [ij| VQ |kl] ε̄h γµνρ χjkl

+ h.c.
)

+ 3B[µν|α δAM
|ρ] − (tα)R

P ΩPNAM
[µA

R
ν δAN

ρ] , (2.35)

up to a possible symmetrisation in ε̄(i γ[µν ψ
j)
ρ] . As usual, γµ1...µp = eµ1

α1 . . . eµp
αpγα1...αp .

This conjecture passes several consistency checks. Being cubic in the coset representa-

tive, (2.35) follows the pattern of the variations of the vectors and two-forms. The terms

in B[µν|α δAM
|ρ] and AM

[µA
R
ν δAN

ρ] match the corresponding terms of the N = 1 and N = 2

three-form transformations [27, 28]. The truncation of (2.35) to one of the singlets in the

decomposition (C.43) of the 912 under SL(7) coincides with the supersymmetry variation

of the type IIA Ramond-Ramond three-form in the SO(1, 3)× SL(7)-covariant reformula-

tion of type IIA supergravity of [16]. Here, we will instead be interested in the 28′ SL(7)

components of (2.35). As we will show in [16], this too can be reproduced from consistent

truncation of massive type IIA on S6.

We can therefore specify the supersymmetry variations of the bosonic fields (2.6) in

our conventions as follows. The vielbein and scalar coset representatives transform as

δeµ
α =

1

4
ε̄i γ

α ψµ
i +

1

4
ε̄i γα ψµi ,

δVMij =
1√
2
VM kl

(
ε̄[i χjkl] +

1

4!
εijklmnpq ε̄m χnpq

)
,

(2.36)

with the fundamental E7(7) index M on the coset representative branched out into SL(7)

representations according to (C.43). For reference from [16], we do branch out the super-

5The actual E7(7)/SU(8) coset element is a 56 × 56 matrix of the form VM N. This coset representative

VM N is in a mixed basis in which the global (not underlined) and the local (underlined) indices are taken in

the SL(8) and SU(8) basis, respectively. As a result, one has the decomposition VMN = (VMij ,VM ij), with

VM ij = (VMij)∗ , together with VMij = (Ṽ ij
Λ ,VΛ ij) and VM ij = (ṼΛ ij ,VΛ

ij). The change of basis between

the SL(8) and SU(8) basis is given in terms of SO(8)-invariant real tensors [ΓAB ]ij , namely,

RM
N =

1

2
√

2
[ΓAB ]ij ⊗

(
1 1

−i i

)
, (2.34)

where A = 1, . . . , 8 is a fundamental SL(8) index and i = 1, . . . , 8 is a fundamental SU(8) index. This is

compatible with identifying the 8 of SL(8) with the 8v of SO(8) and the 8 of SU(8) with the chiral 8s of

SO(8). The same change of basis (2.34) applies to local (underlined) indices.
6Results are known for less than maximal supersymmetry: the supersymmetry transformations of the

three-form potentials for N = 1 and N = 2 hierarchies have been computed in [27] and [28], respectively.
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symmetry variations of the vectors under SL(7):

δAµIJ = iVIJ ij
(
ε̄iψµ

j +
1

2
√

2
ε̄kγµχ

ijk

)
+ h.c. ,

δAµI = iVI8ij
(
ε̄iψµ

j +
1

2
√

2
ε̄kγµχ

ijk

)
+ h.c. ,

δÃµ IJ = −i ṼIJ ij
(
ε̄iψµ

j +
1

2
√

2
ε̄kγµχ

ijk

)
+ h.c. ,

δÃµ I = −i ṼI8 ij
(
ε̄iψµ

j +
1

2
√

2
ε̄kγµχ

ijk

)
+ h.c..

(2.37)

The supersymmetry transformations of the 48 + 7′ two-forms read

δBµν J I =

[
− 2

3

(
VIKjk ṼJKik + VI8jk ṼJ8

ik + ṼJK jk VIKik + ṼJ8 jk VI8ik
)
ε̄iγ[µψ

j
ν]

−
√

2

3

(
VIKij ṼJK kl + VI8ij ṼJ8 kl

)
ε̄[iγµνχ

jkl] + h.c.

]
+
(
AIK[µ δÃν]JK +AI[µ δÃν]J + Ã[µ| JK δA|ν]

IK + Ã[µ| J δA|ν]
I
)
− 1

7
δIJ (trace) ,

δBµνI =

[
2

3

(
VIJ jk ṼJ8

ik + ṼJ8 jk VIJ ik
)
ε̄iγ[µψ

j
ν] +

√
2

3
VIJ ij ṼJ8 kl ε̄

[iγµνχ
jkl] + h.c.

]
−
(
AIJ[µ δÃν]J + Ã[µ| J δA|ν]

IJ
)
. (2.38)

Note the same pattern of SL(7) indices in coset and vector contributions: VIK ṼJK parallels

AIK δÃJK , etc. Finally, the variations that follow from (2.35) for the 28′ three-forms are

δCµνρIJ =

[
− 4i

7

(
VK(I

jl

(
VJ)L lk ṼKL ik + ṼKLlk VJ)L

ik

)
+ VK(I

jl

(
VJ)8 lk ṼK8 ik + ṼK8

lk VJ)8
ik

)
+ V(I|8

jl

(
V |J)K lk ṼK8 ik + ṼK8

lk V |J)K
ik

))
ε̄iγ[µνψ

j
ρ]

+ i

√
2

3

(
VK(I|hi V |J)L

[ij| ṼKL|kl] + VK(Ihi VJ)8
[ij| ṼK8|kl] (2.39)

+ V(I|8hi V |J)K
[ij| ṼK8|kl]

)
ε̄hγµνρχ

jkl + h.c.

]
− 3

(
B[µν|K

(I δAJ)K
|ρ] + B[µν

(I δAJ)
ρ]

)
+ AK(I

[µ

(
AJ)L
ν δÃρ]KL + ÃνKL δAJ)L

ρ]

)
+AK(I

[µ

(
AJ)
ν δÃρ]K + ÃνK δAJ)

ρ]

)
+ A(I

[µ

(
AJ)K
ν δÃρ]K + ÃνK δAJ)K

ρ]

)
.

Again, the SL(7) structure of indices in coset and vector contributions is the same.

Equations (2.36)–(2.39) show that the supersymmetry variations of the bosonic

fields (2.6) close among themselves and into the fermions ψiµ, χijk. In turn, the super-

symmetry variations of the fermions close into scalars and field strengths of vectors, all

of which were retained in (2.6). This shows the consistency of the subsector (2.6) of the
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Field SO(7) SO(6) G2 SO(4) = SO(3)d × SO(3)R SU(3)

scalars 1 + 7 (3×) 1 + (2×) 6 (2×) 1 (4×) (1,1) + (4×) (2,2) (6×) 1 + (4×) 3 + (4×) 3

+ 27 + 20 + 15 + (2×) 7 + (2×) (3,3) + (2×) (3,1) + (2×) 6 + (2×) 6

+ 35 + 10 + 10 + (2×) 27 + (2×) (4,2) + (2×) (5,1) + (2×) 8

AIJ 21 15 + 6 14 + 7 (1,3) + (2×) (3,1) (2×) 3 + (2×) 3̄

+ (2,2) + (4,2) + 8 + 1

AI 7 6 + 1 7 (2,2) + (3,1) 3 + 3̄ + 1

ÃIJ 21 15 + 6 14 + 7 (1,3) + (2×) (3,1) (2×) 3 + (2×) 3̄

+ (2,2) + (4,2) + 8 + 1

ÃI 7 6 + 1 7 (2,2) + (3,1) 3 + 3̄ + 1

BIJ 21 1 + (2×) 6 14 + 7 (2×) (2,2) + (2×) (4,2) (2×) 1 + (3×) 3 + (3×) 3̄

+ 27 + 15 + 20 + 27 + (2×) (3,1) + (1,3) + (2×) 8 + 6 + 6̄

+ (3,3) + (5,1)

+ (1,1)

BI 7 6 + 1 7 (2,2) + (3,1) 3 + 3̄ + 1

CIJ 1 + 27 (2×) 1 1 + 27 (2×) (1,1) + (2,2) + (3,3) (2×) 1 + 3 + 3̄

+ 20 + 6 + (4,2) + (5,1) + 8 + 6 + 6̄

Table 2. Branching rules of the SL(7)-covariant tensor hierarchy (2.6) for different invariant sectors

of the ISO(7)c supergravity. Only singlets are retained in each sector. Following the discussion

around (2.25), all sectors can be extended to include a singlet two-form B that makes BIJ traceful,

and a singlet three-form C̃ dual to the magnetic component of the embedding tensor.

duality hierarchy, plus fermions, at the level of the supersymmetry variations. Finally, the

supersymmetry variations of the fields that enter the Lagrangian (2.26) involve fields that

appear as well in the Lagrangian. Note, however, that the fields entering the Lagrangian

can still source the supersymmetry variations of fields not entering the Lagrangian, e.g, the

terms AI[µ δÃν]J + Ã[µ| J δA|ν]
I − 1

7 δ
I
J (trace) source the supersymmetry variation δBµν J I .

3 An N = 2 truncation: the SU(3)-invariant sector

In the remainder of the paper, we will specify the truncation of the N = 8 theory to various

interesting subsectors that preserve N = 2 and N = 1 supersymmetry and SU(3), G2, and

an SO(4) subgroup of the ISO(7) bosonic gauge symmetry. See table 2 for a summary of

the field content of these subsectors, and of the SO(7) and SO(6) further subsectors of the

SU(3) sector.

We begin by discussing the consistent truncation of the N = 8 theory to its SU(3)-

invariant sector. The analog truncation for the purely electric SO(8) gauging [20] has been

studied in [34–36] and for the dyonic SO(8) gauging [1], in [5, 7]. This sector corresponds
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to N = 2 supergravity coupled to one vector multiplet and one hypermultiplet. The

corresponding 2 + 4 real scalars take values on a submanifold

SU(1, 1)

U(1)
× SU(2, 1)

SU(2)×U(1)
(3.1)

of E7(7)/SU(8) which is the product of two well known special Kähler (SK) and quaternionic

Kähler (QK) manifolds. The gauging inherited in this sector from the N = 8 ISO(7)c
gauging is an abelian U(1) × SO(1, 1)c dyonic gauging in the hypersector. In section 3.1

we construct the Lagrangian of this theory, including an explicit parameterisation for the

scalar kinetic terms and potential, and discuss the duality hierarchy in section 3.2. We then

give a superpotential and the canonical N = 2 formulations of this sector in sections 3.3

and 3.4, respectively. Some further subsectors are discussed in 3.5 and the vacuum structure

is analysed in 3.6. See also appendix D.1 for the explicit expression of the SU(3)-invariant

scalar matrix MMN, and appendix B for the relation of this sector to the similar model

that arises from consistent truncation of M-theory on an arbitrary Sasaki-Einstein seven-

manifold [37].

3.1 Construction and bosonic Lagrangian

The embedding of the relevant SU(3) into SO(7) ⊂ ISO(7) can be described by the chain

SO(7) ⊃ SO(6) ∼ SU(4) ⊃ SU(3) , (3.2)

so that 7→ 1 + 3 + 3̄. In terms of SL(8) indices, we have a splitting A→ (a⊕ 8)⊕ (1⊕ â)

with a = 2, 4, 6 and â = 3, 5, 7, followed by a complexification of the form

z0 = x1 + i x8 , z1 = x2 + i x3 , z2 = x4 + i x5 , z3 = x6 + i x7 , (3.3)

so that SU(3) is realised as a singlet (z0) and a triplet (z1,2,3) of complex coordinates. When

restricted to this sector, the retained bosonic fields take values along the SU(3)-invariant

metric7 δij , the two-form Jij , i = 2, . . . , 7, and the complex totally antisymmetric tensor

of SU(3) (or equivalently, a complex decomposable three-form Ωijk, see appendix D.1). In

fact, only the scalar matrixMMN has components along the latter. The fields in the N = 8

duality hierarchy (2.6) give rise to the following SU(3)-invariant fields:

metric : gµν
scalars : MMN → (χ, ϕ) and (φ, a, ζ, ζ̃) , [ see appendix D.1 ]

vectors : AI → A1 ≡ A0

AIJ → Aij = A1 J ij

ÃI → Ã1 ≡ Ã0

ÃIJ → Ãij = 1
3Ã1 Jij

two-forms : BI → B1 ≡ B0

BIJ → B1
1 = 6

7 B1 , Bij = −1
7 B1 δ

j
i + 1

3B2 Ji
j

three-forms : CIJ → C11 ≡ C0 , Cij = C1 δij ,

(3.4)

7Indices i, j in this section and in appendix D.1 are in the fundamental of the SO(6) in the chain (3.2).

These indices should not cause any confusion with the SU(8) indices of the N = 8 coset representative VMij

of section 2.
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in agreement with the number of singlets in the last column of table 2. The real scalars

(χ, ϕ) and (φ, a, ζ, ζ̃) respectively parameterise each factor of the scalar manifold (3.1).

The superscript Λ = 0, 1 on the electric vectors AΛ labels them as the graviphoton and the

vector in the vector multiplet, respectively, and similarly for their magnetic counterparts

ÃΛ. The superscripts or subscripts on the two- and three-forms are just labels with no

further meaning. The vectors A0, Ã0 gauge dyonically the SO(1, 1)c generated by T1

in (C.11), while A1 gauges electrically the U(1) generated by T23 + T45 + T67 in (C.11).

Along with the metric and the six scalars, only A0, A1, Ã0, their field strengths and B0

enter the SU(3)-invariant bosonic Lagrangian, see (3.7). Finally, the branching of the

gravitini, in the 8 of SU(8), under this SU(3) produces two singlets, in agreement with the

N = 2 supersymmetry of this sector.

We can construct an explicit parameterisation of the scalar manifold (3.1) of this sector

as follows. We first identify the generators (C.3), (C.4) of E7(7) that are invariant under

the SU(3), (3.2), (2.1), under consideration. These are

g1 = t2
2 + t4

4 + t6
6 + t3

3 + t5
5 + t7

7 − 3 (t1
1 + t8

8) ,

g2 = g
(−)
2 + g

(+)
2 = (t1

8) + (t8
1) ,

g3 = t1
1 − t88 ,

g4 = g
(−)
4 + g

(+)
4 = (t4567 + t2367 + t2345) + (t1238 + t1458 + t1678) ,

g5 = g
(−)
5 + g

(+)
5 = (t1246 − t1257 − t1347 − t1356) + (t8357 − t8346 − t8256 − t8247) ,

g6 = g
(−)
6 + g

(+)
6 = (t3571 − t3461 − t2561 − t2471) + (t8246 − t8257 − t8347 − t8356) , (3.5)

where g1, g3 are Cartan generators and a subscript (±) indicates a positive or negative

root. The exponentiations

VSK = e−12χ g
(+)
4 e

1
4
ϕg1 and VQK = ea g

(+)
2 − 6 ζ g

(+)
5 − 6 ζ̃ g

(+)
6 eφ g3 (3.6)

lead to coset representatives for each factor in (3.1), and the total representative is sim-

ply the product8 V = VSK VQK. Finally, the scalar matrix is the quadratic combination

M = V Vt. See appendix D.1 for its explicit expression.

With this scalar parameterisation, the Lagragian of the SU(3)-invariant sector can be

written as

L = (R− V ) vol4 +
3

2

[
dϕ ∧ ∗dϕ+ e2ϕ dχ ∧ ∗dχ

]
+ 2 dφ ∧ ∗dφ+

1

2
e2φ

[
Dζ ∧ ∗Dζ +Dζ̃ ∧ ∗Dζ̃

]
+

1

2
e4φ

[
Da+

1

2
(ζDζ̃ − ζ̃Dζ)

]
∧ ∗
[
Da+

1

2
(ζDζ̃ − ζ̃Dζ)

]
+

1

2
IΛΣH

Λ
(2) ∧ ∗HΣ

(2) +
1

2
RΛΣH

Λ
(2) ∧HΣ

(2) −mB0 ∧ dÃ0 −
1

2
gmB0 ∧B0 ,

(3.7)

8This coset is in the SL(8) basis. This is enough for our purposes, since we will not discuss couplings to the

fermions. Should one be interested in, for example, restricting the N = 8 supersymmetry variations (2.36)–

(2.39) to the SU(3)-invariant sector, a rotation (2.34) of this coset representative would be needed.
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and follows by truncating (2.26) according to (3.4). Here, the covariant derivatives are

Da = da + g A0 −mÃ0 , Dζ = dζ − 3 g A1 ζ̃ , Dζ̃ = dζ̃ + 3 g A1 ζ , (3.8)

and the electric vector field strengths

H0
(2) = dA0 +mB0 , H1

(2) = dA1 , (3.9)

follow from (2.7). The gauge kinetic matrix in (3.7) is obtained from the scalar matrix M
through (2.15). In the scalar parameterisation that we are using here, it explicitly reads

NΛΣ = RΛΣ + i IΛΣ =
1

(2 eϕ χ+ i)

(
− e3ϕ

(eϕ χ−i)2
3 e2ϕ χ

(eϕ χ−i)
3 e2ϕ χ

(eϕ χ−i) 3 (eϕ χ2 + e−ϕ)

)
. (3.10)

Note that IΛΣ is negative definite so that the vector kinetic terms have the correct sign.

Finally, the explicit expression of the scalar potential in (3.7) can be derived from (2.27)

to be

V =
1

2
g2
[
e4φ−3ϕ

(
1 + e2ϕχ2

)3 − 12 e2φ−ϕ(1 + e2ϕχ2
)
− 24 eϕ

+
3

4
e4φ+ϕ

(
ζ2 + ζ̃2

)2(
1 + 3 e2ϕχ2

)
+ 3 e4φ+ϕ

(
ζ2 + ζ̃2

)
χ2
(
1 + e2ϕχ2

)
−3 e2φ+ϕ

(
ζ2 + ζ̃2

)(
1− 3 e2ϕχ2

)]
− 1

2
gmχe4φ+3ϕ

(
3
(
ζ2 + ζ̃2

)
+ 2χ2

)
+

1

2
m2 e4φ+3ϕ .

(3.11)

Out of the six real scalars in this sector, this potential effectively depends on only four.

The non-compact Stückelber scalar a and the U(1) phase β of the complex combination

ζ̃ + i ζ = 2 ρ ei β , (3.12)

do not enter the potential. As we will discuss in section 3.6, this potential displays a rich

structure of critical points, both supersymmetric and non-supersymmetric, when gm 6= 0.

3.2 Duality hierarchy

The duality hierarchy (2.6) in this sector reduces to the field content (3.4), which includes

only singlets in the branching of SL(7) under SU(3). The formulae in section 2.2 simplify

accordingly. The electric vector field strengths have already been given in (3.9), and their

magnetic counterparts are

H̃(2)0 = dÃ0 + gB0 , H̃(2)1 = dÃ1 − 2gB2 . (3.13)

The field strengths (2.8) for the two-form potentials (B0 ; B1, B2) reduce to

H0
(3) = dB0 ,

H(3)1 = DB1+
1

2

(
A0 ∧ dÃ0+Ã0 ∧ dA0− 1

3
A1 ∧ dÃ1−

1

3
Ã1 ∧ dA1

)
+2g(C1−C0) ,

H(3)2 = dB2 ,

(3.14)
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with DB1 = dB1 − gA0 ∧ B0 + mÃ0 ∧ B0, and those (2.9) for the three-form potentials

(C0, C1) read

H0
(4) = dC0 +H0

(2) ∧B0 − 1

2
mB0 ∧B0 ,

H1
(4) = dC1 − 1

3
H1

(2) ∧B2 .

(3.15)

The Bianchi identities (2.13) simplify to

dH0
(2) = mH0

(3) , dH1
(2) = 0 , dH̃(2)0 = g H0

(3) , dH̃(2)1 = −2 g H(3)2

dH0
(3) = 0 , DH(3)1 = H0

(2) ∧ H̃(2)0 −
1

3
H1

(2) ∧ H̃(2)1 + 2g (H1
(4) −H0

(4)) , dH(3)2 = 0 ,

dH0
(4) ≡ dH1

(4) ≡ 0 ,

(3.16)

where DH(3)1 = dH(3)1− gA0 ∧H0
(3) +mÃ0 ∧H0

(3). These again close among themselves, in

agreement with the consistency of the SU(3)-invariant truncation.

The duality relations also simplify, and can be written in terms of the explicit scalar

parameterisation on this sector given in section 3.1 and appendix D.1. The vector/vector

duality relations (2.20) and (2.19) reduce to

H̃(2)0 = − e3ϕ(1 + 3e2ϕχ2)

(1 + e2ϕχ2)2(1 + 4e2ϕχ2)
∗H0

(2) + χ2 3e3ϕ

1 + e2ϕχ2(5 + 4e2ϕχ2)
∗H1

(2)

− 2χ3 e6ϕ

(1 + e2ϕχ2)2(1 + 4e2ϕχ2)
H0

(2) + χ
3e2ϕ(1 + 2e2ϕχ2)

1 + e2ϕχ2(5 + 4e2ϕχ2)
H1

(2) ,

H̃(2)1 = χ2 3e3ϕ

1 + e2ϕχ2(5 + 4e2ϕχ2)
∗H0

(2) − e−ϕ
3(1 + e2ϕχ2)

1 + 4e2ϕχ2
∗H1

(2)

+ χ
3e2ϕ(1 + 2e2ϕχ2)

1 + e2ϕχ2(5 + 4e2ϕχ2)
H0

(2) + χ
6(1 + e2ϕχ2)

1 + 4e2ϕχ2
H1

(2) ,

(3.17)

the duality relations (2.22), (2.21) for the three-form field strengths simplify as

H0
(3) = −e4φ ∗

(
Da+

1

2
(ζ Dζ̃ − ζ̃ Dζ)

)
,

H(3)1 = ∗
[
2(dϕ− e2ϕχdχ)− 2dφ+ ae4φ

(
Da+

1

2
(ζDζ̃ − ζ̃Dζ)

)
+

1

2
e2φ(ζDζ + ζ̃Dζ̃)

]
,

H(3)2 =
1

2
∗
[
e2φ(ζ Dζ̃ − ζ̃ Dζ) +

1

2
(ζ2 + ζ̃2) e4φ

(
Da+

1

2
(ζ Dζ̃ − ζ̃ Dζ)

)]
, (3.18)

and the duality relations (2.23) for the four-form field strengths give rise to

H0
(4) =

[
1

2
g
(
1 + e2ϕχ2

)(
12 e2φ−ϕ − 2 e4φ−3ϕ

(
1 + e2ϕχ2

)2 − 3e4φ+ϕχ2
(
ζ2 + ζ̃2

))
+ me4φ+3ϕ χ3

]
vol4 ,
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H1
(4) =

[
1

2
g

(
8 eϕ + 2 e2φ−ϕ(1 + e2ϕχ2

)
+ e2φ+ϕ

(
ζ2 + ζ̃2

)(
1− 3 e2ϕχ2

)
− 1

2
e4φ+ϕ

(
ζ2 + ζ̃2

)
χ2
(
1 + e2ϕχ2

)
− 1

4
e4φ+ϕ

(
ζ2 + ζ̃2

)2(
1 + 3 e2ϕχ2

))
+

1

4
me4φ+3ϕ χ

(
ζ2 + ζ̃2

)]
vol4 . (3.19)

For later reference, we also give the SU(3)-invariant truncation of the duality relation (2.25)

for the four-form field strength H̃(4) ≡ H̃(4) of the singlet three-form potential C̃ ≡ C̃ related

to the magnetic component of the embedding tensor. It reads

H̃(4) =
1

2
g χ e3ϕ+4φ

(
3(ζ2 + ζ̃2) + 2χ2

)
vol4 −me3ϕ+4φ vol4 . (3.20)

These duality relations manifestly show that, in the symplectic frame we are using, the

magnetic vectors and the higher rank forms in the tensor hierarchy do not carry independent

degrees of freedom, but rather depend on the metric, the electric vector field strengths and

the scalars. Alternatively, these relations can be used to transfer independent degrees of

freedom within the duality hierarchy. For example, the first relation in (3.18) can be used

to dualise the Stückelberg scalar a into the two-form B0, so that the latter can be regarded

as carrying the independent degrees of freedom. This duality relation can also be obtained

by varying the Lagrangian (3.7) with respect to the magnetic graviphoton Ã0. Solving this

duality relation and substituting into (3.7), the following new Lagrangian is obtained:

L̃ = (R− V ) vol4 +
1

2
e−4φH0

(3) ∧ ∗H0
(3) +

3

2

[
dϕ ∧ ∗dϕ+ e2ϕ dχ ∧ ∗dχ

]
+ 2 dφ ∧ ∗dφ+

1

2
e2φ
[
Dζ ∧ ∗Dζ +Dζ̃ ∧ ∗Dζ̃

]
+

1

2
IΛΣH

Λ
(2) ∧ ∗HΣ

(2) +
1

2
RΛΣH

Λ
(2) ∧HΣ

(2)

+H0
(3) ∧

[
g A0 +

1

2
(ζDζ̃ − ζ̃Dζ)

]
− 1

2
gmB0 ∧B0 .

(3.21)

The kinetic terms are now expressed in terms of the field strength H0
(3) of B0 given in (3.14),

and the magnetic vector Ã0 no longer appears in this Lagrangian. See e.g. section 4.1 of [38]

for a discussion in a similar context. In the Lagrangian (3.21), B0 is a propagating massive

two-form with conventional kinetic term H0
(3)∧∗H0

(3) and mass term B0∧∗B0 (coming from

the mB0 dependence of H0
(2) in (3.9)), in addition to the topological mass term B0 ∧ B0.

Lagrangians similar to (3.21) but naturally written in terms of the magnetic field strengths,

as in (3.17), usually appear in dimensional reductions of massive IIA or M-theory to N = 2

supergravity, see e.g. [31, 37]. See appendix B for the relation of the SU(3)-invariant sector

and the theory of [37]. See [26] for a more general discussion of Lagragians involving

higher-rank fields in the N = 8 duality hierarchy.

The duality relations can be also used to relate the four-form field strengths to the

potential, as discussed for the full N = 8 theory in section 2.2. With the parameterisation

of the scalars in the SU(3) sector that we gave in section 3.1, the duality relation (2.29)
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can be explicitly verified in this sector. With the help of (3.19) and (3.20), equation (2.29)

can be seen to reduce to

g
(
H0

(4) + 6H1
(4)

)
+mH̃(4) = −2V vol4 , (3.22)

where H0
(4), H

1
(4) are the field strengths (3.15) of the three-form potentials C0, C1 in the

truncated hierarchy (3.4), H̃(4) is the field strength of the three-form potential C̃ related

to the magnetic component of the embedding tensor, and V is the scalar potential in the

SU(3) sector, given in (3.11). From (2.30) and (2.31), we also find that the following

relations hold at every critical point (see section 3.6) of the scalar potential (3.11):

g
(
H0

(4)|0 + 6H1
(4)|0

)
+ 7mH̃(4)|0 = 0 , H0

(4)|0 = H1
(4)|0 . (3.23)

Recall that |0 and V0 denote evaluation at a critical point. Combining (3.22) with the first

equation in (3.23) yields V0 vol4 = 3mH̃(4)|0. This condition relates the AdS character of

the critical points in this sector with a non-vanishing value of the magnetic gauge coupling

m, provided H̃(4)|0 6= 0, which is indeed the case.

3.3 Superpotential formulation

Two superpotentials exist [35] (see also [36]) from which the scalar potential of the SU(3)-

invariant sector [34] of the electric SO(8) gauging [20] derives. The same statement holds [5]

for the SU(3) sector of the dyonic SO(8) gauging [1]. Here we will show that this is also

true for the SU(3)-invariant sector of ISO(7)c supergravity. See [39, 40] for superpotentials

in the SO(7)+ and G2 sectors of the electric ISO(7) gauging [41]. In order to see this

following a notation close to [5, 36], we first introduce coordinates t and u on two copies

of the upper-half of the complex plane

t = −χ+ i e−ϕ and u = −ρ+ i e−φ , (3.24)

with ρ2 = 1
4 (ζ̃2 + ζ2) as follows from (3.12), and then further convert into two copies of

the unit-disk via

z =
t− i
t+ i

and ζ12 =
u− i
u+ i

, (3.25)

so that |z| < 1, |ζ12| < 1. In terms of the new complex fields z and ζ12, the kinetic terms

for the (χ, ϕ) and (ρ, φ) scalars in (3.7) can be recast as

1

2
Lkin

scalar = 3
dz ∧ ∗dz̄

(1− |z|2)2
+ 4

dζ12 ∧ ∗dζ̄12

(1− |ζ12|2)2
. (3.26)

Introducing

W ≡ (1− |z|2)−
3
2 (1− |ζ12|2)−2

×
[
g

(
7

8
(1− ζ12)4 (1 + z)3 + 3 (ζ12 − z) (1 + z) (1− ζ12)2 (1− z ζ12)

)
+ i

m

8
(1− ζ12)4 (1− z)3

]
,

(3.27)
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we find that the scalar potential (3.11) is reproduced through the expression

1

4
V = 2

[
4

3
(1− |z|2)2

∣∣∣∣∂W∂z
∣∣∣∣2 + (1− |ζ12|2)2

∣∣∣∣ ∂W∂ζ12

∣∣∣∣2 − 3W 2

]
, (3.28)

with the superpotential W given in terms of (3.27) by either W = |W+| ≡ |W(z, ζ12)| or

W = |W−| ≡ |W(z, ζ̄12)|. We take this match as a consistency check on our calculation of

the potential (3.11) in section 3.1 with the N = 8 embedding tensor formalism followed by

SU(3)-invariant truncation.

All the supersymmetric critical points of the scalar potential (3.11), as given in table 3

of section 3.6, are critical points of |W+|. The N = 2 point is an extremum of both |W+|
and |W−|. Under the map ζ12 → ζ̄12 (or, equivalently, ρ → −ρ in (3.24), i.e., β → −β
in (3.12)), the N = 1 points become extrema of |W−|, rather than |W+|. Due to the

overall c1/3 dependence of the critical points in table 3, there are two asymptotic limits:

z = ζ12 = −1 at c→ 0 (i.e., m→ 0, g 6= 0) and z = ζ12 = +1 at c→∞ (i.e., g → 0, m 6= 0).

These critical points thus disappear for the purely electric and purely magnetic gaugings.

These superpotentials will be useful to holographically study RG flows between differ-

ent Chern-Simons phases of the D2-brane field theory with at least SU(3) flavour symmetry.

We leave this for future work. See [35, 42] for studies of RG flows with at least SU(3) invari-

ance in the M2-brane field theory from electrically gauged SO(8) supergravity, and [7, 8]

for similar domain wall solutions in dyonic SO(8) supergravity.

3.4 Canonical N = 2 formulation

As a further crosscheck on our calculations, we will now cast the SU(3)-invariant La-

grangian (3.7) in N = 2 canonical form, focusing on the special geometry quantities that

enter the canonical formulation. The scalar manifold (3.1) is the product of two well-known

special Kähler and quaternionic Kähler manifolds, corresponding to the vector multiplet

and hypermultiplet scalars, respectively. The parameterisation (3.6) leads to the familar

form for the metric on this space that appears in the scalar kinetic terms in the La-

grangian (3.7). Indices M = 1, . . . , 4, α = 1, . . . , 8, u = 1, . . . , 4 and i = t in this subsection

respectively correspond to Sp(4,R) vector indices, SU(2, 1) adjoint indices, SU(2, 1)/U(2)

curved indices and SU(1, 1)/U(1) curved holomorphic indices — we denote by t the only

value that i takes on. The index Λ = 0, 1 introduced below (3.4) labels, as usual, “half”

the fundamental representation of Sp(4,R).

Let us start by describing the special Kähler geometry of the scalars in the vector

multiplet. We find the sections XM = (XΛ, FΛ),

X0 = −t3 , X1 = −t , F0 = 1 , F1 = 3 t2 , (3.29)

which are holomorphic in the coordinate t (3.24) on the upper-half plane realisation of

SU(1, 1)/U(1), to be the relevant ones for our model. In the symplectic frame in which the

Lagrangian (3.7) is written, the sections FΛ can be obtained from the prepotential

F = −2
√
X0 (X1)3 , (3.30)
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as FΛ = ∂F/∂XΛ. The Kähler potential

K = − log
(
i X̄MΩMNX

N
)

= −3 log(−i(t− t̄)) with ΩMN =

(
0 I2
−I2 0

)
, (3.31)

gives rise to the metric

−Ktt̄ dt dt̄ = −(∂t∂t̄K) dt dt̄ =
3 dt dt̄

(t− t̄)2
= −3

4

[
dϕ2 + e2ϕ dχ2

]
, (3.32)

on the relevant scalar kinetic terms in (3.7). The components of the vielbein

ft
M = (ft

Λ, ftΛ) ≡ ∂t(eK/2XM ) +
1

2
eK/2XM∂tK ,

f̄t̄
M = (f̄t

Λ, f̄t̄Λ) ≡ ∂t̄(eK/2X̄M ) +
1

2
eK/2X̄M∂t̄K ,

(3.33)

explicitly read

ft
0 =

3 t2 t̄

[ i(t− t̄) ]5/2
, ft

1 =
2 t+ t̄

[ i(t− t̄) ]5/2
,

ft0 = − 3

[ i(t− t̄) ]5/2
, ft1 = − 3 t (t+ 2 t̄)

[ i(t− t̄) ]5/2
,

(3.34)

and f̄t̄
M ≡ (ft

M )∗. Together with the gauge kinetic matrix NΛΣ given in (3.10), we have

verified these quantities to satisfy a number of special geometry identities.9

Let us now turn to the gauged hypermultiplet. Of the eight Killing vectors kα of the

quaternionic Kähler metric huv in (3.7), only

k1 = ∂a and k2 = 3
(
ζ ∂ζ̃ − ζ̃ ∂ζ

)
, (3.36)

participate in the gauging. As anticipated, these Killing vectors generate an abelian

SO(1, 1) × U(1) subgroup of SU(2, 1). This gauge group arises from the ISO(7) gauge

group of the full N = 8 theory by first breaking ISO(7) = SO(7)nR7 to (SO(6)nR6)×R;

then, the compact U(1) is the singlet in the branching of the adjoint of SO(6) under SU(3)

and SO(1, 1) ∼ R is the R factor in the direct product. The moment maps corresponding

to the isometries (3.36) are

P x1 =
(

0 , 0 , −1

2
e2φ
)

and P x2 = 3
(
− eφ ζ̃ , eφ ζ , 1− 1

4
(ζ2 + ζ̃2) e2φ

)
, (3.37)

with x = 1, 2, 3. Finally, the embedding tensor ΘM
α = (ΘΛ

α,ΘΛα) in this sector fol-

lows from the N = 8 embedding tensor (2.3) via the identifications Θ
K

[IJ ] L ↔ Θ1
2,

Θ
8

[I8] K ↔ Θ0
1, Θ[IJ ]K

L ↔ Θ12 and Θ[I8]8
K ↔ Θ01, namely

Θ0
1 = 1 , Θ01 = −c , Θ1

2 = 1 and Θ12 = 0 , (3.38)

9These include:

FΛ = NΛΣX
Σ , ftΛ = N̄ΛΣft

Σ , ft
Λ Ktt̄ f̄t̄

Σ = −1

2
(I−1)ΛΣ − eK X̄ΛXΣ ,

XM ΩMN ft
N = XM ΩMN f̄t̄

N = 0 , XΛ IΛΣ X̄
Σ = −1

2
e−K , (3.35)

Ktt̄ = −i f̄t̄M ΩMN ft
N = −2 ft

Λ IΛΣ f̄t̄
Σ .
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with all other components vanishing. Thus, the compact U(1) is gauged electrically only,

whereas SO(1, 1) ∼ R is gauged dyonically.

Bringing the definitions (3.29)–(3.34), (3.36)–(3.38), along with the metrics huv (which

can be read off from (3.7)) and Ktt̄ in (3.32), to the canonical expression for the N = 2

scalar potential due to a dyonic gauging in the hypermultiplet sector [23, 43],

1

4
V = g2 ΘM

αΘN
β
[
4 eKXMX̄Nhuvk

u
αk

v
β + P xαP

x
β

(
Ktt̄ft

M f̄t̄
N − 3 eKXMX̄N

)]
, (3.39)

we exactly reproduce the scalar potential (3.11). We have also verified that the equa-

tions [44, 45]

XMΘM
αkuα = 0 , εxyzX

MX̄NΘM
αΘN

βP yαP
z
β = 0 , ft

MΘM
αP xα = 0 , (3.40)

for maximally supersymmetric solutions within this N = 2 sector reduce to

ζ̃ = ζ = 0 , g t3 +m = 0 , g
(

4 t+ 2 t̄− e2φ t2 t̄
)
−me2φ = 0 . (3.41)

For gm 6= 0, these have the N = 2, SU(3) × U(1)-invariant AdS4 critical point in table 3

of section 3.6 as their unique solution.

3.5 Further subsectors

Let us now briefly discuss some further consistent truncations of the SU(3)-invariant sector

which lead, accordingly, to subsectors with smaller field content and larger symmetry. The

field contents discussed below agree with those recorded in table 2.

The field content of the G2-invariant sector is obtained from (3.4) by truncating out all

vectors and two-forms, and identifying the three-forms as C0 = C1 ≡ C and the scalars as

ϕ = φ , χ =
1

2
ζ̃ and a = ζ = 0 . (3.42)

This corresponds to the exponentiation of the linear combinations 1
4 g1 +g3 and g

(+)
4 +g

(+)
6

of generators in (3.5). This sector is N = 1, and its Lagrangian follows from bringing these

identifications to (3.7). An alternative construction of the G2 sector that does not rely

on its embedding in the SU(3)-invariant sector will be given in section 4. Turning off the

axion, χ = 0, leads to the SO(7)+-invariant sector.

The U(3)-invariant subsector has an additional U(1) = SO(2) symmetry, with respect

to the SU(3) sector, gauged by the vector A1. This sector is thus reached by simply turning

off the hypermultiplet axions

ζ̃ = ζ = 0 , (3.43)

since these are charged under that U(1), see (3.8). Together with these axions, the only

other field in (3.4) that needs to be turned off is the two-form B2 = 0. This is forced by

the third duality relation in (3.18), and is consistent with the Bianchi identities (3.16).

The U(3)-invariant Lagrangian is obtained by inserting (3.43) into (3.7). It is consistent to

further truncate χ = 0, A1 = Ã1 = 0, which leads to the SO(6)+ sector. Alternatively, the

U(3) sector can be further truncated by eliminating the Stückelberg scalar a, all vectors

and the two-form B0, thus retaining the neutral scalars φ, ϕ, χ along with B1, C0, C1.

This truncation corresponds to the model considered in [15].
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N G0 c−1/3 χ c−1/3 e−ϕ c−1/3 ρ c−1/3 e−φ g−2 c1/3 V0 M2L2

N = 2 U(3) −1
2

31/2

2 0 1
21/2 −22 33/2 3±

√
17 , 2 , 2 , 2 , 0

4 , 0

N = 1 G2 − 1
27/3

51/2 31/2

27/3 − 1
27/3

51/2 31/2

27/3 −228/3 31/2

55/2 4±
√

6 , −1
6(11±

√
6) , 0 , 0

1
2(3±

√
6)

N = 1 SU(3) 1
22

31/2 51/2

22 −31/2

22
51/2

22 −28 33/2

55/2 4±
√

6 , 4±
√

6 , 0 , 0

2 , 6

N = 0 SO(7)+ 0 1
51/6 0 1

51/6 −3 57/6 6 , −12
5 , −

6
5 , −

6
5 , −

6
5 , 0

12
5 , 0

N = 0 SO(6)+ 0 21/6 0 1
25/6 −3 217/6 6 , 6 , −3

4 , −
3
4 , 0 , 0

6 , 0

N = 0 G2
1

24/3
31/2

24/3
1

24/3
31/2

24/3 −216/3

31/2 6 , 6 , −1 , −1 , 0 , 0

3 , 3

N = 0 SU(3) 0.455 0.838 0.335 0.601 −23.457 6.214 , 5.925 , 1.145 , −1.284 , 0 , 0

4.677 , 2.136

N = 0 SU(3) 0.270 0.733 0.491 0.662 −23.414 6.230 , 5.905 , 1.130 , −1.264 , 0 , 0

4.373 , 2.490

Table 3. All critical points of N = 8 ISO(7)-dyonically-gauged supergravity with at least SU(3)

invariance. For each point we give the residual supersymmetry and bosonic symmetry within the

full N = 8 theory, its location, the cosmological constant and the scalar (upper) and vector (lower)

masses within the SU(3) sector.

3.6 Critical points

We now study the vacua of ISO(7)c supergravity with at least SU(3) invariance by analysing

the critical points of the scalar potential (3.11). Only for the dyonic gauging c 6= 0,

i.e., gm 6= 0, does this potential have critical points or, rather, critical SO(1, 1) × U(1)

loci. These are the surfaces in the scalar manifold (3.1) for which the gradient of the

potential (3.11) vanishes. These are parameterised by the Stückelberg scalar a and the

phase β introduced in (3.12), and occur at the fixed values of the remaining scalars recorded

in table 3. Abusing language, we will often refer to these critical loci simply as critical

points or extrema. We have determined the residual supersymmetry and bosonic symmetry

of these points within the full N = 8 ISO(7)c theory. We have also calculated their scalar

and vector mass spectra, both within the SU(3) sector and within the full N = 8 theory.

See tables 3 below and 1 in the introduction for a summary.

All critical points in this sector are AdS. Three of them are supersymmetric: there is

one point with N = 2 supersymmetry and SU(3)×U(1) bosonic symmetry that was already

announced in [15]; one point with N = 1 supersymmetry and G2 symmetry, already found

in [4] using the method of [3, 29]; and we find a new point with N = 1 supersymmetry and
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SU(3) bosonic symmetry. In addition, we find five non-supersymmetric points. Three of

them were previously known, as they had already been found with the method of [3, 29]:

these are the points with SO(7)+ and SO(6)+ residual symmetry [3] and the point with

G2 symmetry [4]. In addition, we numerically find two new non-supersymmetric points

with SU(3) symmetry. We have appended a subscript + to the SO(7) and SO(6) points to

indicate that they are supported by proper (parity even) scalars, rather than (parity odd)

pseudoscalars, of E7(7)/SU(8); in fact, they are supported by dilatons only, see table 3.

This is also consistent with the discussion in section 3.5.

All these critical points disappear in the limits c → 0 (i.e., m → 0, g 6= 0) and

c → ∞ (i.e., g → 0, m 6= 0), corresponding to the purely electric and purely magnetic

gaugings, respectively. For the purely electric ISO(7) gauging [21], in particular, we can

extend the claims against critical points with at least SO(7)+ symmetry [21] and at least

G2 symmetry [40]: the electrically gauged ISO(7) theory does not have any critical point

with at least SU(3) symmetry. In section 5 we show that the electric gauging has no critical

points with residual symmetry containing the particular SO(4) considered there. In fact,

critical points in the purely electric ISO(7) gauging can be completely ruled out as follows.

By an argument in [2, 3], these would necessarily be Minkowski. Then, these vacua would

necessarily arise from S6 compactification of (massless) IIA, but this is not possible by the

Maldacena-Núñez no-go theorem [46].

It is also interesting to compare with the critical points in the SU(3)-invariant sector of

the SO(8) supergravity, both electric and dyonic. The points (SU(3)×U(1), N = 2), (G2,

N = 1), and (SO(7)+, N = 0) have direct analogs, both in the purely electric [34] and the

dyonic [5] SO(8) gauging. The electric SO(8) gauging also possesses a non-supersymmetric

point with symmetry SU(4) ∼ SO(6), but in that case it is an SU(4)− point (supported

by pseudoscalars), while in the dyonic ISO(7) gauging it is an SO(6)+ point, as we have

already noted. The (SO(7)−, N = 0) point of the electric SO(8) gauging does not have a

counterpart in the dyonic ISO(7) gauging. As discussed in [47] (see also [5]), the SO(7)±
critical points of the electric, c = 0, SO(8) gauging become SO(7)∓ points at the other

endpoint of the interval of the continuous, in that case, parameter c. A similar transition

occurs for the SU(4)− point of the electric SO(8) gauging. For the dyonic ISO(7) gauging,

we find that these points stay SO(7)+ and SO(6)+ for all non-vanishing values of the

dyonically gauging parameter c. This is consistent with the fact that all c 6= 0 values are

physically equivalent [2]. Other points in table 3 have no analog in the purely electric SO(8)

gauging, but do have counterparts for dyonic SO(8). These include the (SU(3), N = 1),

(G2, N = 0) and the two (SU(3), N = 0) points. Of course, the maximally supersymmetric

SO(8) point of SO(8)c supergravity does not have an analog for the ISO(7)c gauging.

We have also computed the scalar and vector masses for these critical points: see table 3

for the mass spectrum within the SU(3)-invariant sector and table 1 in the introduction

for the masses within the full N = 8 theory. The masses do not run with c, as expected,

for any point. Except for the non-supersymmetric SU(3) points to be dealt with below,

critical points in the ISO(7)c gauging that have analogs with the same symmetry and

supersymmetry in the SO(8)c gauging, have the same mass spectra in both gaugings. This

has already been noticed for the previously known points [3, 4]. This happens regardless
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of whether those extrema are supported by scalars or pseudoscalars in either gauging: for

example, the SO(6)+ point of the ISO(7)c gauging and the SU(4)− point of the SO(8)

gauging have the same spectrum. Such matching is possible because the masses for these

points in the SO(8)c gauging do not run with c either, in spite of the fact that c is continous

in that case.

The situation is slightly different for the two new non-supersymmetric SU(3) points

of the ISO(7)c gauging, since they have counterparts in the SO(8)c gauging whose masses

do run with c [5]. For the first of the N = 0 SU(3) points in the ISO(7)c gauging, we

numerically find the following scalar masses, normalised to the radius L of AdS, within the

full N = 8 theory

M2 L2 = 6.214 (×1) , 5.925 (×1) , 1.145 (×1) , −1.284 (×1) ,

−1.707 (×12) , −0.860 (×12) , −1.623 (×8) , −0.159 (×8) ,

−1.061 (×6) , 0 (×20) ,

(3.44)

and vector masses

M2 L2 = 4.677 (×1) , 2.136 (×1) , 3.184 (×6) , 2.715 (×6) ,

0.150 (×6) , 0 (×8) .
(3.45)

The second N = 0 SU(3) point in the ISO(7)c gauging has scalar masses

M2 L2 = 6.230 (×1) , 5.905 (×1) , 1.130 (×1) , −1.264 (×1) ,

−1.582 (×12) , −0.954 (×12) , −1.396 (×8) , −0.309 (×8) ,

−1.082 (×6) , 0 (×20) ,

(3.46)

and vector masses

M2 L2 = 4.373 (×1) , 2.490 (×1) , 3.200 (×6) , 2.791 (×6) ,

0.111 (×6) , 0 (×8) .
(3.47)

The singlets in these equations (together with two zeroes in the scalar spectra) correspond

to the spectra within the SU(3) sector. The spectra (3.44)–(3.47) are, of course, indepen-

dent of c. Given that these SU(3) points have counterparts in the SO(8)c gauging with

c-dependent spectra, one may ask whether there exists a c such that the spectra of the

SU(3) points of that precise SO(8)c gauging coincide with the ISO(7)c spectra (3.44)–(3.47).

If such c existed, and assuming that the masses would not change in the limit, the ISO(7)c
gauging could be thought of as a contraction of that particular SO(8)c gauging, like the

electric, c = 0, ISO(7) gauging [21] is of the electric, c = 0, SO(8) gauging [20]. It turns

out that such c does not exist: the masses of the SU(3) points in the SO(8)c gauging do

approach the values (3.44)–(3.47) in the purely electric limit c→ 0 for which these points

become unphysical.

Finally note that, among the non-supersymmetric points, only the G2 point and the

new SU(3) points are stable within the full N = 8 theory: all of its scalar masses are above

the BF bound, M2L2 ≥ −9/4. Note also that the number nv of zero masses in each vector

spectrum in table 1 corresponds to the dimension of the residual symmetry group, as it
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must. Denoting by ns the number of zero masses in each scalar spectrum, for all critical

points except (N = 1, SU(3)) and (N = 0, SO(6)+) it happens that nv + ns = 28 ≡ the

total number of (electric) vectors, so that all these zero-mass scalars are actually Goldstone

bosons. For (N = 1, SU(3)) and (N = 0, SO(6)+), instead, nv +ns = 36 and nv +ns = 43,

respectively, so these points have 8 and 15 physical scalars of mass zero.

4 An N = 1 truncation: the G2-invariant sector

In section 3.5 we discussed how the G2-invariant sector of ISO(7)c supergravity can be

recovered from the SU(3) sector. Here, we give an independent characterisation of the G2

sector based on the embedding

SO(7) ⊃ G2 , (4.1)

without first descending from SO(7) to SU(3) and then enlarging again to G2. The em-

bedding (4.1) is compatible with a branching 8 → 1 + 7 of the fundamental of SL(8). In

terms of indices, we have A → I ⊕ 8 with I = 1, . . . , 7. The same branching holds for the

fundamental of SU(8), ensuring that the G2-invariant sector is N = 1.

4.1 Construction and bosonic Lagrangian

The G2-invariant fields in the ISO(7) restricted duality hierarchy (2.6) include, in agreement

with table 2, the metric gµν , two scalars ϕ, χ and a three-form potential C with four-form

field strength H(4) = dC. The three-form is embedded into the 28′ three-forms CIJ of the

full N = 8 theory as CIJ = C δIJ . This sector does not contain vectors or two-forms. Only

the metric and scalars enter the G2-invariant Lagrangian, see (4.4) below.

We can find the explicit embedding of the two G2-invariant scalars ϕ, χ into the coset

representative V and scalar matrixM, as we did in section 3.1 for the scalars of the SU(3)

sector. We first identify the following G2-invariant combinations of generators (C.3), (C.4)

of E7(7),

g1 = t1
1 + t2

2 + t3
3 + t4

4 + t5
5 + t6

6 + t7
7 − 7 t8

8 ,

g2 = g
(−)
2 + g

(+)
2 = (t4567 + t6723 + t2345 − t1357 + t1346 + t1562 + t1724)

+ (t1238 + t1458 + t1678 − t2468 + t2578 + t4738 + t6358) ,

(4.2)

and exponentiate the Cartan g1 and positive root g
(+)
2 into a coset representative (in the

SL(8) basis, see footnote 8)

V = e−12χ g
(+)
2 e

1
4
ϕg1 . (4.3)

The resulting scalar-dependent matrix M = V Vt is manifestly G2-invariant, as its compo-

nents take values along the invariant metric δIJ , the associative three-form ψIJK and the

co-associative four-form ψ̃IJKL of G2. See appendix D.2 for the explicit expressions.

The bosonic Lagrangian of the G2-invariant sector follows by restricting the N = 8

Lagrangian (2.26) accordingly. In the scalar parameterisation that we are using, it reads

L = (R− V ) vol4 +
7

2

[
dϕ ∧ ∗dϕ+ e2ϕ dχ ∧ ∗dχ

]
, (4.4)
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where the scalar potential simplifies from (2.27) to

V =
7

2
g2 eϕ

(
1 + e2ϕχ2

)2(− 5 + 7e2ϕχ2
)
− 7gme7ϕχ3 +

1

2
m2e7ϕ . (4.5)

Note that the scalar kinetic terms in (4.4) and potential (4.5) respectively agree with

the restriction of the SU(3)-invariant kinetic terms in (3.7) and potential (3.11) to the

surface (3.42).

The N = 8 Bianchi identities (2.13) and most duality relations (2.19)–(2.23) be-

come trivial upon G2-invariant truncation. The only non-trivial duality relation is that

of H(4) = dC, coming from (2.23):

H(4) =
[
g eϕ

(
1 + e2ϕ χ2

)2 (
5− 7 e2ϕ χ2

)
+me7ϕ χ3

]
vol4 . (4.6)

For completeness, we also record the G2-invariant truncation of the duality relation (2.25)

for the field strength H̃(4) ≡ H̃(4) of the singlet three-form C̃ ≡ C̃ dual to the magnetic

component of the embedding tensor:

H̃(4) =
[
7 g e7ϕ χ3 −me7ϕ

]
vol4 . (4.7)

From (4.6), (4.7), it is straightforward to check that these four-form field strengths and the

scalar potential (4.5) are related through

7 g H(4) +mH̃(4) = −2V vol4 . (4.8)

This corresponds to the G2-invariant truncation of the N = 8 ISO(7) expression (2.29).

It also agrees with the restriction of the SU(3)-invariant duality relation (3.22) to the

surface (3.42).

4.2 Canonical N = 1 formulation

The G2-invariant sector corresponds to N = 1 supergravity coupled to a chiral multiplet.

The two real scalars ϕ, χ parameterise the upper-half plane via the first relation in (3.24).

For notational agreement with other N = 1 sectors with chiral multiplets to be discussed

in section 5 and appendix A, this chiral field is denoted now by Φ1:

Φ1 = −χ+ i e−ϕ . (4.9)

In terms of this, the scalar kinetic terms in (4.4) can be re-expressed as

1

2
Lkin

scalar = −7
dΦ1 ∧ ∗dΦ̄1

(Φ1 − Φ̄1)2
, (4.10)

and can be seen to derive from the Kähler potential

K = −7 log(−i(Φ1 − Φ̄1)) . (4.11)

Finally, the scalar potential (4.5) is exactly recovered from the holomorphic superpotential

W = 14 gΦ3
1 + 2m, (4.12)
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using the canonical N = 1 expression

1

4
V = eK

[
KΦpΦ̄q(DΦpW )(DΦ̄qW )− 3W W

]
, (4.13)

with p = 1, q = 1. Here, KΦpΦ̄q is the inverse of the Kähler metric KΦpΦ̄q = ∂Φp∂Φ̄qK

in (4.10) and we have used the Kähler derivative DΦpW ≡ ∂ΦpW + (∂ΦpK)W .

4.3 Critical points

For gm 6= 0, the scalar potential (4.5) contains three critical points: the two G2 points

with N = 1 and N = 0 and the N = 0 SO(7)+ point. See table 3 for their location in

(ϕ, χ) space and table 1 for their spectra within the full N = 8 ISO(7)c theory.

5 An N = 1 truncation: SO(4)-invariant sector

We close the main body of the paper with a different N = 1 truncation of the N = 8

ISO(7)c theory: one that retains two chiral multiplets and is invariant under an SO(4)

subgroup of ISO(7) embedded into the latter through the elaborate chain

SO(7) ⊃ G2 ⊃ SO(3)′ × SO(4)′ ⊃ SO(3)d × SO(3)R ≡ SO(4) , (5.1)

with SO(4)′ ≡ SO(3)L × SO(3)R and SO(3)d the diagonal subgroup of SO(3)′ × SO(3)L.

The fundamental of SL(8) branches under SO(4) ≡ SO(3)d × SO(3)R as

8→ (2,2) + (3,1) + (1,1) , (5.2)

or, in terms of indices, A→ λ ⊕ a ⊕ 8 with λ = 1, 3, 5, 7 and a = 2, 4, 6. The fundamental

of SU(8) branches as in (5.2) as well, and the presence of the singlet (1,1) is responsible for

the N = 1 supersymmetry of this truncation. Intricate though it is, the embedding (5.1) is

very interesting: as shown in [30] using the approach of [3, 29], the SO(8)c, SO(7, 1)c and

ISO(7)c N = 8 gaugings have a critical point with N = 3 supersymmetry and an SO(4)

bosonic symmetry group that is embedded into the gauge groups as in (5.1). Here we will

give an explicit parameterisation of the sector of ISO(7)c supergravity invariant under this

SO(4) and will recover the supersymmetric point along with other extrema. See [9] for a

recent study of this sector in SO(8)c-gauged supergravity [1].

5.1 Construction and bosonic Lagrangian

According to the branchings under (5.1) recorded in table 2, the SO(4)-invariant truncation

of the duality hierarchy (2.6) gives rise, besides the metric gµν , to four real scalars, (χ, ϕ),

(ρ, φ), one two-form coming from BIJ and two three-forms. No vectors or two-forms coming

from BI survive the truncation. Thus, the bosonic Lagrangian of this sector contains only

the metric and the four real scalars. We will focus on these fields, and will not discuss

further the duality hierarchy in this sector.

The four real scalars parameterise two copies of the upper-half plane SU(1, 1)/U(1)

embedded in E7(7)/SU(8). Like we did for the other invariant truncations, we can obtain
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an explicit parameterisation for the scalar geometry in this sector by exponentiating the

combinations of E7(7) generators (C.3), (C.4) that are invariant under the SO(4) in (5.1).

These are determined by the invariant tensors of this SO(4) (see appendix D.3), and can

be taken as

g1 = t2
2 + t4

4 + t6
6 − 3 t8

8 ,

g2 = t1
1 + t3

3 + t5
5 + t7

7 − t22 − t44 − t66 − t88 ,

g3 = g
(−)
3 + g

(+)
3 = (t3571) + (t8246) ,

g4 = g
(−)
4 + g

(+)
4 = (t4613 − t4657 + t6215 + t6237 + t2417 − t2435)

+ (t2578 − t2138 − t4378 − t4158 + t6358 − t6178) .

(5.3)

A coset representative on each copy of SU(1, 1)/U(1) can then be built as

V1 = e−12χ g
(+)
4 e

1
2
ϕg1 and V2 = e−12 ρ g

(+)
3 e

1
4
φ g2 . (5.4)

Finally, the total coset representative in this sector is V = V1V2, and the scalar-dependent

matrix M is M = V Vt. See appendix D.3 for its explicit expression.

Using this scalar parameterisation, the bosonic Lagrangian of this SO(4)-invariant

sector follows from (2.26),

L = (R− V ) vol4 +
6

2

[
dϕ ∧ ∗dϕ+ e2ϕ dχ ∧ ∗dχ

]
+

1

2

[
dφ ∧ ∗dφ+ e2φ dρ ∧ ∗dρ

]
, (5.5)

where the scalar potential (2.27) now reduces to

V =
1

2
g2 e−φ(1 + e2ϕχ2)

[
−24 eϕ+φ − 8 e2φ + e2ϕ

(
− 3 + (8χ2 − 3ρ2) e2φ

)
+ e4ϕ χ2

(
9 + (3ρ+ 4χ)2 e2φ

)]
− gmχ2 (3ρ+ 4χ) e6ϕ+φ +

1

2
m2 e6ϕ+φ .

(5.6)

Note that this potential depends on all four scalars in the SO(4) sector. According to the

branching (5.1), the G2-invariant sector is a further subsector of the present SO(4) sector.

Indeed, under the identifications

ϕ = φ and χ = ρ , (5.7)

the Lagrangian (5.5), (5.6) reduces to the G2-invariant Lagrangian (4.4), (4.5).

5.2 Canonical N = 1 formulation

We will now show that this SO(4) sector corresponds to N = 1 supergravity coupled to

two chiral multiplets, by casting the Lagrangian (5.5), (5.6) in canonical N = 1 form. In

order to do this, we introduce the complex combinations

Φ1 = −χ+ i e−ϕ and Φ2 = −ρ+ i e−φ (5.8)

on each copy of SU(1, 1)/U(1). In terms of the fields (5.8), the kinetic terms in (5.5) take

the form
1

2
Lkin

scalar = −6
dΦ1 ∧ ∗dΦ̄1

(Φ1 − Φ̄1)2
− dΦ2 ∧ ∗dΦ̄2

(Φ2 − Φ̄2)2
, (5.9)
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N G0 c−1/3 χ c−1/3 e−ϕ c−1/3 ρ c−1/3 e−φ g−2 c1/3 V0 M2L2

N = 3 SO(4) 1
24/3

31/2

24/3 − 1
21/3

31/2

21/3 −216/3

31/2 3 (1±
√

3) , (1±
√

3)

N = 0 SO(4) 0.412 0.651 0.068 1.147 −23.513 6.727 , 5.287 , 0.584 , −1.586

Table 4. Critical points of N = 8 ISO(7)-dyonically-gauged supergravity with invariance equal or

larger than the SO(4) subgroup of SO(7) considered in (5.1). This list also includes the points, not

shown in the table, in the G2-invariant sector. For each point we give the residual supersymmetry

and bosonic symmetry within the full N = 8 theory, its location, the cosmological constant and the

scalar masses within the SO(4) sector.

and derive from the Kähler potential

K = −6 log(−i(Φ1 − Φ̄1))− log(−i(Φ2 − Φ̄2)) . (5.10)

The scalar potential (5.6) is reproduced from the holomorphic superpotential

W = g (8 Φ3
1 + 6 Φ2

1 Φ2) + 2m, (5.11)

through the canonical N = 1 expression (4.13), now with p = 1, 2, q = 1, 2. The simplic-

ity of the SO(4)-invariant superpotential (5.11) is remarkable, given the laboured embed-

ding (5.1) of this SO(4) in SO(7). In comparison, the G2-invariant superpotential (4.12)

is of similar simplicity, but the embedding of G2 in SO(7) is straightforward. Note that

the SO(4)-invariant superpotential (5.11) reduces to the G2-invariant (4.12) on the sur-

face (5.7), namely, when Φ1 = Φ2.

5.3 Critical points

The scalar potential (5.6) contains five critical points when gm 6= 0, all of them AdS. See

table 4 for a summary. Three of them occur on the surface (5.7), and thus correspond

to the three critical points in the G2-invariant sector, see section 4.3. In addition, we

find two more extrema, both with symmetry SO(4). Curiously enough, both points are

non-supersymmetric within this SO(4)-invariant sector but, when embedded into the full

N = 8 theory, one point becomes N = 3 and the other one stays N = 0. The reason for this

peculiar behaviour of the N = 3 point is that the three gravitini of the full N = 8 theory

that remain ‘massless’ (i.e., of mass ML = 1 on the AdS vacuum) in the solution are not

singlets under SO(4) ≡ SO(3)d × SO(3)R. They instead transform as (3,1) and are thus

truncated out of the SO(4)-invariant sector. In more detail, the 8 gravitini of the N = 8

ISO(7)c theory split under the SO(4) under consideration as in (the conjugate of) (5.2).

The SO(4) ≡ SO(3)d × SO(3)R-invariant sector only retains the singlet (1,1) gravitino,

while the (2,2) + (3,1) gravitini are truncated out. Now, this (1,1) gravitino becomes

massive (i.e., of mass ML > 1) at both SO(4) critical points of the scalar potential (5.6),

thus leading to complete supersymmetry breaking within this sector for both points. An

alternative way to see this is that the superpotential (5.11) leads to non-vanishing F-terms,

DΦpW 6= 0, for both solutions. Then, we consider these points within the full N = 8

theory and analyse the mass matrix containing all (2,2) + (3,1) + (1,1) gravitini. For one
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of these points we find that the (2,2) gravitini also become massive, but the (3,1) remain

‘massless’. This renders this point N = 3 within the full N = 8 theory. For the other point

all gravitini become massive, giving N = 0.

The N = 3 point has recently been found in [30] using the method of [3, 29]. The

location of this point in scalar space given in table 4 above, relative to the parameterisation

of section 5.1, is new. We have also computed the scalar and vector masses about this point

within the full N = 8 theory, and have brought the result to table 1 in the introduction.

Our result agrees with the spectrum reported in [30]. See that reference for the allocation

of the spectrum into OSp(4|3) supermultiplets. Intriguingly, the values of the potential at

the (N = 3, SO(4)) point and at the (N = 0, G2) point coincide.

We have determined numerically the position and spectrum of the non-supersymmetric

SO(4) point within the full N = 8 theory. The scalar masses, relative to the radius L of

AdS, read

M2 L2 = 6.727 (×1) , 5.287 (×1) , 0.584 (×1) , −1.586 (×1) ,

−1.588 (×9) , −1.751 (×9) , 0.630 (×5) , −0.983 (×5) ,

−0.730 (×4) , −1.964 (×4) , −1.176 (×8) , 0 (×22) ,

(5.12)

while the vector masses are

M2 L2 = 4.153 (×3) , 2.287 (×3) , 3.451 (×4) , 1.945 (×4) ,

0.191 (×8) , 0 (×6) .
(5.13)

Note, here and for the N = 3 point, the six zero masses in the vector spectrum correspond-

ing to the six generators of the unbroken SO(4). The scalar masses are all above the BF

bound, thus ensuring stability against perturbations in the full N = 8 supergravity. Neither

SO(4) point features flat directions. Their spectra are independent of c, as they must, and

the points disappear from the physical scalar space in the purely electric, c → 0 [21], and

purely magnetic limits. A counterpart in the SO(8)c gauging of the non-supersymmetric

SO(4) point has recently appeared in [9].

Acknowledgments

We thank Daniel Jafferis for collaboration in related projects and Franz Ciceri, Bernard de

Wit and Gianluca Inverso for discussions. AG is supported in part by the ERC Advanced

Grant no. 246974, Supersymmetry: a window to non-perturbative physics. OV is supported

by the Marie Curie fellowship PIOF-GA-2012-328798, managed from the CPHT of École

Polytechnique, and partially by the Fundamental Laws Initiative at Harvard.

– 34 –



J
H
E
P
0
2
(
2
0
1
6
)
0
7
9

A The S6 as a non-geometric T 6

Here we analyse an N = 1, Z2×SO(3)-invariant sector of N = 8 ISO(7)c supergravity and

relate it to the toroidal, non-geometric type IIA orientifold reductions of [29, 48–50].

A.1 An N = 1 truncation: the Z2 × SO(3)-invariant sector

The embedding of the SO(3) factor reads

SO(7) ⊃ SO(6) ∼ SU(4) ⊃ SU(3) ⊃ SO(3) , (A.1)

while Z2 acts on the fundamental of SL(8) as

Z2 : ( 1 ; 3 , 5 , 7 ; 2 , 4 , 6 ; 8 ) → (−1 ; −3 , −5 , −7 ; 2 , 4 , 6 ; 8 ) (A.2)

This Z2 can be used to truncate N = 8 → N = 4 [51]. Taking (A.1), (A.2) together,

the fundamental of SU(8) branches under Z2 × SO(3) as 8 → 1(−) + 3(−) + 3(+) + 1(+).

The truncation to the singlet sector is N = 1, given the Z2-even singlet 1(+) in this

decomposition. This invariant sector keeps six real scalars (χ1, ϕ1), (χ2, ϕ2) and (χ3, ϕ3)

along with the metric gµν . We will not discuss the duality hierarchy in this sector; we only

note that this Z2 × SO(3)-invariant truncation does not retain vectors.

The six scalars can be grouped up into complex fields Φ1,2,3 taking values on three

copies of the upper-half plane:

Φ1 = −χ1 + i e−ϕ1 , Φ2 = −χ2 + i e−ϕ2 , Φ3 = −χ3 + i e−ϕ3 , (A.3)

These scalars thus describe an [SU(1, 1)/U(1)]3 Kähler submanifold of E7(7)/SU(8). The

Lagrangian in this invariant sector can be explicitly worked out by first identifying the

relevant Z2 × SO(3)-invariant generators of E7(7),

g1 = t3
3 + t5

5 + t7
7 + t2

2 + t4
4 + t6

6 − 3 (t1
1 + t8

8) ,

g2 = t1
1 + t3

3 + t5
5 + t7

7 − t22 − t44 − t66 − t88 ,

g3 = − t33 − t55 − t77 + t2
2 + t4

4 + t6
6 + 3 (t1

1 − t88) ,

g4 = g
(−)
4 + g

(+)
4 = (t4567 + t6723 + t2345) + (t1238 + t1458 + t1678) ,

g5 = g
(−)
5 + g

(+)
5 = (t3571) + (t8246) ,

g6 = g
(−)
6 + g

(+)
6 = (t1346 + t1562 + t1724) + (t2578 + t4738 + t6358) ,

(A.4)

and then exponentiating the Cartan generators and positive roots into a coset representa-

tive V = V1V2V3, with

V1 = e−12χ1 g
(+)
4 e

1
4
ϕ1 g1 , V2 = e−12χ2 g

(+)
5 e

1
4
ϕ2 g2 , V3 = e−12χ3 g

(+)
6 e

1
4
ϕ3 g3 . (A.5)

Plugging the resulting scalar-dependent matrix M = V Vt into (2.26), (2.27) gives rise to

the bosonic Lagrangian

L = (R− V ) vol4 +
3

2

[
dϕ1 ∧ ∗dϕ1 + e2ϕ1 dχ1 ∧ ∗dχ1

]
+

1

2

[
dϕ2 ∧ ∗dϕ2 + e2ϕ2 dχ2 ∧ ∗dχ2

]
+

3

2

[
dϕ3 ∧ ∗dϕ3 + e2ϕ3 dχ3 ∧ ∗dχ3

]
,

(A.6)
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where the lengthy scalar potential

V =
1

2
g2e−3ϕ1−ϕ2−ϕ3

[
3 e4ϕ1+2ϕ2(e2ϕ1χ2

1 − 1)− 6 e4ϕ1+ϕ2+ϕ3(e2ϕ1χ2
1 + 3)

+ 3 e2(ϕ1+ϕ3)
(
e2ϕ1(e2ϕ1χ2

1 − 1)+e2ϕ2
(
e4ϕ1χ2

1(χ2+2χ3)2−e2ϕ1(2χ2
1+χ2

2)−2
))

+ e4ϕ3
[
3 e2(ϕ1+ϕ2)χ2

1 + e6ϕ1χ2
1

(
e2ϕ2

(
χ2

1 + 3 (χ2 + χ3)χ3

)2
+ 9χ2

3

)
+ 3 e4ϕ1

(
e2ϕ2

(
χ2

1 + χ3(χ2 + χ3)
)2

+ χ2
3

)
+ e2ϕ2

]
− 6 e2ϕ1+ϕ2+3ϕ3

(
e2ϕ1(χ2

1 + 2χ2
3) + 1

)]
− gme3ϕ1+ϕ2+3ϕ3 χ1

(
χ2

1 + 3χ3 (χ2 + χ3)
)

+
1

2
m2 e3ϕ1+ϕ2+3ϕ3

(A.7)

depends on the six real scalars of the truncated theory.

The SU(3), SO(4) and G2 sectors described in the main text can be recovered as

subtruncations of the Z2 × SO(3) sector. These are obtained through the identifications

SU(3) sector : Φ1 = −χ+ i e−ϕ , Φ2 = Φ3 = −ρ+ i e−φ ,

SO(4) sector : Φ1 = Φ3 = −χ+ i e−ϕ , Φ2 = −ρ+ i e−φ ,

G2 sector : Φ1 = Φ2 = Φ3 = −χ+ i e−ϕ .

(A.8)

The scalar potential (A.7) reduces on each of these three submanifolds of [SU(1, 1)/U(1)]3

to the scalar potentials (3.11), (5.6) and (4.5) of the SU(3), SO(4) and G2 invariant sectors.

Recovering the SU(3)-invariant scalar potential requires use of the definition (3.12).

A.2 Critical points

All the critical points in the SU(3), SO(4) and G2 sectors are also extrema of the Z2 ×
SO(3)-invariant potential (A.7). In addition, a casual numerical scan yields further non-

supersymmetric AdS critical points with SO(3) residual symmetry. For example, a critical

point occurs at

c−1/3 Φ1 = −0.554 + 0.492 i , c−1/3 Φ2 = 0.375 i and c−1/3 Φ3 = 1.263 i , (A.9)

with cosmological constant g−2 c1/3 V0 = −27.610 and scalar masses in this sector

M2L2 = ( 7.379 , 4.040 , 3.790 , −3.323 , −1.873 , −0.269 ) , (A.10)

normalised to the AdS radius L. Note the presence of an unstable mode with mass below

the BF bound, M2L2 ≥ −9/4.

A.3 Canonical N = 1 formulation

The Lagrangian (A.6), (A.7) of the Z2 × SO(3)-invariant sector of N = 8 ISO(7)c su-

pergravity can be cast in N = 1 canonical form. The relevant Kähler potential and

superpotential are

K = −3 log(−i(Φ1 − Φ̄1))− log(−i(Φ2 − Φ̄2))− 3 log(−i(Φ3 − Φ̄3)) ,

W = g
(
2 Φ3

1 + 6 Φ1 Φ2
3 + 6 Φ1 Φ2 Φ3

)
+ 2m,

(A.11)
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which give rise to the kinetic terms in (A.6), and to the scalar potential in (A.7) through

the standard formula (4.13) with p = 1, 2, 3, q = 1, 2, 3. The simplicity of the superpo-

tential (A.11) is again in contrast with the intricacy of the scalar potential (A.7). By

solving the F-flat conditions, DΦpW = 0, that follow from (A.11), one (only) recovers the

supersymmetric critical points in table 3. The N = 3 SO(4) critical point is invisible to

this superpotential for reasons similar to those discussed in section 5.3, but is of course an

extremum of the potential (A.7).

A.4 A non-geometric STU-model from ISO(7)c supergravity

The N = 1 rewrite in (A.11) uncovers a connection to the non-geometric type IIA back-

grounds based on toroidal T6/(Z2 × Z2) orientifold reductions investigated in [49, 50].

These N = 1 models have an [SU(1,1)/U(1)]7 scalar manifold parameterised by seven

complex fields (S , T1 , T2 , T3 , U1 , U2 , U3 ). The moduli S, T1,2,3 and U1,2,3 respectively

correspond to the type IIA axiodilaton, complex structure and Kähler moduli in the com-

pactification. In order to relate the non-geometric type IIA orientifold models of [49, 50] to

the N = 1 theory in (A.11), we further restrict to the subset of models enjoying an SO(3)

plane exchange symmetry in T6 = T2 ⊗ T2 ⊗ T2 . These have been referred to as isotropic

or STU-models in the literature [52]. In these STU-models the scalar manifold is reduced

to [SU(1, 1)/U(1)]3 via the identifications T ≡ T1 = T2 = T3 and U ≡ U1 = U2 = U3. This

results in a simplified Kähler potential

KIIA = −3 log(−i(U − Ū))− log(−i(S − S̄))− 3 log(−i(T − T̄ )) . (A.12)

This is formally the same as (A.11), but the fields are not yet directly identified (see below).

On the other hand, the most general flux-induced superpotential in toroidal orientifold

reductions receives three types of contributions: from regular fluxes of the type IIA form

fields, from metric fluxes (if T6 is twisted) and, finally, from so-called non-geometric fluxes.

The existence of the latter has been conjectured by duality arguments strongly based on

the symmetries of the straight T6 reduction [29, 48, 49]. Based on such arguments, the

non-geometric fluxes are switched on directly in the four-dimensional superpotential: no

reduction has been known so far that explicitly produces them from type IIA.

Now we will show that the Z2×SO(3)-invariant sector of N = 8 ISO(7)c supergravity,

described by the N = 1 quantities (A.11) corresponds, precisely, to one such non-geometric

STU-model. In order to see this, we first map the scalars Φ1,2,3 to the scalars S, T, U as

Φ1 = −1/U , Φ2 = S and Φ3 = T . Plugging these identifications into (A.11) produces a

non-standard Kähler potential due to the presence of −U−1 instead of U . This can be taken

to a standard form via a modular transformation U → −U−1. After this transformation,

the Kähler potential and superpotential in (A.11) are respectively mapped to (A.12) and

WIIA = −g
(
2 + 6T 2 U2 + 6S T U2

)
+ 2mU3 . (A.13)

This is a fluxed-induced superpotential of the type we have just reviewed. Following the

flux/superpotential-couplings dictionary of [29, 50], we can determine the type IIA flux-

origin of each term in (A.13). The constant term −2g descends from a regular F̂(6) flux. In
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other words, it arises from a Freund-Rubin contribution for F̂(4). The cubic coupling of U

is generated by the Romans mass F̂(0). From this perspective, the term 2mU3 is in perfect

agreement with [15], where the Romans mass F̂(0) was identified upon reduction with the

magnetic coupling m of dyonic ISO(7) supergravity. Finally, quartic terms, like T 2U2 and

STU2 are of non-geometric nature in this language.

Dyonic N = 8 ISO(7) supergravity and, in particular, the N = 1 subsector that we are

considering here, arises as a (consistent) reduction of massive type IIA on the six-sphere [15,

16]. Thus, this particular non-geometric model does in fact enjoy a perfectly geometric type

IIA origin. It would be interesting to investigate more generally the conditions that allow

for a conventional geometric interpretation of non-geometric flux reductions.

B The SU(3) sector and M-theory on Sasaki-Einstein

In this appendix we comment on the relation between the SU(3)-invariant sector of the

N = 8 ISO(7)c theory that we analysed in section 3, and the model of [37], which arises

from consistent truncation of D = 11 supergravity on any Sasaki-Einstein seven-manifold

to the modes that are SU(4)-invariant under the Sasaki-Einstein SU(4)-structure. Both

theories have the same field content, the same scalar manifold (3.1) and the same gauge

group, U(1) × SO(1, 1), generated by the same hypermultiplet Killing vectors (3.36). In

both theories, U(1) is gauged electrically only and SO(1, 1) dyonically in their natural

duality frames. Yet the theories are different: they have different scalar potentials, with

different critical points. Also, they have mutually incompatible higher-dimensional origins

in massive type IIA and M-theory, respectively.

The theories turn out to differ in their embedding tensors and, in particular, in the

allocation of electric and magnetic charges with respect to a common electric/magnetic

duality frame. In order to see this, we first need to express both theories in the same

symplectic frame. The Sp(4,R) rotation

SMN =


0 0 −1 0

0 −1 0 0

1 0 0 0

0 0 0 −1

 with detS = 1 and ST ΩS = Ω , (B.1)

where Ω is given in (3.31), brings the sections X̂M = (1, τ, τ3,−3τ2) of [37], associated

to the cubic prepotential F̂ = −(X̂1)3/X̂0, to the sections XM in (3.29) compatible with

a prepotential F = −2
√
X0 (X1)3, namely, SMN X̂

N = XM . No hats were used in [37]

and the scalars t = −χ + ie−ϕ here and τ = h + ie2U+V there are simply identified as

t = τ . The symplectic rotation (B.1) thus brings the theory of [37] from the “hatted”

duality frame to the duality frame that we are considering here for our SU(3)-invariant

sector. The embedding tensor of the theory [37] transformed into the new, common frame,

i.e. (S−1)M
N Θ̂N

α, turns out to be purely magnetic. It thus differs from our dyonic ΘM
α

in (3.38).
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C Construction of the N = 8 ISO(7) dyonic theory

In this appendix we build the family of symplectically deformed ISO(7)c = SO(7)nR7
c max-

imal gauged supergravities using the framework of the embedding tensor [22]. Following

the same mnemonic as in [1], we denote this family ISO(7)c where c is the electric/magnetic

or symplectic deformation parameter. Importantly, when moving results to the main text,

we have adopted differential form notation and rescaled the metric and the tensor fields as

g(here)
µν = 2 g(text)

µν and B(here)
µν α = 2B(text)

µν α . (C.1)

Then, the Einstein-Hilbert term, the kinetic terms for the scalars and the scalar potential

are rescaled accordingly

L(here)
EH =

1

2
L(text)

EH , Lkin (here)
scalar =

1

2
Lkin (text)

scalar and V (here) =
1

4
V (text) . (C.2)

C.1 E7(7) duality and the embedding tensor ΘM
α

Let us start by introducing the generators of the U-duality group E7(7) of maximal super-

gravity in four dimensions. These are denoted [tα]M
N where α = 1, . . . , 133 is an adjoint

index and M = 1, . . . , 56 is a fundamental index of E7(7). We will use the real SL(8) basis of

E7(7) to build the 56×56 generators [tα]M
N. In this basis, the decomposition 56→ 28 + 28′

makes manifest the electric and magnetic components of an arbitrary vector XM and trans-

lates into the index splitting XM → X[AB] ⊕ X [AB], where A = 1, . . . , 8 denotes a funda-

mental SL(8) index. The E7(7) generators consequentely split as tα = tA
B ⊕ tABCD, with

tA
A = 0 and tABCD = t[ABCD], and correspond to a branching 133→ 63 + 70 under

SL(8). Their matrix entries are given by10

[tA
B][CD]

[EF ]
= 4

(
δB[C δ

EF
D]A +

1

8
δBA δ

EF
CD

)
and [tA

B][EF ]
[CD] = −[tA

B][CD]
[EF ]

, (C.3)

for those in the 63 (block-diagonal matrices) representing SL(8) generators and by

[tABCD][EF ][GH] =
2

4!
εABCDEFGH and [tABCD][EF ][GH] = 2 δEFGHABCD , (C.4)

for those generators in the 70 (off-block-diagonal matrices) completing to E7(7).

The most general gauging of a 28-dimensional group G ⊂ SL(8) ⊂ E7(7) in maximal

supergravity is encoded within an embedding tensor ΘM
α of the form [3]

Θ
C

[AB] D = 2 δC[A θB]D , Θ[AB]C
D = 2 δ

[A
D ξB]C , (C.5)

where the index α in ΘM
α is restricted to the adjoint of SL(8), namely, to the generators

in (C.3). The matrices θ and ξ are symmetric and specify the gauging G as a function

of the number of negative, positive and vanishing eigenvalues. The Θ-tensor obeys the

(quadratic) constraints for a consistent gauging in maximal supergravity [22]

ΩMN ΘM
α ΘN

β = 0 with ΩMN =

(
028 I28

−I28 028

)
, (C.6)

10The generalised Kronecker symbols are taken to be normalised as projectors, i.e., δ
B1...Bp

A1...Ap
= ± 1

p!
or 0.

– 39 –



J
H
E
P
0
2
(
2
0
1
6
)
0
7
9

where ΩMN is the Sp(56,R)-invariant matrix satisfying ΩMP ΩMQ = δQP .

Using the form of the SL(8) generators in (C.3), it is possible to build an X-tensor11

XMN
P = ΘM

α [tα]N
P = ΘM

C
D [tC

D]N
P
, (C.8)

that consists of both electric X[AB] and magnetic X [AB] components often referred to as

charges. The former are given by

X[AB][CD]
[EF ] = −X [EF ]

[AB] [CD] = −8 δ
[E
[AθB][Cδ

F ]
D] , (C.9)

whereas the latter read

X
[AB] [EF ]

[CD] = −X [AB][EF ]
[CD] = −8 δ

[A
[Cξ

B][Eδ
F ]
D] . (C.10)

As we will see later, having magnetic charges (C.10), i.e. ξ 6= 0, requires not only the

introduction of magnetic vector fields Ã[AB]µ in the Lagrangian but also of two-form tensor

fields Bµν α in order to obtain a consistent gauge algebra [23].

C.2 Dyonic ISO(7)c gaugings

In order to describe the family of ISO(7)c gaugings, it proves natural to split the index

A = (I, 8) with I = 1, . . . , 7. The generators of ISO(7) = SO(7) nR7 ⊂ SL(8) are given by

28 linear combinations of the block-diagonal generators [tA
B]M

N
in (C.3). These are

TSO(7) : TIJ ≡ 2 t[I
KδJ ]K and TR7 : TI ≡ t8

J δJI , (C.11)

comprising SO(7) generators TIJ = T[IJ ] in the 21 of SO(7) plus R7 generators TI in the

7 of SO(7). They satisfy the standard commutation relations

[TIJ , TKL] = 4 δ[I[K TL]J ] ,

[TI , TKL] = 2 δI[K TL] ,

[TI , TK ] = 0 ,

(C.12)

which specify the structure constants of ISO(7). The completion to SL(8) requires ad-

ditional generators T
(S)
IJ ≡ 2 t(I

LδJ)L and T⊥I ≡ tI
8 in the (1 + 27) and 7 of SO(7),

respectively. When embedding SO(7) ⊂ SL(7) ⊂ SL(8), one has the generators decompo-

sition 63 → 1 ⊕ 48 (t8
8 , tI

J) ⊕ 7 (tI
8) ⊕ 7′ (t8

I). The entire set of SL(8) brackets is

then given by (C.12) together with

[TIJ , T
(S)
KL] = −4 δ[I(K T

(S)
L)J ] ,

[T
(S)
IJ , T

(S)
KL] = −4 δ(I(K TL)J) ,

[TI , T
(S)
KL] = 2 δI(K TL) ,

(C.13)

11The X-tensor is usually decomposed as XMN
P = X[MN]

P + ZP
MN with

ZP
MN = ZP,α dαMN = X(MN)

P , (C.7)

where ZP ,α = 1
2

ΩPQ ΘQ
α and dαMN ≡ [tα]M

P ΩNP. The Z-tensor plays an important role in the tensor

hierarchy of maximal supergravity [22, 24, 53].
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and
[T⊥I , TKL] = 2 δI[K T

⊥
L] ,

[T⊥I , T
(S)
KL] = −2 δI(K T

⊥
L) ,

[T⊥I , TK ] =
1

2
δIK

∑
L

T
(S)
LL +

1

2
(T

(S)
IK + TIK) ,

[T⊥I , T
⊥
K ] = 0 .

(C.14)

As found in [2], there is a one-parameter family of ISO(7)c maximal supergravities

specified by θ and ξ matrices of the form

θ =

(
δIJ 0

0 0

)
and ξ =

(
07×7 0

0 c

)
, (C.15)

which are compatible with the constraints (C.6). However, it was also proven in [2] that

all the values c 6= 0 produce equivalent theories up to a rescaling of the gauge coupling g.

Upon substitution of (C.15) into (C.5), the components of the embedding tensor ΘM
α take

the more explicit form

Θ
K

[IJ ] L = 2 δK[I δJ ]L , Θ
8

[I8] K = −δIK , Θ[IJ ]K
L = 0 , Θ[I8] 8

K = c δIK , (C.16)

and the charges in (C.9) and (C.10) are given by

X[AB] →

{
X[IJ ] = TIJ
X[I8] = −TI

and X [AB] →

{
X [IJ ] = 0

X [I8] = c δIJ TJ
. (C.17)

Applying analogous decompositions for the vector fields AM
µ , namely

A[AB]
µ →

{
A[IJ ]
µ = AIJµ
A[I8]
µ = AIµ

and Ãµ [AB] →

{
Ãµ [IJ ] = Ãµ IJ
Ãµ [I8] = Ãµ I

, (C.18)

one finds a covariant derivative Dµ = ∂µ − gAM
µ XM, with XM = ΘM

α tα, of the form

Dµ = ∂µ −
1

2
gAIJµ TIJ + gAIµ TI −m ÃµJ δJI TI , (C.19)

where m ≡ gc is the magnetic parameter introduced in [15]. As a result, the SO(7) rotations

(TIJ) are gauged electrically whereas the R7 translations (TI) are gauged dyonically, in

agreement with [2].

C.3 The bosonic Lagrangian

The Lagrangian of maximal supergravity is totally determined after specifying the X-tensor

XMN
P in (C.8) underlying the gauging [22]. Using (C.9), (C.10) and (C.15), the set of

components for the ISO(7)c case is given by

X[IJ ][KL]
[MN ] = −X [MN ]

[IJ ] [KL] = −8 δ
[M
[I δJ ][Kδ

N ]
L] ,

X[IJ ][K8]
[M8] = −X [M8]

[IJ ] [K8] = −2 δM[I δJ ]K ,

X[K8][IJ ]
[M8] = −X [M8]

[K8] [IJ ] = −2 δK[Iδ
M
J ] ,

X
[K8] [M8]

[IJ ] = −X [K8][M8]
[IJ ] = 2 c δK[I δ

M
J ] ,

(C.20)
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with all the rest vanishing. Equipped with this tensor XMN
P, the bosonic Lagrangian of

maximal supergravity is given by [22, 23]

Lbos = LEH + LVT + Lscalar , (C.21)

which contains the usual Einstein-Hilbert term12 LEH = 1
2 eR, as well as vector, tensor

and scalar contributions we move on to discuss now.

The scalar Lagrangian. The maximal supergravity multiplet contains 70 scalar fields

which serve as coordinates in the coset space E7(7)/SU(8). Using a coset representative VMN

transforming under global E7(7) transformations from the left and local SU(8) transforma-

tions from the right, the scalar-dependent matrix MMN in (2.15) is built as M = V Vt. In

terms of M, the scalar sector of the theory is given by

Lscalar = Lkin
scalar − e V (M) =

1

96
eTr

(
DµMDµM−1

)
− e V (M) , (C.22)

where the scalar potential induced by the gauging takes the form

V (M) =
g2

672

(
XMN

RXPQ
SMMPMNQMRS + 7XMN

QXPQ
NMMP

)
. (C.23)

Here we are not providing a more explicit expression neither for M nor for the scalar

potential (C.23) when particularised to the ISO(7)c gaugings. However, let us make an

extra remark in this case. The ISO(7)c gaugings involve the seven non-compact generators

TI in (C.11) associated to the R7
c translations. This implies that, if we choose an appropriate

parameterisation of the E7(7)/SU(8) scalar coset such that 7 out of the 70 scalars are aligned

with the TI generators, these seven scalars will not enter the scalar potential.

The vector-tensor Lagrangian. Neglecting fermion bilinears Oµν , vector fields con-

tribute to (C.21) with a kinetic and a topological term codifying generalised Chern-Simons-

like terms [23]. This is

LVT = Lvec + Ltop . (C.24)

The former is given by

Lvec =
1

4
e
(
IΛΣHΛ

µν HΣµν +
1

2 e
εµνρσRΛΣHΛ

µν HΣ
ρσ

)
, (C.25)

where Λ = 1, . . . , 28 is a collective index running over the electric vectors AΛ
µ ≡ A

[AB]
µ or

the magnetic ones ÃµΛ ≡ Ãµ [AB] in the decomposition AM
µ = (AΛ

µ , ÃµΛ) as well as over

their field strengths HM
µν = (HΛ

µν , H̃µν Λ). The symmetric matrices RΛΣ and IΛΣ in (C.25)

depend on the scalar fields and can be combined into a complex matrix

NΛΣ = RΛΣ + i IΛΣ . (C.26)

12We use a mostly-plus convention for the metric, i.e. e =
√
−g, as well as −ε0123 = +1 = ε0123 for the

Levi-Civita symbol.
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Note that IΛΣ must be negative definite for the kinetic terms in (C.25) to have the correct

sign. The complex matrix NΛΣ is related to the scalar matrix MMN in (2.15) via [54]

MMN =

(
MΛΣ MΛ

Σ

MΛ
Σ MΛΣ

)
=

(
−(I +RI−1R)ΛΣ (RI−1)Λ

Σ

(I−1R)Λ
Σ −(I−1)ΛΣ

)
. (C.27)

The field strengths HM
µν of the vector fields are given by

HM
µν = FM

µν + g ZM ,α Bµνα with FM
µν = 2 ∂[µAM

ν] + g X[NP]
MAN

µ AP
ν , (C.28)

and are “modified” in the sense that incorporate a number of auxiliary two-form tensor

fields Bµνα subject to suitable gauge transformations which ensure that (C.28) transform

covariantly [23]. The way tensor fields enter the field strengths in (C.28) is dictated by

ZM ,α =
1

2
ΩMN ΘN

α , (C.29)

and, using the ΘM
α components in (C.16) for the ISO(7)c gaugings, one finds

Z [IJ ]K
L = 0 , Z [I8] 8

K =
1

2
c δIK , Z

K
[IJ ] L = −δK[I δJ ]L , Z

8
[I8] K =

1

2
δIK . (C.30)

After using (C.20) and (C.30), the electric field strengths HΛ
µν entering the La-

grangian (C.25) in the case of the dyonic ISO(7) gaugings read

HIJµν = FIJµν = 2 ∂[µAIJν] − 2 g δKLAKI[µ A
JL
ν] ,

HIµν = FIµν +
1

2
mBIµν

= 2 ∂[µAIν] − 2 g δJK AIJ[µ A
K
ν] +mAIJ[µ Ãν] J +

1

2
mBIµν ,

(C.31)

whereas the magnetic field strengths H̃µν Λ, which do not appear in (C.25), take the form

H̃µν IJ = F̃µν IJ − g Bµν [I
K δJ ]K

= 2 ∂[µÃν] IJ

= g δKI AKL[µ Ãν] JL+g Ã[µKI AKLν] δJL+g δKI AK[µ Ãν] J+g Ã[µ I AKν] δKJ

− 2m Ã[µ I Ãν] J − g Bµν [I
K δJ ]K ,

H̃µν I = F̃µν I +
1

2
g δIJ BJµν = 2 ∂[µÃν] I − g δIJ AJK[µ Ãν]K +

1

2
g δIJ BJµν .

(C.32)

Therefore, a set of seven two-form tensor fields BIµν ≡ Bµν 8
I will enter (C.25) if m 6= 0

because of HIµν in (C.31).

The presence of magnetic charges and tensor fields generates the topological term

in (C.24). It was obtained in [23] and takes the form

Ltop = g εµνρσ
[
− 1

8
ΘΛα Bµν α

(
2 ∂ρÃσΛ + g XMNΛAM

ρ AN
σ −

1

4
gΘΛ

β Bρσ β
)

− 1

3
XMNΛAM

µ AN
ν

(
∂ρAΛ

σ +
1

4
g XPQ

ΛAP
ρ AQ

σ

)
− 1

6
XMN

ΛAM
µ AN

ν

(
∂ρÃσΛ +

1

4
g XPQΛAP

ρ AQ
σ

)]
.

(C.33)

– 43 –



J
H
E
P
0
2
(
2
0
1
6
)
0
7
9

Particularising again to the case of ISO(7)c gaugings, and using the relations

XMN
[IJ ]AM

µ AN
ν = δKLAIKµ AJLν − (I ↔ J) ,

XMN[IJ ]AM
µ AN

ν = δILALKµ Ãν JK + (δILALµ − c Ãµ I) Ãν J − (I ↔ J) ,

XMN
[I8]AM

µ AN
ν = −δKLAIKµ ALν + (δKLALµ − c ÃµK)AIKν ,

XMN[I8]AM
µ AN

ν = −AIKµ Ãν K ,

(C.34)

to compute the contributions of the form AA∂A and AAAA, the topological term in (C.33)

reduces to

Ltop = mεµνρσ
[
−1

8
BIµν

(
H̃ρσ I−

1

4
g δIJ BJρσ

)
+

1

4
Ãµ I Ãν J

(
∂ρAIJσ +

g

2
AIKρ AJLσ δKL

)]
,

(C.35)

with H̃µν I given in (C.32). Notice that (C.35) vanishes in the purely electric case of m = 0.

Three-form potentials, Bianchi identities and representation theory. The ten-

sor hierarchy of maximal supergravity requires also the presence of three-form potentials

CµνραM transforming in the conjugate representation to the embedding tensor [24]. These

three-forms modify the field strengths of the tensors Bµν α in a similar manner to (C.28),

namely [23–25, 53],

H(3)µνρα = F(3)µνρα + g Yα,P
β Cµνρ βP , (C.36)

with

F(3)µνρα = 3D[µBνρ]α + 6 dαMNAM
[µ

(
∂νAN

ρ] +
1

3
g XRS

NAR
ν AS

ρ]

)
, (C.37)

and

D[µBνρ]α = ∂[µBνρ]α + g XMα
β AM

[µ Bνρ]β , (C.38)

and where XMα
β = ΘM

γ [tγ ]α
β and dαMN ≡ [tα]M

P ΩNP. The Y -tensor in (C.36) is called

the intertwining tensor and takes the form [24, 25]

Yα,P
β = [tα]P

Q ΘQ
β +XPα

β . (C.39)

The field strengths H(3)µνρα do not enter the maximal supergravity Lagrangian in the

framework of [22, 23]. Moreover, by virtue of

ZM, α Yα,P
β = 0 , (C.40)

the Y -term in (C.36) vanishes upon contraction with ZM, α and, therefore, is not relevant

for the (Z-projected) Bianchi identities [23]

D[µHM
νρ] =

1

3
g ZM, αH(3)µνρα ,

ZM, αD[µH(3)νρσ]α = 3 g XPQ
MHP

[µν H
Q
ρσ] ,

(C.41)

with
D[µHM

νρ] = ∂[µHM
νρ] + g XPQ

MAP
[µH

Q
νρ] ,

D[µH(3)νρσ]α = ∂[µH(3)νρσ]α + g XMα
β AM

[µH(3)νρσ]β .
(C.42)
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Using (C.37)–(C.39), we have obtained the expressions for the three-form field strenghts

in (C.36) when particularised to the dyonic ISO(7) theory. Similarly, using (C.42), we

obtained the expressions for the (Z-unprojected) Bianchi identities. The results have been

brought to the main text. Last, and for the sake of brevity, we are not presenting here the

lengthy expression for H(4)µνρσ α
M, which can be found in the appendix B of [26].

Let us briefly comment on the representation theory underlying the field content of

the tensor hierarchy for the dyonic ISO(7) supergravities. Using the branching rules

E7(7) ⊃ SL(8) ⊃ SL(7)× RM

56→ 28 + 28′ → (21+2 + 7−6) + (21′−2 + 7′+6)

133→ 63 + 70→ (10 + 480 + 7+8 + 7′−8) + (35−4 + 35′+4)

912→ 36 + 36′ + . . .→ (28+2 + 7−6 + 1−14) + (28′−2 + 7′+6 + 1+14) + . . .

(C.43)

it is possible to identify the different representations attached to the different field potentials

and embedding tensor deformations in the theory. These are given by

AM → ÃIJ ≡ 21+2 , ÃI ≡ 7−6 , AIJ ≡ 21′−2 , AI ≡ 7′+6 ,

Bα → B ≡ 10 , BIJ ≡ 480 , BI ≡ 7′−8 ,

CαM → CIJ ≡ 28′−2 , C̃ ≡ 1−14 ,

(C.44)

whereas the embedding tensor ΘM
α sits in the 28+2 (g δIJ) and 1+14 (m). Further trun-

cations to the different invariant sectors discussed in this paper are displayed in table 2.

D The scalar-dependent matrixMMN

In this appendix we provide the explicit form of the symmetric, scalar-dependent matrix

MMN =

(
MΛΣ MΛ

Σ

MΛ
Σ MΛΣ

)
=

(
M[AB][CD] M[AB]

[CD]

M[AB]
[CD] M[AB][CD]

)
(D.1)

in (2.15) for the the SU(3), G2 and SO(4) invariant sectors discussed in the main text.

D.1 The SU(3) sector

The complexification in (3.3) translates into an index splitting of the form A→ 1 ⊕ i ⊕ 8,

with i = 2, . . . , 7 a fundamental index of SO(6). This implies a splitting of the 28 (and

the 28′) of SL(8) of the form [AB]→ [ij] ⊕ [1j] ⊕ [i8] ⊕ [18]. The set of SU(3)-invariant

forms includes the flat metric δij , a real two-form Jij and a holomorphic three-form Ωijk.

With those index conventions, these are given by

J = e2 ∧ e3 + e4 ∧ e5 + e6 ∧ e7 ,

Ω = (e2 + i e3) ∧ (e4 + i e5) ∧ (e6 + i e7) .
(D.2)

These forms satisfying the orthogonality and normalisation conditions

J ∧ Ω = 0 and Ω ∧ Ω̄ = −4

3
i J ∧ J ∧ J . (D.3)
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The scalar matrixMMN depends on the six scalars (χ, ϕ) and (φ, a, ζ, ζ̃) entering the coset

representative in (3.6). It is useful to introduce the short-hand combinations

X = 1 + e2ϕχ2 , Y = 1 +
1

4
e2φ (ζ2 + ζ̃2) , Z = e2φ a , (D.4)

together with

j1 = ζ Z + ζ̃ Y and j2 = ζ̃ Z − ζ Y , (D.5)

in order to present the different blocks of (D.1). We now turn to do that.

• The block M[AB][CD] contains the following components

M[18][18] = e−3ϕX3 ,

M[i8][k8] = e−(2φ+ϕ)X (Y 2 + Z2) δik ,
(D.6)

together with

M[18][kl] = eϕ χ2X Jkl ,

M[i8][kl] = −1

2
eϕ χ

[
j1 (ReΩ)ikl + j2 (ImΩ)ikl

]
,

M[i8][1l] = −e−ϕX
[
Z δil + (Y − 1) J il

]
,

(D.7)

and

M[1j][1l] = e2φ−ϕX δjl ,

M[1j][kl] =
1

2
e2φ+ϕ χ

[
ζ (ReΩ)jkl + ζ̃ (ImΩ)jkl

]
,

M[ij][kl] = eϕ (X − Y ) J ij Jkl + 3 eϕ (Y − 1) J [ij Jkl] + 2 eϕ Y δk[i δj]l .

(D.8)

• For the block M[AB]
[CD], the set of components is given by

M[18]
[18] = −e3ϕ χ3 ,

M[i8]
[k8] = eϕ χ

[
Z J ik − (Y − 1) δik

]
,

(D.9)

together with

M[18]
[kl] = −e−ϕ χX2 Jkl ,

M[i8]
[kl] =

1

2
e−ϕX

[
j1 (ReΩ)ikl + j2 (ImΩ)ikl

]
,

M[i8]
[1l] = e−2φ+ϕ χ (Y 2 + Z2) J il ,

M[ij]
[18] = −e3ϕ χ J ij ,

M[ij]
[k8] =

1

2
e2φ+ϕ

[
ζ̃ (ReΩ)ijk − ζ (ImΩ)ijk

]
,

M[1j]
[k8] = −e2φ+ϕ χ J jk ,

(D.10)

and

M[1j]
[1l] = −eϕ χ

[
Z J j l+(Y − 1) δjl

]
,

M[ij]
[1l] =

1

2
eϕ
[
j2 (ReΩ)ij l−j1 (ImΩ)ij l

]
,

M[1j]
[kl] = −1

2
e2φ−ϕX

[
ζ (ReΩ)jkl + ζ̃ (ImΩ)jkl

]
,

M[ij]
[kl] = eϕ χ (Y −X) J ij Jkl−3 eϕ χY J [ij Jrs] δr[k δl]s−2 eϕ χ (Y −1) δijkl .

(D.11)
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• The block M[AB][CD] has components

M[18][18] = e3ϕ ,

M[i8][k8] = e2φ+ϕ δik ,
(D.12)

together with

M[18][kl] = e3ϕ χ2 Jkl ,

M[i8][kl] = −1

2
e2φ+ϕ χ

[
ζ̃ (ReΩ)ikl − ζ (ImΩ)ikl

]
,

M[i8][1l] = eϕ
[
Z δil − (Y − 1) Jil

]
,

(D.13)

and

M[1j][1l] = e−2φ+ϕ (Y 2+Z2) δjl ,

M[1j][kl] = −1

2
eϕ χ

[
j2 (ReΩ)jkl−j1 (ImΩ)jkl

]
,

M[ij][kl] = e−ϕX (X−Y ) Jij Jkl+3 e−ϕX(Y −1) J[ij Jkl]+2 e−ϕX Y δk[i δj]l .

(D.14)

• Due to the symmetry of MMN, the last block can be obtained as M[AB]
[CD] =

M[CD]
[AB].

Note that different SU(3)-invariant tensors have different Z2-parity behaviour with re-

spect to the transformation in (A.2): the tensors δij and Re(Ω)ijk are parity-even whereas

Jij and Im(Ω)ijk are parity-odd. Consequently, there are parity-even and parity-odd com-

ponents within MMN. The latter vanish when a = ζ = 0 (so that j2 = 0), as these scalars

pair up with the parity-odd generators in (3.5).

D.2 The G2 sector

The decomposition 8→ 7 + 1 of the fundamental representation of SL(8) under G2 selects

an index splitting of the form A→ I ⊕ 8 with I = 1, . . . , 7. Consequently, one also has a

splitting of the 28 (and the 28′) of the form [AB] → [IJ ] ⊕ [I8]. The set of components

of the scalar-dependent matrix (D.1) can be written in terms of the G2-invariant tensors

δIJ and

ψIJK = e123 + e145 + e167 − e246 + e257 + e473 + e635 ,

ψ̃IJKL = e4567 + e6723 + e2345 − e1357 + e1346 + e1562 + e1724 ,
(D.15)

which are related by seven-dimensional Hodge duality. The scalar matrix MMN in this

sector depends on two scalars (χ, ϕ). Introducing the combination X = 1 + e2ϕχ2, it
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contains the following blocks:

M[IJ ][KL] = 2 eϕX δK[I δJ ]L + e3ϕ χ2 ψ̃IJKL ,

M[IJ ][K8] = eϕχ2X ψIJK ,

M[I8][K8] = e−3ϕX3 δIK ,

M[IJ ]
[KL] = −2 e3ϕ χ3 δIJKL − eϕ χX ψ̃IJKL ,

M[IJ ]
[K8] = −e3ϕ χ ψIJK ,

M[I8]
[KL] = −e−ϕ χX2 ψIKL ,

M[I8]
[K8] = −e3ϕ χ3 δIK ,

M[IJ ][KL] = 2 e−ϕX2 δK[I δJ ]L + eϕ χ2X ψ̃IJKL ,

M[IJ ][K8] = e3ϕχ2 ψIJK ,

M[I8][K8] = e3ϕ δIK .

(D.16)

The G2-invariant tensors are parity-even with respect to the Z2 transformation (A.2).

Consequently, so are the MMN components (D.16).

D.3 The SO(4) sector

The branching 8 → (2,2) + (3,1) + (1,1) of the fundamental SL(8) representation under

SO(4) determines an index splitting A→ λ ⊕ a ⊕ 8 with λ = 1, 3, 5, 7 and a = 2, 4, 6. The

splitting of the 28 (and the 28′) is then of the form [AB]→ [λµ] ⊕ [ab] ⊕ [aµ] ⊕ [λ8] ⊕ [a8].

The SO(4) sector we investigate in this work retains four scalars (χ, ϕ) and (ρ, φ). In terms

of these, the independent blocks of the scalar-dependent matrix (D.1) can be obtained

using the invariant tensors δab, εabc, δλµ, ελµνσ and the 4× 4 matrices13 [γa]
λ
µ given by

[γ2] =


0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

 , [γ4] =


0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0

 , [γ6] =


0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0

 . (D.17)

The above γ-matrices satisfy the anti-self-duality relations

[γa]λµ = −1

2
ελµνσ [γa]νσ , (D.18)

as well as the usual

{γa , γb} = −2 I4×4 and [γa , γb] = −2 εabc γc . (D.19)

As in the previous cases, we define the following combinations

X = 1 + e2ϕ χ2 , Y = 1 + e2φ ρ2 , (D.20)

which we use to list the entries of MMN.

13Here we use invariant tensors (γ2, γ4, γ6) ≡ (−2 t
(−)
1 , 2 t

(−)
2 , 2 t

(−)
3 ) with t

(−)
1,2,3 given in eq. (4.1) of [30].
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• The block M[AB][CD] in (D.1) contains the components

M[λ8][µ8] = e−3ϕX3 δλµ ,

M[a8][c8] = e−(2ϕ+φ)X2 Y δac ,
(D.21)

together with
M[aλ][µ8] = eϕX χ2 [γa]λµ ,

M[λµ][a8] = eφX χρ [γa]λµ ,

M[ab][c8] = −e2ϕ−φ Y χ2 εabc ,

(D.22)

and
M[λµ][νσ] = −e2ϕ+φ χ2 ελµνσ + 2 eφX δν[λ δµ]σ ,

M[ab][λµ] = −e2ϕ+φ ρχ εabc [γc]
λµ ,

M[aλ][bµ] = e3ϕ χ2 εabc [γc]
λµ + eϕX δab δλµ ,

M[ab][cd] = 2 e2ϕ−φ Y δc[a δb]d .

(D.23)

• The block M[AB]
[CD] contains the set of components

M[λ8]
[µ8] = −e3ϕ χ3 δλµ ,

M[a8]]
[c8] = −e2ϕ+φ χ2 ρ δac ,

(D.24)

together with
M[aλ]

[µ8] = −e3ϕ χ [γa]λµ ,

M[µ8]
[aλ] = e−ϕX2 χ [γa]

µ
λ ,

M[λµ]
[a8] = −e2ϕ+φ χ [γa]

λµ ,

M[a8]
[λµ] = −e−φX Y χ [γa]λµ ,

M[ab]
[c8] = e2ϕ+φ ρ εabc ,

M[a8]
[bc] = e−2ϕ+φ ρX2 εabc ,

(D.25)

and
M[λµ]

[νσ] = eφ ρX ελµνσ − 2 e2ϕ+φ ρχ2 δλµνσ ,

M[ab]
[λµ] = e2ϕ−φ Y χ εabc [γc]λµ ,

M[λµ]
[ab] = eφX χ εab

c [γc]
λµ ,

M[aλ]
[bµ] = −eϕX χ εa cb [γc]

λ
µ − e

3ϕ χ3 δab δ
λ
µ ,

M[ab]
[cd] = −2 e2ϕ+φ ρχ2 δabcd .

(D.26)

• The block M[AB][CD] contains the pieces

M[λ8][µ8] = e3ϕ δλµ ,

M[a8][c8] = e2ϕ+φ δac ,
(D.27)

together with
M[aλ][µ8] = e3ϕ χ2 [γa]λµ ,

M[λµ][a8] = e2ϕ+φ χρ [γa]λµ ,

M[ab][c8] = −e2ϕ+φ χ2 εabc ,

(D.28)
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and
M[λµ][νσ] = −e2ϕ−φ Y χ2 ελµνσ + 2 e−φ Y X δν[λ δµ]σ ,

M[ab][λµ] = −eφ ρχX εabc [γc]λµ ,

M[aλ][bµ] = eϕ χ2X εabc [γc]λµ + e−ϕX2 δab δλµ ,

M[ab][cd] = 2 e−2ϕ+φX2 δc[a δb]d .

(D.29)

• The last block is obtained as M[AB]
[CD] =M[CD]

[AB], since MMN is symmetric.

The SO(4)-invariant tensors are parity-even with respect to the Z2 transformation

in (A.2) and so are the MMN components listed above.
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