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1 Introduction

Maximal gauged supergravity in four dimensions often admits continuous or discrete sym-
plectic deformations that respect N/ = 8 supersymmetry and the gauge group [1, 2]. The
simplest type of deformation introduces a dependence on a dimensionless parameter ¢ in
the gauging-dependent couplings of the theory. The covariant derivatives, for example,
acquire a new coupling to the magnetic vectors proportional to c,

D=d—g (AA—CAA> ; (1.1)

thus leading to a dyonic gauging. The role of this parameter, in a passive picture, is to tune
the electric/magnetic symplectic frame prior to introducing the gauging. In the ungauged
limit, ¢ can be set to zero without loss of generality by a symplectic transformation. At
finite gauge coupling g, however, electric/magnetic duality is broken and the theory typ-
ically becomes sensitive to the symplectic frame specified by ¢. Various aspects of this
deformation for different gauge groups have now been studied, including its effect on the
vacuum structure [1, 3-6], on domain-wall [7-9] and black hole solutions [10-12], or on
inflationary models [13, 14].

An immediate question is whether these N' = 8 dyonic gaugings descend from higher
dimensions. This was recently answered positively when the gauge group is chosen to be
ISO(7). = CSO(7,0,1). = SO(7) x RY [15]. Here and often in the following, we have
followed the notation of [1] and have sticked in a subscript ¢ to denote that ISO(7) (more
precisely, only its seven translations) is gauged dyonically. In [15, 16] we showed that
D = 4 N = 8 ISO(7)-dyonically-gauged supergravity arises as a consistent truncation of
massive type ITA supergravity [17] on the six-sphere, with the magnetic coupling constant
m = gc identified upon reduction with the Romans mass, F(,y = m. All solutions of the
D = 4 theory uplift to solutions of massive type IIA by the consistency of the trunca-
tion. In particular, its vacua (all known ones are AdS) give rise to AdSs backgrounds of
massive type IIA string theory. Quantitative evidence was also given in [15] that these
AdS,4 vacua are dual to the simplest type of Chern-Simons theories with a single gauge
group and adjoint matter [18]. The answer to the question of the higher-dimensional ori-
gin of these dyonic gaugings is of course gauge group dependent. Arguments have been
recently given [19] against an M-theory origin of the dyonic deformation [1] of the SO(8)
gauging [20].

The distinct higher-dimensional origin of the dyonic ISO(7) gauging singles it out and
makes it worth of further detailed investigation. This is what we set up to do in this



paper from a purely four-dimensional perspective, leaving further research on the precise
connection with ten dimensions for separate publications. Various aspects of the ISO(7)
gauging have already been studied. The purely electric, ¢ = 0 (i.e. m = 0), ISO(7)-gauged
theory was constructed long ago [21] from the SO(8)-gauged theory [20] by a limiting
procedure that implements the Inénii-Wigner contraction from SO(8) to ISO(7) directly
in the supergravity. The symplectic deformations corresponding to various gauge groups,
including ISO(7), were studied in [2]. The ISO(7). family of gaugings was found to be
discrete, containing only two members: the purely electric ¢ = 0 theory [21], and the
dyonic ¢ # 0 theory. All non-vanishing values of ¢ lead to equivalent theories [2].

The basic formalism to deal with generic gaugings of D = 4 N’ = 8 supergravity has
been laid out in [22], see also [23]. The gauging is encoded in an embedding tensor that
governs both the non-Abelian coupling of the vectors to themselves and to the rest of the
supergravity fields, and the embedding of the gauge group into the global U-duality group,
E7(7). Gaugings that involve minimal couplings to the magnetic vectors in a given sym-
plectic frame necessarily require the presence of two-form potentials. These appear both
sourcing the field strengths of the vectors and in new topological terms in the Lagrangian,
without upsetting the count of degrees of freedom. More generally, a larger set of p-form
potentials, p = 1,...,4, of a so-called tensor hierarchy [24, 25] can be considered. These
include all vectors in the theory, a larger set of two-forms than a given gauging would typ-
ically require, and three- and four-forms, all of them in irreducible E;(7) representations.
Except for the four-form potentials, the fields up the tensor hierarchy are definitely dy-
namical as they typically cannot be gauged away: they do carry degrees of freedom, albeit
not independent ones. Indeed, bringing the metric and scalars into the picture, the higher
rank forms can be Hodge-dualised into (of course, dynamical) combinations of scalars and
their derivatives. The N' = 8 tensor hierarchy equipped with these dualisations has been
referred to as the ‘duality hierarchy’ [26]. See [27, 28] for the hierarchies in less super-
symmetric contexts. In this paper we will specify the Lagrangian for the ISO(7). gaugings
following the embedding tensor formalism [22]. We will also be interested in the duality
hierarchy [26], paying particular attention to a subsector with closed field equations and
supersymmetry transformations. This subsector arises upon suitable restriction of the full
E7(7)-covariant duality hierarchy. Although it is only SL(7)-covariant, rather than E7(7),
this subsector is still A” = 8.

We will also study the vacuum structure of the ISO(7). gaugings. More concretely,
we provide a systematic classification of the critical points of the scalar potential that
preserve at least SU(3) and at least a particular SO(4) within SO(7) C ISO(7). We do
this by working out the truncations of the N' = 8 theory to the SU(3)- and that particular
SO(4)-invariant sectors, and then extremising the resulting potentials. Although the Go-
invariant sector is contained within the SU(3) sector, we find it useful to provide a separate
treatment for it too. All these sectors are supersymmetric and, as a crosscheck on our
calculations, we cast them in the corresponding N' = 2 or N' = 1 canonical form. We
provide explicit parameterisations for the scalars in these subsectors. This allows us to
give the location of the critical points in the full scalar space E;(7)/SU(8) relative to those
parameterisations. This result is new even for the critical points that were already known



(see below), which had been found using a method [3, 29] whose power resides, precisely,
in its being insensitive to their actual location.

Quite surprisingly, the vacuum structure of the electric and dyonic ISO(7) gaugings
turns out to be very different. In fact, while the former has no known vacua, the lat-
ter displays a rich (AdS) vacuum structure. Some of these critical points were already
known, including points with N = 1, Gy [4], and N/ = 3, SO(4) [30] symmetry, and
non-supersymmetric points with SO(7), SO(6) [3] and G2 [4] symmetry. Among the non-
supersymmetric points, only the latter is stable, at least within the full N' = 8 theory.
Our classification recovers all these extrema and finds new ones with /' = 2, SU(3) x U(1)
symmetry (which we already reported on in [15]), a point with SU(3), N' = 1 symmetry,
and stable non-supersymmetric points with SU(3) and SO(4) symmetry. Some, but not
all, of these points have counterparts in either the electric [20] or dyonic [1] SO(8) gauging,
with the same residual supersymmetry, bosonic symmetry and mass spectrum. See table 1
for a summary of the known critical points of the dyonic ISO(7) supergravity.

In section 2, we construct the ISO(7), theory using the embedding tensor formalism,
and specify the bosonic Lagrangian, an A/ = 8 subsector of the duality hierarchy and
the supersymmetry transformations. In the rest of the paper we flesh out some interest-
ing subsectors with less supersymmetry and bosonic symmetry: see sections 3, 4 and 5
for discussions of the SU(3), G and an SO(4)-invariant sectors, respectively. Canonical
supersymmetric formulations are given and the critical points of the scalar potential in
these sectors are computed. Four appendices close the paper. The first two offer fur-
ther discussion. Appendix A contains the truncation of the N/ = 8 theory to yet another
subsector, with N' = 1 supersymmetry and Zs x SO(3) bosonic symmetry, relevant to non-
geometric type ITA orientifold reductions. Appendix B comments on the relation of the
SU(3)-invariant sector of the ISO(7). theory to the N' = 2 supergravity that arises from
consistent truncation of M-theory on an arbitrary Sasaki-Einstein manifold. The last two
are technical: appendix C gives some details of the construction of the N’ = 8 ISO(7),. the-
ory, while appendix D gives explicit parameterisations for the supergravity scalar kinetic
matrix in the invariant sectors discussed in the main text.

2 Maximal supergravity with dyonic ISO(7) gauging

We will now present the D = 4 N = 8 supergravity theory with a dyonically-gauged ISO(7)
gauge group, focusing on its bosonic sector. We review the embedding tensor and the field
content, including the tensor hierarchy, in section 2.1. An interesting subsector of the latter
is discussed in 2.2. The bosonic Lagrangian and supersymmetry transformations can be
found in 2.3 and 2.5. See also appendix C for some details of the construction of the theory
from the general formalism of [22, 23].

2.1 Tensor hierarchy and ISO(7) embedding tensor

The bosonic field content of maximal supergravity in four dimensions includes the vielbein
e,”, scalars that parameterise a coset representative Vi, M =1,...,56, i =1,...,8,
of E7(7y/SU(8) and vectors AM M = 1,...,56, in the fundamental representation of the



SUSY bos. sym. M?L? stability ref.

N=3 S0@4) 3(1+v31D, 1+v3)O, 90 908 _502 (22 e [30]
(3+v3)®, BW 302 g

N=2 U@ B+ vIT)M, 200D - _o06) 1408 5@) o(19) yes  [15] , [here]
40 %(6) ’ %(12) .0
N=1 Gy (4£v6), —1(11+v6)2D, oD yes [4]

33£v6), 00

N=1 8SU@3) (4+6)?) —%(12) , —20) —%(12) , %(6) , 028 yes [here]
61, 298(6)7 %(6)7 21 %(6)7 0®)
N =0 SO(7); 6, —12B7 669 o) no 3]
(7

% , 02D

N=0 S0(6); 6@, —30 300 8) no 3]

(12)
6, 902 g05)

N=0 G 6(2), —1064 o014 yes [4]
3(14)’ 0(14)

N =0 SU(@3) see (3.44) yes [here]
see (3.45)

N =0 SU(@3) see (3.46) yes [here]
see (3.47)

N=0 SO see (5.12) yes [here]
see (5.13)

Table 1. All critical points of D = 4 N = 8 dyonically-gauged-ISO(7) supergravity, that preserve
at least SU(3) and at least a certain SO(4) (see section 5) within SO(7) C ISO(7). All points are
AdS. For each point it is indicated the residual supersymmetry and bosonic symmetry, the scalar
(upper row) and vector (lower row) mass spectra with the corresponding multiplicities, its stability
and the reference where it was first found. See tables 3 and 4 for their location in scalar space and
for their cosmological constants.




U-duality group E7(7), with two-form field strengths H%I). In the presence of magnetic
charges, as it will be the case in this work, a set of two-form potentials' B,, o = 1,...,133,
in the adjoint of E7(7) and with three-form field strengths Hsa, is generically required by
gauge invariance [22, 23]. A gauging-dependent projection of the two-form potentials B,
typically enters the D = 4 Lagrangian and the field strengths ’H%I) of the vectors.

More generally, these 56 vectors A" and 133 two-forms B, are the first two sets of
fields in an Ey(7)-covariant tensor hierarchy [24, 25] that further includes 912 three-form
potentials C,M with four-form field strengths 7—[(4)QM, and 133+ 8645 four-form potentials.
Like for the lower rank forms, certain gauging-dependent projections of the three-form
potentials Co™ enter the three-form field strengths Hsya, and so on. Obviously, not all the
fields in the tensor hierarchy carry independent degrees of freedom: the higher rank forms
can be dualised into scalars and their derivatives. This was discussed at length in [26], where
the tensor hierarchy equipped with these dualisations was dubbed the ‘duality hierarchy’.
It is possible to write a generic N = 8 gauged supergravity Lagrangian that includes higher-
rank fields in the E(7) tensor hierarchy [26]. This Lagrangian reduces, after imposing the
duality relations, to the conventional Lagrangian [22] containing only the metric, scalars,
vectors and the two-forms switched on by magnetic gaugings. In section 2.3 we will write
the Lagrangian for the dyonic ISO(7) gauging in the formulation of [22], although we will
still find it useful to consider, in section 2.2, a (restricted) duality hierarchy containing
forms of higher rank.

To conclude this summary of the A/ = 8 field content, recall that the fermionic sector
contains the gravitino wz and spin 1/2 fields x%*, in the 8 and 56 of the R-symmetry
group SU(8), respectively. Both fermions are chiral, e.g., 75 ¢;, = 1, with 75 = i70717273
the chirality operator and ~, the CIliff(1,3) matrices. Recall that, in four dimensions,
charge conjugation reverses the fermion chirality. Following convention, we denote negative
chirality spinors with lower SU(8) indices, v5 ¢ = —% .

In order to formulate the ISO(7) gauging, it is natural to branch out the above E7 -
covariant bosonic field content into representations of SL(7), given that ISO(7) is contained
in E7(7) through the chain?

ISO(7) = SO(7) x RT € SL(7) x R" C GL(7) x R” C SL(8) C Eq(7). (2.1)

For this purpose, we find it useful to introduce fundamental SL(8) indices A, B =1,...,8,
and a collective index A = [AB] = 1,...,28. For SL(7), we only need to introduce funda-
mental indices, I = 1,...,7. The 56 vectors, for example, branch as

AM = (AN Ay) = (AAB | Aup) = (AT, AL, Apy, Ar). (2.2)

We have dropped the ‘8 label in A’® and Ajg, and have put tildes on the magnetic
vectors. Although the tildes are redundant with the lower position of the indices, we find

!The flat, SO(1, 3) index « on e,* should not cause any confusion with the E7(7y adjoint index on Ba.
Note also that D = 4 vectors and two-form potentials were denoted with straight, rather than calligraphic,

characters in [15].
*We will not keep track of charges under the SO(1,1) that extends SL(7) into GL(7) in the chain (2.1).
This SO(1, 1) does not play a role in the gauged ISO(7). theory. See nevertheless (C.43), (C.44).



this emphatic notation visually useful. Similarly, the 133 two-form, B,, and 912 three-
form, C,™, potentials branch as well into SL(7) representations: see equation (C.43) for
the relevant decompositions.

In N/ = 8 supergravity, gaugings are completely specified by the embedding tensor
Om* [22]. This determines the embedding of the gauge group into the E7(7) duality group.
Linear constraints enforce Oy to lie generically in the 912 of E7 ), and quadratic con-
straints (see equation (C.6)) ensure the consistency of the gauging [22, 23]. Fixing the
gauge group to be ISO(7), the linear constraint reduces the embedding tensor to lie in
the 28 + 1 of SL(7) and the quadratic constraint allows for the following non-vanishing
components of Oy® = (0,%, ©4) only:

G[U}KL - 26[[1( 0L » @[18]8K =0 and OIS, =6l (2.3)

see [3]. Here, c is an arbitrary real constant. It was shown in [2] that all non-vanishing
values of ¢ lead to equivalent theories up to a rescaling of the gauge coupling g. Therefore,
for g # 0, there exist two possible ISO(7) gaugings of D = 4 N' = 8 supergravity [2]: ¢ =0
and ¢ # 0. The first two components in (2.3), associated to the 28, couple to the electric
vectors, while the last component, related to the singlet, couples to the magnetic vectors.
Strictly speaking, only SO(7) singlets enter (2.3). In particular, in the first two components,
only the singlet in the decomposition of the 28 of SL(7) under SO(7) is involved, and is
realised as a Kronecker delta with two lower indices. We nevertheless find it useful to refer
to the electric, ©,®, and magnetic, ©*®, components of (2.3) as the 28 and singlet of
SL(7), respectively.

The physical difference between the ¢ = 0 and ¢ # 0 ISO(7) gaugings is most easily
seen by looking at the covariant derivatives. Denoting by g the (electric) gauge coupling
and introducing a magnetic gauge coupling m through

m=gec, (2.4)
the covariant derivatives induced by the ISO(7) embedding tensor (2.3) are

D:d—gAIJt[[K(SJ]K—f—(g(S[J.AI—mAJ)th. (25)

The A’ terms can be equivalently written using the 48 SL(7) generators ;7 — %tKK (5}7 .
These, together with the 7’ generators tg”, generate the SL(7) x R” subgroup of E7e7)
in (2.1). See (C.3), (C.4) for the expressions of the E;(;) generators (to)n' in the funda-
mental representation, in the SL(8) basis. In agreement with the table on page 37 of [22],
the embedding tensor components in the 28 couple the 21’ electric vectors A’/ to the 48
generators t;7 — % t™ 5}7 , and the 7’ electric vectors A’ to the 7’ generators tg”, while the
singlet component of the embedding tensor couples the 7 magnetic vectors As to the 7/
generators tg? whenever ¢ # 0. The choice ¢ = 0 in (2.3) thus leads to the purely electric
ISO(7) gauging constructed in [21] by other methods. For ¢ # 0, the gauging is dyonic in
the symplectic frame where (2.3) is expressed: the R7 translations of ISO(7) are gauged
dyonically. The rotations SO(7) are only gauged electrically, though: the constraints on
the ISO(7) embedding tensor set to zero the 28’ components that would induce a magnetic



gauging of SO(7), as well as the 7/, see the table in [22]. Thus, the 21 magnetic vectors A;;
do not participate in the gauging. Observe, finally, that the combinations T7; = 2¢; 56 JK
and Ty = tg” 07 in (2.5) correspond to the SO(7) and R” generators of the gauge group
ISO(7) = SO(7) x R7, see (C.12).

Indices of SL(7) cannot be raised or lowered. For the ISO(7) gauging, these can be
identified with SO(7) indices upon contraction with the embedding tensor. Even in this
case, we will refrain from raising and lowering them with the SO(7) metric ;.

2.2 A restricted duality hierarchy

In this section, we consider a certain subset of fields in the SL(7)-branched out tensor
hierarchy that includes all 56 — (21’ 4+ 7’) 4 (21 + 7) electric and magnetic vectors, but
excludes all of the four-forms and most of the SL(7)-covariant two-forms and three-forms
that respectively arise in the branching of the 133 and 912 of Ey(;) under SL(7). It only
includes the two-forms associated to the generators of SL(7) x R” and the three-forms in
the conjugate representation of the electric part of the embedding tensor. Specifically, we
wish to consider the following N = 8 bosonic field content, in SL(7) representations,

1 metric : ds?
21’ + 7 + 2147 coset representatives : VU P8I Y pid
21+ 7+ 21+ 7 vectors : A AL Ay, Ap, (2.6)
48 + 7' two-forms : B;7, B,
28’ three-forms : cl,

along with the fermions @DL and x“* in the 8 and 56 of SU(8). Note that A’/ = A!7], but
¢! =cUD . The vectors A’/ and A’ can alternatively be considered to lie respectively in
the adjoint and fundamental of SO(7), as they must for the ISO(7) = SO(7) x R” gauging.
The representations shown for the coset representatives correspond to their SL(7) indices
I =1,...,7. Unlike for the vectors and two-forms, we have kept the label ‘8’ in them that
comes from the branching (2.1) through SL(8). Their antisymmetric upper (lower) indices
ij label the 28 (28) of SU(8).

Considering the field content (2.6) requires some justification, since it contains more
fields than necessary to write the ISO(7)-gauged Lagrangian in the formulation of [22] (see
section 2.3), yet does not include all the fields in the full tensor hierarchy. The relevance
of this field content will only become apparent when we discuss the full embedding of
the ISO(7) gauging into type IIA [16]. It is nevertheless still possible to justify the self-
consistency of the field content (2.6) from a purely four-dimensional perspective. As we
will next show, for the gm # 0 ISO(7) gauging, (2.6) defines a consistent subsector of the
full E7(7y duality hierarchy [26], in the conventional sense. Namely, the Bianchi identities
of the p-forms, p = 1,2,3 in (2.6), the duality relations that these forms satisfy together
with the metric and scalars, their equations of motion and supersymmetry variations, all
close among themselves. This restricted field content preserves, of course, full N' = 8
supersymmetry since we are also keeping the 8 gravitini. The rest of this subsection will
be devoted to show the closure of the Bianchi identities and duality relations, while the
closure of the supersymmetry variations will be verified in section 2.5.



In order to show the closure of the Bianchi identities, we first compute the field
strengths of the p-form potentials in (2.6) specified by the ISO(7). gauging (2.3). The
two-form field strengths of the vectors are given by

Ml = dAY —g6pp AN AR

1 -
H(Iz) = dAI_g 0K AN AK+§mAI‘] A AJ+mBI,
. - - - - - (2.7)
Heoyrs = dAr+90kr AEL A Anr+90k A A Ap—mAr N Aj+29 0k B]}K ,

Heyr = d/l;—%g 510 AN Ag+g6r,B7
the three-form field strengths of the two-form potentials are
Hey?! = DB + %AJK ANdArg + %AJ ANdA; + %AIK ANdATE + %AI A dA’
— 90K AN AP N dppy — S AT N AP A Ay
+ ég S ATE N AEM N Ay — ég S AV A AOEN AL (2.8)
— %mAJK ANA A A — 2901k cIK — %5}] (trace),
H{, = DB' — %A” NdA; - %AJ AdA + %g Sy A NAREN AL,
and the four-form field strengths of the three-form potentials read

1 1 ~
i) = DM — G A B+ Hiy ABY — Sm BN ABT — AU A Ay nd AV
1

1 ~ 1 -~ N
+ 6AIK ANATENdAg — EAK(I AAg AdAD — gAK(I ANAD A dAg

1 ~ 1 ~
- 6AU AAg NdADE — G90KL ABE N ADMN AN A Ay (2.9)
+ ég Srer, AKT A AD N AEM A Ay — ég Srer, AKU A ADM A AL A Ay,

1 N -
— gmAIK/\AJL/\AK/\AL.

Following (2.5), in (2.8)—(2.9) we have defined the covariant derivatives
DB =dB;? — g6k ATEANBY = g6k AKX ABLY — g1 AK A BT

= 1
J 75J t
+mArAB =01 (trace), (2.10)

DB! EdBI*g(SJK.AIJ/\BK,
DCY = dc +2g 8k, AKT ACHE.

We have obtained the two- and three-form field strengths (2.7), (2.8) by particularising to
the ISO(7). embedding tensor (2.3) the generic expressions [23, 26] dictated by the D = 4
embedding tensor formalism (see appendix C). On the other hand, we obtained the four-
form field strength (2.9) from the ITA truncation formulae [16]. This expression is also



compatible with that dictated by the D = 4 embedding tensor formalism, see appendix B
of [26]. Note the pure Yang-Mills form of the electric field strengths ’H(IQ{ , in agreement
with the purely electric gauging of the SO(7) subgroup of ISO(7) when g # 0. The electric
field strengths ’Hé) contain the contribution expected from the semidirect action of the
electric SO(7) rotations on the electric abelian translations R”, plus contributions of the
magnetic vectors A; and the two-forms B! due to the dyonic gauging when m % 0.

Introducing, from (2.5) with the generators in the appropriate representation, the
following covariant derivatives of the two-form field strengths

JIL
DHY = dHlL =2 965, AKU A

DHyy = dHy —g 05 AT AN MG +g 05 AT NHGE —m Ay NHG

DH oy = dHoyrs+2g 5K[1AKL A 7:[(2)J]L+2 g 5K[1AK A 7:[(2)J} —2m A[[ A 7:l(z)J] ; 2
DHyr = dH oy —g 010 A7 ANH ek
and of the three-form field strengths,
DMy’ = dHeyr” — g0xn AT AN H " — g0 AXE AN H@ LT — 01k AR AH,
+ mAr A 7—[{3) — %5‘[] (trace), (2.12)

DM, = dM/, — o1 A N,

we find that the Bianchi identities corresponding to the form potentials in (2.6) can be
written as

DH{ =0, DUl =mHly, DHeurs=—-29Hep" ok, DHeyr = g My,
_ _ 1
DH(g)[J = HE]Q? A H(Q)IK + H‘(]Q) VAN H(g)] — 2g 5][{ %E{lg( - ? 6}] (trace) s (213)

DH(I:J,) = —Hé{ /\ 7;2(2)], DH(I4{ = 0 .

The Bianchi identities (2.13) indeed close among themselves, as we wanted to show. An
equivalent way of phrasing this is that (2.13) defines a free differential algebra (FDA) which
is a sub-FDA of the FDA defined by the Bianchi identities of the full tensor hierarchy.

We now turn to discuss the closure of the field content (2.6) under Hodge duality. Clo-
sure is really automatic: the magnetic two-form field strengths are dual to scalar-dependent
combinations of the electric two-form field strengths; the three-form field strengths are
dual to scalar dependent combinations of covariant derivatives of scalars; the four-form
field strengths are dual to combinations of scalars; and all vectors and scalars have been
retained in (2.6). It is nevertheless useful to write the explicit duality relations. For the
vectors and two-form potentials, these have been given in [23, 26], while for the three-form
potentials the duality relations have been given in [26]. In particular, the four-form field
strengths are dual to the derivative of the scalar potential (see (2.27) below) with respect
to the embedding tensor.

In order to write the duality relations, we need to introduce two scalar-dependent
symmetric matrices, M, real, and N, complex, respectively E7(7y- and SL(8)-covariant.



The former is the square of the E(7)/SU(8) coset representative, M = YV, and is also
related to the real and imaginary parts of the latter,

Nas = Ras + iy, (2.14)
where Zyy is invertible and negative definite. More concretely,

Mas Mp™ ) —(Z+RI'R)ax (RT1)2”

MAy MAS - (I—lR)A _(2—1)1\2 - (215)
b

My = 2V Vi = (
The inverse of My is MM = QMPQNQMPQ, with QY™ the Sp(56, R)-invariant matrix.
From [23, 26|, we obtain the following duality relations for the 56, 133 and 912 E77)-
covariant two-, three- and four-form field strengths,

Heon = Ras Hi + Ias * M) (2.16)
1
Hea =15 (ta)m” Mnp ¥ DM, (2.17)
1
Hona™ = =27 (ta)e* Xng M (MM +76% 67 ) voly (2.18)

Here, Xyn' = On” (ta)NP, see (C.8), is the contraction of the ISO(7) embedding ten-
sor (2.3) with the generators (to)n" of E7(7) in the fundamental representation, see (C.3),
(C.4). The duality relations for the restricted field content (2.6) simply follow from (2.16)—
(2.18) by branching the adjoint SL(8) index on the vectors as in (2.2), and restricting the
E7(7y generators to only those of SL(7) x R

1 1
Heyrr = ST *Hey + ks * Moy + 5Runwn Moy + Rugws My (2:19)

o |
Heor = Tugxny * Moy + Tusyis) * Hey + S Risywery Moy + Rusires Hey o (2:20)

7—[<3)1J = %(tIJ)MP Mup * DM — %5}7 (trace) , (2.21)
1

He' = E(tsl)MP Myp x DMM™ (2.22)
1

7—[([4{ = SZXNQS ((tK(”)PRMlJ)KN+(tg(”)PRM‘J)SN) (MPQMRS+755 5%)vol4 . (2.23)

In (2.23), only components MY in the notation of (2.15), and not MY, are contracted
with the SL(7) x R” generators. The combination of these duality relations with the Bianchi
identities (2.13) reproduces a subset of the equations of motion: see section 2.4.
Extensions of the duality hierarchy (2.6) may be considered that are still smaller than
the full E7(7) hierarchy. A natural extension includes, besides the 28’ C!7 three-form poten-
tials in (2.6) conjugate to the electric embedding tensor, also the SL(7)-singlet three-form
potential C conjugate to the singlet magnetic component of the embedding tensor. Consis-
tency then requires that the singlet two-form potential B that renders By’ traceful is also
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retained. The extension of the Bianchi identities (2.13) to also include these singlets reads

DH(g) = H(IQ{ VAN 7‘1(2)[] + 7'[(]2) A\ 7‘2(2” — 29 (5[] ?‘[({i{ — 14m7-[(4> 5

h (2.24)
DH(4) = 0,

while their duality relations are, from (2.17) and (2.18),

1
Hesy = —— (ts® )" Mup x DM
12 (2.25)

~ 1
My = 31 Xno® (t™ ) pE Mg N MFQ Mg voly .
We have used t;/ = —tg8 and Tr(t;” ts%) = Tr(ts’ ts®) = 0 to simplify the results.

For 7:[(4) in (2.25), components MY, and not MAN, in the notation of (2.15), are now
contracted with the R generators, opposite to what happened for 7—[{4{ in (2.23). Although
the singlet C does not play a role in the restricted duality hierarchy (2.6), its dualised field
strength ?2@) in (2.25) is still crucial to recover the scalar potential, as we will show in the
next subsection. The significance of this asymmetric role of C for the massive type ITA

embedding of dyonic ISO(7) supergravity will be discussed in [16].

2.3 Bosonic Lagrangian

We will now write the Lagrangian of A” = 8 dyonically gauged ISO(7) supergravity, focusing
on the bosonic terms. While it is possible to write a Lagrangian that includes higher rank
fields in the Ey(7) tensor hierarchy (or in the restricted hierarchy (2.6)) supplemented by
duality relations [26], we will instead write a Lagrangian in the formulation of [22]. The
latter includes, besides the metric and scalars, only some of the vectors and two-forms
in (2.6). More concretely, the Lagrangian can be expressed in terms of the 21’ 47’ electric
vectors AY = (A7, AT) and their field strengths Hf = (H{, ML), the 7 magnetic
vectors fll and their field strengths 7'2(2)1, and the 7’ two-form potentials BY.
The bosonic Lagrangian of A/ = 8 dyonically gauged ISO(7) supergravity is

1 1 1
£ = Rvoly — =DMy * DMME 1 5 Zax My N My + 5 Rax Hiy A Hp (2.26)

. 1 . .
—Vvoly —m [BI VAN (7—[(2)] — gCSIJBJ) — Z Ar N Ay A (dAIJ + %51{1; AIK VAN .AJL)} .

See appendix C for some details of its derivation. The second line of (2.26) is entirely due
to the ISO(7) gauging. It contains, on the one hand, a scalar potential,

2
V= 1% Xigp™ Xing " MY (MFO Mg + 755 52 (2.27)
with the X-tensor in (C.8) particularised for the ISO(7). embedding tensor (2.3). Upon
using (2.4), this scalar potential contains pieces in g2, gm and m?. On the other hand, the
second line of (2.26) contains some topological terms whenever m # 0. Note, in particular,
the topological mass gm 677 B! A B7, which generalises a similar term in A = 2 compact-
ifications of massive type IIA on Calabi-Yau [31]. In the first line, the only contributions
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from the gauging appear in the covariant derivatives (2.5) and the gauging-modified field
strengths of the electric vectors given in (2.7). In the SL(7) symplectic frame we are using,
the scalar-dependent matrices M, R and Z given in (2.15) are independent of the gauging
and, in particular, of the dyonically-gauging parameter ¢ = m/g.

The generic 912 four-form field strengths (2.18) and the scalar potential (2.27) are
related through the embedding tensor via

O™ Hayat = —2V voly . (2.28)

Combining (2.23) and the second equation in (2.25), it is easy to show that this relation
simplifies for the ISO(7). gauging to

gorgH +mHu = -2V voly. (2.29)

In particular, the dualisation of both four-forms 7-[([4{ and 7:[(4) contains terms linear in g
and m; only when combined through (2.29) is the quadratic dependence of V on g and m
reproduced.

The theory (2.26) with (2.5), (2.7) admits three different smooth limits of the coupling
constants g and m. In the limit m — 0, g # 0, Hull’s purely electric ISO(7) gauging [21] is
recovered. This theory arises from consistent truncation of massless type IIA supergravity
on S° [32]. The limit g — 0, m # 0 corresponds to a purely magnetic gauging of a nilpotent
extension of U(1)% x R with 21 non-compact central charges. This theory arises as a T
truncation of massive type ITA. Finally, the g — 0, m — 0 limit yields the ungauged N' = 8
supergravity [33], which is well known to arise from D = 11 supergravity on 77 [33], or
massless type ITA on 7.

2.4 SO(7)-covariant critical point conditions

The combination of the duality relations with the Bianchi identities of the N/ = 8 tensor
hierarchy gives rise to the vector equations of motion and (projections of) the scalar equa-
tions of motion [26]. In the restricted duality hierarchy (2.6), all vectors were retained.
Accordingly, the duality conditions (2.19), (2.20) reproduce all of the vector equations of
motion, as derived from the Lagrangian (2.26), upon substitution into (the first line of)
the Bianchi identities (2.13). In contrast, not all of the three-form field strengths of the
full hierarchy were retained in (2.6). Thus, it is interesting to enquire to which scalar equa-
tions of motion are their Bianchi identities related to when combined with the dualisation
conditions. As we will now show, these are related to the equations of motion of the proper
(parity even) scalars of E7(7)/SU(8). We will focus on maximally symmetric solutions for
which the scalar equations of motion reduce to the extremisation conditions for the scalar
potential V.

For this particular discussion, we will incorporate the singlet three-form #, in (2.24),
(2.25) along with the three-forms H 7, H(I3) of the restricted duality hierarchy (2.6). Sub-
stituting the duality relations (2.21)-(2.23), (2.25) into the Bianchi identities (2.13), (2.24),
we obtain a set of 1 + 48 + 7’ equations, in representations of SL(7). From the discussion
of [26] adapted to our context, these correspond to the projections to the generators of
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GL(7) x R” C E(7y of the equations of motion of the E(7)/SU(8) scalars. Further branch-
ing into representations of SO(7) and restricting to zero tensors and constant scalars (thus,
critical points of V'), these projections become

1: (g51JH{4{+7m72(4)) o=0, (2.30)
1

27 (H({;{ -z o1 k1 H{j)L> lb=0, (2.31)

21 : identically zero, (2.32)

7 : identically zero, (2.33)

where |o denotes evaluation at a critical point of V. In these equations, we have used the
four-form field strengths 7-[{4{ and 7-[<4> as shorthand for the scalar functions on the r.h.s. of
the duality relations (2.23), (2.25). Equations (2.32), (2.33) correspond to projections to
the 21 + 7 generators of the gauge group ISO(7). They turn out to be identically zero, in
agreement with the scalar potential being invariant under the gauge group.

Although originally obtained as projections, the SO(7)-covariant equations (2.30)—
(2.33) are in fact in one-to-one correspondence with extremisation conditions with respect
to definite scalars. The singlet equation (2.30) corresponds® to the extremisation condition
with respect to the SO(1,1) dilaton that extends SL(7) into GL(7). Equation (2.31), in
the symmetric traceless of SO(7), corresponds to the extremisation of the potential with
respect to the 27 scalars of SL(7)/SO(7). The 7 scalars of R” C ISO(7) are Stiickelberg
and therefore do not enter the scalar potential, hence they do not give rise to extremisation
conditions. Put together, equations (2.30), (2.31), (2.33) thus correspond to the conditions
of extremisation of the potential V with respect to the 35 (parity even) scalars? of GL(7) x
R7/SO(7) C Ez(7)/SU(8). Note, incidentally, that these equations also depend typically
on the (parity odd) pseudoscalars. Finally, the 21 identities (2.32) can be reinterpreted as
being trivial in that the corresponding compact SO(7) scalars have been modded out from
the coset E;(7)/SU(8).

2.5 Supersymmetry transformations

We conclude our characterisation of ISO(7)-dyonically-gauged N' = 8 supergravity with
the supersymmetry transformations. The only effects of the gauging on the supersym-
metry variations of the ungauged theory occur in the fermion variations, through the
gauging-modified field strengths of the vectors and new (‘shift’) scalar-dependent terms.
The supersymmetry variations of the bosons are the same in gauged and in ungauged su-
pergravity. We will nevertheless find it useful to spell out the supersymmetry variations of
the SL(7)-covariant bosonic fields in (2.6) to show that they only involve fields within the
same set. See [22] for the N = 8 supersymmetry transformations of the fermions.

3We thank Gianluca Inverso for pointing out to us this interpretation of eq. (2.30).
*Alternatively, these scalars can be viewed as parameterising the coset SL(8)/SO(8) C E7(7)/SU(8).
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The N = 8 supersymmetry transformations for the vectors AM are linear in the scalar
coset representative® V™ [33], which also sits in the 56 of E7(7). The transformations
of the 133 two-form potentials B, were worked out in [22], where they were shown to be
quadratic in the coset representative. In order to write the variations of the 48 + 7’ two-
forms in (2.6) we will only have to branch the result of [22] accordingly and select these
SL(7) representations. The N’ = 8 supersymmetry variations of the 912 three-forms C,M
have not appeared in the literature. We conjecture these variations to be

V2
6

+ h.c.) 1 3 Bluja 0 — (ta)r” Qe ATAFSAY,  (2.35)

4Z 1 ] . 1 — ]
5C,praM = (ta)RP QRQ QMN <7VN]'Z V]P’lk VQ ik € Y[ 1/1;] -1 VNh V]P’ [24] VQ |kl] €h Vpvp X]kl

up to a possible symmetrisation in e’ Vv ¢Z}) As usual, vy, 4, = €0 e, P Yan.ay-
This conjecture passes several consistency checks. Being cubic in the coset representa-
tive, (2.35) follows the pattern of the variations of the vectors and two-forms. The terms
in Buy|a (5.4% and AI[YLH AR (5.141;3 match the corresponding terms of the A" =1 and N = 2
three-form transformations [27, 28]. The truncation of (2.35) to one of the singlets in the
decomposition (C.43) of the 912 under SL(7) coincides with the supersymmetry variation
of the type IIA Ramond-Ramond three-form in the SO(1,3) x SL(7)-covariant reformula-
tion of type ITA supergravity of [16]. Here, we will instead be interested in the 28" SL(7)
components of (2.35). As we will show in [16], this too can be reproduced from consistent
truncation of massive type IIA on S°.

We can therefore specify the supersymmetry variations of the bosonic fields (2.6) in
our conventions as follows. The vielbein and scalar coset representatives transform as

1 1
de, = 1 enawﬁewaw,

5VM” _ VMkl <E[z X]kl] + = €7,]klmnpq Em anq) ,

NG 11

with the fundamental E7(7) index M on the coset representative branched out into SL(7)

(2.36)

representations according to (C.43). For reference from [16], we do branch out the super-

®The actual E7(7y/SU(8) coset element is a 56 x 56 matrix of the form Vi N This coset representative
VY is in a mized basis in which the global (not underlined) and the local (underlined) indices are taken in
the SL(8) and SU(8) basis, respectively. As a result, one has the decomposition V™ = (W, Vir4;), with
Vui; = Vu®)*, together with Vi = (V,, V2% and Vui; = (Vasj, V2ij). The change of basis between
the SL(8) and SU(8) basis is given in terms of SO(8)-invariant real tensors [['a5]*, namely,

Ry = % Casl” ® (fl 1) , (2.34)

where A =1,...,8 is a fundamental SL(8) index and ¢ = 1,...,8 is a fundamental SU(8) index. This is
compatible with identifying the 8 of SL(8) with the 8, of SO(8) and the 8 of SU(8) with the chiral 8, of
SO(8). The same change of basis (2.34) applies to local (underlined) indices.

SResults are known for less than maximal supersymmetry: the supersymmetry transformations of the
three-form potentials for A/ =1 and N = 2 hierarchies have been computed in [27] and [28], respectively.
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symmetry variations of the vectors under SL(7):

SA =iVt (EW + mx”’“) +he.,

1
2v/2
1
2v/2

_ . o 1 g
OA, 17 =—1Vrgi | €v,7 + €, ”k>+h.c.,
wlJ IJU< Yy W kY X

SA =iV <€i¢uj + Ek’YuXijk> +h.c.,

(2.37)

Ek’yuxijk> +h.c..

o 1
ci I 4
€Yy W)
The supersymmetry transformations of the 48 + 7’ two-forms read
2 ~ ) ~ . ~ ) ~ . .
6B;AVJI — |: _ g (VIK]k VJK'Lk + VISjk: VJSZk‘ + VJK]]{: VIK’Lk‘ + VJSjk' VISzk)gl,y[u¢,’]j]
-3 (VIKU Vi + V58 Vs k) él VWXW] + h.c.]
~ ~ ~ ~ 1
+ (AL 04y i + AL S A s+ Ay s $A™ + Ay s 5A,T) - = &% (trace)
2 o i Y ik = V2
6B, = [S(VIij Vg™ + Vg i VI Gz"YW/J,],] + 5
— (.A[Il;] 5./211,“ + A[M J (5.A|Z,}IJ> . (2.38)

VIJZ']‘ ]N/Jg kl E[i’}/lwxjkl] + h.c.

Note the same pattern of SL(7) indices in coset and vector contributions: V& Vg parallels
A'K § A5, etc. Finally, the variations that follow from (2.35) for the 28’ three-forms are

43

.

(VK(Ijl (VJ)le VicLin+ Vier™ VJ)LM)
+ VEE (W% Vegir, + Vics'® V%)
+ V(”Sjl (VU)Klk Vies ik + Vics'™ VU)K“C)) EiV[uzﬂ/JZ}

V2 ; . : N
+ iy (VK(I\h VL Drera + VEAR DS P (2.39)

+ YUBR YK, f)K8\kl]) EnYuwp XM —i—h.c.]
J)K J)
+ A (AP 5 A s + Aurcr 6ADT) + AV (AD 64,5 + Ak 647))
+ A(l (AI{)K 5/~lp]K + -’ZluK (S.AJ)K) .

[u ol

Again, the SL(7) structure of indices in coset and vector contributions is the same.
Equations (2.36)—(2.39) show that the supersymmetry variations of the bosonic
fields (2.6) close among themselves and into the fermions 1/12, X%, In turn, the super-
symmetry variations of the fermions close into scalars and field strengths of vectors, all
of which were retained in (2.6). This shows the consistency of the subsector (2.6) of the

~15 —



Field  SO(7)  SO(6) Gy SO(4) = SO(3)q x SO(3)r  SU(3)

scalars 14+ 7 (3x)1+ (2x)6 (2x)1 (4x) (1,1) + (4%) (2,2) (6x) 1+ (4x) 3 + (4%x) 3

+27  +20+15 +(2x) 7 +(2x) (3,3) + (2x) (8,1) + (2x) 6+ (2x) 6
+35 +10+10 + (2x) 27 + (2x) (4,2) + (2x) (5,1) + (2x) 8
AT 21 15+ 6 14+ 7 (1,3) + (2x) (3,1) (2x) 3 + (2x) 3
+(2,2) + (4,2) +8+1
Al 7 6+ 1 7 (2,2) + (3,1) 3+3+1
Ay 21 15+ 6 14+7  (1,3) + (2x) (3,1) (2x) 3 + (2x) 3
+(2,2) + (4,2) +8+1
A; 7 6+1 7 (2,2) + (3,1) 3+3+1
B’ 21 1+ (2x) 6 1447  (2x) (2,2) + (2x) (4,2)  (2x) 1+ (3x) 3 + (3x) 3
+27 +15+20 + 27 + (2x) (3,1) + (1,3) +(2x)8+6+6

+(3,3) + (5,1)

+ (1,1)
B! 7 6+1 7 (2,2) + (3,1) 3+3+1
cl’ 1427 2x)1 1427 (2x) (1,1) + (2,2) + (3,3) (2x)1+3+ 3
+20+6 + (4,2) + (5,1) +8+6+6

Table 2. Branching rules of the SL(7)-covariant tensor hierarchy (2.6) for different invariant sectors
of the ISO(7). supergravity. Only singlets are retained in each sector. Following the discussion
around (2.25), all sectors can be extended to include a singlet two-form B that makes B;” traceful,
and a singlet three-form C dual to the magnetic component of the embedding tensor.

duality hierarchy, plus fermions, at the level of the supersymmetry variations. Finally, the
supersymmetry variations of the fields that enter the Lagrangian (2.26) involve fields that
appear as well in the Lagrangian. Note, however, that the fields entering the Lagrangian
can still source the supersymmetry variations of fields not entering the Lagrangian, e.g, the
terms .A[IH 0A g+ Ap 5AMI - %65 (trace) source the supersymmetry variation 68, ;!.

3 An N = 2 truncation: the SU(3)-invariant sector

In the remainder of the paper, we will specify the truncation of the N' = 8 theory to various
interesting subsectors that preserve N’ = 2 and N = 1 supersymmetry and SU(3), G, and
an SO(4) subgroup of the ISO(7) bosonic gauge symmetry. See table 2 for a summary of
the field content of these subsectors, and of the SO(7) and SO(6) further subsectors of the
SU(3) sector.

We begin by discussing the consistent truncation of the N' = 8 theory to its SU(3)-
invariant sector. The analog truncation for the purely electric SO(8) gauging [20] has been
studied in [34-36] and for the dyonic SO(8) gauging [1], in [5, 7]. This sector corresponds
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to N' = 2 supergravity coupled to one vector multiplet and one hypermultiplet. The
corresponding 2 + 4 real scalars take values on a submanifold
SU(1,1) SU(2,1)
U(1) SU(2) x U(1)

(3.1)

of E7(7)/SU(8) which is the product of two well known special Kéhler (SK) and quaternionic
Kéhler (QK) manifolds. The gauging inherited in this sector from the N = 8 ISO(7).
gauging is an abelian U(1) x SO(1,1). dyonic gauging in the hypersector. In section 3.1
we construct the Lagrangian of this theory, including an explicit parameterisation for the
scalar kinetic terms and potential, and discuss the duality hierarchy in section 3.2. We then
give a superpotential and the canonical NV = 2 formulations of this sector in sections 3.3
and 3.4, respectively. Some further subsectors are discussed in 3.5 and the vacuum structure
is analysed in 3.6. See also appendix D.1 for the explicit expression of the SU(3)-invariant
scalar matrix My, and appendix B for the relation of this sector to the similar model
that arises from consistent truncation of M-theory on an arbitrary Sasaki-Einstein seven-
manifold [37].

3.1 Construction and bosonic Lagrangian

The embedding of the relevant SU(3) into SO(7) C ISO(7) can be described by the chain
SO(7) D SO(6) ~ SU(4) D SU(3), (3.2)

so that 7 — 1 + 3 + 3. In terms of SL(8) indices, we have a splitting A — (a ®8) & (1 ® a)
with a =2,4,6 and a = 3,5, 7, followed by a complexification of the form

20 = T1 + 178, 21 = X9 +ixs, 2o = x4 +ixs, z3 = xg +ix7, (3.3)

so that SU(3) is realised as a singlet (zp) and a triplet (21,2,3) of complex coordinates. When
restricted to this sector, the retained bosonic fields take values along the SU(3)-invariant
metric’ 0ij, the two-form J;;, 7 = 2,...,7, and the complex totally antisymmetric tensor
of SU(3) (or equivalently, a complex decomposable three-form €251, see appendix D.1). In
fact, only the scalar matrix Mymy has components along the latter. The fields in the N' = 8
duality hierarchy (2.6) give rise to the following SU(3)-invariant fields:

metric : g,
scalars : My — (x,¢) and (¢,a,¢,C), [ see appendix D.1 ]
vectors : Al — Al = A°
AIJ SN Aij :Al Jij
A = Ay = Ay (3.4)
Apy — Aij = LA, J;
two-forms : B! — B'= B

B > B'=5B1, Bi=-1B16+1iByJ7
three-forms : ¢!/ — Cc'' =0, C =(Cl6,

"Indices i, in this section and in appendix D.1 are in the fundamental of the SO(6) in the chain (3.2).
These indices should not cause any confusion with the SU(8) indices of the N = 8 coset representative Vi
of section 2.
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in agreement with the number of singlets in the last column of table 2. The real scalars
(x,¢) and (¢,a,¢,C) respectively parameterise each factor of the scalar manifold (3.1).
The superscript A = 0,1 on the electric vectors A" labels them as the graviphoton and the
vector in the vector multiplet, respectively, and similarly for their magnetic counterparts
Aj. The superscripts or subscripts on the two- and three-forms are just labels with no
further meaning. The vectors A°, Ay gauge dyonically the SO(1,1), generated by T}
in (C.11), while A! gauges electrically the U(1) generated by Ths + Tys + Tg7 in (C.11).
Along with the metric and the six scalars, only A%, Al Ay, their field strengths and B°
enter the SU(3)-invariant bosonic Lagrangian, see (3.7). Finally, the branching of the
gravitini, in the 8 of SU(8), under this SU(3) produces two singlets, in agreement with the
N = 2 supersymmetry of this sector.

We can construct an explicit parameterisation of the scalar manifold (3.1) of this sector
as follows. We first identify the generators (C.3), (C.4) of Eq(7) that are invariant under
the SU(3), (3.2), (2.1), under consideration. These are

g1 =t + 4t + 165 + 132 +t5° + 177 — 3 (tll + t88) )

g2 =97+ 57 = (%) + (151,

gs :tll _t887

g4 = 9(7) + gfﬁ) = (tas67 + toser + togas) + (t1238 + 1458 + ti678)

- +
g5 = 95() )+ gé ) = (t1246 — t1257 — ti3a7 — t1sse) + (tssst — tsaas — taass — tsoar) »
- +
g6 = gg(; )+ gé ) = (tssr1 — taaer — tase1 — toam1) + (tsoas — tsost — tssar — tssse),  (3.5)
where g1, g3 are Cartan generators and a subscript (+) indicates a positive or negative
root. The exponentiations

+
_ 6_12X951 )

Vsk ci¥ 9 and VoK = eagéﬂ_ 6¢as"—6Cg5" e?93 (3.6)
lead to coset representatives for each factor in (3.1), and the total representative is sim-
ply the product® V = Vi Vqk. Finally, the scalar matrix is the quadratic combination
M =V V! See appendix D.1 for its explicit expression.

With this scalar parameterisation, the Lagragian of the SU(3)-invariant sector can be

written as
L= (R—-V)voly + % [dip A xdip + €22 dx A xdx]
+2d¢ A #dd + %e%’ [DgA*D<+D§A*D§]
+ % et? [Da + %(ng - EDC)} A * {Da + %(CDE - EDC)]

AAxHE

1 1 !
+ 5 Tas Hiy) A <HG) + 5 Raw Hiy A HE, —m BY NdAy — 5 gm B A B,

8This coset is in the SL(8) basis. This is enough for our purposes, since we will not discuss couplings to the
fermions. Should one be interested in, for example, restricting the N' = 8 supersymmetry variations (2.36)—
(2.39) to the SU(3)-invariant sector, a rotation (2.34) of this coset representative would be needed.

~ 18 —



and follows by truncating (2.26) according to (3.4). Here, the covariant derivatives are
Da=da + gA"—=mAy,  D(=d(-3gA'¢, D{=d{+3gA'¢, (3.8
and the electric vector field strengths

Hpy =dA’ +m B, Hp =dA", (3.9)

follow from (2.7). The gauge kinetic matrix in (3.7) is obtained from the scalar matrix M
through (2.15). In the scalar parameterisation that we are using here, it explicitly reads

1 . e3® 3e2¥ X
Nis =Ras +iTpy = ——— | (e2x—9)? (€® x—1) . 3.10
(2e® x +1) (i’ft_’g) 3(e?x?+e %) ( )

Note that Zpy is negative definite so that the vector kinetic terms have the correct sign.
Finally, the explicit expression of the scalar potential in (3.7) can be derived from (2.27)
to be

V= %g2 [e4¢_3‘p(1 + 62“’)(2)3 —12 62¢_"9(1 + 62‘px2) — 24 €%
(G + ) (14 362%) + 380 (4 )3 (14 20) (3.11)
36240 (¢2 1 ) (1— 362“0X2)} B %gmxe4¢+3<p (3@2 L&)+ 2X2) .
L L evse
Out of the six real scalars in this sector, this potential effectively depends on only four.
The non-compact Stiickelber scalar a and the U(1) phase 3 of the complex combination
C+iC=2pe?, (3.12)

do not enter the potential. As we will discuss in section 3.6, this potential displays a rich
structure of critical points, both supersymmetric and non-supersymmetric, when gm # 0.

3.2 Duality hierarchy

The duality hierarchy (2.6) in this sector reduces to the field content (3.4), which includes
only singlets in the branching of SL(7) under SU(3). The formulae in section 2.2 simplify
accordingly. The electric vector field strengths have already been given in (3.9), and their
magnetic counterparts are

Hyo = dAg + gB°, Hyyy = dA; — 2By (3.13)
The field strengths (2.8) for the two-form potentials (B°; By, Bs) reduce to
Hp, =dBY,
Hign = DBﬁr% <A° A dAg+Ag A dAY— %Al AdA— %Al A dA1> +29(C1—C%), (3.14)

H<3)2 = dBZ )
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with DB = dB; — gA° A B® + mAy A BY, and those (2.9) for the three-form potentials
(CY,CY) read

1
H{,) =dC" + H)y AB° — ~mB° A B’
2
. (3.15)
1 _ 1 1
H(4> =dC" — gH@) A By .
The Bianchi identities (2.13) simplify to
dHO, =mHY , dHY =0, dHguo=gH), dHai=—2gHgps
- 1 -
dHQ,) =0, DHygy = H A Hgpo— §H}2) A Heop +2g(Hly — HY,)), dHgp =0,
0 _— 1 _
dH', =dH!, =0,
(3.16)

where DH 51 = dH 51 — gA° A Hg) +mAg A H(03). These again close among themselves, in

agreement with the consistency of the SU(3)-invariant truncation.

The duality relations also simplify, and can be written in terms of the explicit scalar
parameterisation on this sector given in section 3.1 and appendix D.1. The vector/vector
duality relations (2.20) and (2.19) reduce to

39 (1 + 3e29y?) 3e3¥

7o 0 2 1
Heo = (1 + 20y 2)2(1 + 4e2ex?) *He) + x 1+ e29x2(5 + 4e2Px?) *He)
943 b HO 4 3e2P(1 + 2e%x?) 1
Crerepliraese) @ e a1
- 3e3¢ o 3(1+e?y?) '
2 0 1
H(z)l =X 11 62¢X2(5 n 462(’0)(2) * H<2) —e ¥ 71 n 462¢X2 * H(2)

3e29(1 4 2e27x?)

6(1+ e**x?)
X7 + 20 2(5 + 4e2#x?)

1 4 4e2ey2 @7

HY + X

the duality relations (2.22), (2.21) for the three-form field strengths simplify as

HY, = e s (Dat 5 (€DE-D0))
Hyp = * [Q(dw — % xdy) — 2d¢ + ae*? <Da + %((Df — §Dg)> + %e%(CD( + 5D5)] ,

Hup = |#CDE-CD0 + @+ @ e (Das 3 €DC-C00)| . (3

and the duality relations (2.23) for the four-form field strengths give rise to
1 ~
He = [29 (14 €2x?) (1262072 — 261973 (14 €20 ?)” = 319+9)2 (2 + (7))

+ metot3e XB] voly ,
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1 ~,
iy = [go(8e + 267214 @) 4 (4 ) (1 - 360

. %€4¢+¢(C2 + 52)X2(1 + 62¢X2) o ie4¢+¢(<2 + 52)2(1 + 362@)(2))

1 -
+ 7 m e* 3% x (¢% + ()| voly . (3.19)
For later reference, we also give the SU(3)-invariant truncation of the duality relation (2.25)
for the four-form field strength H (1) = ’;':[<4) of the singlet three-form potential C' = C related
to the magnetic component of the embedding tensor. It reads

- 1 _
H, = 29X el tie (3((2 + )+ 2X2) voly —m e3¥ T4 voly . (3.20)

These duality relations manifestly show that, in the symplectic frame we are using, the
magnetic vectors and the higher rank forms in the tensor hierarchy do not carry independent
degrees of freedom, but rather depend on the metric, the electric vector field strengths and
the scalars. Alternatively, these relations can be used to transfer independent degrees of
freedom within the duality hierarchy. For example, the first relation in (3.18) can be used
to dualise the Stiickelberg scalar a into the two-form B, so that the latter can be regarded
as carrying the independent degrees of freedom. This duality relation can also be obtained
by varying the Lagrangian (3.7) with respect to the magnetic graviphoton Ap. Solving this
duality relation and substituting into (3.7), the following new Lagrangian is obtained:

1 _ 3
L= (R—V)v014+§e 4¢Hg)/\*H(03>+§ [dg@/\*dgp+62wdx/\*dx]

+2d¢ A xdg + %e%’ [Dg A *DC + DC A *Dé]
(3.21)

(2) (2)

1 1
+ 5 Zas Hi A +HE + 5 Rax H

1 oz 1
+ Hig A {9140 + Q(CDC—CDC)] —§gmBO/\BO.

&, of BY given in (3.14),

and the magnetic vector Ag no longer appears in this Lagrangian. See e.g. section 4.1 of [38]

The kinetic terms are now expressed in terms of the field strength H

for a discussion in a similar context. In the Lagrangian (3.21), B is a propagating massive
&, A*H, and mass term BY AxB° (coming from
the m B dependence of H{) in (3.9)), in addition to the topological mass term B° A B°.
Lagrangians similar to (3.21) but naturally written in terms of the magnetic field strengths,

two-form with conventional kinetic term H°

as in (3.17), usually appear in dimensional reductions of massive ITA or M-theory to N' = 2
supergravity, see e.g. [31, 37]. See appendix B for the relation of the SU(3)-invariant sector
and the theory of [37]. See [26] for a more general discussion of Lagragians involving
higher-rank fields in the A/ = 8 duality hierarchy.

The duality relations can be also used to relate the four-form field strengths to the
potential, as discussed for the full A" = 8 theory in section 2.2. With the parameterisation
of the scalars in the SU(3) sector that we gave in section 3.1, the duality relation (2.29)
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can be explicitly verified in this sector. With the help of (3.19) and (3.20), equation (2.29)
can be seen to reduce to

g (HGy +6H) ) +mHyy = ~2V voly, (3.22)

where H{,, H,, are the field strengths (3.15) of the three-form potentials C°, C' in the
truncated hierarchy (3.4), H, is the field strength of the three-form potential C' related
to the magnetic component of the embedding tensor, and V is the scalar potential in the
SU(3) sector, given in (3.11). From (2.30) and (2.31), we also find that the following
relations hold at every critical point (see section 3.6) of the scalar potential (3.11):

g (Hlo+6H o) +TmHuylo=0, Hlo=H}lo- (3.23)

Recall that |p and V) denote evaluation at a critical point. Combining (3.22) with the first
equation in (3.23) yields Vy voly = 3m Hyylo. This condition relates the AdS character of
the critical points in this sector with a non-vanishing value of the magnetic gauge coupling
m, provided H, @lo # 0, which is indeed the case.

3.3 Superpotential formulation

Two superpotentials exist [35] (see also [36]) from which the scalar potential of the SU(3)-
invariant sector [34] of the electric SO(8) gauging [20] derives. The same statement holds [5]
for the SU(3) sector of the dyonic SO(8) gauging [1]. Here we will show that this is also
true for the SU(3)-invariant sector of ISO(7). supergravity. See [39, 40] for superpotentials
in the SO(7)4+ and Ga sectors of the electric ISO(7) gauging [41]. In order to see this
following a notation close to [5, 36], we first introduce coordinates ¢ and u on two copies
of the upper-half of the complex plane

t=—x+ie? and u=—p+ie?, (3.24)

with p? = %(52 + (¢?) as follows from (3.12), and then further convert into two copies of
the unit-disk via ) .
t—1 and ¢ uU—1

z = = s
t+i 2Tt

so that |z| < 1, [(12] < 1. In terms of the new complex fields z and (j2, the kinetic terms

(3.25)

for the (x, ) and (p, ¢) scalars in (3.7) can be recast as

1o o d2Axdz | dCio A#dGrs
) ‘Cscalar =3 (1 o ‘Z|2)2 (1 _ |<12’2)2 : (326)
Introducing
W= (1—[2)72 (1 - G2

x [g (; (1—¢2)' (1 +2)* +3(C2—2) (1 +2) (1= ¢12)* (1 - 3412)> (3.27)

+i%(1—412)4(1—z)3 ;
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we find that the scalar potential (3.11) is reproduced through the expression

2

. + (1= [¢12f?)?

1o o422 |9V
4V—2[3<1 2P

0z

ow
0C12

2
~3 W2] , (3.28)

with the superpotential W given in terms of (3.27) by either W = |[Wy| = [W(z, (12)] or
W = |[W_| = |W(z, (12)|. We take this match as a consistency check on our calculation of
the potential (3.11) in section 3.1 with the /' = 8 embedding tensor formalism followed by
SU(3)-invariant truncation.

All the supersymmetric critical points of the scalar potential (3.11), as given in table 3
of section 3.6, are critical points of Wy |. The N/ = 2 point is an extremum of both |W, |
and [W_|. Under the map (12 — (12 (or, equivalently, p — —p in (3.24), i.e., 3 — —f
in (3.12)), the N' = 1 points become extrema of |[W_|, rather than |Wy|. Due to the
overall ¢!/3 dependence of the critical points in table 3, there are two asymptotic limits:
z=C2=—-latc—0(e,m—0,g#0)and z = (12 =+1latc— oo (i.e.,g = 0, m # 0).
These critical points thus disappear for the purely electric and purely magnetic gaugings.

These superpotentials will be useful to holographically study RG flows between differ-
ent Chern-Simons phases of the D2-brane field theory with at least SU(3) flavour symmetry.
We leave this for future work. See [35, 42] for studies of RG flows with at least SU(3) invari-
ance in the M2-brane field theory from electrically gauged SO(8) supergravity, and [7, 8]
for similar domain wall solutions in dyonic SO(8) supergravity.

3.4 Canonical N = 2 formulation

As a further crosscheck on our calculations, we will now cast the SU(3)-invariant La-
grangian (3.7) in N' = 2 canonical form, focusing on the special geometry quantities that
enter the canonical formulation. The scalar manifold (3.1) is the product of two well-known
special Kahler and quaternionic K&hler manifolds, corresponding to the vector multiplet
and hypermultiplet scalars, respectively. The parameterisation (3.6) leads to the familar
form for the metric on this space that appears in the scalar kinetic terms in the La-
grangian (3.7). Indices M =1,...,4,a=1,...,8, u=1,...,4 and i = t in this subsection
respectively correspond to Sp(4,R) vector indices, SU(2,1) adjoint indices, SU(2,1)/U(2)
curved indices and SU(1,1)/U(1) curved holomorphic indices — we denote by t the only
value that ¢ takes on. The index A = 0,1 introduced below (3.4) labels, as usual, “half”
the fundamental representation of Sp(4,R).

Let us start by describing the special Kéahler geometry of the scalars in the vector
multiplet. We find the sections XM = (XA Fy),

X0 = 43 Xt = ¢, Fy=1, Fy =3¢2, (3.29)

which are holomorphic in the coordinate t (3.24) on the upper-half plane realisation of
SU(1,1)/U(1), to be the relevant ones for our model. In the symplectic frame in which the
Lagrangian (3.7) is written, the sections F) can be obtained from the prepotential

F=—2/X0(X1)3, (3.30)
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as Fy = OF/0X". The Kihler potential
- M N . . 0 ]12
K =—log (i X" QunX") = =3 log(—i(t —1)) with Qun = Lo | (3.31)
—ly

gives rise to the metric
3dtdt
(t—1)?

on the relevant scalar kinetic terms in (3.7). The components of the vielbein

— Kypdtdt = —(0,0;K) dt dt = = —Z [de® + 22 dx?] (3.32)

1
FM = (F fin) = O(RPXM) S RPN I

(3.33)
ft‘M:(ﬁA,ft‘A)Ea{(GK/2XM)+%€K/2XMafK,
explicitly read
o 3t*t L 2t+¢t
= Ga-opr T he—apr .
_ 3 O 3t(t+21) (3:34)
ftO__W7 ftl—_ma

and ffM = (f;™)*. Together with the gauge kinetic matrix Ay given in (3.10), we have
verified these quantities to satisfy a number of special geometry identities.”

Let us now turn to the gauged hypermultiplet. Of the eight Killing vectors k, of the
quaternionic Kéhler metric hy, in (3.7), only

ki =, and ko =3(CO:—Ca), (3.36)

participate in the gauging. As anticipated, these Killing vectors generate an abelian
SO(1,1) x U(1) subgroup of SU(2,1). This gauge group arises from the ISO(7) gauge
group of the full N = 8 theory by first breaking ISO(7) = SO(7) x R” to (SO(6) x R%) x R;
then, the compact U(1) is the singlet in the branching of the adjoint of SO(6) under SU(3)
and SO(1,1) ~ R is the R factor in the direct product. The moment maps corresponding
to the isometries (3.36) are

1 ) 1 .
Pf:(O,O,—§e2¢> and P§:3(—e¢§,e¢(,1—Z(C2+§2)e2¢), (3.37)

with = 1,2,3. Finally, the embedding tensor ©,;% = (0%, ©®) in this sector fol-

lows from the NV = 8 embedding tensor (2.3) via the identifications @[I J}KL & 042,
Oy ke © O0', O, & 012 and OB 5 O, namely
Ot =1, e = ¢, ©,2=1 and ©?%2=0, (3.38)
“These include:
Fy=NasX®,  fu=Nasf®, FOKT RS =D @) R XK
XMoun N =X oun N =0, X I XT = f% e X, (3.35)

Ki=—if™M Qun i = 2 Tas fi~.
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with all other components vanishing. Thus, the compact U(1) is gauged electrically only,
whereas SO(1,1) ~ R is gauged dyonically.

Bringing the definitions (3.29)-(3.34), (3.36)—(3.38), along with the metrics hy, (which
can be read off from (3.7)) and Ky in (3.32), to the canonical expression for the N' = 2
scalar potential due to a dyonic gauging in the hypermultiplet sector [23, 43],

1 _ I _
V= 7> O ON |4 XM XN Ry k" ok + PEPS (KT fM fY — 3eKXMXN)], (3.39)

we exactly reproduce the scalar potential (3.11). We have also verified that the equa-
tions [44, 45]

XMOy ke =0, eypXYXNOy*OnN PP =0, fMOu*PI=0, @ (3.40)
for maximally supersymmetric solutions within this N' = 2 sector reduce to
(=¢=0, gt*+m=0, g(4t+21—e*#1)-me* =0. (3.41)

For gm # 0, these have the N' = 2, SU(3) x U(1)-invariant AdSy critical point in table 3
of section 3.6 as their unique solution.

3.5 Further subsectors

Let us now briefly discuss some further consistent truncations of the SU(3)-invariant sector
which lead, accordingly, to subsectors with smaller field content and larger symmetry. The
field contents discussed below agree with those recorded in table 2.

The field content of the Go-invariant sector is obtained from (3.4) by truncating out all
vectors and two-forms, and identifying the three-forms as C° = C! = C and the scalars as

=09, x:%i and a=(=0. (3.42)

This corresponds to the exponentiation of the linear combinations % g1+ g3 and gf) + géﬂ

of generators in (3.5). This sector is N' = 1, and its Lagrangian follows from bringing these
identifications to (3.7). An alternative construction of the Gg sector that does not rely
on its embedding in the SU(3)-invariant sector will be given in section 4. Turning off the
axion, x = 0, leads to the SO(7)-invariant sector.

The U(3)-invariant subsector has an additional U(1) = SO(2) symmetry, with respect
to the SU(3) sector, gauged by the vector A!. This sector is thus reached by simply turning
off the hypermultiplet axions

(=¢=0, (3.43)

since these are charged under that U(1), see (3.8). Together with these axions, the only
other field in (3.4) that needs to be turned off is the two-form By = 0. This is forced by
the third duality relation in (3.18), and is consistent with the Bianchi identities (3.16).
The U(3)-invariant Lagrangian is obtained by inserting (3.43) into (3.7). It is consistent to
further truncate x = 0, A' = A; = 0, which leads to the SO(6) sector. Alternatively, the
U(3) sector can be further truncated by eliminating the Stiickelberg scalar a, all vectors
and the two-form B, thus retaining the neutral scalars ¢, ¢, x along with By, C°, C*.
This truncation corresponds to the model considered in [15].
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N Co By WBemv B, m1Bem0 | gm21/3 Y M2L2
N=2 UB) | -} i 0 s —2233/2 3+17,2,2,2,0
4,0
N=1 G - - it L 4+V6, —5(11£v6),0,0
13+ )
N=1 SU®3) & R R, o ik 4+v6,4+6,0,0
2,6
N =0 SO(7)+ 0 575 0 5irs —-357/6 6,—2,-8 -8 -8 9
2.0
N=0 SO(6); 0 21/6 0 e —3217/6 6,6,-3,-2.0,0
6,0
N=0 G b5 Ehk b5 ik -2 6,6,-1,-1,0,0
3,3
N=0 SU®B) | 0455 0838 0335  0.601 —23.457  6.214,5.925, 1.145, —1.284, 0, 0
4,677, 2.136
N=0 SU®B) | 0270 0733 0491  0.662 —23.414  6.230, 5.905, 1.130, —1.264, 0, 0
4.373, 2.490

Table 3. All critical points of A/ = 8 ISO(7)-dyonically-gauged supergravity with at least SU(3)
invariance. For each point we give the residual supersymmetry and bosonic symmetry within the
full A/ = 8 theory, its location, the cosmological constant and the scalar (upper) and vector (lower)
masses within the SU(3) sector.

3.6 Ciritical points

We now study the vacua of ISO(7). supergravity with at least SU(3) invariance by analysing
the critical points of the scalar potential (3.11). Only for the dyonic gauging ¢ # 0,
i.e., gm # 0, does this potential have critical points or, rather, critical SO(1,1) x U(1)
loci. These are the surfaces in the scalar manifold (3.1) for which the gradient of the
potential (3.11) vanishes. These are parameterised by the Stiickelberg scalar a and the
phase 3 introduced in (3.12), and occur at the fixed values of the remaining scalars recorded
in table 3. Abusing language, we will often refer to these critical loci simply as critical
points or extrema. We have determined the residual supersymmetry and bosonic symmetry
of these points within the full N'= 8 ISO(7). theory. We have also calculated their scalar
and vector mass spectra, both within the SU(3) sector and within the full N' = 8 theory.
See tables 3 below and 1 in the introduction for a summary.

All critical points in this sector are AdS. Three of them are supersymmetric: there is
one point with A/ = 2 supersymmetry and SU(3) x U(1) bosonic symmetry that was already
announced in [15]; one point with N' = 1 supersymmetry and Go symmetry, already found
in [4] using the method of [3, 29]; and we find a new point with A/ = 1 supersymmetry and
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SU(3) bosonic symmetry. In addition, we find five non-supersymmetric points. Three of
them were previously known, as they had already been found with the method of [3, 29]:
these are the points with SO(7)4+ and SO(6)4 residual symmetry [3] and the point with
Go symmetry [4]. In addition, we numerically find two new non-supersymmetric points
with SU(3) symmetry. We have appended a subscript + to the SO(7) and SO(6) points to
indicate that they are supported by proper (parity even) scalars, rather than (parity odd)
pseudoscalars, of Er(p) /SU(8); in fact, they are supported by dilatons only, see table 3.
This is also consistent with the discussion in section 3.5.

All these critical points disappear in the limits ¢ — 0 (i.e., m — 0, g # 0) and
¢ — oo (i.e., g — 0, m # 0), corresponding to the purely electric and purely magnetic
gaugings, respectively. For the purely electric ISO(7) gauging [21], in particular, we can
extend the claims against critical points with at least SO(7)4 symmetry [21] and at least
Go symmetry [40]: the electrically gauged ISO(7) theory does not have any critical point
with at least SU(3) symmetry. In section 5 we show that the electric gauging has no critical
points with residual symmetry containing the particular SO(4) considered there. In fact,
critical points in the purely electric ISO(7) gauging can be completely ruled out as follows.
By an argument in [2, 3|, these would necessarily be Minkowski. Then, these vacua would
necessarily arise from S% compactification of (massless) IIA, but this is not possible by the
Maldacena-Nuniez no-go theorem [46].

It is also interesting to compare with the critical points in the SU(3)-invariant sector of
the SO(8) supergravity, both electric and dyonic. The points (SU(3) x U(1), N = 2), (Ga,
N =1), and (SO(7)1, N = 0) have direct analogs, both in the purely electric [34] and the
dyonic [5] SO(8) gauging. The electric SO(8) gauging also possesses a non-supersymmetric
point with symmetry SU(4) ~ SO(6), but in that case it is an SU(4)_ point (supported
by pseudoscalars), while in the dyonic ISO(7) gauging it is an SO(6)+ point, as we have
already noted. The (SO(7)_, N = 0) point of the electric SO(8) gauging does not have a
counterpart in the dyonic ISO(7) gauging. As discussed in [47] (see also [5]), the SO(7)4
critical points of the electric, ¢ = 0, SO(8) gauging become SO(7)+ points at the other
endpoint of the interval of the continuous, in that case, parameter c. A similar transition
occurs for the SU(4)_ point of the electric SO(8) gauging. For the dyonic ISO(7) gauging,
we find that these points stay SO(7)4+ and SO(6)4 for all non-vanishing values of the
dyonically gauging parameter c. This is consistent with the fact that all ¢ # 0 values are
physically equivalent [2]. Other points in table 3 have no analog in the purely electric SO(8)
gauging, but do have counterparts for dyonic SO(8). These include the (SU(3), N' = 1),
(G2, N = 0) and the two (SU(3), N' = 0) points. Of course, the maximally supersymmetric
SO(8) point of SO(8). supergravity does not have an analog for the ISO(7). gauging.

We have also computed the scalar and vector masses for these critical points: see table 3
for the mass spectrum within the SU(3)-invariant sector and table 1 in the introduction
for the masses within the full N' = 8 theory. The masses do not run with ¢, as expected,
for any point. Except for the non-supersymmetric SU(3) points to be dealt with below,
critical points in the ISO(7). gauging that have analogs with the same symmetry and
supersymmetry in the SO(8). gauging, have the same mass spectra in both gaugings. This
has already been noticed for the previously known points [3, 4]. This happens regardless
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of whether those extrema are supported by scalars or pseudoscalars in either gauging: for
example, the SO(6)+ point of the ISO(7). gauging and the SU(4)_ point of the SO(8)
gauging have the same spectrum. Such matching is possible because the masses for these
points in the SO(8), gauging do not run with ¢ either, in spite of the fact that ¢ is continous
in that case.

The situation is slightly different for the two new non-supersymmetric SU(3) points
of the ISO(7). gauging, since they have counterparts in the SO(8). gauging whose masses
do run with ¢ [5]. For the first of the N' = 0 SU(3) points in the ISO(7). gauging, we
numerically find the following scalar masses, normalised to the radius L of AdS, within the
full N = 8 theory

M?L%? = 6.214 (x1), 5.925(x1), 1.145 (x1), —1.284 (x1),
—1.707 (x12) , —0.860 (x12) , —1.623 (x8) , —0.159 (x8) , (3.44)
—1.061 (x6) , 0 (x20) ,

and vector masses

M?L? = 4.677 (x1) , 2.136 (x1) , 3.184 (x6) , 2.715 (x6) ,

3.45
0.150 (x6) , 0 (x8) . (3:45)
The second N/ = 0 SU(3) point in the ISO(7). gauging has scalar masses
M?I? = 6.230 (x1), 5905 (x1), 1.130 (x1), —1.264 (x1),
—1.582 (x12) , —0.954 (x12) , —1.396 (x8) , —0.309 (x8) , (3.46)
—1.082 (x6) , 0 (x20) ,
and vector masses
M? L% = 4.373 (x1) , 2.490 (x1) , 3.200 (x6) , 2.791 (x6) , (3.47)

0.111 (x6) , 0 (x8).

The singlets in these equations (together with two zeroes in the scalar spectra) correspond
to the spectra within the SU(3) sector. The spectra (3.44)—(3.47) are, of course, indepen-
dent of ¢. Given that these SU(3) points have counterparts in the SO(8). gauging with
c-dependent spectra, one may ask whether there exists a ¢ such that the spectra of the
SU(3) points of that precise SO(8). gauging coincide with the ISO(7), spectra (3.44)—(3.47).
If such c existed, and assuming that the masses would not change in the limit, the ISO(7).
gauging could be thought of as a contraction of that particular SO(8). gauging, like the
electric, ¢ = 0, ISO(7) gauging [21] is of the electric, ¢ = 0, SO(8) gauging [20]. It turns
out that such ¢ does not exist: the masses of the SU(3) points in the SO(8). gauging do
approach the values (3.44)—(3.47) in the purely electric limit ¢ — 0 for which these points
become unphysical.

Finally note that, among the non-supersymmetric points, only the G point and the
new SU(3) points are stable within the full A" = 8 theory: all of its scalar masses are above
the BF bound, M2L? > —9/4. Note also that the number n, of zero masses in each vector

spectrum in table 1 corresponds to the dimension of the residual symmetry group, as it
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must. Denoting by ns the number of zero masses in each scalar spectrum, for all critical
points except (N =1, SU(3)) and (N = 0, SO(6)+) it happens that n, + ns, = 28 = the
total number of (electric) vectors, so that all these zero-mass scalars are actually Goldstone
bosons. For (M =1, SU(3)) and (N = 0, SO(6)), instead, n, +ns; = 36 and n, +n, = 43,
respectively, so these points have 8 and 15 physical scalars of mass zero.

4 An N =1 truncation: the G,-invariant sector

In section 3.5 we discussed how the Ge-invariant sector of ISO(7). supergravity can be
recovered from the SU(3) sector. Here, we give an independent characterisation of the Go
sector based on the embedding

SO(7) S Ga, (4.1)

without first descending from SO(7) to SU(3) and then enlarging again to Go. The em-
bedding (4.1) is compatible with a branching 8 — 1 + 7 of the fundamental of SL(8). In
terms of indices, we have A — I & 8 with [ = 1,...,7. The same branching holds for the
fundamental of SU(8), ensuring that the Gy-invariant sector is N' = 1.

4.1 Construction and bosonic Lagrangian

The Ga-invariant fields in the ISO(7) restricted duality hierarchy (2.6) include, in agreement
with table 2, the metric g,,, two scalars ¢, x and a three-form potential C' with four-form
field strength H, = dC. The three-form is embedded into the 28’ three-forms C!” of the
full N = 8 theory as C!/ = €' ¢!/, This sector does not contain vectors or two-forms. Only
the metric and scalars enter the Ga-invariant Lagrangian, see (4.4) below.

We can find the explicit embedding of the two Ga-invariant scalars ¢, x into the coset
representative )V and scalar matrix M, as we did in section 3.1 for the scalars of the SU(3)
sector. We first identify the following Ga-invariant combinations of generators (C.3), (C.4)

of E7(7)7
gL =t 2 133+t 5% + 16 + 7 — Tts®,
g2 = géf) + géﬂ = (tase7 + teras + tosas — t13s7 + t13ae + tise2 + t1724) (4.2)

+ (t1238 + t1458 + t1678 — toa6s + tas7s + tarss + te3ss) ,

and exponentiate the Cartan ¢g; and positive root g£+) into a coset representative (in the

SL(8) basis, see footnote 8)
V= e‘mxgéﬂ e1 P9 (4.3)
The resulting scalar-dependent matrix M = V V! is manifestly Go-invariant, as its compo-
nents take values along the invariant metric d;7, the associative three-form i and the
co-associative four-form 771, of Ga. See appendix D.2 for the explicit expressions.
The bosonic Lagrangian of the Gs-invariant sector follows by restricting the N = 8
Lagrangian (2.26) accordingly. In the scalar parameterisation that we are using, it reads

L=(R—-V)voly+ g [dp A xdp + e dy A *dx| (4.4)
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where the scalar potential simplifies from (2.27) to
7 1
V=3 g2 e (1+ 22X (= 54+ 7e2x%) — Tgm e + ierw : (4.5)

Note that the scalar kinetic terms in (4.4) and potential (4.5) respectively agree with
the restriction of the SU(3)-invariant kinetic terms in (3.7) and potential (3.11) to the
surface (3.42).

The N' = 8 Bianchi identities (2.13) and most duality relations (2.19)-(2.23) be-
come trivial upon Go-invariant truncation. The only non-trivial duality relation is that
of Hyy = dC, coming from (2.23):

Huy = [ge? (1+e* x2)2 (5—-7e*x?) +me™ x*] voly. (4.6)

For completeness, we also record the Ge-invariant truncation of the duality relation (2.25)
for the field strength H,, = H, of the singlet three-form C' = C dual to the magnetic
component of the embedding tensor:

Hyy = [7ge™ x* —me™] voly. (4.7)

From (4.6), (4.7), it is straightforward to check that these four-form field strengths and the
scalar potential (4.5) are related through

79H(4) + mf{(4) = —2VV014 . (48)

This corresponds to the Go-invariant truncation of the N = 8 ISO(7) expression (2.29).
It also agrees with the restriction of the SU(3)-invariant duality relation (3.22) to the
surface (3.42).

4.2 Canonical N = 1 formulation

The Go-invariant sector corresponds to N’ = 1 supergravity coupled to a chiral multiplet.
The two real scalars ¢, x parameterise the upper-half plane via the first relation in (3.24).
For notational agreement with other A = 1 sectors with chiral multiplets to be discussed
in section 5 and appendix A, this chiral field is denoted now by ®1:

Q) =—x+ie”. (4.9)
In terms of this, the scalar kinetic terms in (4.4) can be re-expressed as

1 5 d®; A xdd;
Zpkn o ol 4.1
9 scalar 7 (<I>1 — @1)2 ’ ( O)

and can be seen to derive from the Kéhler potential
K = —Tlog(—i(®; — ®1)). (4.11)
Finally, the scalar potential (4.5) is exactly recovered from the holomorphic superpotential

W=14¢g3 +2m, 4.12
1
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using the canonical N/ = 1 expression
1 = J— _
1V = e | K*®1(Dg,W)(Dg W) —=3WW| , (4.13)

with p = 1, ¢ = 1. Here, K®® is the inverse of the Kihler metric Ky,5, = 00,05, K
in (4.10) and we have used the Kéhler derivative Do, W = 0p, W + (9, K)W.

4.3 Critical points

For gm # 0, the scalar potential (4.5) contains three critical points: the two G points
with N =1 and N' = 0 and the N' = 0 SO(7)4+ point. See table 3 for their location in
(, x) space and table 1 for their spectra within the full N' = 8 ISO(7),. theory.

5 An N =1 truncation: SO(4)-invariant sector

We close the main body of the paper with a different NV = 1 truncation of the N' = 8
ISO(7). theory: one that retains two chiral multiplets and is invariant under an SO(4)
subgroup of ISO(7) embedded into the latter through the elaborate chain

SO(7) D G2 D SO(3)' x SO(4)' 5 SO(3)4 x SO(3)z = SO(4) (5.1)

with SO(4)" = SO(3)1, x SO(3)r and SO(3)4 the diagonal subgroup of SO(3)" x SO(3)y.
The fundamental of SL(8) branches under SO(4) = SO(3)4 x SO(3)R as

8 —(2,2)+(3,1)+(1,1), (5.2)

or, in terms of indices, A - A @ a ® 8 with A =1,3,5,7 and a = 2,4, 6. The fundamental
of SU(8) branches as in (5.2) as well, and the presence of the singlet (1, 1) is responsible for
the A/ = 1 supersymmetry of this truncation. Intricate though it is, the embedding (5.1) is
very interesting: as shown in [30] using the approach of [3, 29], the SO(8)., SO(7,1). and
ISO(7). N = 8 gaugings have a critical point with N’ = 3 supersymmetry and an SO(4)
bosonic symmetry group that is embedded into the gauge groups as in (5.1). Here we will
give an explicit parameterisation of the sector of ISO(7). supergravity invariant under this
SO(4) and will recover the supersymmetric point along with other extrema. See [9] for a
recent study of this sector in SO(8).-gauged supergravity [1].

5.1 Construction and bosonic Lagrangian

According to the branchings under (5.1) recorded in table 2, the SO(4)-invariant truncation
of the duality hierarchy (2.6) gives rise, besides the metric g, to four real scalars, (x, ¢),
(p, ¢), one two-form coming from B;” and two three-forms. No vectors or two-forms coming
from B! survive the truncation. Thus, the bosonic Lagrangian of this sector contains only
the metric and the four real scalars. We will focus on these fields, and will not discuss
further the duality hierarchy in this sector.

The four real scalars parameterise two copies of the upper-half plane SU(1,1)/U(1)
embedded in E7(7/SU(8). Like we did for the other invariant truncations, we can obtain
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an explicit parameterisation for the scalar geometry in this sector by exponentiating the
combinations of E7(7) generators (C.3), (C.4) that are invariant under the SO(4) in (5.1).
These are determined by the invariant tensors of this SO(4) (see appendix D.3), and can
be taken as

g1 = to® + st + 6% — 3%,

g2 =1t Htg® Hts? FtrT — o — gt — 6% — 5%,

93 =95 + g5 = (t35m1) + (ts2a6) , (5.3)

ga = g(_) + 94(1+) = (t4613 — taes7 + te215 + teasr + toa17 — t243s)

+ (tas78 — t2138 — tasrs — taiss + te3ss — te17s) -

A coset representative on each copy of SU(1,1)/U(1) can then be built as

(+)

V) — e12x0 +)

€29 and Vo = e 12095 1992 (5.4)

Finally, the total coset representative in this sector is V = V1 Vs, and the scalar-dependent
matrix M is M = V V!, See appendix D.3 for its explicit expression.

Using this scalar parameterisation, the bosonic Lagrangian of this SO(4)-invariant
sector follows from (2.26),

6 1
L= (R=V)voly+ 3 [dp A sdip + ¢ dy A xdx] + [dgb A xdd + €2 dp A *dp} . (5.5)
where the scalar potential (2.27) now reduces to

1
V= 5 g2 e ?(1+e*x?) [—24 ePt? — 8?0 2 < — 3+ (8x* — 3p?) e2¢>
5.6)
1 (
+ % 2 (9 + (3p + 4x)? €2¢>] —gmx%(3p+ 4x) 5% 4 B m?2 89t

Note that this potential depends on all four scalars in the SO(4) sector. According to the
branching (5.1), the Ga-invariant sector is a further subsector of the present SO(4) sector.
Indeed, under the identifications

©=0¢ and X=0r, (5.7)
the Lagrangian (5.5), (5.6) reduces to the Ga-invariant Lagrangian (4.4), (4.5).

5.2 Canonical N/ = 1 formulation

We will now show that this SO(4) sector corresponds to A/ = 1 supergravity coupled to
two chiral multiplets, by casting the Lagrangian (5.5), (5.6) in canonical N' =1 form. In
order to do this, we introduce the complex combinations

by =—x+ie ¥ and Py=—p+ie? (5.8)

on each copy of SU(1,1)/U(1). In terms of the fields (5.8), the kinetic terms in (5.5) take

the form _ _
1 - d®q A *xddq d®y N xdDy
Zckin g _ — = 5.9
9 scalar ((I)l — (1)1)2 ((1)2 — @2)2 ’ ( )
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N Go |3y ¢ WBe=v 13, —1/3e=0| 4213y M2I2
1/2 1/2 16/3
N=3 S0(4)| zn S5 —wn —5 3(1£v3), 1£v3)
N =0 SO(4)| 0.412 0.651 0.068 1.147 —23.513 6.727, 5.287, 0.584, —1.586

Table 4. Critical points of N' = 8 ISO(7)-dyonically-gauged supergravity with invariance equal or
larger than the SO(4) subgroup of SO(7) considered in (5.1). This list also includes the points, not
shown in the table, in the Gs-invariant sector. For each point we give the residual supersymmetry
and bosonic symmetry within the full A" = 8 theory, its location, the cosmological constant and the
scalar masses within the SO(4) sector.

and derive from the Kéhler potential
K = —6log(—i(®1 — ®1)) — log(—i(Py — ®3)). (5.10)
The scalar potential (5.6) is reproduced from the holomorphic superpotential
W =g(8®3 +6d7dy) +2m, (5.11)

through the canonical N' = 1 expression (4.13), now with p = 1,2, ¢ = 1,2. The simplic-
ity of the SO(4)-invariant superpotential (5.11) is remarkable, given the laboured embed-
ding (5.1) of this SO(4) in SO(7). In comparison, the Gy-invariant superpotential (4.12)
is of similar simplicity, but the embedding of Gy in SO(7) is straightforward. Note that
the SO(4)-invariant superpotential (5.11) reduces to the Gg-invariant (4.12) on the sur-
face (5.7), namely, when ®&; = ®,.

5.3 Ceritical points

The scalar potential (5.6) contains five critical points when gm # 0, all of them AdS. See
table 4 for a summary. Three of them occur on the surface (5.7), and thus correspond
to the three critical points in the Gs-invariant sector, see section 4.3. In addition, we
find two more extrema, both with symmetry SO(4). Curiously enough, both points are
non-supersymmetric within this SO(4)-invariant sector but, when embedded into the full
N = 8 theory, one point becomes N' = 3 and the other one stays N' = 0. The reason for this
peculiar behaviour of the N' = 3 point is that the three gravitini of the full N' = 8 theory
that remain ‘massless’ (i.e., of mass ML =1 on the AdS vacuum) in the solution are not
singlets under SO(4) = SO(3)g x SO(3)g. They instead transform as (3,1) and are thus
truncated out of the SO(4)-invariant sector. In more detail, the 8 gravitini of the N’ = 8
ISO(7). theory split under the SO(4) under consideration as in (the conjugate of) (5.2).
The SO(4) = SO(3)4 x SO(3)g-invariant sector only retains the singlet (1,1) gravitino,
while the (2,2) 4 (3,1) gravitini are truncated out. Now, this (1,1) gravitino becomes
massive (i.e., of mass ML > 1) at both SO(4) critical points of the scalar potential (5.6),
thus leading to complete supersymmetry breaking within this sector for both points. An
alternative way to see this is that the superpotential (5.11) leads to non-vanishing F-terms,
Dg,W # 0, for both solutions. Then, we consider these points within the full N =238
theory and analyse the mass matrix containing all (2,2)+ (3,1)+ (1, 1) gravitini. For one
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of these points we find that the (2, 2) gravitini also become massive, but the (3,1) remain
‘massless’. This renders this point A" = 3 within the full A/ = 8 theory. For the other point
all gravitini become massive, giving N' = 0.

The N' = 3 point has recently been found in [30] using the method of [3, 29]. The
location of this point in scalar space given in table 4 above, relative to the parameterisation
of section 5.1, is new. We have also computed the scalar and vector masses about this point
within the full ' = 8 theory, and have brought the result to table 1 in the introduction.
Our result agrees with the spectrum reported in [30]. See that reference for the allocation
of the spectrum into OSp(4|3) supermultiplets. Intriguingly, the values of the potential at
the (N =3, SO(4)) point and at the (N = 0, G2) point coincide.

We have determined numerically the position and spectrum of the non-supersymmetric
SO(4) point within the full N' = 8 theory. The scalar masses, relative to the radius L of
AdS, read

M?L? = 6.727 (x1), 5.287(x1), 0.584 (x1), —1.586 (x1),
—1.588 (x9) , —1.751 (x9) , 0.630 (x5) , —0.983 (x5) , (5.12)
—0.730 (x4) , —1.964 (x4) , —1.176 (x8) , 0 (x22) ,

while the vector masses are

M?L? = 4153 (x3) , 2.287 (x3) , 3.451 (x4) , 1.945 (x4) ,

0.191 (x8) , 0 (x6) . (5.13)

Note, here and for the N’ = 3 point, the six zero masses in the vector spectrum correspond-
ing to the six generators of the unbroken SO(4). The scalar masses are all above the BF
bound, thus ensuring stability against perturbations in the full N' = 8 supergravity. Neither
SO(4) point features flat directions. Their spectra are independent of ¢, as they must, and
the points disappear from the physical scalar space in the purely electric, ¢ — 0 [21], and
purely magnetic limits. A counterpart in the SO(8). gauging of the non-supersymmetric
SO(4) point has recently appeared in [9].
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A The S® as a non-geometric T

Here we analyse an N = 1, Zy x SO(3)-invariant sector of N' = 8 ISO(7),. supergravity and
relate it to the toroidal, non-geometric type ITA orientifold reductions of [29, 48-50].

A.1 An N =1 truncation: the Zy x SO(3)-invariant sector
The embedding of the SO(3) factor reads

SO(7) D SO(6) ~ SU(4) D SU(3) D SO(3), (A1)
while Zy acts on the fundamental of SL(8) as
Zo = (1;3,5,7; 2,4,6;8) — (—-1;-3,-5,-7; 2,4,6;8) (A.2)

This Zg can be used to truncate N' = 8 — N = 4 [51]. Taking (A.1), (A.2) together,
the fundamental of SU(8) branches under Zg x SO(3) as 8 — 1y + 3(_) + 3(1) + ().
The truncation to the singlet sector is N/ = 1, given the Zs-even singlet 1(4) in this
decomposition. This invariant sector keeps six real scalars (x1,¢1), (x2,%2) and (x3,¥3)
along with the metric g,,,. We will not discuss the duality hierarchy in this sector; we only
note that this Zy x SO(3)-invariant truncation does not retain vectors.

The six scalars can be grouped up into complex fields ®1 23 taking values on three
copies of the upper-half plane:

O =—x1t+ie”™, Py=-—xat+ie P, Py=-—x3+tie ¥, (A.3)

These scalars thus describe an [SU(1,1)/U(1)]* Kéhler submanifold of E7(7)/SU(8). The
Lagrangian in this invariant sector can be explicitly worked out by first identifying the
relevant Zy x SO(3)-invariant generators of E7 7y,

g1 =137 + 15" + 77 + 12+t + 165 — 3 (0! +1s%),

ga =t 157 157+t —ta® —tyt — 6 — 15,

g3 = —t3° —t55 —t7" +to? + 4t + 6% + 3 (11! — 158),

94 = 94(17) + 9£+) = (tase7 + tor2s + t23as) + (t1238 + t1a58 + t1678) 5
) 4 g$) = (tasm1) + (tsaas) »

g5 =g + g5
= (t1346 + t1562 + t1724) + (tos7s + tavss + tesss) ,

(A4)

g5 =95 + 5"

and then exponentiating the Cartan generators and positive roots into a coset representa-
tive V = VW V3, with

(+)

_ (+)
Vi =e 12x1 94

+
ei ©191 Vy = e 12x295 &
Y

1 1
ei¥292 Yy — e 12x396 " o71¥393 (A.5)

Plugging the resulting scalar-dependent matrix M = V V! into (2.26), (2.27) gives rise to
the bosonic Lagrangian

3
L= (R—-V)voly + 3 [der A xdpr + e dyy A *dx1 |

A.6)
1 3 (
+ 3 [dcpg A xdpa 4 €292 dyo A *dxg] + 3 [d(pg A sxdips + €273 dys A *dxg] ,
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where the lengthy scalar potential
V= 3926_&‘01_(‘02_@3 [3 elprt2ez (629&1)(% -1)—6 64‘“‘*'“"24'@3(62@1)(% +3)
3270 (201 (2] — 1)+ (e (xa+2x0) = (2x3+33) —2))
el 3203 4 00 d (2 (33 43 (x2 + x3) 1) + 9

(A7)
+ 3¢t (62@2 (X1 + x3002 + X3))2 + Xg) + %72

— G e2P1Twet3ps (62901 (X% + 2X§) + 1)}

3p1+p2+3ps 3p1+p2+3p3

1
—gme Xl(X%+3X3(X2+X3))+§m26

depends on the six real scalars of the truncated theory.
The SU(3), SO(4) and Gg sectors described in the main text can be recovered as
subtruncations of the Zy x SO(3) sector. These are obtained through the identifications

SU(3) sector: &y =—x+ie ¥, Dy=P3=—ptie?,
SO(4) sector: &1 =P3=—x+ie 7, Py=—p+ie?, (A.8)
Gosector: P =Py =P3=—y+ie ©.
The scalar potential (A.7) reduces on each of these three submanifolds of [SU(1,1)/U(1)]3
to the scalar potentials (3.11), (5.6) and (4.5) of the SU(3), SO(4) and G2 invariant sectors.
Recovering the SU(3)-invariant scalar potential requires use of the definition (3.12).
A.2 Critical points

All the critical points in the SU(3), SO(4) and G2 sectors are also extrema of the Za x
SO(3)-invariant potential (A.7). In addition, a casual numerical scan yields further non-
supersymmetric AdS critical points with SO(3) residual symmetry. For example, a critical
point occurs at

VB3P = 0554404920, ¢ Y3y =0375i and ¢ V3®3=1263i, (A.9)
with cosmological constant g=2 ¢'/3 Vy = —27.610 and scalar masses in this sector
M?L?* = (7.379, 4.040, 3.790, —3.323, —1.873, —0.269), (A.10)

normalised to the AdS radius L. Note the presence of an unstable mode with mass below
the BF bound, M?L* > —9/4.

A.3 Canonical N = 1 formulation

The Lagrangian (A.6), (A.7) of the Zs x SO(3)-invariant sector of N' = 8 ISO(7). su-
pergravity can be cast in N' = 1 canonical form. The relevant Kéhler potential and
superpotential are

K = =3 log(—i(®1 — ®1)) — log(—i(P2 — P2)) — 3 log(—i(P3 — P3)),

A1l
W =g (28} + 61 @5 + 601 Py P3) +2m, (A1)

— 36 —



which give rise to the kinetic terms in (A.6), and to the scalar potential in (A.7) through
the standard formula (4.13) with p = 1,2,3, ¢ = 1,2,3. The simplicity of the superpo-
tential (A.11) is again in contrast with the intricacy of the scalar potential (A.7). By
solving the F-flat conditions, Dg,W = 0, that follow from (A.11), one (only) recovers the
supersymmetric critical points in table 3. The N’ = 3 SO(4) critical point is invisible to
this superpotential for reasons similar to those discussed in section 5.3, but is of course an
extremum of the potential (A.7).

A.4 A non-geometric STU-model from ISO(7). supergravity

The N' = 1 rewrite in (A.11) uncovers a connection to the non-geometric type ITA back-
grounds based on toroidal T®/(Zy x Zs) orientifold reductions investigated in [49, 50].
These N' = 1 models have an [SU(1,1)/U(1)]" scalar manifold parameterised by seven
complex fields (S, T1, Tz, T3, U1, Uz, U3). The moduli S, T; 23 and U, 2 3 respectively
correspond to the type IIA axiodilaton, complex structure and Ké&hler moduli in the com-
pactification. In order to relate the non-geometric type ITA orientifold models of [49, 50] to
the A/ =1 theory in (A.11), we further restrict to the subset of models enjoying an SO(3)
plane exchange symmetry in T = T? ® T2 ® T?. These have been referred to as isotropic
or STU-models in the literature [52]. In these STU-models the scalar manifold is reduced
to [SU(1,1)/U(1)]? via the identifications T = Ty = Ty = T3 and U = Uy = U = Us. This
results in a simplified Kéhler potential

Kia = —3log(—i(U — U)) — log(—i(S — S)) — 3log(—i(T —T)). (A.12)

This is formally the same as (A.11), but the fields are not yet directly identified (see below).

On the other hand, the most general flux-induced superpotential in toroidal orientifold
reductions receives three types of contributions: from regular fluxes of the type ITA form
fields, from metric fluxes (if T is twisted) and, finally, from so-called non-geometric fluxes.
The existence of the latter has been conjectured by duality arguments strongly based on
the symmetries of the straight TS reduction [29, 48, 49]. Based on such arguments, the
non-geometric fluxes are switched on directly in the four-dimensional superpotential: no
reduction has been known so far that explicitly produces them from type ITA.

Now we will show that the Zs x SO(3)-invariant sector of N' = 8 ISO(7).. supergravity,
described by the N' = 1 quantities (A.11) corresponds, precisely, to one such non-geometric
STU-model. In order to see this, we first map the scalars ®1 23 to the scalars S,T,U as
¢ = —1/U, &3 = S and &3 = T. Plugging these identifications into (A.11) produces a
non-standard Kihler potential due to the presence of —U ! instead of U. This can be taken
to a standard form via a modular transformation U — —U~!. After this transformation,
the Kéhler potential and superpotential in (A.11) are respectively mapped to (A.12) and

Wia =—g (24+6T°U*+6STU?) +2mU>. (A.13)

This is a fluxed-induced superpotential of the type we have just reviewed. Following the
flux/superpotential-couplings dictionary of [29, 50], we can determine the type ITA flux-
origin of each term in (A.13). The constant term —2g descends from a regular F, (6) flux. In
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other words, it arises from a Freund-Rubin contribution for F(4). The cubic coupling of U
is generated by the Romans mass F(O). From this perspective, the term 2m U? is in perfect
agreement with [15], where the Romans mass F,, was identified upon reduction with the
magnetic coupling m of dyonic ISO(7) supergravity. Finally, quartic terms, like 72U? and
STU? are of non-geometric nature in this language.

Dyonic A/ = 8 ISO(7) supergravity and, in particular, the N" = 1 subsector that we are
considering here, arises as a (consistent) reduction of massive type IIA on the six-sphere [15,
16]. Thus, this particular non-geometric model does in fact enjoy a perfectly geometric type
IIA origin. It would be interesting to investigate more generally the conditions that allow
for a conventional geometric interpretation of non-geometric flux reductions.

B The SU(3) sector and M-theory on Sasaki-Einstein

In this appendix we comment on the relation between the SU(3)-invariant sector of the
N = 8 ISO(7). theory that we analysed in section 3, and the model of [37], which arises
from consistent truncation of D = 11 supergravity on any Sasaki-Einstein seven-manifold
to the modes that are SU(4)-invariant under the Sasaki-Einstein SU(4)-structure. Both
theories have the same field content, the same scalar manifold (3.1) and the same gauge
group, U(1) x SO(1,1), generated by the same hypermultiplet Killing vectors (3.36). In
both theories, U(1) is gauged electrically only and SO(1,1) dyonically in their natural
duality frames. Yet the theories are different: they have different scalar potentials, with
different critical points. Also, they have mutually incompatible higher-dimensional origins
in massive type IIA and M-theory, respectively.

The theories turn out to differ in their embedding tensors and, in particular, in the
allocation of electric and magnetic charges with respect to a common electric/magnetic
duality frame. In order to see this, we first need to express both theories in the same
symplectic frame. The Sp(4,R) rotation

00 —-10
-1
gMy— | V-0 with detS—=1 and STQS=0Q,  (B1)
10 0 O
00 0 -1

where Q is given in (3.31), brings the sections XM = (1,7, 73, —372) of [37], associated
to the cubic prepotential F = —(X1)3/X?, to the sections XM in (3.29) compatible with
a prepotential F = —2 /X0 (X1)3, namely, S™ y XN = XM No hats were used in [37]
and the scalars t = —x + ie ¥ here and 7 = h + ie?YtV there are simply identified as
t = 7. The symplectic rotation (B.1) thus brings the theory of [37] from the “hatted”
duality frame to the duality frame that we are considering here for our SU(3)-invariant
sector. The embedding tensor of the theory [37] transformed into the new, common frame,
ie (S7HaNY On®, turns out to be purely magnetic. It thus differs from our dyonic © ;¢

in (3.38).
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C Construction of the N' = 8 ISO(7) dyonic theory

In this appendix we build the family of symplectically deformed ISO(7). = SO(7) x R7 max-
imal gauged supergravities using the framework of the embedding tensor [22]. Following
the same mnemonic as in [1], we denote this family ISO(7). where c is the electric/magnetic
or symplectic deformation parameter. Importantly, when moving results to the main text,
we have adopted differential form notation and rescaled the metric and the tensor fields as

(here)

g _ 29(text) and B(here) -9 B(text) ) (Cl)

uv ny o ny o
Then, the Einstein-Hilbert term, the kinetic terms for the scalars and the scalar potential
are rescaled accordingly

ﬁ(here) _ lﬁ(text) Ekin (here) _ lﬁkin (text) and V(here) _
2 2

(text)
EH EH > scalar scalar Vv . (02)

1
i
C.1 Eg(r) duality and the embedding tensor ©y*

Let us start by introducing the generators of the U-duality group E7(7) of maximal super-
gravity in four dimensions. These are denoted [ta]MN where @ = 1,...,133 is an adjoint
index and M = 1,..., 56 is a fundamental index of E7(7). We will use the real SL(8) basis of
E7(7) to build the 56 x 56 generators [ta]MN. In this basis, the decomposition 56 — 28 + 28’
makes manifest the electric and magnetic components of an arbitrary vector Xp; and trans-
lates into the index splitting Xy — X(ap] © XMAB] where A =1,...,8 denotes a funda-
mental SL(8) index. The E7(7) generators consequentely split as ¢ =t 48 @ tapcp, with
ta? = 0 and tapcp = tapcp], and correspond to a branching 133 — 63 + 70 under
SL(8). Their matrix entries are given by!°

[EF] 1 [EF]
[tAB][C’D] =4 <(5[% (Sg]};‘ + g (52 (555) and [tAB][EF] cD] = _[tAB][C’D} ’ (Cg)
for those in the 63 (block-diagonal matrices) representing SL(8) generators and by
2
tapcpliricm = 5 eapcperen and tapcp|EFICH] = 9 sEECH (C.4)

for those generators in the 70 (off-block-diagonal matrices) completing to Er (7).
The most general gauging of a 28-dimensional group G C SL(8) C E7(7) in maximal
supergravity is encoded within an embedding tensor Op* of the form [3]

@[AB]CD =260 0p)p ., QUBIC |, — 95l ¢BIC. (C.5)

where the index « in ©y® is restricted to the adjoint of SL(8), namely, to the generators
in (C.3). The matrices 6 and ¢ are symmetric and specify the gauging G as a function
of the number of negative, positive and vanishing eigenvalues. The ©O-tensor obeys the
(quadratic) constraints for a consistent gauging in maximal supergravity [22]

"N ey On® =0 with g _ (V25 Lo ) (C.6)
—Iog 028

10The generalised Kronecker symbols are taken to be normalised as projectors, i.e., 62_’::5;’ = :I:% or 0.

-39 —



where Quy is the Sp(56, R)-invariant matrix satisfying Qpp QMQ = (5];9.

Using the form of the SL(8) generators in (C.3), it is possible to build an X-tensor!!

Xun® = Ou® [taln” = Omp [tCD]NIP; (C.8)

that consists of both electric X|4p) and magnetic X [AB] components often referred to as
charges. The former are given by

EF] _ [EF) _ (E P
X[AB][CD][ I= —Xp jep = ~8040mc0n) (C.9)
whereas the latter read
AB EF A F
XAy B = XA oy = —85{3e PPy (C.10)

As we will see later, having magnetic charges (C.10), i.e. £ # 0, requires not only the
introduction of magnetic vector fields fl[ AB] u in the Lagrangian but also of two-form tensor
fields B, o in order to obtain a consistent gauge algebra [23].

C.2 Dyonic ISO(7). gaugings

In order to describe the family of ISO(7). gaugings, it proves natural to split the index
A= (I,8) with I = 1,...,7. The generators of ISO(7) = SO(7) x R” C SL(8) are given by
28 linear combinations of the block-diagonal generators [t4? ]MN in (C.3). These are

TSO(?) . T[J = Qt[IK(SJ]K and TR7 : T[ = tg‘] 5J[ y (C.ll)

comprising SO(7) generators Ty; = 1] in the 21 of SO(7) plus R” generators Ty in the
7 of SO(7). They satisfy the standard commutation relations

(Tr, Trr] = 40111k Ty 5
(T7,Tkr] =267k T s (C.12)
[TI7 TK] =0 ’

which specify the structure constants of ISO(7). The completion to SL(8) requires ad-
ditional generators Tf(i) = 2t¢;%6;, and T{ = t;% in the (1 + 27) and 7 of SO(7),
respectively. When embedding SO(7) C SL(7) C SL(8), one has the generators decompo-
sition 63 — 1 @ 48 (t%, t17) @ 7 (t/%) © 7 (tg'). The entire set of SL(8) brackets is

then given by (C.12) together with
S S
(T3, Tic2) = —48u0c T1y )

S S

[T[(J)vT[((B] =45k Ty, (C.13)

17, T1(<S)] =201k Ty,

1 The X-tensor is usually decomposed as Xunb = X [MN]P + Z%uy with
Zhin = 2% down = Xamwy (C.7)

where ZF* = %QPQ O¢® and dovn = [ta]MP Qnp. The Z-tensor plays an important role in the tensor
hierarchy of maximal supergravity [22, 24, 53].
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and N N
S
[TH, T = —207x T}y,

C.14
[T}, Tx] = 751KZTLL (T + Tyg) (C.14)

As found in [2], there is a one-parameter family of ISO(7), maximal supergravities
specified by 6 and £ matrices of the form

0 = (‘5” 0) and €= <O7” 0> , (C.15)
0 0 0 ¢

which are compatible with the constraints (C.6). However, it was also proven in [2] that
all the values ¢ # 0 produce equivalent theories up to a rescaling of the gauge coupling g.
Upon substitution of (C.15) into (C.5), the components of the embedding tensor Oy take
the more explicit form

e[IJ]KL =20(; dyL, @[18}8K = ok, O =0, ¥y —csf, (Cu16)
and the charges in (C.9) and (C.10) are given by
Xyn="T xIJ =9
D () =41J X[AB] ) 1
[AB] — {X[Ig] — 7 and — XUS] — sl T, (C 7)
Applying analogous decompositions for the vector fields Aﬁﬂ, namely
A[I JI_ AIJ . A = A1
AABl _y and A — T el C.18
(L .A[I8 A/i w[AB] Aupg) = Aur ( )

one finds a covariant derivative D, = 0, — g.AlIYJI Xy, with Xy = O o, of the form
1 -
Dy=0u— 59 A T+ g A T —m A, 67Ty, (C.19)

where m = gc is the magnetic parameter introduced in [15]. As a result, the SO(7) rotations
(Try) are gauged electrically whereas the R7 translations (77) are gauged dyonically, in
agreement with [2].

C.3 The bosonic Lagrangian

The Lagrangian of maximal supergravity is totally determined after specifying the X-tensor
Xyn® in (C.8) underlying the gauging [22]. Using (C.9), (C.10) and (C.15), the set of
components for the ISO(7). case is given by

[MN]

MN] _ (M N]
X[IJ][KL}[ b= _X[IJ] [KL] — 85[ 5J][K5L] )
MS8] _ (M8] _
Xig ™ = Xy iy = 200 Ok (©.20)
X v _x M8l o oM ’
[K8][1J] (K8  [1J] K[I197] »
[K8]  [M8] _ [K8][M8] _ K
Xy =X = 269005
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with all the rest vanishing. Equipped with this tensor X', the bosonic Lagrangian of
maximal supergravity is given by [22, 23]

Lbos = EEH + »CVT + »Cscalar y (0'21)

which contains the usual Einstein-Hilbert term'? Lry = %eR, as well as vector, tensor
and scalar contributions we move on to discuss now.

The scalar Lagrangian. The maximal supergravity multiplet contains 70 scalar fields
which serve as coordinates in the coset space E7(7/SU(8). Using a coset representative Vit
transforming under global E7(7) transformations from the left and local SU(8) transforma-
tions from the right, the scalar-dependent matrix My in (2.15) is built as M =V V. In
terms of M, the scalar sector of the theory is given by

Locotar = Ly — V(M) = oo eTr (DuMDIMT) = e V(M) (C.22)

where the scalar potential induced by the gauging takes the form

2

VM = s (

Xe® Xpg S MM MY Mg + 7XMN@XPQNMMP) . (C.23)
Here we are not providing a more explicit expression neither for M nor for the scalar
potential (C.23) when particularised to the ISO(7). gaugings. However, let us make an
extra remark in this case. The ISO(7). gaugings involve the seven non-compact generators
Trin (C.11) associated to the RZ translations. This implies that, if we choose an appropriate
parameterisation of the E7(7)/SU(8) scalar coset such that 7 out of the 70 scalars are aligned
with the 77 generators, these seven scalars will not enter the scalar potential.

The vector-tensor Lagrangian. Neglecting fermion bilinears O, vector fields con-
tribute to (C.21) with a kinetic and a topological term codifying generalised Chern-Simons-
like terms [23]. This is

Lyt = Lyec + ﬁtop . (0.24)
The former is given by
1 A Yuv 1 vpo A ¥
Luee Ze(ZAgH HEY 4 0T R o, M ) (C.25)
e
where A = 1,...,28 is a collective index running over the electric vectors AA = A, ABl

the magnetic ones Au A= Au [ 4p] in the decomposition AM (.A .A A) as well as over
their field strengths ’H = (’Hw,, ’HWA) The symmetric matrices Ry and Zpy, in (C.25)
depend on the scalar ﬁelds and can be combined into a complex matrix

Nas = Rax + i Zpx - (C.26)

2We use a mostly-plus convention for the metric, i.e. e = \/—g, as well as —ep123 = +1 = £9123 for the
Levi-Civita symbol.
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Note that Zxy, must be negative definite for the kinetic terms in (C.25) to have the correct
sign. The complex matrix Myy, is related to the scalar matrix My in (2.15) via [54]

My My* —(T+RIR)ps (RI1),”
Myn = = . C.27

v (MAZ M (TR, —(T M (€.27)
The field strengths Hll\g, of the vector fields are given by

Hyy = Foy, + 92" Bua with  F, =20, A0 + g X" Ay Ay, (C.28)

and are “modified” in the sense that incorporate a number of auziliary two-form tensor
fields B.a subject to suitable gauge transformations which ensure that (C.28) transform
covariantly [23]. The way tensor fields enter the field strengths in (C.28) is dictated by

1
M — 3 OMN @y (C.29)

and, using the Oy® components in (C.16) for the ISO(7). gaugings, one finds
1 1
1J]K 18]8 I K K 8
Z[ ] L_07 Z[ ] K—§C(5K7 Z[IJ] L——é[I(SJ]L, Z[IS]K_§6IK' (C30)

After using (C.20) and (C.30), the electric field strengths ’Hf}l, entering the La-
grangian (C.25) in the case of the dyonic ISO(7) gaugings read

M) = Fu) =20, Al — 296k AL A

v]

1
I _ rl 1
H,uu - ‘F,uu + 5 mB,uu (031)

~ 1
= 20,4y — 290 A Ay +m AL Ay g + S m By,

whereas the magnetic field strengths 7:[,“, A, which do not appear in (C.25), take the form

,H/u/IJ = ﬁul/[] - gB,uI/[IK 6J]K
= 28[MAV} IJ
= g0x1 Al Ay gr+9 A cr AR S5n+9 0k Al Ay 9 Ay Al 0k (C.32)

—2m Ay Ay — 9B S
- - 1 ~ ~ 1
H#VI:'FMVI+5951JB;{V = 2((9[#./41,]1—g(st]A[LKAy]K—I-gg(s[]Biy.
Therefore, a set of seven two-form tensor fields B[w = B, s’ will enter (C.25) if m # 0
because of ’H{W in (C.31).

The presence of magnetic charges and tensor fields generates the topological term
in (C.24). It was obtained in [23] and takes the form

1 - 1
Liop = gerr? [_ 5 oM Buva (2 0pAs A + g Xvna Afl\)ﬂAlﬁ — Zg@Aﬁ Bpaﬁ)

1 1

~ 3 XMNA A AN (@Af} +319 Xpo™ A} A9> (C.33)
1 ~ 1

o v’ AN AT (apAJA + ZgX]p@A AIEA9> ] .
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Particularising again to the case of ISO(7). gaugings, and using the relations

X AN A = 6pc, ALK AJE — (T 5 ),
Xz Ay Ay =010 AL Ay g+ Grp AL — c Aun) Ay g — (1),
X" A AN = 6, ALK AL + (0pcp, AL — e A i) ALK

Xumrg) Ay Ay = —ATK A, i

(C.34)

to compute the contributions of the form 4404 and AAAA, the topological term in (C.33)
reduces to

1 ~ 1 1 - -
;Ctop = mehvP? |:_8 B;Ij,l/ (Hpo'l_ 1 g 5]] B;)]a-> +Z Ay,[ AIIJ (ap.A(I;J + % Af)KAgL 5KL):| ;
(C.35)
with ,,, 1 given in (C.32). Notice that (C.35) vanishes in the purely electric case of m = 0.

Three-form potentials, Bianchi identities and representation theory. The ten-
sor hierarchy of maximal supergravity requires also the presence of three-form potentials
Covp o' transforming in the conjugate representation to the embedding tensor [24]. These
three-forms modify the field strengths of the tensors B, , in a similar manner to (C.28),
namely [23-25, 53],

Hoywpa = Faywpa + 9 Ya,lP’B CMVPIBIP ) (C.36)
with
Fiommpa =3 DBy + 6 danar AL (9,45 + é g Xes"ATAG), (C37)
and
DByl = OubBug)a + 9 Xua" AEM;i By (C.38)

and where Xy,? = Oy [tw]aﬂ and domn = [ta]MP Onp. The Y-tensor in (C.36) is called
the intertwining tensor and takes the form [24, 25]

Yo p? = [talp? Og” + Xpo” . (C.39)

The field strengths H)pa do not enter the maximal supergravity Lagrangian in the
framework of [22, 23]. Moreover, by virtue of

My, pf =0, (C.40)

the Y-term in (C.36) vanishes upon contraction with ZM: o and, therefore, is not relevant
for the (Z-projected) Bianchi identities [23]

1

Dy HM =~ g Z" U s par s
[wtvp) = 59 @nvp (C.41)

M, a M /P
27" DyHvpola = 39 Xea Hy, %Sa]’

with Dy HM = 9, 1M, + g XpgM AT, HD
[u7tvp) = CpTtyp) T JAPQ AL, 7T, (C.42)

e )

DyHsywpola = OuHawpo)a + 9 Xua" A[u Hgywpo) 8 -

— 44 —



Using (C.37)—(C.39), we have obtained the expressions for the three-form field strenghts
in (C.36) when particularised to the dyonic ISO(7) theory. Similarly, using (C.42), we
obtained the expressions for the (Z-unprojected) Bianchi identities. The results have been
brought to the main text. Last, and for the sake of brevity, we are not presenting here the
lengthy expression for Huwpo e, which can be found in the appendix B of [26].

Let us briefly comment on the representation theory underlying the field content of
the tensor hierarchy for the dyonic ISO(7) supergravities. Using the branching rules

E7¢7) D SL(8) D SL(7) x Ry
56 — 28 + 28" — (21,9 + 7_¢) + (2175 + 7'¢)
133 63+ 70 — (19 + 480+ T4s + 7" g) + (35_4 + 35')
912 +36+36"+... > (2840 + 7 g+ 1_14)+ (285 + 7\ g+ 1414) + ...

(C.43)

it is possible to identify the different representations attached to the different field potentials
and embedding tensor deformations in the theory. These are given by

AM—>A[J521+2, A =76, .AI‘]E21'_2, .AIE7I+G,
By = B=1p, B’ = 48, Bl =74, (C.44)
CaM — CIJ = 28/_2, C~ =1_14,

whereas the embedding tensor Oy® sits in the 28,2 (¢d7s) and 1414 (m). Further trun-
cations to the different invariant sectors discussed in this paper are displayed in table 2.

D The scalar-dependent matrix My

In this appendix we provide the explicit form of the symmetric, scalar-dependent matrix

[ Mas MAFY [ Mpagep) Mag P
My = (MAE MAE) = (M[AB}[CD] MlABlieD] (D.1)

in (2.15) for the the SU(3), G2 and SO(4) invariant sectors discussed in the main text.

D.1 The SU(3) sector

The complexification in (3.3) translates into an index splitting of the form A — 1 @& ¢ & 8,
with ¢« = 2,...,7 a fundamental index of SO(6). This implies a splitting of the 28 (and
the 28”) of SL(8) of the form [AB] — [ij] @& [1j] ® [i8] @ [18]. The set of SU(3)-invariant
forms includes the flat metric d;;, a real two-form J;; and a holomorphic three-form 2.
With those index conventions, these are given by

J=eNed + et Ae® + e,

D.2
Q= (2 +ied) A (e +ied) A(eS+iel). (D-2)
These forms satisfying the orthogonality and normalisation conditions
~ 4
JAQ=0 and Q/\Q:—gz'J/\J/\J. (D.3)
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The scalar matrix My depends on the six scalars (x, ¢) and (¢, a, (, f ) entering the coset

representative in (3.6). It is useful to introduce the short-hand combinations
1 -
X =1+ e%7y?, Y:1+162¢(<2+C2), Z=e?a,
together with
J1=CZ+CY and J2=CZ—-CY,
in order to present the different blocks of (D.1). We now turn to do that.
e The block MMABICDI contains the following components
M[IS][IS] _ 6734,0 X3,
M[ZBM]CS] — ef(2¢>+ip) X (Y2 + Z2) 51‘]@7
together with
M[lS][k:l] — ¥ XQX Jk‘l,
j 1 : i : i
M[zS][kl] _ _5 eth [ 1 (RGQ) ki + Jjo (ImQ) kl ] ,
M[iS][ll] — e "X |: 7 6il + (Y . 1) Jil j| ,
and
MU — 20— x st
. 1 . - .
MR — 5 2% x [ ¢ (ReQ)M 4 ¢ (ImQ)7* ]
MU — o0 (X —Y) J9 JH 136 (Y — 1) JI JH 4 2e2y gFlE g7
e For the block MAB] (cD]» the set of components is given by
MU (18] = —€3¢X3,
Mg =e?x[Z2 T — (Y - 1) 4;,],
together with
MUy = —e P X2 T,
i L : i . i
M[S][kl] = 56 X [jl (Re€)"); + Jjo (ImNQ)*, ] ,
MU = e720%e (Y2 4 Z22) Ty,
M[ij][m] = 3%y JY |
ij 1 p ij ij
MUy = 2 €204 [ (Re)Y — ¢ (ImQ)7 ],
M[lﬂ[ks] = —e2%tey i,
and
MUy = —e? X [Z T+ (Y —1) 6] ],
MUy = 3¢ [ J2 (ReQ)V;—j1 (ImQ)¥, |,
, 1 5. , - ,
M[lj][kl] D) 979 X [ ¢ (ReQ)y; + ¢ (ImQ)7, ],
MUy = Py (Y =X) J9 Jyy—3e? x Y JW g6, 6p,—2e? x (Y 1) 8] .
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e The block M4pjcp) has components

M[18][18] =¥ )

(D.12)
Mgg = €27 S,
together with
Mgy = €2 X* Ju
1 .
Mgk = —5 29T x [ ¢ (ReQ)ig — ¢ (ImQ)y | (D.13)
Mugiy =€? [ Z 6a— (Y = 1) Jy |,
and
Mgy =€ 2 (Y2 +2°) 0,
1 . .
Miwg = —3 e? x [ j2 (ReQ)jp—j1 (ImQ)jm |, (D.14)
M[z‘j][kl] =e ?X(X-Y) Jij Ju+3e P X (Y1) J[ij Jkl]+2 e ¥XY 5k[z' 6j}l .
cn) _

e Due to the symmetry of My, the last block can be obtained as M,p
M[CD} AB]-

Note that different SU(3)-invariant tensors have different Zs-parity behaviour with re-
spect to the transformation in (A.2): the tensors d;; and Re(2);;;, are parity-even whereas
Jij and Im(€2);;, are parity-odd. Consequently, there are parity-even and parity-odd com-
ponents within Mygy. The latter vanish when a = ¢ = 0 (so that jo = 0), as these scalars
pair up with the parity-odd generators in (3.5).

D.2 The Gs sector

The decomposition 8 — 7+ 1 of the fundamental representation of SL(8) under G4 selects
an index splitting of the form A — I & 8 with I = 1,...,7. Consequently, one also has a
splitting of the 28 (and the 28') of the form [AB] — [I.J] & [I8]. The set of components
of the scalar-dependent matrix (D.1) can be written in terms of the Go-invariant tensors
) IJ and

YrjK = €123 + €145 + €167 — €246 + €257 + €473 + €635 ,
(D.15)

YIJKL = €567 + €6723 + €2345 — €1357 + €1346 + €1562 + €1724 ,

which are related by seven-dimensional Hodge duality. The scalar matrix My in this
sector depends on two scalars (x,¢). Introducing the combination X = 1 + e**y?2, it
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contains the following blocks:
MUIIIELL — 9 00 x 6K §IIL 4 o3¢ (2 JITKL

M[IJ][KS] — e(pXQX ¢IJK7
M[IS][KS] — 6—34,0 X3 5IK’

M k) = 2% 3 6 — P x X M i,

M = =X U e (D.16)
MU e = —e o x X2 Tk,

MU g = e3¢ 3P 6%

Mk =2e 7 X? Sk oL + €’ > X Yrike
Mrniks) = €9X° Yrik

Mg xs) = €* 01k -

The Go-invariant tensors are parity-even with respect to the Zs transformation (A.2).
Consequently, so are the My components (D.16).

D.3 The SO(4) sector

The branching 8 — (2,2) + (3,1) + (1,1) of the fundamental SL(8) representation under
SO(4) determines an index splitting A - A @ a @ 8 with A =1,3,5,7 and a = 2,4,6. The
splitting of the 28 (and the 28’) is then of the form [AB] — [Au] @ [ab] ® [ap] © [A8] & [a8].
The SO(4) sector we investigate in this work retains four scalars (x, ¢) and (p, ¢). In terms
of these, the independent blocks of the scalar-dependent matrix (D.1) can be obtained
using the invariant tensors dup, €abe, Ory, Exuvo and the 4 x 4 matrices!3 [fya])‘ u given by

[v2] = (D.17)
The above y-matrices satisfy the anti-self-duality relations
1
h/a])\u = _5 Exuvo ['Ya]zxoa (D18)
as well as the usual
{Vas wr = =2 Iaxa and [Ya s ) = =2 €ape Ve - (D.19)
As in the previous cases, we define the following combinations
X o14e29y2, Y o14e20.2 (D.20)

which we use to list the entries of M.

3Here we use invariant tensors (y2,y4,v6) = (—2 tY), 2t§,7), 2t§7>) with tg 2{3 given in eq. (4.1) of [30].

)
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e The block MABICD in (D.1) contains the components

M8 — =3¢ x3 SM

M[aS][cS} _ 6_(2 e+9) x2y 5% (D21)
together with
MaAN B8] — e? X y2 [,ya]x\u7
M = 08 Xy p (44 (D.22)
M[ab][c8] _e2¥- QSYXQ abc
and
11 M[)\y,][yo'] - _ 2<p+¢) X2 GANVO' 4 2€¢X 51/[)\ 5#]0’7
Mladlal — _62 PO 5y eabe [%]Au?
M[a)\] [bu] _ 2 _abc Ap @ ab sA\u (D23)
X7 ET [y + eP X 66
M[ab][cd] -9 6250 ¢y 5c[a 5b]d )
e The block M[AZ] (cp] contains the set of components
M ][uS] = e’ x o, (D.24)
Ml ”[cs] — _2etd 2p 59
together with
Mg = =32 x [y,
MEBL ) = €72 X2 x [aly
MPH g = =290 5 [ M, (D.25)
WEIVE —e’d’XYx Yo
Mlab] 8] = = 2?1t o
M[GB] [bc] — e 2ete pX2 “pe
and
M [vo] = e(pr EAM vo —2¢? <p+¢ X 5ua )
Ml =227V y e [y,
MP\#] [ab] — e X X €ab” [VC]AH ’ (D26)
M = —e? X x e [y, — €29 X7 656,
My = —2e20F0 2 5ab,
e The block M 4p)cp) contains the pieces
Mpgjus) = €% O (D27
M[aS} [c8] — e? oo dac »
together with
Mg = €7 X [ala
Mg = €7 xp ['Ya]/\;u (D.28)
Maies) = =€ 7T X €ave
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and
M[A,u][ua} = —¢? g0_(1)YX2 Exwo T+ 207V X (51,[)\ )
M[ab] ] — _€¢ pX X €abe [’YC])\;L )
M[a)\} bp] = e¥ X2 X €abe [VC]A/L +e? X2 dab 6)\u )
Maped) = 2€ 2% X? 6oy 4.

o

(D.29)

e The last block is obtained as Mp [€D] = pmICeD] [AB], Since My is symmetric.

The SO(4)-invariant tensors are parity-even with respect to the Zs transformation

in (A.2) and so are the My components listed above.
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