
Vol.:(0123456789)

The Journal of Supercomputing (2021) 77:11625–11642

https://doi.org/10.1007/s11227-021-03751-2

1 3

DYRE: a DYnamic REconfigurable solution to increase
GPGPU’s reliability

Josie E. Rodriguez Condia1 · Pierpaolo Narducci1 · Matteo Sonza Reorda1 ·

Luca Sterpone1

Accepted: 15 March 2021 / Published online: 29 March 2021

© The Author(s) 2021

Abstract

General-purpose graphics processing units (GPGPUs) are extensively used in high-

performance computing. However, it is well known that these devices’ reliability

may be limited by the rising of faults at the hardware level. This work introduces a

flexible solution to detect and mitigate permanent faults affecting the execution units

in these parallel devices. The proposed solution is based on adding some spare mod-

ules to perform two in-field operations: detecting and mitigating faults. The solution

takes advantage of the regularity of the execution units in the device to avoid sig-

nificant design changes and reduce the overhead. The proposed solution was evalu-

ated in terms of reliability improvement and area, performance, and power overhead

costs. For this purpose, we resorted to a micro-architectural open-source GPGPU

model (FlexGripPlus). Experimental results show that the proposed solution can

extend the reliability by up to 57%, with overhead costs lower than 2% and 8% in

area and power, respectively.

Keywords In-field test · Fault mitigation · Fault-tolerance · General-purpose

graphics processing units (GPGPUs) · Reliability · Testing

 * Josie E. Rodriguez Condia

 josie.rodriguez@polito.it

 Pierpaolo Narducci

 pierpaolo.narducci@studenti.polito.it

 Matteo Sonza Reorda

 matteo.sonzareorda@polito.it

 Luca Sterpone

 luca.sterpone@polito.it

1 Department of Control and Computer Engineering (DAUIN), Politecnico di Torino, Turin, Italy

http://orcid.org/0000-0001-5957-5624
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-03751-2&domain=pdf

11626 J. E. R. Condia et al.

1 3

1 Introduction

Currently, GPGPUs are a major workhorse in applications involving data-inten-

sive operations, such as multimedia and high-performance computing (HPC).

Moreover, GPGPUs are now widely used in the electronics equipment for safety-

critical systems, for example, in the automotive and robotics fields [1]. In all

these cases, the reliability can be limited by the effects of transient and perma-

nent faults affecting the GPGPU hardware [2]. In fact, GPGPUs are implemented

using the latest technology scaling to increase performance and reduce power

consumption. However, some studies [3] show that devices manufactured with

cutting-edge technologies can be particularly prone to faults arising during the

operational-life caused by aging, wear-out, or external effects (e.g., radiation) [4],

so compromising their reliability [5]. As a result, traditional end-of-line testing is

no longer sufficient to address these emerging reliability challenges properly.

In order to tackle reliability issues, some solutions have been proposed in the

literature [6]. These can be divided into three main categories: software, hard-

ware, and hybrid.

The software solutions rely on modified versions of the application code to

harden and mitigate fault effects [7]. These solutions are noninvasive, flexible,

and have been proven in GPGPUs [8], but can be very costly in terms of perfor-

mance [9]. In [10], the authors developed fault-tolerance solutions for parallel

processors by adjusting the instruction-level parallelism, increasing the reliability

at the cost of workload performance. On the other hand, authors in [11] propose a

reduced precision Duplication with Comparison (DWC) approach to increase the

reliability in GPUs by replicating instructions and operating them in execution

units at different precision, so obtaining redundancy at zero cost, but degrading

performance and output precision.

The hardware solutions are based on special structures devoted to verifying

the correct operation and mitigate errors in the modules. They may use design

for testability (DfT) structures, e.g., Built-In Self-Test (BIST), to detect faults,

hardware redundancy, and spare modules to provide fault-tolerance (Built-in Self-

Repair or BISR). Among the possible hardware solutions, a popular one relies on

including redundancy to guarantee the long-term reliability of GPGPU devices.

Special strategies, such as Error Correcting-Codes (ECCs), contribute to reduc-

ing the sensitivity to faults in some large structures, such as memories, regis-

ter files, and communication interfaces [12]. However, the mitigation of faults

in other modules, e.g., execution cores, scheduling controllers, and dispatchers,

is more complex. Authors in [13] employed a dual-lockstep structure to provide

fault-tolerance capabilities to processor-based devices against transient fault

effects. In contrast, Authors in [14] explore several fault-tolerant strategies to

harden a processor against faults. The results show that complex devices can take

advantage of several strategies depending on the affected module to reduce the

total overhead, which in principle can also be adopted into GPU devices. Other

strategies, such as DWC [15], Triple Modular Redundancy (TMR), BISR or com-

binations of redundancy, custom controllers and hardware diversity [16] [17], are

11627

1 3

DYRE: a DYnamic REconfigurable solution to increase GPGPU’s…

adopted for elaborated modules with considerable costs in terms of hardware and

power overhead [18]. However, the additional cost in terms of design and manu-

facturing of these detection and mitigation strategies may be unaffordable. In the

past, several solutions have been proposed (at different levels of granularity) for

hardening processor-based systems. These solutions include the repair of pipeline

stage modules [19], reconfigurable structures for processing elements in a device

[20], repair of embedded SRAM memories [21] and the test and repair of differ-

ent modules in parallel architectures [22]. However, their extension to GPGPUs

has not been fully explored.

Hybrid mechanisms are optimized solutions that combine hardware structures

and software mechanisms to detect [23] and mitigate faults [24, 25]. The hard-

ware and hybrid solutions must be adopted during the design stages of a device

and may significantly impact the devices. Nevertheless, their main advantage is

the low-performance overhead during the operation [26].

A compelling case is when we aim at protecting the execution cores of a

GPGPU. These are regular structures that represent a considerable percentage of

the area and are the principal operative elements inside the GPGPU. In [27], the

authors propose a fault detection and mitigation technique for large modules by

employing a DWC mechanism. In [28], a hybrid approach called Dynamic Dupli-

cation with Comparison (DDWC) is presented aimed to detect faults in the execu-

tion cores during the in-field operation. Similarly, in [29], and [30], the authors

propose mitigation solutions for similar structures by adapting the BISR mecha-

nism to replace faulty modules during the manufacturing process and the in-field

operation, respectively. Nevertheless, most currently adopted fault-tolerance solu-

tions for GPGPUs do not provide the detection and the mitigation of faults using

the same architecture. Moreover, only in rare cases, the solutions are intended to

operate and be flexibly activated during the in-field execution of a device.

In this work, we propose a solution called DYnamic REconfigurable structure

for in-field detection and mitigation of faults (DYRE) based on the coalescence

of the classical DWC mechanism and the BISR approach. DYRE is intended to

increase the reliability and operative-life, by supporting both detection and miti-

gation of permanent faults in the execution cores of a GPGPU. This mechanism

allows the reconfiguration of the GPGPU to identify (through comparisons) and

mitigate (by module replacement) possible faults arising during the in-field oper-

ation. The architecture of a GPGPU architecture adopting DYRE can be dynami-

cally re-configured using custom instructions purposely added to the instruction

set. Finally, the DYRE architecture is designed to avoid significant changes in the

original GPGPU design and minimize its impact on execution performance.

The main contributions of this work are given as follows:

1. The proposal of one architecture to detect permanent faults in the execution units

of GPGPU cores and mitigate their effects during the in-field operation;

2. The evaluation of the hardware, power, and performance cost involved by the

DYRE architecture and of its benefits in terms of reliability enhancement.

11628 J. E. R. Condia et al.

1 3

The results and analyses show that the overall GPGPU’s reliability in the execu-

tion cores is improved by up to 57% when the DYRE architecture is used. Moreo-

ver, DYRE introduces less than 1% of performance degradation, less than 5% of

hardware (Area) costs, and less than 8% of additional power consumption. Hence,

we claim that the proposed approach may represent a viable and promising solution

to develop highly reliable GPGPUs with minimum design and overhead costs with

respect to commercially available GPUs.

The manuscript is organized as follows: Sect. 2 introduces the architecture of a

GPGPU, also detailing the model employed to implement the proposed approach

(FlexGripPlus). Section 3 describes the proposed fault-tolerance technique. Sec-

tion 4 reports the experimental results and the performance features of the proposed

fault-tolerance mechanism. Finally, Sect. 5 draws the main conclusions of the work

and highlights some future works.

2 Background

2.1 Classical fault‑tolerance mechanisms

This subsection describes the two classical approaches to provide fault detection

(Duplication with Comparison) and fault mitigation (Build-In Self-Test) into digital

devices. These approaches are the basis for the development of the proposed DYRE

structure.

2.1.1 Duplication with comparison

DWC is a classical fault-tolerance approach and can be employed at several levels

of abstractions. For this work, we describe the DWC approach used at the hardware

abstraction level. However, the same concept can also be applied from the hard-

ware up to the system level. In these levels, DWC employs the concept of Sphere

of Redundancy/Replication [31], which is based on replicating one or more compo-

nents (modules or systems) with the purpose of increment the fault-tolerance capa-

bilities of a device or system.

The replication of components is used to perform simultaneous parallel opera-

tions in the original and redundant components. The output results of both (original

and redundant ones) are compared to identify any mismatch, which is employed to

determine errors or indicate the presence of a fault. Thus, the active use of DWC

increases the fault detection capabilities during the system’s operation. The DWC

structure is commonly complemented by other modules, including input and output

selector switches, one comparison unit, and one general controller.

2.1.2 Built-in self-repair

BISR is a fault-tolerance mechanism that allows the mitigation of faults in a system

by replacing an affected component (module or system) with a spare and fault-free

copy. The BISR follows a regular switching strategy that consists of adding one or

11629

1 3

DYRE: a DYnamic REconfigurable solution to increase GPGPU’s…

more spare copies of a component and activating them (switching the input and out-

puts of the component) when a faulty component is detected, so correcting the fault

effect and extending the operative life and reliability of the system.

The BISR strategy includes input and output switching modules attached to the

target components and the spare ones, which are located in parallel. One general

redundancy manager is employed to manage the active components’ operation in a

system and perform the swapping among the components in the system.

2.2 Fundamentals of GPGPU organization

A GPGPU is organized following the single instruction multiple data (SIMD) para-

digm and its adaptations, such as the single instruction multiple thread (SIMT) by

NVIDIA. The microarchitecture of a GPGPU is based on multiple processing mod-

ules (also known as Streaming Multiprocessors, or SMs). The SMs are composed of

local controllers, schedulers, cache memories, a register file, and several execution

units (EUs, CUDA cores, or Scalar/Streaming Processors (SPs)) devoted to simulta-

neously executing one instruction on multiple data.

One general controller (Block scheduler controller) submits tasks to each SM in

the GPGPU. The local controllers in the SM manage and trace the operation of the

assigned tasks by submitting groups of threads (Warps) to the available SPs for par-

allel operation. Each SP can be composed of an integer and a floating-point mod-

ule. Modern SMs also include hardware accelerators for specific tasks, e.g., matrix

operations and neural networks processing.

2.3 FlexGripPlus

FlexGripPlus [32] is an open-source RT-level model of a soft-GPGPU described in

VHDL and is an extended version of the FlexGrip model [33] initially designed by

the University of Massachusetts. FlexGripPlus corrected some significant architec-

tural restrictions and programming bugs presented in FlexGrip, meanwhile preserv-

ing the original descriptions.

FlexGripPlus implements the G80 architecture of NVIDIA and is also compatible

with the CUDA programming environment with the compute architecture SM_1.0.

The architecture of FlexGripPlus is based on a custom SM core composed of five

pipeline stages (Fetch, Decode, Read, Execute, and Write), as shown in Fig. 1. The

SM includes a warp scheduler controller that manages the execution of the instruc-

tions and controls the operations of each thread. One warp instruction is fetched,

decoded, and dispatched to be executed into the available SPs in the SM. In the Read

and Write stages, the operands are loaded and stored from/to one of the memory

resources (register file, or shared, constant and global memory) in the system. The

number of SPs in the SM can be selected among 8, 16, or 32.

The SPs are composed of multiple sub-modules to operate signed and unsigned

arithmetic and logic operations. The inputs to each SP core are organized as data

channels (iDCx) consisting of 32 bit-size input data operands (SRC1, SRC2, and

SRC3) and predicate flags (4 bit-size). The output data channel (oDCx) is composed

11630 J. E. R. Condia et al.

1 3

of the 32 bit-size result and the output predicate flag from each SP. These output

channels are connected statically to the next pipeline stage in the SM. Similarly,

the SPs are statically assigned to any thread/task by the controller in the SM. In

the fault-tolerant architecture proposed in this work, the external control signals are

redundantly used to configure the SP’s operation with the instruction to operate.

3 Proposed solution

DYRE is a fault-tolerance architecture intended to detect permanent faults in the SP

cores of an SM (in the GPGPU) and mitigate their effects. This mechanism takes

advantage of the high regularity and homogeneous composition of the SP cores, the

parallel execution of the thread/tasks on the SPs, and the distribution of the tasks

among the SPs to reduce the cost in terms of hardware and performance. The DYRE

architecture is based on the addition of one or more spare SPs (SSPs) in the Execute

stage of the SM. Each additional SSP can be employed for results comparison or

replacement purposes. It includes a mechanism for dynamically deciding how to use

the available SSPs, thanks to the introduction of two additional instructions in the

GPGPU instruction set. The execution of these instructions allows for pairing an

SSP with a given SP (comparing the results they produce) or substituting one SP

with a given SSP, respectively.

In particular, an SSP can

Fig. 1 A general scheme of the FlexGripPlus model

11631

1 3

DYRE: a DYnamic REconfigurable solution to increase GPGPU’s…

1. be paired to an SP, so that it performs the same operations on the same input data;

hence, the results produced by the paired SP and SSP can be compared, and this

allows detecting possible faults affecting one of the two modules

2. replace a faulty SP core.

The architecture of a DYRE GPGPU differs from a normal one only in the Execute

stage (see Fig. 2). It includes one or more SSP cores, three crossbar units (input,

middle, and output), some configuration registers, one comparator block (COMP), a

controller unit, and some decoding logic. This structure provides flexibility allowing

two non-exclusive operational features: (1) the in-field detection of faults and (2) the

in-field mitigation of faults in the SPs.

The specific architecture of a DYRE GPGPU can be flexibly and dynamically

decided by executing ad hoc assembly instructions introduced in the GPGPU

instruction set to activate the fault detection and fault mitigation features. The

DETection Trigger (DETT) instruction enables the DYRE comparison structure and

configures and selects an SSP to be paired with an SP. The SSP and SP to be com-

pared are included as part of the instruction format. Thus, when active, the DETT

instructions enable comparing the selected pair (SP and SSP) results for fault detec-

tion purposes. Similarly, the MITigation Trigger (MITT) instruction enables the

replacement structure of DYRE and reconfigures the GPGPU, substituting one SP

with an SSP for mitigation purposes. The instruction format in MITT includes fields

Fig. 2 A general scheme of the Execute stage of a GPGPU with the DYRE architecture

11632 J. E. R. Condia et al.

1 3

to select the SP and SSP to be commuted. For both cases, a programmer can employ

any selection policy to control the comparison and replacement among the available

SPs and SSPs.

Moreover, both instructions can reconfigure the DYRE architecture with the cost

of only one instruction cycle and are intended to be included in a running applica-

tion, so dynamically enabling both features of a DYRE GPGPU for in-field oper-

ation. Both operational features (detection and mitigation) are intended to use the

same hardware structures, thus reducing the overall hardware cost. However, more

than one SSP is required to use both operational features in DYRE simultaneously.

3.1 Fault detection

This operational feature is inspired by the DWC mechanism and uses a sphere of

redundancy composed of the active SPs in the SM. The DYRE architecture uses

this feature to detect faults through the comparison of results. When DETT instruc-

tion is executed, the local controller enables the fault detection feature, and one SSP

and one SP are selected to perform all the following instructions in parallel. This

procedure is transparent for the execution of the application. The SP and the SSP

can be paired by a time interval or the entire execution of the application. Moreover,

the target SSP or SP can be replaced with another core at any moment of the in-field

operation by executing a new DETT instruction.

More in detail, the DYRE architecture uses two crossbars (input and middle)

to select a target SP. Both crossbars select and duplicate the input and output data

channels to feed the SSPs core and the comparator block, respectively.

After each operation, the results of the SP and the SSP are compared. The com-

parator triggers a faulty flag when a mismatch is detected. The flag is propagated to

the next stage and sent to the exceptions unit in the GPGPU or the Host.

3.2 Fault mitigation

This operational feature is based on an adaptation of the BISR mechanism, and it

is intended to mitigate the effect of faults in the cores by disabling and replacing

one affected SP core with one of the available SSPs in the system. The SSPs are

organized as cold standby modules and are active only when required. Correspond-

ingly, the inactive SP cores are disabled to reduce the power consumption during

inactivity.

The static distribution of tasks among the SPs allows the correction of faults by

switching the input data from a faulty unit to a fault-free unit. This behavior also

reduces further changes in other modules of the GPGPU. For this purpose, it is pos-

sible to mask the replacement of a faulty SP by an SSP. Thus, the fault-mitigation

structure operates transparently from the memory and scheduling controller’s point

of view.

More in detail, the execution of the MITT instruction activates two crossbars

(input and output, as depicted in Fig. 2) to redirect the data-flow of the data channel

11633

1 3

DYRE: a DYnamic REconfigurable solution to increase GPGPU’s…

from one active SP (faulty core) to the selected SSP (fault-free), so mitigating the

fault effect. The effect of the MITT remains active for all subsequent instructions.

3.3 Suggested methods of use

The DYRE architecture is intended to operate in two cases: (1) in the Power-on/reset

phase of the device and (2) during the in-field operation of an application.

At the power-on, the DYRE architecture is inactive. Hence, the SSPs are initially

idle as cold standby modules. A specially crafted test program applies patterns to

check the possible presence of permanent faults in each SP. This program includes

several DETT instructions that activate one SSP and swap the available SPs to per-

form comparisons when executing the same instructions on the same data. If a mis-

match is found, the SP is labeled as faulty. The program replaces the faulty SPs with

SSPs through MITT instructions, and the application starts. It is worth noting that

the generation of suitable test programs for the SPs is out of the scope of this work.

However, previous works [34] showed that generating them is feasible.

Nevertheless, the use of DYRE during in-field operation requires adding one or

several DETT instructions in the application code. Each DETT instruction selects

one SSP, so activating the fault detection through comparisons. When comparison

produces a mismatch between the results, during the execution of the application’s

instructions, a fault is identified as detected. Then, a subroutine activates the MITT

instruction to replace the faulty SP with one SSP. This subroutine can be launched

when a mismatch is generated or during the idle times of an application. The

replacement subroutine (with MITT) is intended to substitute the faulty core with

minimal latency in the execution of the application, considering the low reconfigura-

tion cost of the mitigation feature.

It is worth noting that the DYRE architecture does not include any fault adminis-

tration structure to store the actual configuration state and possibly be restored after

a device power-off or reset. This fault administration structure could be composed of

a non-volatile memory (NVM) and some controllers to store the state and role of the

SPs and SSPs of both operational features. Hence, at each power-on, a complete test

is required to build the map of faulty/fault-free cores. Alternatively, the map can be

updated with a given frequency, depending on the characteristics of the application

and parameters in the structure, such as the number of SSPs.

3.4 Implementation

DYRE was implemented in FlexGripPlus, modifying the Decode, Read, and Exe-

cute stages. The hardware to support the DETT and MITT instructions was added in

the Decode stage. Similarly, a bypass mechanism and some changes in the memory

controllers were performed in the Read stage to add flexibility to the instructions.

The implementation allows the adoption of the DYRE architecture with any of the

three SP configurations (8, 16, and 32) of the model.

The Execute stages include the additional SSPs, the crossbars, and the con-

trollers of the DYRE architecture. The main purpose of the crossbars is the

11634 J. E. R. Condia et al.

1 3

selection of the input and output data channels (iDCx and oDCx) to feed the

SPs and SSPs in the system. The input crossbar selects one of the iDCx feed-

ing the active SP cores and can duplicate or switch the input data to one of the

SSPs. In case of duplication, the selected SSP redundantly executes precisely

the same operation of the selected SP. In contrast, in the case of switching, the

input crossbar substitutes the iDCx of one SP core and feeds a selected SSP. The

control signals of the SP cores are statically shared among the SP and SSPs in

the system.

The middle crossbar is composed of two independent crossbars used to feed

the two inputs of the COMP module. COMP is only used during the fault detec-

tion operation and is composed of a bitwise comparator that compares the results

and output flags from two execution units (SPs or SSPs). On the other hand, the

output crossbar manages the results coming from the active SPs and SSPs. This

crossbar is used to select the output channels (osDCx and ossDCx) from the

active SPs and SSPs and feed the next pipeline. The flexibility of the middle

crossbar allows the comparison of two SSPs when the mitigation and duplica-

tion mode are simultaneously activated.

The input and output crossbars are indeed meta-crossbars and multiplexer

structures used to preserve the same type of input and output data channels in

the Execute stage and from and to other stages of the SM.

Some configuration registers are employed to select among the operational

features (detection, mitigation, or both). The local controller configures the

DYRE architecture using decoded commands that came from the DETT and

MITT instructions. Some decoding logic is included to manage the two opera-

tional features when controlling the crossbar structures.

The DETT and MITT instructions were designed to select the channels or tar-

get cores using operands coming from an immediate value or a general-purpose

register. This flexibility in the instruction format allows the dynamic selection of

the target core during the in-field operation. Both instructions use a format com-

posed of six bits stating the instruction type. The other five bits select the input

data channel to be switched for duplication or replacement, and five bits select

the target SSP core to be used.

In order to use DETT and MITT, a programmer only needs to add any or

both instructions, as part of the application, to activate the detection (DETT)

or mitigation (MITT) features of DYRE. In the first case, DETT and MITT can

be added before the original application code, so activating static detection

and mitigation. Advanced use of DYRE requires the application’s adaptation

to include the instructions, so one or several DETT instructions enable differ-

ent comparisons among the cores and spare cores. Once a fault is detected, the

MITT instruction replaces the faulty core with one available spare one. Finally,

there is also the possibility of developing special test routines, including DETT

and MITT, to perform functional testing on the cores before starting an applica-

tion’s execution. This alternative is intended for the Power-on/off stages in the

system.

11635

1 3

DYRE: a DYnamic REconfigurable solution to increase GPGPU’s…

4 Experimental evaluation

Two evaluations are performed on the proposed mechanism. Firstly, the overhead

assessment determines the cost in terms of hardware, power, and performance of the

DYRE architecture. For this purpose, the DYRE architecture is compared against

the original design, DDWC, which is based only on fault-detection [7], and with

BISR, which is based only on fault mitigation [9]. The original GPGPU and the

three fault-tolerance mechanisms were synthesized using the Design Compiler tool

using the 15 nm Nand gate Open-cell library and one clock of 500 MHz. It is worth

noting that the internal memories were not synthesized. Figure 3 reports the results

of the hardware and power overhead for each setup. Finally, a second evaluation

analyses the reliability features of the proposed mechanism.

4.1 Hardware overhead analysis

Two cases were considered for the hardware overhead evaluation: (1) considering

the affected modules, only and (2) considering the whole system. In the first case,

the assessment was performed considering the modules affected by modifications

when implementing DYRE. In the second case, the cost of the entire design is evalu-

ated. All evaluations were performed using the three configurations with 8, 16, and

32 SPs.

According to the results, the hardware cost of implementing the instructions

in the Decode stage is lower than 5% and almost negligible for the Read stage

(≈ 0.3%). Nevertheless, the SSPs’ implementation directly affects the hardware cost

in the Execute module. For a configuration of 8 SPs, the cost of using two SSPs is

lower than 13%, but it increases to 42% when DYRE is configured to use the same

SPs and SSPs. Among the SP configurations, it can be noted that in the Execute

module and the entire design, the hardware overhead follows a proportional inverse

relation. Thus, large SP configurations present low hardware overhead. In Execute,

when adding 25% of SSPs, the cell and area costs are around 10% and 8%, respec-

tively. In the case of adding 50% of SSPs, these costs are about 22% and 17%.

On the other hand, the hardware overhead in the design’s logic is lower than 7%

for all configurations. In the case of two SSPs, the cell and area overhead are lower

than 2%, causing a minimum impact on the design when using DYRE. When the

SM is configured with 32 SPs, the addition of one or two SSPs caused negative

Fig. 3 Percentage of overhead cost of the DYRE architecture on each adapted module and in the entire

GPGPU

11636 J. E. R. Condia et al.

1 3

percentages of hardware overhead. However, these values are due to the optimiza-

tion constraint in the synthesis tool, and the effect is translated as power overhead

for these configurations.

4.2 Power and performance analysis

From Fig. 3, the power consumption in the Decode module indicates a minimum

overhead (< 5%), and it is almost negligible in the Read module for all SP and SSP

configurations. In the Execute module, the addition of one or two SSPs in all SP

configurations causes a moderate average cost of power from 14 to 17%. When

DYRE is configured to include 50% of SSPs for each SP configuration, the power

cost is moderate (around 23.7% and 25.9%). Moreover, the overhead reaches up to

34% when the number of SSPs and SPs is equivalent. Nevertheless, the entire logic

cost remains stable and is lower than 8% in all configurations.

In terms of performance, the DYRE architecture does not introduce more than 1%

of degradation in the critical path for all the evaluated configurations.

Although the synthesis of the model used only the clock constraint, the results in

Fig. 3 show the distribution and the trend to consider when implementing the DYRE

solution. In this way, the addition of two SSPs can be affordable in terms of hard-

ware (< 2%) and power (< 8%) costs.

An overhead comparison of the DYRE structure with DDWC and BISR architec-

tures is reported in Fig. 4. Each strategy was implemented and synthesized for the

three possible SP configurations. In principle, results show that hardware overhead

in DYRE is the lower of the three strategies (< 5%) and decreases when increasing

the number of SPs in the design.

It must be noted that DYRE is a reconfigurable structure, so the power con-

sumption of the solutions directly depends on the number of active features in

the structure. When the comparison mechanism is active, the additional power

cost is mainly caused by the active SSP. In contrast, when the mitigation feature

Fig. 4 Area overhead for the DDWC, BISR and DYRE architectures with respect to the original design

evaluated in the 8, 16 and 32 SP cores configurations with one SSP

11637

1 3

DYRE: a DYnamic REconfigurable solution to increase GPGPU’s…

is employed, the power consumption remains the same as the original design. The

replacement of one SP by one SSP does not add any power consumption load. It

is worth noting that the DYRE structure uses a hot sparing strategy and the added

SSPs remain as cold standby modules. However, during the configuration phase,

a transient increment of power is presented when activating the controller and

managing the switches.

Nevertheless, this transient power cost is almost negligible as most of the con-

sumption is due to the active SPs in the SMs. From synthesis results, the SP cores

consume about 70% of power in the Execute pipeline of the SM and about 55%

for the entire design. Thus, the average increment of using the DYRE structure

and one active SSP for fault detection purposes is equal to 15.75% of additional

power in the Execute pipeline of the SM, see Fig. 3 (DYRE with 8 SPs and 1

SSP).

A way to balance the trade-off between the performance and power consump-

tion needs to evaluate the power consumption in a workload. This consumption

is used as the base for selecting a feasible switching period for the fault detection

feature in the DYRE structure. Thus, the detection capabilities of DYRE remain

active with a controlled cost in terms of performance (by the added instructions),

and the power consumed.

More in detail, the DYRE architecture increases the overall power consumption of

the system from 4.55% (8 SPs) to 8.72% (32 SPs) with respect to the original design.

This behavior can be explained considering that the additional structures (controller,

multiplexers, and the comparator block) remain active, so consuming static power

even when the DYRE architecture is inactive. However, for synthesis purposes, this

cost might be reduced by including power optimization strategies. It should be noted

that power optimization techniques were not used during the experiments.

4.3 Reliability analysis

The reliability of the DYRE architecture is estimated by determining the probability

of correct operation, which depends on the number of available and fault-free SP

and SSP modules. The proper execution of the system is obtained when all thread

operations are performed without failures affecting the execution cores. This prob-

ability of correct operations can be complemented and expressed as the probability

of failure (when some SPs or SSPs fails). The dual-modules feature of the DYRE

architecture influences the reliability calculation and the number of cumulative

faults affecting SPs or SSPs before the overall architecture produces a failure.

During fault-free operations, both groups of SP and SSP modules are identical

and operate in parallel independently among them. Considering this scenario, the

probability of correct operation of the DYRE architecture (R
DYRE

) can be com-

puted by adopting a binomial distribution function using n SPs and m SSPs mod-

ule, respectively. R
DYRE

 is composed of the probability of a fault in an SP(P
core(t))

at a given time t and a K limit related to the active operational features (mitiga-

tion and detection), as reported in Eq. 1.

11638 J. E. R. Condia et al.

1 3

In detail, when the fault mitigation feature is active, a failure in the overall system

occurs when k = (m + 1) execution units (SP or SSPs) are faulty, hence it is not pos-

sible to complete the thread operations without errors. However, if both features are

active, the system produces a failure when k = m execution unit fails since one SSP

is used as a comparator during the in-field fault detection. Finally, in case the fault

detection feature is enabled or both detection and mitigation features are disabled,

there are no available SSPs dedicated to fault mitigation, therefore k = 0 and m = 0.

In order to determine the advantage, in terms of probability of correct operation,

for the SM using the DYRE architecture, we introduce Eq. 2. Equation 2 is com-

posed of two terms. The first term corresponds to the probability of correct opera-

tion of the SM without the DYRE architecture (P
SM(t)). In contrast, the second term

represents the improved probability of correct operation by adopting the DYRE

architecture (△R
DYRE

). This term also includes the probabilities of correct opera-

tion for the switching modules (P
sw(t)) and the controller (P

c(t)).

As it can be noted in Eq. 2, the number of SSPs (m) determines the probability of

correct operation in the GPGPU. The behavior of △R
DYRE

 concerning the prob-

ability of correct operation on SPs (P
core(t)) is plotted in Fig. 5. The graph describes

the relationship between P
core(t) and △R

DYRE
 for multiple values of m. The almost

stable behavior of about 20–40% of positive increment impacts △R
DYRE

 when

m increases and P
core(t) thoroughly decreases. Moreover, Fig. 5 reports the differ-

ent benefits when selecting a limited number of additional SSPs (m). According to

results and considering a probability of correct operation between 0.9 and 1.0, the

(1)R
DYRE

=

k
∑

i=0

(

n + m

i

)

[

P
core(t))

]n+m−i[

1 − P
core(t))

]i

(2)

R
DYRE

=

0
∑

i=0

(

n

i

)

[

P
core(t))

]n−i[

1 − P
core(t))

]i

+

k
∑

i=1

(

n + m

i

)

[

P
core(t))

]n+m−i[

1 − P
core(t))

]i[

P
sw(t))

][

P
c(t))

]

Fig. 5 Reliability benefit in the system for multiple probabilities of correct operation

11639

1 3

DYRE: a DYnamic REconfigurable solution to increase GPGPU’s…

best trade-off is observed when two additional SSPs are used in the DYRE struc-

ture. Thus, the reliability relation shown in Fig. 5 allows the design exploration of a

potential DYRE composition.

Furthermore, the comparison between the reliability behavior of a standard

GPGPU (P
SM(t)) and the one of an architecture adopting the two features of the

DYRE architecture (mitigation only (R1
DYRE

) and detection+mitigation (R2
DYRE

))

is plotted in Fig. 6, using a typical probability function (P
core(t) = e

−�t) in both

cases. This figure shows the reliability when adding two SSPs in the system. As it

can be observed, the reliability of a DYRE GPGPU (R1 and R2) remains higher

than without DYRE, so extending its operative life. A detailed analysis revealed

that in some points the reliability is increased by up to 57%, when the mitigation

and detection features are active, and 72% with the mitigation only feature.

Although the DYRE structure was validated using the FlexGripPlus model

with the G80 architecture, we still claim that the proposed structure can be

adopted into modern architectures of GPGPUs. DYRE targets the SP cores, which

are also present in modern devices. Moreover, the implementation requires zero

changes to the memory hierarchy and scheduling mechanisms. Finally, minimum

effort is required to implement the custom control instructions. Furthermore,

modern trends of GPGPU architectures include more SPs per SM, so increas-

ing the volume of transistors in the device as the area and power consumption.

However, as reported in results from Fig. 4, The DYRE structure requires a lim-

ited percentage of additional area, which follows a proportionally inverse relation

with the number of SPs to harden. Thus, DYRE provides reliability benefits, and

its cost drops when the number of SPs increases.

In contrast, DYRE may require special adaptations procedures (splitting or

replication of structures) when the target hardening scope includes modules with

different features, such as floating point units (FPUs), integer units (INT), and

special function units (SFUs) or with different precision formats (i.e., 32 or 64

bits).

Finally, the DYRE structure employs active redundancy and hot sparing strate-

gies to increase the fault-tolerance in the SP cores of GPGPU devices. A direct

comparison with classical passive fault-tolerance strategies, such as DWC and

TMR, can show that DYRE is less expensive in terms of hardware overhead and

Fig. 6 Reliability comparison of a standard GPGPU and other using the two features of the DYRE archi-

tecture with two SSPs

11640 J. E. R. Condia et al.

1 3

power consumption. Moreover, DYRE can provide the main benefits of fault

detection and fault mitigation simultaneously when activated.

5 Conclusions

We introduced an in-field dynamic architecture (DYRE) to detect and mitigate per-

manent faults affecting the execution units in GPGPUs. DYRE provides a solution

that can be employed during the operative life of a GPGPU and extend the reliability

capabilities by up to 57% for most configurations of the execution units of these

devices. The proposed solution (targeting execution units, only) can be easily inte-

grated by others targeting the remaining modules of a GPGPU.

The proposed strategy was implemented in a representative GPGPU, and the

hardware and power overhead were measured. The results let us affirm that add-

ing the proposed mechanism into a GPGPU design requires a minimum to moder-

ate cost that directly depends on the number of additional cores included to support

fault detection and mitigation.

As future works, we plan to extend the proposed mechanism, so exploring reli-

able architectures for in-field detection and mitigation of faults in other modules

of GPGPU devices, including special function units (SFUs), controllers, and other

unprotected structures. Moreover, the proposed architecture can also be adapted into

other parallel architectures, so additional analyzes and evaluations can be performed

as future activities.

Acknowledgements The European Commission has partially supported this work through the Horizon

2020 RESCUE-ETN Project under Grant 722325.

Funding Open access funding provided by Politecnico di Torino within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-

mons licence, and indicate if changes were made. The images or other third party material in this article

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is

not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission

directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen

ses/ by/4. 0/.

References

 1. Shi W, Alawieh MB, Li X, Yu H (2017) Algorithm and hardware implementation for visual percep-

tion system in autonomous vehicle: a survey. Integration 59:148–156. https:// doi. org/ 10. 1016/j. vlsi.

2017. 07. 007

 2. Gomez LB, Cappello F, Carro L, DeBardeleben N, Fang B, Gurumurthi S, Pattabiraman K, Rech P,

Sonza Reorda M (2014) Gpgpus: how to combine high computational power with high reliability.

In: 2014 Design, Automation Test in Europe Conference Exhibition (DATE), pp 1–9. https:// doi.

org/ 10. 7873/ DATE. 2014. 354

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.vlsi.2017.07.007
https://doi.org/10.1016/j.vlsi.2017.07.007
https://doi.org/10.7873/DATE.2014.354
https://doi.org/10.7873/DATE.2014.354

11641

1 3

DYRE: a DYnamic REconfigurable solution to increase GPGPU’s…

 3. Hamdioui S, Gizopoulos D, Guido G, Nicolaidis M, Grasset A, Bonnot P (2013) Reliability chal-

lenges of real-time systems in forthcoming technology nodes. In: 2013 Design, Automation Test in

Europe Conference Exhibition (DATE), pp 129–134. https:// doi. org/ 10. 7873/ DATE. 2013. 040

 4. Oliveira D, Blanchard S, DeBardeleben N, dos Santos F, Dávila GP, Navaux P, Favalli A, Schappert

O, Wender S, Cazzaniga C, Frost C, Rech P (2021) Thermal neutrons: a possible threat for super-

computer reliability. J Supercomput 77:1612–1634. https:// doi. org/ 10. 1007/ s11227- 020- 03324-9

 5. Tiwari D, Gupta S, Rogers J, Maxwell D, Rech P, Vazhkudai S, Oliveira D, Londo D, DeBardel-

eben N, Navaux P, Carro L, Bland A (2015) Understanding GPU errors on large-scale HPC systems

and the implications for system design and operation. In: 2015 IEEE 21st International Symposium

on High Performance Computer Architecture (HPCA), pp 331–342. https:// doi. org/ 10. 1109/ HPCA.

2015. 70560 44

 6. Gizopoulos D, Psarakis M, Adve SV, Ramachandran P, Hari SKS, Sorin D, Meixner A, Biswas A,

Vera X (2011) Architectures for online error detection and recovery in multicore processors. In:

2011 Design, Automation Test in Europe Conference Exhibition (DATE), pp 1–6. https:// doi. org/ 10.

1109/ DATE. 2011. 57630 96

 7. Goncalves MM, Lamb IP, Rech P, Brum RM, Azambuja JR (2020) Improving selective fault toler-

ance in GPU register files by relaxing application accuracy. IEEE Trans Nucl Sci 67(7):1573–1580.

https:// doi. org/ 10. 1109/ TNS. 2020. 29821 62

 8. Rech P, Nazar GL, Frost C, Carro L (2014) GPUs reliability dependence on degree of parallelism.

IEEE Trans Nucl Sci 61(4):1755–1762. https:// doi. org/ 10. 1109/ TNS. 2014. 23038 55

 9. Laosooksathit S, Nassar R, Leangsuksun C, Paun M (2014) Reliability-aware performance model

for optimal GPU-enabled cluster environment. J Supercomput 68(3):1630–1651. https:// doi. org/ 10.

1007/ s11227- 014- 1128-7

 10. Sartor AL, Lorenzon AF, Carro L, Kastensmidt F, Wong S, Beck ACS (2017) Exploiting idle hard-

ware to provide low overhead fault tolerance for VLIW processors. J Emerg Technol Comput Syst.

https:// doi. org/ 10. 1145/ 30019 35

 11. Dos Santos FF, Brandalero M, Sullivan M, Rech Junior RL, Martins Basso P, Hubner PM, Carro L,

Rech P (2021) Reduced precision DWC: an efficient hardening strategy for mixed-precision archi-

tectures. IEEE Trans Comput. https:// doi. org/ 10. 1109/ TC. 2021. 30588 72

 12. Lunardi C, Previlon F, Kaeli D, Rech P (2018) On the efficacy of ECC and the benefits of FinFET

transistor layout for GPU reliability. IEEE Trans Nucl Sci 65(8):1843–1850. https:// doi. org/ 10. 1109/

TNS. 2018. 28237 86

 13. de Oliveira B, Rodrigues GS, Kastensmidt FL, Added N, Macchione ELA, Aguiar VAP, Medina

NH, Silveira MAG (2018) Lockstep dual-core arm a9: implementation and resilience analysis under

heavy ion-induced soft errors. IEEE Trans Nucl Sci 65(8):1783–1790. https:// doi. org/ 10. 1109/ TNS.

2018. 28526 06

 14. Constantinides K, Plaza S, Blome J, Zhang B, Bertacco V, Mahlke S, Austin T, Orshansky M

(2006) Bulletproof: a defect-tolerant CMP switch architecture. In: The Twelfth International Sym-

posium on High-Performance Computer Architecture (HPCA), 2006, pp 5–16. https:// doi. org/ 10.

1109/ HPCA. 2006. 15981 08

 15. Sridharan V, Gurumurthi S (2015) Hardware based redundant multi-threading inside a GPU for

improved reliability. US Patent No. 9,026,847

 16. Baji T (2016) Nvidia AI driving platform and AI supercomputer Xavier. https:// blogs. nvidia. com/

blog/ 2016/ 09/ 28/ xavier/. Accessed Feb 2021

 17. Datla Jagannadha PK, Yilmaz M, Sonawane M, Chadalavada S, Sarangi S, Bhaskaran B, Bajpai S,

Reddy VA, Pandey J, Jiang S (2019) Special session: in-system-test (IST) architecture for Nvidia

drive-AGX platforms. In: 2019 IEEE 37th VLSI Test Symposium (VTS), pp 1–8. https:// doi. org/ 10.

1109/ VTS. 2019. 87586 36

 18. Alcaide Portet S, Kosmidis L, Hernandez C, Abella J (2020) Software-only triple diverse redun-

dancy on GPUs for autonomous driving platforms. In: 2020 50th Annual IEEE-IFIP International

Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S), pp 82–88.

https:// doi. org/ 10. 1109/ DSN- S50200. 2020. 00045

 19. Luick DA (2008) Multiple parallel pipeline processor having self-repairing capability. US Patent

No. 7,454,654 B2

 20. Chattopadhyay A (2013) Ingredients of adaptability: a survey of reconfigurable processors. VLSI

Des 2013:1–18. https:// doi. org/ 10. 1155/ 2013/ 683615

https://doi.org/10.7873/DATE.2013.040
https://doi.org/10.1007/s11227-020-03324-9
https://doi.org/10.1109/HPCA.2015.7056044
https://doi.org/10.1109/HPCA.2015.7056044
https://doi.org/10.1109/DATE.2011.5763096
https://doi.org/10.1109/DATE.2011.5763096
https://doi.org/10.1109/TNS.2020.2982162
https://doi.org/10.1109/TNS.2014.2303855
https://doi.org/10.1007/s11227-014-1128-7
https://doi.org/10.1007/s11227-014-1128-7
https://doi.org/10.1145/3001935
https://doi.org/10.1109/TC.2021.3058872
https://doi.org/10.1109/TNS.2018.2823786
https://doi.org/10.1109/TNS.2018.2823786
https://doi.org/10.1109/TNS.2018.2852606
https://doi.org/10.1109/TNS.2018.2852606
https://doi.org/10.1109/HPCA.2006.1598108
https://doi.org/10.1109/HPCA.2006.1598108
https://blogs.nvidia.com/blog/2016/09/28/xavier/
https://blogs.nvidia.com/blog/2016/09/28/xavier/
https://doi.org/10.1109/VTS.2019.8758636
https://doi.org/10.1109/VTS.2019.8758636
https://doi.org/10.1109/DSN-S50200.2020.00045
https://doi.org/10.1155/2013/683615

11642 J. E. R. Condia et al.

1 3

 21. Ilyoung Kim, Zorian Y, Komoriya G, Pham H, Higgins FP, Lewandowski JL (1998) Built in self

repair for embedded high density SRAM. In: Proceedings International Test Conference 1998 (IEEE

Cat. No.98CH36270), pp 1112–1119. https:// doi. org/ 10. 1109/ TEST. 1998. 743312

 22. Koal T, Vierhaus HT (2010) A software-based self-test and hardware reconfiguration solution for

VLIW processors. In: 13th IEEE Symposium on Design and Diagnostics of Electronic Circuits and

Systems (DDECS), pp 40–43. https:// doi. org/ 10. 1109/ DDECS. 2010. 54918 21

 23. Goncalves MM, Condia JER, Sonza Reorda M, Sterpone L, Azambuja J (2020) Improving GPU

register file reliability with a comprehensive ISA extension. Microelectron Reliab 114:113768.

https:// doi. org/ 10. 1016/j. micro rel. 2020. 113768 (31st European Symposium on Reliability of

Electron Devices, Failure Physics and Analysis, ESREF 2020)

 24. Lindoso A, Entrena L, Garca-Valderas M, Parra L (2017) A hybrid fault-tolerant LEON3 soft core

processor implemented in low-end SRAM FPGA. IEEE Trans Nucl Sci 64(1):374–381. https:// doi.

org/ 10. 1109/ TNS. 2016. 26365 74

 25. Lyu MR et al (1996) Handbook of software reliability engineering, vol 222. IEEE Computer Society

Press, Los Alamitos, CA

 26. Wilson C, Sabogal S, George A, Gordon-Ross A (2017) Hybrid, adaptive, and reconfigurable fault

tolerance. In: 2017 IEEE Aerospace Conference, pp 1–11. https:// doi. org/ 10. 1109/ AERO. 2017.

79438 67

 27. Sorensen SD, Sogaard S (2012) Failure detection and mitigation in logic circuits. US Patent No.

8,117,512B2

 28. Condia JER, Narducci P, Sonza Reorda M, Sterpone L (2020) A dynamic hardware redundancy

mechanism for the in-field fault detection in cores of GPGPUs. In: 2020 23rd International Sympo-

sium on Design and Diagnostics of Electronic Circuits Systems (DDECS), pp 1–6. https:// doi. org/

10. 1109/ DDECS 50862. 2020. 90956 65

 29. Nickolls JR (2005) Defect tolerant redundancy. US Patent No. 6,879,207B1

 30. Condia JER, Narducci P, Sonza Reorda M, Sterpone L (2020) A dynamic reconfiguration mecha-

nism to increase the reliability of GPGPUs. In: 2020 IEEE 38th VLSI Test Symposium (VTS), pp

1–6. https:// doi. org/ 10. 1109/ VTS48 691. 2020. 91075 72

 31. Mukherjee S (2011) Architecture design for soft errors. Morgan Kaufmann, Burlington

 32. Condia JER, Du B, Sonza Reorda M, Sterpone L (2020) Flexgripplus: an improved GPGPU model

to support reliability analysis. Microelectron Reliab 109:113660. https:// doi. org/ 10. 1016/j. micro rel.

2020. 113660

 33. Andryc K, Merchant M, Tessier R (2013) Flexgrip: a soft GPGPU for FPGAS. In: 2013 Interna-

tional Conference on Field-Programmable Technology (FPT), pp 230–237. https:// doi. org/ 10. 1109/

FPT. 2013. 67183 58

 34. Di Carlo S, Gambardella G, Indaco M, Martella I, Prinetto P, Rolfo D, Trotta P (2013) A software-

based self test of CUDA fermi GPUs. In: 2013 18th IEEE European Test Symposium (ETS), pp

1–6. https:// doi. org/ 10. 1109/ ETS. 2013. 65693 53

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1109/TEST.1998.743312
https://doi.org/10.1109/DDECS.2010.5491821
https://doi.org/10.1016/j.microrel.2020.113768
https://doi.org/10.1109/TNS.2016.2636574
https://doi.org/10.1109/TNS.2016.2636574
https://doi.org/10.1109/AERO.2017.7943867
https://doi.org/10.1109/AERO.2017.7943867
https://doi.org/10.1109/DDECS50862.2020.9095665
https://doi.org/10.1109/DDECS50862.2020.9095665
https://doi.org/10.1109/VTS48691.2020.9107572
https://doi.org/10.1016/j.microrel.2020.113660
https://doi.org/10.1016/j.microrel.2020.113660
https://doi.org/10.1109/FPT.2013.6718358
https://doi.org/10.1109/FPT.2013.6718358
https://doi.org/10.1109/ETS.2013.6569353

	DYRE: a DYnamic REconfigurable solution to increase GPGPU’s reliability
	Abstract
	1 Introduction
	2 Background
	2.1 Classical fault-tolerance mechanisms
	2.1.1 Duplication with comparison
	2.1.2 Built-in self-repair

	2.2 Fundamentals of GPGPU organization
	2.3 FlexGripPlus

	3 Proposed solution
	3.1 Fault detection
	3.2 Fault mitigation
	3.3 Suggested methods of use
	3.4 Implementation

	4 Experimental evaluation
	4.1 Hardware overhead analysis
	4.2 Power and performance analysis
	4.3 Reliability analysis

	5 Conclusions
	Acknowledgements
	References

