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Abstract: The gut–brain axis is a bidirectional communication network connecting the gastrointestinal
tract and central nervous system. The axis keeps track of gastrointestinal activities and integrates
them to connect gut health to higher cognitive parts of the brain. Disruption in this connection
may facilitate various neurological and gastrointestinal problems. Neurodegenerative diseases are
characterized by the progressive dysfunction of specific populations of neurons, determining clinical
presentation. Misfolded protein aggregates that cause cellular toxicity and that aid in the collapse
of cellular proteostasis are a defining characteristic of neurodegenerative proteinopathies. These
disorders are not only caused by changes in the neural compartment but also due to other factors
of non-neural origin. Mounting data reveal that the majority of gastrointestinal (GI) physiologies
and mechanics are governed by the central nervous system (CNS). Furthermore, the gut microbiota
plays a critical role in the regulation and physiological function of the brain, although the mechanism
involved has not yet been fully interpreted. One of the emerging explanations of the start and
progression of many neurodegenerative illnesses is dysbiosis of the gut microbial makeup. The
present understanding of the literature surrounding the relationship between intestinal dysbiosis
and the emergence of certain neurological diseases, such as Alzheimer’s disease, Parkinson’s disease,
Huntington’s disease, and multiple sclerosis, is the main emphasis of this review. The potential
entry pathway of the pathogen-associated secretions and toxins into the CNS compartment has
been explored in this article at the outset of neuropathology. We have also included the possible
mechanism of undelaying the synergistic effect of infections, their metabolites, and other interactions
based on the current understanding.

Keywords: gut–brain axis; neurodegenerative disease; gut microbiota; gut dysbiosis; vagus nerve; neu-
roinflammation

1. Introduction

Microbial diversity colonizes nearly every nook and corner of the human body accessi-
ble to outer surroundings, including the skin as well as the gastrointestinal, genitourinary,
and respiratory tracts. The number of microbial entities in the human body is believed
to be ~1013–1014, which corresponds to a 1:1 ratio of human and microbial cells [1]. This
consortium of microbial communities resides in a specific biological niche, collectively
known as the “microbiota” [2]. The human microbiota includes a variety of fungi, viruses,
archaebacteria, protozoa, and, predominantly, bacteria [3]. Although some are toxic, most
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microbial diversity is innocuous or even helpful to humans. These microorganisms residing
inside/upon the human body play a remarkable role in maintaining the homeostasis of
human health [4]. The human microbiota contributes significantly to developing the im-
mune system and to building a physical barrier against pathogenic organisms [5]. However,
microbial homeostasis perturbations also correspond to various diseased states, for exam-
ple, inflammatory bowel disease (IBD) [6], Crohn’s disease (CD) [7], Alzheimer’s disease
(AD) [8] and Parkinson’s disease (PD) [9], non-alcoholic fatty liver disease [10], atopic
eczema allergies [11], gastric cancer [12], etc. Therefore, it is of the utmost importance to
investigate the function of the microbiota in normal physical and pathological conditions
to aid the development of therapeutics against them.

Furthermore, the discovery of microbial diversity in different anatomical locations
has led to the detailed study and characterization of the microorganisms inhabiting varied
microenvironments in the human body [13]. The Human Microbiome Project (HMP) is one
such initiative taken up by the Common Fund-NIH to explore the job of gut microbiota in
human health and diseases [14]. The term “microbiome” refers to a collection of microbial
populations that inhabit a specific environment, including their ecosystem, collective
genome, and the surrounding environmental conditions [15]. The HMP has analyzed the
microbial communities inhabiting various human body niches, such as the skin, oral cavity,
gastrointestinal tract, and urogenital tract, and their role in healthy and diseased states [16].

The gut microbiota aids in a wide range of functions in human health; due to its
prominent role in the neuroendocrine functions [17], metabolism [18], and immunity of
an individual [19], the gastrointestinal microbiome has piqued the scientific community’s
curiosity in recent years [20]. The gastrointestinal tract (GIT) is one of the most heavily
colonized organs. The human gut has the largest surface area and is rich in nutrients that
bacteria can use as a substrate, making it an ideal location for colonization [21]. Over 70%
of all microorganisms in the human body are thought to reside in the colon.

The role of the gut microbiota in regulating various neuroendocrine functions has
been widely studied [22]. However, there is increasing agreement among human and
animal studies that the disruption of the gut microbiota impacts brain development, neu-
rological outcomes, and disorders, resulting in long-term behavioral changes [23]. Hence,
gut dysbiosis is reported to be associated with several neurological disorders, including
Alzheimer’s [24], Parkinson’s [25], Huntington’s disease (HD) [26], and multiple sclerosis
(MS) [27].

2. Composition of Gut Microbiota and Its Associated Multifarious Function in Host Heath

The human gut microbiota weighs approximately 2.1 kg and contains about 50–100 times
more information than the human genome, making it a distinct organ of the human
body [28]. These bacteria predominantly live on the human body as symbionts, assisting
the host in maintaining homeostasis in steady-state conditions. The gut microbiota makes
significant contributions to (i) gut permeability; (ii) preventing pathogen colonization and
invasion; (iii) facilitating nutrient metabolism; (iv) assisting in the synthesis of vitamins such
as vitamin K, vitamin B complexes, and folate; (v) expediting essential intestinal epithelial
roles such as absorption and secretion [29]; and (vi) regulating innate and acquired immune
responses that locally (GI mucosa level) and systemically influence distant organs [30].

Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Verrucomicrobia, and Fusobacteria
comprise the predominant gut microbial diversity [31]. Ninety percent of the microbial
population comprises Firmicutes and Bacteroidetes. Bacteroidetes constitute prominent genera
such as Bacteroides, Parabacteroides, and Prevotella [32]. Firmicutes, the other dominant group
of bacteria, includes several genera, such as Clostridium, Lactobacillus, Streptococcus, Entero-
coccus, Eubacterium, and Ruminococcus, among others [33]. Bifidobacterium and Collinsela are
two significant genera of the phylum Actinobacteria, accounting for less than 10% of the total
gut microbiota. Helicobacter and Escherichia are the dominant genera of Proteobacteria (less
than 2%). Fusobacterium and Akkermansia dominate the genera of the phyla Fusobacteria and
Verrucomicrobia, respectively, and constitute less than 3% of total gut microbial diversity [34].
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2.1. Metabolic Function—Nutrient and Other Dietary Component Metabolism

The gut microbiota has been linked to various GIT activities, notably nutritional needs,
energy storage, and diverse physiological pathways [35]. Dietary carbohydrates impart
a significant portion of the microbiota’s nutrition. Short-chain fatty acids (SCFAs) are
produced in the colon by bacteria such as Bacteroides, Bifidobacterium, Roseburia, Faecalibac-
terium, and Enterobacteria [36]. SCFAs such as butyrate, propionate, and acetate provide
tremendous energy to hosts [37]. Bacteroides species are the most predominant organisms
engaged in carbohydrate metabolism, as they encode for specific classes of enzymes, such
as glycosyltransferases, glycoside hydrolases, and polysaccharide lyases, among others
(Figure 1). For example, Bacteroides thetaiotaomicron has a genome that codes for over
260 hydrolases, significantly more than the human genome [38].

Bacteroides have been demonstrated to synthesize conjugated linoleic acid, a fatty
acid possessing anti-diabetic, hypolipidemic, anti-obesogenic, immunomodulatory, and
anti-atherogenic properties. A study published by the Velagapudi group showed that gut
microbiota performed a crucial role in the regulation of lipogenesis when compared to
conventionally raised mice (CONV-R) and germ-free mice (which lack a whole microbial
community) [39]. The study reported higher levels of microbial-derived metabolites (citric
acid, propionic acid, and fumaric acid) and lowered triglycerides and cholesterol levels
in the serum metabolome of CONV-R mice compared to the metabolome of germ-free
mice, thus demonstrating the effect of gut microbial diversity on host energy and lipid
metabolism [40] (Figure 1). Furthermore, the gut microbiota has been associated with
a reduced risk of renal oxalate stone formation. Because the production of oxalate in
the intestine is a byproduct of bacterial metabolism and carbohydrate fermentation, it is
quelled by organisms such as Lactobacillus species, Bifidobacterium species, and Oxalobacter
formigenes [41].

The gut microbiota has been considered a cornerstone of maintaining the health
status of its human host because it not only facilitates the harvesting of nutrients and
energy from ingested food, but also produces numerous metabolites that can regulate host
metabolism [42]. One such class of metabolites is the bile acids. Primary bile acids (BAs),
such as cholic acid (CA) and chenodeoxycholic acid (CDCA), which are by-products of
cholesterol metabolism and clearance, are synthesized by the liver [43] and are subsequently
modified by the gut microbiota. The gut microbiota transform these compounds into an
assortment of forms that significantly expand their biological value and diversity [44].
Primary bile acids have been reported to be modified by the gut microbiota in four distinct
ways, including via the deconjugation of taurine or glycine amino acids as well as via the
dehydrogenation, dihydroxylation, and epimerization of the cholesterol core [45]. A novel
class of “microbially conjugated bile acids”, which have the ability to conjugate amino
acids to bile acid, is synthesized by our gut bacteria in addition to the previously reported
alterations [46].
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Figure 1. Summary of the gut microbiota-associated functioning in the human body. The gut
microbiota leads to enhanced lipid clearance by repressing angiopoietin-like protein 4 (Angptl4), an
inhibitor of LPL, due to which energy metabolites are elevated in the serum, which is demonstrated
by an increase in associated genes in the liver transcriptome. Triglyceride levels in the serum are
reduced while they rise in adipose tissue and in the liver. Dietary carbohydrates are metabolized into
SCFAs, a rich energy source for the host by colonic bacteria by employing a special class of enzyme,
hydrolases. Furthermore, these SCFAs, especially butyrate, can provoke the GPCR 43 expressed by
intestinal epithelial cells and regulate the development, differentiation, and maturation of Treg cells
via epigenetic regulation, resulting in the inhibition of Th17 cell development and the reduction of
colonic inflammation. Selected gut microbiota can also act as vitamin suppliers to the host, as they
synthesize vitamin B complexes and vitamin K and supplies them to the host.

2.2. Vitamins Supplier—Bacteria as a Source of Vitamins for Their Hosts

Among numerous associated functions, one of the beneficial activities of microorgan-
isms is the production of multiple vitamins [47]. Another critical metabolic activity of
the gut microbiota is the biosynthesis of vitamin K and various components of vitamin B
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(Figure 1). Lactobacilli appear to be unable to synthesize folate de novo, but some Bifidobac-
terial species belonging to the phylum Actinobacteria can synthesize folate [48]. Firmicutes
and Proteobacteria species, Bacillus subtilis, and Escherichia coli can produce riboflavin [49].
Vitamin B12 is commercially produced utilizing Propionibacterium freudenreichii, a member
of the phylum Actinobacteria [50]. Another Firmicutes phylum member, Lactobacillus reuteri,
is thought to possess the potential for vitamin B12 production [51].

2.3. Immunomodulatory Role of Gut Microbiota

The gut microbiota helps to influence both the innate and adaptive immune systems
in the gut [52]. The effector and regulatory T cells (Tregs), gut-associated lymphoid tissues
(GALT), group 3 innate lymphoid cells, IgA-producing B (plasma) cells, dendritic cells in
the lamina propria, and resident macrophages are immune response constituents and cell
types that actively engage in the immunoregulatory process [53]. The gut microbiota is
also necessary for Foxp3+ Treg cell development, differentiation, and function. However,
the mechanism by which this task is facilitated is yet to be explored. For example, in
specific Clostridium clusters, Treg induction may be independent of pattern recognition
receptors (PRRs) or based on MyD88-dependent mechanisms [54], while in the case of
Bacillus fragilis, the process appears to be mediated by Toll-like receptor-2 (TLR-2) signal-
ing by polysaccharide A [55]. Furthermore, SCFAs derived from microbial metabolism,
particularly butyrate, have indeed been coupled with Treg development and function [56].
SCFAs have been visualized to stimulate G-protein-coupled receptors by IECs and have
been shown to govern Tregs via epigenetic regulation (enhanced acetylation) of the Foxp3
locus [57] (Figure 1).

3. Host Factors Controlling Gut Microbiota

The host selects its gut microbiota by generating various molecular signals and effector
molecules that regulate the framework of microbiota-colonized surfaces and thus influence
their composition [58]. Numerous associated host factors regulate the constitution of gut
microbiota, and some of these factors are mentioned below.

3.1. Delivery Pattern

The mode of delivery is regarded as an essential influential factor in developing the
gut microbiota [59]. The composition and architecture of the gut microbial community vary
significantly among infants born via cesarean section and those born vaginally [60]. The
maternal/vaginal microbiota is denied to Caesarean-born babies, and the first exposure is
marked by the absence of strict anaerobes and facultative anaerobes such as Clostridium
species [61]. After birth, the delivery method influences gut microbial development in
the early stages of life. Prevotella and Lactobacillus from the mother’s vaginal microbial
community predominate the foremost gut microbiota of newborns delivered vaginally [62].
On the other hand, those born via cesarean section receive their gut microbiota from
their skin, which tends to result in the dominance of the following microbial populations:
Streptococcus, Corynebacterium, and Propionibacterium. [63].

3.2. Infant Feeding

Infant feeding is another crucial factor that regulates gut microbial assembly, as the
mother’s milk is rich in different prebiotic microorganisms that shape the infant’s gut
microbiota [64]. More than 700 species of bacteria are present in a planktonic state in milk
that maintains a balance with the immune cells present in milk [65]. Though the microbial
diversity varies with lactation time [66], Streptococcus, Staphylococcus, Pseudomonas, and
Acinetobacter are the predominant species found in breast milk. The average bacterial load is
~106 microorganisms/mL, which increases by about 100 times as the infant receives 8 × 108

bacterial cells with each 800 mL of breast milk consumed [67]. Colostrum samples taken
at 1 and 6 months show a different diversity of bacteria, including Prevotella, Leptotrichia,
and Veillonella, along with other microorganisms [68]. During breastfeeding, the skin
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interface allows some bacteria to become mixed with healthy milk microbiota [69]. The
milk microbiome plays a vital role in infant growth and development. Obese mothers have
lower diversity and a distinct microbiota composition in their breast milk compared to
normal-weight mothers [70]. Immune cells that are interchanged through feeding, such as
IgA, are essential for the inert immunity of infants [71].

3.3. Medication: Antibiotics

Antibiotics are a two-edged sword, as their inappropriate utilization kills both morbid
and beneficial microbial flora indiscriminately, permitting dysbacteriosis and the growth
of undesired microbes [72]. Antibiotic therapy diminishes the overall diversity of the
intestinal flora, including the deprivation of some essential taxa, resulting in metabolic
shifts, increasing the susceptibility to colonization, and the evolution of antibiotic-resistant
bacteria [73]. In adults, a combination of gentamicin, meropenem, and vancomycin in-
creased the popularity of Enterobacteriaceae and certain other pathobionts while decreasing
the prevalence of Bifidobacterium and butyrate-producing organisms [74]. The inappropriate
intake of antibiotics disrupts the crucial mechanism of the intestinal flora’s “competitive ex-
clusion strategy,” [75] which exerts nutrient competition, niche exclusion, and competitive
metabolic interaction to hamper the growth of pathogenic microbial diversity [76].

3.4. Genetics: mi-RNAs

Small non-coding RNA and mi-RNAs are another essential host factor that might be
used to appraise the intestinal microbiota’s composition, shape, and structure [77]. Micro
RNAs are single-stranded, short-length (approximately 18–23 nucleotides) endogenous
RNA molecules that are synthesized within the nucleus and that are carried out to the
cytoplasm afterward to regulate gene expression (gene silencing) [78]. As specific mi-RNA
has a high degree of sequence complementarity with the target mRNA, mi-RNA hybridizes
with the 3′ untranslated region of the target gene, facilitating mRNA degradation or
impeding translation [79].

Liu et al. demonstrated that inter-species gene regulation via fecal microRNAs
(miRNA) facilitates host control of the gut microbiota [80]. Fecal miRNA is predomi-
nantly synthesized by Hopx-positive cells and intestinal epithelial cells, as these two cells
are found to secrete mi-RNA-containing exosomes. A direct correlation between mi-RNA-
deficient IEC and associated gut dysbacteriosis has been studied in detail, and how fecal
transplantation can rehabilitate intestinal flora has also been addressed as well, suggesting
the potential role of mi-RNA in the regulation of the gut microbiota. Mi-RNAs can enter gut
microbial cells; target bacterial genes precisely; and govern the growth, microbial gene tran-
scripts, and prevalence of a particular gut microbiota [81]. Evidence that miRNAs may play
a role in gut bacterial development comes from the improved in vitro growth of the bac-
teria Fusobacterium nucleatum and E. coli via hsa-miRNA-515-5P and hsa-miRNA-1226-5p,
respectively. This was accomplished by cultivating the strains using synthetic miRNAs [82].
The administration of fecal miRNAs has effects that shape the gut microbiota [83].

4. Microbiota–Gut Brain Interconnection

The gastrointestinal tract and brain are interconnected via the paracrine effect of the
signaling molecules secreted in the gut and vice versa. This reciprocal transmission of
messages between the gut and brain, thereby performing functional regulation, is termed
the “Gut–brain axis” (GBA) [84]. The GBA allows information to be exchanged back and
forth between the digestive system and the central nervous system [85]. Interestingly, the
gut microbiota and its secretions may modulate brain physiology by governing numerous
processes such as development, aging, maturation, homeostasis, and various brain func-
tions [86]. Brain behavior is directly impacted by microbial secretions [87]. According to
the research on germ-free (GF) mice, the gut microbiota synthesizes many metabolites in
the bloodstream; however, most of them are then modified by the host. These substances
have a significant impact on mammalian behavior and neuroendocrine responses [88].
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The microbes can influence neural activity by modulating various cerebral biochemical
signaling pathways, potentially triggering cognitive impairments [89], thus suggesting
their significant impact on brain functioning and physiology. Recent studies have focused
on the intellectual effect of gut-on-brain and vice versa. The gut microbial community
is vital for proper brain growth and mature cognitive function. The microbiota has been
known to regulate critical neuroplasticity-related mechanisms in the adult brain, such as
neurogenesis [90] and microglial activation [91]. The brain, on either hand, can alter the
composition and different activities of the gut microbiota, such as its role in food absorp-
tion and metabolism [92]. Through the autonomic nervous system, the brain appears to
significantly influence the structure, composition, and activity of the microbial community
in the intestine. It can potentially influence regional gut motility, microbial gene expression
via luminal hormone secretion, intestinal transit and secretion, and gut permeability [93].
Previous studies from our research group have demonstrated the pivotal role of pathogenic
co-infection in making a conducive environment in the succession of multifactorial dis-
eases such as cancer and parasitic diseases such as malaria [94]. Our investigations have
corroborated previous reports that exposure to a bacterium (H. pylori) is associated with
EBV reactivation, ultimately contributing to the aggravation of cancer pathology. When co-
cultured with EBV, the I10 strain of H. pylori resulted in the elevated expression of various
bacterium-associated pathogenic genes such as cagA and babA [95]. At the same time, EBV-
associated lytic (gp350 and bzlf1) and latent (ebna1, ebna3c, lmp1, lmp2a, and lmp2b) genes
were also found to be elevated in co-infected cells compared to single pathogen infection.
This study provides evidence that co-infection creates a favorable microenvironment that
promotes the growth of both pathogens, synergistically contributing to exacerbating disease
severity [96]. Similarly, one pathogen may promote the production of another pathogenic
microbe’s morbific gene, resulting in disease pathology aggression. Therefore, we took
up the task of summarizing the consequences of gut microbial diversity on the brain and
vice versa, focusing on pathogens such as Helicobacter pylori and Epstein–Barr virus. The
microbiota–gut–brain axis is an arising and evolving concept for studying the influence of
two distantly separated biological systems on one another [97]. This new discipline focuses
on the induction, etiology, and progression of various metabolic and mental dysfunctions.
Hence, understanding the microbial diversity of the gut–brain axis could also be utilized to
develop novel therapeutic strategies to overcome neurological disorders. Therefore, in the
current article, we mainly focused on reviewing the underexplored synergetic effects of
pathogens and their interactions on the onset and progression of numerous pathologies,
including cancers and neurological disorders. Additionally, the present article has consid-
ered the outcome of various gut microbial secretions in the advancement and modulation
of AD, MS, PD, and HD.

5. Routeways for the Bidirectional Communication between the Gut and Brain

The GBA allows multimodal interactions between cerebral and intestinal functions, in-
cluding the neuronal, immune signaling, and microbial-derived secretary signaling molecules,
via the production of various neurotransmitters (GABA, serotonin, and dopamine) from
the gut microbiota [98] (Figure 2). The gut microbiota produces neuroactive metabolites
such as neurotransmitters or their precursors, which might alter the associated neuro-
transmitters’ concentrations [99]. This demonstrates that the neurotransmitter synthesis
mechanism in the gut may impact the brain’s neuronal activity and cognitive capabilities,
either directly or indirectly [100]. GBA’s vast communication system comprises a cascading
program that integrates the CNS (brain and spinal cord), enteric nervous system (ENS),
autonomic nervous system (ANS), and hypothalamic–pituitary–adrenal (HPA) axis [101].
The parasympathetic and sympathetic limbs of the ANS drive both afferent and efferent
signals originating in the lumen and CNS, respectively [102]. The signals released from the
lumen are sent to the CNS through the spinal, enteric, and vagal pathways, while signals
from the CNS are directed to the intestinal wall [103].
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Figure 2. Illustrative diagram depicting the interconnection between gut and brain. The proposed
bidirectional communication is firmly affected by various pathways, including the autonomic nervous
system (ANS), hypothalamic–pituitary–adrenal (HPA), immune pathways, enteric nervous system
(ENS), endocrine pathways, and neural pathways. Gut microbiota can produce microbial metabolites
that activate the neuroenteric plexus, stimulate neuropeptide production in the brain, and increase
gut–blood barrier and blood–brain barrier (BBB) permeability. The brain releases molecules that
stimulate the function of the gut and neuroendocrine plexus.

5.1. Neuronal Pathway: Activation of the Vagus Nerve

The human gut has an enormous network of nerves intertwined with it, referred to
as the ENS [104]. The vagus nerve, which ties the body’s visceral organs to the central
nervous system, has been considered a central line of communication for the gut microbiota
to monitor and control the brain and behavior. The tenth cranial nerve, the vagus nerve,
conveys signals to and from the intestinal system to other organs (including the brain). It
forms the most crucial part of the ANS and is the longest composite nerve that mediates
communication between these two systems. The sensory neuron, which contributes 80% of
the overall communication (transmits microbial-derived metabolites from gut to brain), and
the motor neuron, which contributes roughly 20% of the total communication (carries the
signal from the brain to the gut), are responsible for the information exchange [105]. Even
though the gut microbiota can interact via endocrine and immunological routes, hijacking
vagus nerve signals is undoubtedly the swiftest and most straightforward way for the
microbiota to influence the brain [106]. The vagus nerve, which disseminates informative
signals from the gastric mucosa to the CNS, appears to be involved in microbial commu-
nication with the brain. Indeed, no neurochemical or behavioral effects were observed in
the vasectomized mice group, indicating that the vagus nerve is the pivotal modulatory
fundamental communication medium between the microbiota and the brain [107]. Animal
studies have established that the gut microbiota may stimulate the vagus nerve and that
this activation is important in exposing effects on the brain and, as a result, behavior [108].
Early on, such information was available through the examination of pathogen-infected
animals. C-fos expression has been lowered in the PVN of rats infected with Salmonella
typhimurium after subdiaphragmatic vagotomy [109] even though S. typhimurium infection
has been linked to intestinal inflammation; new research suggests that microbial diversity
in the gastrointestinal system can effectively trigger brain circuitry regardless of whether or
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not there is an immune response [110]. The anxiolytic effect observed after Bifidobacterium
longum therapy in a model of chronic colitis-related anxiety-like behavior was missing in
mice vasectomized before colitis induction [111]. In studies, the gut microbiota has been
found to alter these vagal-mediated effects. Certain bacterial strains have been shown to
use vagus nerve signals to interact with the brain and to influence behavior [112]. For
example, a subclinical dose of the diarrhea-causing bacteria Campylobacter jejuni enhanced
anxiety-related behavior and Fos immunoreactivity in vagal afferent cell bodies and in
nucleus tractus solitaries (NTS), the brain’s major projection side of the gut-related vagal
afferents [113]. The vagus nerve is the chief constituent of the parasympathetic nervous sys-
tem, which regulates a wide range of biological functions such as mood, immune response,
metabolism, and cardiac regulation [114].

5.2. Microbial Signaling Molecules as a Pathway of Communication

The generation of gut microbial metabolites exhibits a vital role in the crosstalk be-
tween the gut and brain [115]. Through the immunological and endocrine pathways, gut
microbiota metabolites influence the nervous system’s function [116]. The gut microbiota,
for example, can emit neuro-signaling molecules such as catecholamines, GABA, melatonin,
and acetylcholine (ACh) to control the CNS via the vagus nerve [117]. SCFAs (acetate,
butyrate, and propionate) and other signaling molecules such as LPS, serotonin, and GABA
produced by gut microbiota seem to affect the activity of the ENS that eventually modulates
the afferent neural pathway, which carries the signal further to the brain. SCFAs might
boost the sympathetic nervous system and mucosal serotonin secretion, modulating the
brain’s memory and learning processes [118]. Apart from SFCAs, several other microbially
induced compounds, such as secondary bile acids (2BAs) and tryptophan metabolites,
are also involved in GBA communication [119]. These molecules predominantly transmit
signals via interaction with enterochromaffin cells (ECCs), enteroendocrine cells (EECs),
and the mucosal immune system. In contrast, some of them may also penetrate to enter
the systemic circulation and intestinal barrier and may perhaps cross the blood–brain
barrier [120].

5.3. Immune Signaling Pathway

The gut microbiota extensively regulates the formation, function, and maturation of
the mucosal immune system, implying its possible involvement in mood and behavior
control [121]. Segmented filamentous bacteria (SFB) are effective gut B and T lymphocyte
stimulators in the gut [122]. The gut microbiota is also reported to use TLRs to interact
with the host [123]. Interestingly, TLR-10 is expressed in various cells in the human body,
such as intestinal epithelial cells, mast cells, macrophages, neutrophils, dendritic cells,
lymphocytes, glial cells, and neuronal cells [124]. Microbial components can activate TLR
1–10, producing IL-1β, TNF-α, IL-6, and IL-8 [125]. Another study on TLR-4 knockout mice
reported that TLR-4 facilitates inflammatory reactions and gastrointestinal problems via
gut dysbiosis and leaky gut in a Gulf War disease model [126]. Additionally, the microbiota
can influence hormone peptide signaling by synthesizing peptide-like antigenic proteins
derived from the gut microbiota [127].

6. Correlation between the Gut Microbiota and Cerebral Function

The gut microbiota is known to have various health benefits in humans [128]. More-
over, recent analysis has shown that the gut microbiota can influence CNS health and
diseases [129]. Thus, the exploration of the microflora residing in the brain–intestinal axis
has gained popularity, garnering the concern of both gastroenterologists and neuroscien-
tists. Recently published research articles have revealed that the gut microbiota regulates
various basic neurodevelopmental and cognitive processes, such as the formation and
maintenance of the integrity of the blood–brain barrier (BBB), microglia maturation, neuro-
genesis, and myelination, as well as the production of neurotrophins, neuromodulators,
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and their respective receptors [130]. These findings show that the gut microbiota plays a
significant role in influencing normal human neurodevelopment [131].

The BBB could be impaired by excessive quantities of superoxide, the stimulation
of MMPs, and the elevation of inflammatory mediators in the CNS [132]. Destruction of
the BBB significantly increases permeability and leakage, eventually resulting in immune
cell infiltration to the CNS and eventually to neuroinflammation [133]. The finding that
the gastrointestinal microbiota governs neurodevelopment is absolute proof of the gut
microbial population as a cerebral peacekeeper [134]. Furthermore, in rats and mice, the gut
microbiota influences postnatal and adult ENS development [135]. It is worth highlighting
that in mice, the gut microbiota modulates the permeability of the BBB [136]. Mono-
colonization with Bacteroides thetaiotaomicron or Clostridium tyrobutyricum, as well as sodium
butyrate therapy, alleviates BBB permeability in germ-free (GF) mice compared to in control
animals by intensifying the biologically functional molecule of tight junction proteins [137].
Tight junction integrity is critical for sustaining BBB function [138]. These data suggest
that the gut microbial community and its products may be required for appropriate BBB
permeability [139].

The bacterial population residing in the ileum part of the intestine can govern both the
primary immigration and the homeostatic circulation of neuroglial cells in the intestinal
epithelium of mice [140]. GF mice have a much-reduced quantity and density of mucosal
enteric glial cells than normal mice [141]. This discovery implies that microbiota and
secretory compounds may influence gut homeostasis through enteric glial cells. Moreover,
these cells in the ileum connect bacterial signals to the neurological system of the host [142].

The human body’s second genome is assumed to be gut microbiota [143]. Its makeup
and variety are altered regularly depending on the circumstances. The concentration levels
of numerous chemical compounds differ significantly between GF and wild-type (WT) mice
in the early detection of the CNS metabolome, suggesting that the microbial community
is firmly related to brain health, disease, and functions such as learning, memory, devel-
opment, and behavior patterns [144]. The hippocampus serves as a learning and memory
center, regulating memory encoding, spatial navigation, and memory consolidation, and
is associated with mental diseases such as dementia [145]. All prior research has shown
a connection between gut microbiota and hippocampal plasticity, neurochemicals, and
function [146]. In a study conducted by Matsumoto and colleagues, neurotransmitters and
hippocampal amino acids in GF mice at postnatal week seven were found to be significantly
different from those in specific pathogen-free (SPF) mice, with decreased amounts of several
amino acids, including “A, R, L, Q, I, F, V” and GABA, and increased amounts of “S”. GF
mice had significantly higher levels of N-acetyl-aspartate, creatine, taurine, and lactate
compared to SPF mice, while succinate levels were much lower [147]. Furthermore, the GF
mice hippocampus revealed a significant increase in synaptic function via the upregulation
of synapse-promoting genes, responsive microglia markers, and synaptic density, which
could altogether be recovered by conventional murine microbiota or human Bifidobacterium
species colonization, implying that Bifidobacteria are associated with the initiation of the
functional mechanisms in the neural pathway in the hippocampus [148].

However, another study conducted by Luck’s group showed that the gut microbiota
modulates brain-derived neurotrophic factor (BDNF) and cAMP response element-binding
protein (CREB) in the hippocampus [149]. BDNF governs activity-mediated synaptic
plasticity and psychological disorders [150], whereas CREB regulates genes involved in
neural development, synaptic plasticity, acquisition, and memory [151]. Additionally,
antitumor flavonoid quercetin, a phytochemical metabolite, has been demonstrated to
improve cognitive performance by increasing gut microbiota and relative abundance of
Facklamia, Glutamicibacter, and Aerococcus, resulting in enhanced hippocampal BDNF, thus
improving learning and memory [152]. Furthermore, investigations have demonstrated
that the gut microbiota modulates the shape and neurogenesis of the hippocampus. Studies
on GF animals provide compelling data that the hippocampus of GF mice was noticeably
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larger, with pyramidal neurons that were shorter, stubby, and far less branched with
mushroom spines and granule cells compared to the control mice [153].

7. Gut Dysbacteriosis: Consequences, Diagnostic and Therapeutic Options
7.1. Microbial Imbalance Leads to Several Neurological Disorders

Dysbiosis or dysbacteriosis is a disorder originating from the disruption or reorganiza-
tion of the gut microbiota, resulting in a severe imbalance between beneficial and harmful
microbes [154]. The following are the main factors that contribute to gut microbiota dysbio-
sis: (a) lack of helpful microorganisms, (b) excessive proliferation of potentially pathogenic
bacteria, and (c) a decrease in the overall microbial diversity in the gut [155]. The disruption
of microbial balance within the gut has been incriminated in many pathologies, including
in gut-related diseases and neurodegenerative disorders (Figure 3 and Table 1) [156–158].
Previous studies have manifested mounting evidence that gut microbiota dysbiosis is
functionally linked to brain immunological dysfunctions, contributing to poor mental
health [159]. Digestion, immunopotentiation, the encouragement of microvilli develop-
ment, the fermentation of dietary fibers, and pathogens required for gastrointestinal tract
colonization depend on the gut microbiota [160]. According to several observational and an-
imal studies, the gut microbiota appears to have an essential role in the neuropathogenesis
of CNS disorders by GBA function alteration [161]. Dysbiosis can result in neuroinflam-
mation by elevating bacterial metabolites and inflammatory cytokines in the gut and
BBB [162]. This could play a role in the development of numerous neurodegenerative
diseases, including AD, PD, MS, and amyotrophic lateral sclerosis (ALS) [163].
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Figure 3. Variation in the composition of microbial diversity at the phylum level in numerous
neurological disorders (AD, MS, PD, and HD). Changes in the occurrence of gut microbial population,
dominant gut phyla, including Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, Verrucomicrobia,
and Fusobacteria, in neurological illnesses compared to in healthy controls.

Table 1. Variation in the composition of microbial diversity at the genus level in numerous neuro-
logical disorders. Abundance or scarceness of specific genera in a particular neurological disease
compared to in healthy controls, where ↑ represents higher in number compared to healthy ones,
↓ represents lower in number compared to healthy ones, and-represents not reported yet.

GENUS Alzheimer’s Disease Parkinson’s Disease Huntington’s Disease Multiple Sclerosis

Bifidobacterium ↓ ↑ ↑ -

Clostridium ↓ ↓ ↓ ↑
Dialister ↓ - - -

Turicibacter ↓ - - -

Bacteroides ↑ ↓ ↓ -
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Table 1. Cont.

GENUS Alzheimer’s Disease Parkinson’s Disease Huntington’s Disease Multiple Sclerosis

Blautia ↑ ↓ - ↑
Bilophila ↑ - - -

Lactobacillus - ↓ - ↓
Faecalibacterium - ↓ ↑ -

Coprococcus - ↓ - -

Prevotella - ↓ ↑ ↓
Akkermansia - ↑ - ↑

Methanobrevibacter - - - ↑
Butyricimonas - - - ↓

Collinsella - - - ↓
Slackia - - - ↓

Megamonas - - ↓ -

Gemmiger - - ↑ -

Allistipes ↑ - ↓ -

An SCFA-producing gut microbiota is essential to the host’s health and well-being [164].
SCFA deficiency can have various negative consequences, including inflammation, eventu-
ally contributing to neurological illnesses, namely AD, PD, and MS [165]. The comparably
low abundance of these microbes might cause neurological illness etiologies or may just be
an indicator of disease development [166]. These discoveries potentially pave the way for
new treatment methods based on microbiota modifications. Certain compounds secreted
by the gastrointestinal microbiota have subsequently been associated with cognitive and
cerebrovascular illnesses [167]. New therapy techniques, including prebiotics and probi-
otics, may help to restore the gut microbiota, alter the gut–brain barrier, and reduce the risk
of certain pathologies [168].

7.2. Strategies to Prevent Dysbiosis of Microbiota

The maintenance of a balanced gut microbiota is positively correlated with the host’s
health status [169]. Therefore, restoring the original gut microbiota is essential to escape
the cascading effect of disturbed microbial diversity, resulting in neurodegenerative disor-
ders [170]. Several strategies have been studied and used to maintain equilibrium between
beneficial and pathogenic bacteria in the gut [171]. One of the famous and effective strate-
gies is the supplementation of probiotics and prebiotics in colonizing a healthy microbial
community [172,173] (Table 2).

Table 2. Modulation of the gut microbiota as a therapeutic approach for several neurological
deformities. Direct modulation of the gut microbiota can be a potential therapeutic target for
treating neurological disorders. The table summarizes recent research findings on the reformation
of the gut microbiota by probiotic therapies and fecal microbiota transplantation to overcome the
neuropathologic condition.

S. No. Therapeutic Approach Phylum/Genus or the Name of
Particular Bacteria Neurological Disorder References

1. Recolonization of
beneficial bacteria Oral administration of Bacteroides fragilis Experimental autoimmune

encephalomyelitis [174]

2. Fecal microbiota
transplantation

Fecal microbiota suspension was
injected through a TET tube. Parkinson’s disease [175]
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Table 2. Cont.

S. No. Therapeutic Approach Phylum/Genus or the Name of
Particular Bacteria Neurological Disorder References

3. Bacteriotherapy Transcolonoscopic infusion of 13
non-pathogenic enteric bacteria

Chronic Fatigue Syndrome
(CFS) [176]

4.
Administration of
human commensal

bacteria
Bacteroides fragilis MIA mouse model of ASD

(autism spectrum disorder) [177]

5. Probiotic
supplementation

Lactobacillus acidophilus, L. fermentum,
Bifidobacterium lactis Alzheimer’s disease [178]

6. Fecal microbiota
transplantation FMT from healthy uninjured mice Spinal cord injury (SCI) mice

model [179]

7. Probiotic
supplementation

Bifidobacterium bifidum BGN4 and
Bifidobacterium longum BORI Alzheimer’s disease [180]

8. Probiotic
supplementation Bifidobacterium infantis Rat maternal separation (MS)

model of depression [181]

9. Fecal microbiota
transplantation

Fecal suspension injected into the colon
through the catheters

Traumatic brain injury (TBI)
in male Sprague Dawley rats [182]

10. Probiotic
supplementation

Streptococcus thermophilus,
Bifidobacterium lactis,

Lactobacillus acidophilus, Lactobacillus
helveticus,

Alzheimer’s disease
triple-transgenic mice [183]

Probiotics are live bacteria that confer a health benefit to the host when taken in
the requisite amount [184]. They can be used both to stave off the onset of dysbiosis
when an individual comes across a predisposing condition (such as the inappropriate
use of antibiotics, aging, chronic gut inflammation, imbalanced diet, etc.) [185] and as a
curative agent to restore the healthy microorganisms to balance the ongoing condition
of dysbiosis [186]. Probiotics should fall in the category of the strains resembling our
normal gut microbiota, designated as GRAS (generally regarded as safe). GRAS is known
as “health-friendly bacteria” that exhibit beneficial properties for the host’s health. These
live bacteria can maintain good viability, are not toxic or pathogenic to the host, are good
enough to extract nutrients from a regular diet, and do not interfere with the body’s
homeostasis [187]. Some other immunological benefits of probiotics include activating
the local immune cells (macrophages), helping in boosting the immune response, and
modulating cytokine production [188]. Commonly used probiotics include lactic acid
bacteria, Bifidobacteria, yeast Saccharomyces boulardii, enterococci, and Gram-negative bacteria
Escherichia coli, [189]. Bifidobacterium is a well-known microorganism that produces essential
vitamins, enzymes, and some acids. It also has immune activation properties resulting from
lowered gut pH, thus inhibiting the growth of certain pathogens [190]. The central idea from
previous studies about the benefits of probiotics leads to the conclusion that (i) probiotics
can help reduce the ubiquity and severity of infectious diseases [191,192]; (ii) their unique
ability to restore the gut microbiota allows them to be used as the sole treatment for many
intestinal disorders and neurological disorders [193]; and (iii) if antibiotics are required,
probiotics can be used in conjunction with antibiotics to decrease treatment duration and
side effects [194].

Prebiotics, defined as a non-digestible fermented food ingredient, provoke the activity
or growth of a number of healthy/good bacteria in the gut that play a pivotal role in
human health and that naturally occur in different food products [195]. They are also
widely used to rebalance the intestinal microflora. According to the International Scientific
Association of Probiotics and Prebiotics (ISAPP), “dietary prebiotics are the selectively fer-
mented ingredient that results in specific changes in the composition and/or activity of the
gastrointestinal microbiota, thus conferring a benefit upon host health” [196]. By definition,
they may also include a substrate consumed by the host-microbial community to confer
a health benefit to the host. Prebiotic substances must have the following characteristics:
they must be fermentable, capable of stimulating the activity of gut microbial diversity, and
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be resistant to stomach acid and mammalian enzymes [197]. Prebiotics can revitalize the
gut microbiota in the intestine. Fructo-oligosaccharides (FOS) and galacto-oligosaccharide
(GOS) are the most classified forms of prebiotics [198]. Some microorganisms such as As-
pergillus sp., Penicillium sp., Arthrobacter sp., and Aureobasidium spare are excellent sources of
a crucial key enzyme known as fructosyl-transferase (FTase) for the production of FOS [199].
Interestingly, the prebiotics fructooligosaccharides (FOS) and galactooligosaccharides (GOS)
boosted Lactobacilli and Bifidobacteria development in the intestines and increased hippocam-
pus BDNF and NR1 subunit expression in comparison to controls [200]. GOS also increases
NR2A subunits in the hippocampus nucleus and NR1 expression in the frontal cortex, as
well as plasma D-alanine, an NMDA receptor agonist.

Predacious employs a range of intercommunication mechanisms, one of which is
predation. The term “predator” refers to bacteria that actively seek out and destroy their
prey, eating their macromolecules for nourishment [201]. Predatory bacteria are important
for regulating and changing bacterial populations in various settings. Even though these
bacteria are nearly everywhere, only a few species have been thoroughly investigated for
their potential use [202]. Because predatory bacteria are frequently smaller than their prey,
they can penetrate the prey, kill it from the inside, and multiply. Interestingly, numerous
predatory behaviors have emerged in the bacterial community; epibiotic predation does
not require intracellular proliferation. Predatory bacteria are used to re-equilibrate a
dysbiotic gut microbiota characterized by Gram-negative bacteria. In birds, the use of
B. bacteriovorus to reestablish eubiosis in the gut microbiota has proven successful [203]. It
is noteworthy that any potential therapeutic use of predatory bacteria should be based on
appropriate and reliable experimental data to define the dosages to be supplied accurately.
Otherwise, predatory bacteria, such as antibiotics, might become harmful in the long run if
administered inappropriately.

7.3. Potential Biomarker for Dysbiosis and Its Implications

It is thought to be a difficult undertaking to identify “ideal biomarkers” for many
diseases, including metabolic disturbances and neurological disorders [204]. Furthermore,
the discovery of microbiome-based biomarkers can improve the precision of illness classifi-
cation when paired with clinical data and other biomarkers [205].

One recent analysis found that urolithin detection in urine is a practical, non-invasive,
and quick method that can reveal dysbiosis of the gut microbiota and intestinal inflam-
mation in Parkinson’s disease patients [206]. Roseburia species is at a reduced level in
Parkinson’s disease and hence can be a potential marker [207].

Several microbial metabolites may be used as predictive biomarkers to track illness
conditions in association with gut microbial dysbiosis [208]. A peripheral gut microbiota-
derived metabolite, indoxyl sulfate, has the potential to serve as abiomarker for metabolite
profiling and diagnostic suitability for dysbiosis and neurologic signature [209]. The relative
abundance of Enterobacteriaceae, which are expected to be used as clinical biomarkers of
post-stroke cognitive impairment (PSCI), may have the ability to predict PSCI in post-stroke
patients [210].

8. Effect of Intestinal Microbiota-Derived Metabolites on Neurological Disorders

The altered composition of the gut microbiota and its various microbial metabolites
can lead to numerous brain disorders by different mechanisms. The present review article
describes the effects of gut microbial-derived biomolecules on the onset and progression of
most common neurological disorders, such as AD, PD, HD, and MS.

8.1. Aggregate-Forming Tendency of Gut Bacterial Proteins in Alzheimer’s Disease

AD is a common progressive neurodegenerative condition that causes brain shrinkage
and cell death [211]. It is defined by the development of two unusual formations termed
plaques and tangles, which are the main suspects in nerve cell damage [212]. Tangles
are intracellular twisted fibers of a protein called tau that builds up inside cells, whereas
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plaques are the extracellular aggregation of a protein fragment called amyloid (A42) that
builds up in the spaces between nerve cells [213].

Recent studies have suggested an association between gut microbiota-related biomolecules
with the progression of Alzheimer’s. Elevated levels of numerous Gram-negative bacteria
in the intestinal tract and the cerebrum of AD patients resulted in the idea of the patho-
genesis and contribution of these microbial communities in respective neurodegenerative
disorders [214]. LPS, a major characteristic component of Gram-negative bacteria such as
Helicobacter pylori, E. coli, and Salmonella, was found to play a vital role in the aggregation
of amyloid fibers extracellularly [215]. LPS has a potential role in the fibrillogenesis of
beta-amyloid, leading to the analytical deficiency studied in in vitro conditions [216]. Mean-
while, various gut bacterial strains generate a remarkable amount of effective amyloid-like
proteins. According to a discovery by Chapman’s group, extracellular fibers termed “curli”,
which are formed by E. coli and other gut microbiota, have structural and physicochemical
features with amyloids [217]. Curli was the first amyloid to be characterized in a new
class of “functional” amyloids that is quickly expanding. According to scientific analysis,
Staphylococcus, Streptococcus, Mycobacteria, Salmonella, Citrobacter, Klebsiella, and Bacillus
species can construct extracellular amyloids [218].

Based on previous studies, a possible hypothesis could be drawn for the potential
neurotropic role of bacterially secreted pathogenic peptides (such as cagA, vacA, and
babA-H. pylori) and their virulent outer membrane proteins (Hop Q) in seeding amyloid
β accumulation, which may further contribute to neuroinflammation. By employing
bioinformatics tools, the aggregation tendency of these peptides could be deduced and
compared with the positive control, and then inference regarding the contribution of the
aggregates forming peptides could be determined [219].

8.2. Impact of Microbiota on the Induction of Parkinson’s Disease

PD is a neurodegenerative disorder characterized by the degeneration of dopamine-
producing neurons in a specific region of the brain called the substantia nigra pars compacta
and the accumulation of protein α-synuclein [220]. These pathophysiological conditions
lead to movement-related disorders in Parkinson’s patients [221]. Alterations in the gut
microbiota composition is strongly associated with PD. The gut microbial diversity with
certain phyla, including Firmicutes, Bacteroidetes, and Fusobacteria, was deformed in patients
with Parkinson’s symptoms compared to the control [222].

Brain behavior’s chief mediator and controller is the enrichment of specific pathogenic
microbial phyla and less abundant beneficial microbial communities. SCFA, which func-
tions as an anti-inflammatory agent and helps to prevent neuroinflammatory microenvi-
ronment creation, was found scantily in the GI tract of Parkinson’s patients due to the
lower number of SCFA-producing microorganisms (Bacteroidetes and Firmicutes) [223]. A
lower abundance of bacteria such as Clostridium tyrobutyricum, which produces high lev-
els of butyrate, has an intended role in the progression of PD [224]. Another potential
function of SCFA is maintaining the integrity of BBB and being capable of ameliorating
a dysfunctional BBB in germ-free mice associated with an upregulation of tight junction
protein expression [225] Additionally, in Parkinson’s patients, LPS from the innumerable
gut-residing Gram-negative bacteria were found capable of crossing BBB by modulating
tight junction protein expression (similar to occludin and claudin) [226]. These alterations in
the expression of tight junction proteins help to accelerate the extravasation of immune cells
in the brain [227], the microglial cells result in the higher production of pro-inflammatory
molecules, and neuroinflammation is one of the hallmarks of initiation of neurodegenera-
tive disorders (Figure 4) [228].
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Figure 4. Probable mechanism of gut microbial population and their metabolites to cause neuroin-
flammation. Intensification and accumulation of pathogenic gut microbiota due to dysbacteriosis lead
to the formation of an inflamed and leaky gut. Microbes and their associated metabolites can enter
the peripheral circulatory system, where they further lower the expression of tight junction proteins
in brain endothelial cells and lead to the disintegration of the blood–brain barrier that promotes the
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entrance of pathogenic microbes, some of them carrying prions into the brain. Meanwhile, microbial
metabolites stimulate the extravasation of immune cells into the brain, all of which together trigger
cytokine storm, the cause of neuroinflammation, one of the important hallmarks of neurological
disorders characterized by degenerated and demyelinated neurons.

The administration of L-DOPA (levodopa), a dopamine precursor, is the most common
and effective treatment to manage PD [229]. The widespread presence of H. pylori infection
has been widely studied in this neurodegenerative disease associated with L-DOPA mal-
absorption, which results in a higher motor impairment than in uninfected Parkinson’s
patients [230]. Hence, eradicating H. pylori could lead to a remarkable refinement in motor
fluctuations by improving the absorption of the Parkinson’s medication levodopa [231].
Previous studies focused on this bacterium’s ability to decrease the bioavailability of
L-DOPA to the dopaminergic neuronal cells, but the mechanism is still unexplored [232].

One of the possible mechanisms could be the utilization of L-DOPA as a nutrient
source by H. pylori, making it unavailable to be utilized by the host. Consuming L-DOPA
H. pylori enhances its virulence, thus contributing further to aggravating this neurological
disorder. L-DOPA is derived from the amino acid phenylalanine, which has a significant
role in the growth and motility of bacteria [233]. As motility plays one significant role in
determining a bacterium’s virulence, a hypothesis could be drawn that the consumption
of L-DOPA might enhance the expression of the motility (flagellin) gene, consequently
inducing motility and resulting in motility in the severity of symptoms of H. pylori infection
in PD. Another probable mechanism is the secretion of an enzyme by the gut microbiota,
which might be responsible for converting L-DOPA into an anomalous product. The
biotransformation of L-DOPA into another impractical form could be one of the reasons for
making it worthless for Parkinson’s therapy and reducing its availability [234].

8.3. Huntington’s Disease Association with Gut Dysbiosis

A trinucleotide repeat amplification in the Huntington (HTT) gene, which is dis-
tributed extensively across the brain and peripheral tissues, causes HD, a chronic neu-
rodegenerative illness [235]. The major phyla that seem to be altered in HD patients are
Bacteroidetes and Actinobacteria; meanwhile, the Firmicutes population was found to be
diminished compared to the healthy control (HC) [236]. At the genus level, Intestinimonas,
Lactobacillus, and Bilophila were higher in number, and comparatively, the genera Clostridium
is less abundant than in normal individuals [237]. Huntington’s patients’ gut microbiota
differed significantly from those of healthy subjects. The patients’ gut microbiota seemed
to be occupied by fewer microbial species, resulting in a less diverse ecosystem [238]. A
bacterial species named Eubacterium hallii has been linked to various clinical symptoms of
Huntington’s. Symptomatic individuals with low E. hallii counts had more severe motor
symptoms [239]. The abundance of E. hallii and the timing of symptom manifestation
revealed a high and negative connection in pre-symptomatic patients. Intensification of the
pathogenic gut microbiota (Lactobacillus, Intestinimonas), as well as various strains of viruses,
may result in the production of harmful secretions that interfere with the production of
anti-inflammatory molecules (IL-4) by specific immune cells, allowing bacteria to evade
the immune response and contribute to a variety of neurological disorders [240].

A recent study on HD patients reported exclusively repressed levels of lymphokine
IL-4 compared to healthy controls, whereas other cytokines remain unaltered. In the HD
group, a significant correlation between systemic levels of cytokines and relative abun-
dances of fecal microbiota has been found [241]. Interestingly, A recent study demonstrates
a connection between host cytokine response in diseased and normal individuals; as a
result, the level of IL-4 was found to be repressed in the HD patient compared to that of
controls, while there were no significant changes in the rest of the cytokine molecules in
both cases.

However, the previous study did not focus on the linkage between IL-4 secretion and
the progression of HD. One of the possible reasons could be the central role of IL-4 in regu-
lating normal brain function and a positive effect on cognitive behavior by synchronizing
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the activation of various cerebral growth factors such as BDNF and NGF. Simultaneously,
IL-4 acts as an anti-inflammatory agent and ultimately staves off the degeneration or death
of neurons [242].

8.4. Substantial Alteration of Human Gut Microbiota in Multiple Sclerosis

MS is a demyelinating autoimmune disease of the central nervous system (CNS) that
influences the brain and spinal cord [243]. Autoimmunity against CNS antigens is hypoth-
esized to cause immune cell infiltration, which results in CNS lesions that are diagnostic
of MS [244]. Both MS and experimental autoimmune encephalomyelitis (EAE), an ani-
mal model of MS, demonstrate BBB impairment [245]. Disruption of the gut microbiota
encourages permeability of the intestine, referred to as “leaky gut”, which displays one
of the major contributors to the consequence of MS, an autoimmune disease [246]. The
alteration of several microorganisms is associated with MS. The gut microbiota was found
to be modified in different stages and types of MS, namely RRMS (Relapsing-Remitting
Multiple Sclerosis), PRMS (Progressive-Relapsing Multiple Sclerosis), SPMS (Secondary
Progressive Multiple Sclerosis), and PPMS (Primary Progressive Multiple Sclerosis) [247].
MS is strongly correlated with the depletion of major metabolite-producing microbes
such as SCFA-producing microorganisms (Genera Clostridium). Butyrate- and propionate-
biosynthesizing microorganisms are alleviated in RRMS compared to HC, which represents
great evidence of a positive correlation between SCFA and the regression of MS [248].

Nevertheless, the mechanism of action of SCFA regarding MS plaques is underex-
plored. One of the possible reasons could be the neuroprotective consequence of SCFA on
MS that might have a considerable role in reinstating the integrity of BBB [249]. Various
SCFAs might be responsible for the higher expression level of tight junction proteins to
maintain the BBB. That is how the depletion of SCFA-producing bacteria influences the
cohesive property of BBB and allows the pathogenic myelin-specific T cell to enter the
CNS. Additionally, SCFAs have an anti-inflammatory property that regulates the unneces-
sary generation of immune response by promoting Treg cell differentiation, which further
reduces inflammation [250]. Another hypothesis could be drawn by the presence of detri-
mental bacterial and viral secretion or peptides as a result of dysbiosis, which might mimic
the myelin antigen when exposed to the gut and may be responsible for the activation of
myelin-specific peripheral T cells that promote their penetration to the CNS via disrupted
BBB. This is how T cells could utilize one mechanism to execute the autoimmune attack
on oligodendrocytes.

Rumah et al. detected Clostridium perfringens type B in a patient’s feces three months
following the beginning of MS symptoms [251]. The epsilon toxin (ETX), released by
C. perfringens, can pass the BBB and cause oligodendrocyte damage, suggesting a plausible
mechanism for demyelination in MS. They also discovered a diminished population of
C. perfringens A in the GI tract of MS patients and enhanced ETX responsiveness by ten
times compared to HC. Another analysis revealed that MS patients had a considerably
higher Archaeal population (Methanobrevibacteraceae) than the controls. Methanobrevibacter
smithii has high immunogenicity and may cause inflammation in the patient [252]. It
has also been observed that many anti-inflammatory microbes were found in decreased
abundance in MS patients [253]. Significant changes in Proteobacteria microbiota, such as
Shigella and Escherichia abundance, were also reported in pediatric MS when compared
with controls.

9. Altered Bile Acid Profile Associates with Neurological Dysfunction

The expression of numerous bile acid receptors as well as changes in bile acid metabolism
have been reported to be promising biomarkers for prognostic tools in a plethora of neurode-
generative disorders [254]. In a recent clinical study, an extensive bile acid test was carried
out on the plasma of 30 healthy controls, 20 people with moderate cognitive impairment,
and 30 people with clinical AD. In contrast to moderate cognitive impairment patients, AD
patients had significantly higher levels of glycochenodeoxycholic acid, glycodeoxycholic
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acid, and glycolithocholic acid. lithocholic acid (LCA) levels were also significantly higher
in AD patients than in controls. These glycine-conjugated bile acids and the presence of
LCA provide valuable diagnostic biomarker features [255]. A surgical mouse prodromal
PD model was used in a subsequent investigation to further explicate the existence of bile
acids. Three of these acids—omega-muricholic acid, tauroursodeoxycholic acid (TUDCA),
and ursodeoxycholic acid (UDCA), were found to be substantially reduced in the serum
of the group treated with α-synuclein fibrils. UDCA and TUDCA, both neuroprotective
secondary bile acids that can pass through the BBB, were markedly affected, with a 17- and
14-fold decrease from the control group [256].

The presence of bile acids continues to have increased relevance in maladies of the
CNS beyond neurodegenerative diseases. Several bile acids have been shown to exhibit
neuroprotective benefits in a variety of neurodegenerative illnesses, including AD, PD, HD,
and retinal degeneration, both in cellular and animal models as well as in human clinical
studies [257]. Bile acids have been studied in animal models of AD. Tauroursodeoxycholic
acid (TUDCA), an endogenous bile acid, exhibits potent neuroprotective effects in a variety
of disease-related experimental paradigms, including neuronal exposure to Aβ. Treatment
of double transgenic mice (APP/PS1) expressing the human amyloid precursor protein with
the KM670/671NL Swedish double mutation and the human presenilin 1 L166P mutation
under the control of a neuron-specific promoter with 0.4% (wt/wt) of TUDCA resulted in the
significantly reduced accumulation of Aβ deposits in the brain and markedly ameliorated
memory deficits [258]. Additionally, the effects of bile acids on chemical and genetic
models of Parkinson’s disease (PD) have been also documented. In C57BL/6 glutathione S-
transferase pi (GSTP)-deficient mice, MPTP-induced degeneration of dopaminergic neurons
in the nigrostriatal axis was reported to be ameliorated by TUDCA [259].

10. The Role of Dysbiosis in the Aging Process

A negative shift in microflora is a characteristic feature of dysbiosis. An imbalance
in the body’s natural microflora can lead to physiological alterations. Geriatric alterations
can also lead to changes in the macrofloral diversity and, in turn, accelerates aging-related
problems [260].

Cross-sectional and longitudinal studies involving various age groups have found
an alteration in gut microbial diversity with increasing age [261] (Figure 5). Researchers
have found that age-related gut dysbiosis generally triggers the enhanced growth and
proliferation of facultative anaerobes [262]. Meanwhile, a massive reduction in the diver-
sity of probiotic bacteria was further followed by the altered firmicutes/bacteroidetes ratio.
According to the latest analysis, the architecture and composition of the gut microbiota is
a predictor of an individual’s survival. Moreover, the abundance of Bacteroides or a lack
of originality in the microbiome is linked to shorter life expectancies and higher morbid-
ity [263]. For instance, dysbiosis in the commensal microbial community has been shown
to shorten the lifespan of Drosophila [264], but populating the gut of middle-aged African
turquoise killifish with bacteria isolated from young donors led to lifetime extension and
delayed behavioral deterioration [265].

One of the major risk factors contributing to the emergence of neurodegenerative
disorders is aging [266]. The onset of age-related neurodegenerative diseases is facilitated
by alterations in the gut microbiota [267]. An upsurge in bacterial LPS in plasma and
the brain is coupled with aging [268]. The increase in LPS level is correlated with the
increased expression of TLR4, myeloid differential protein-88, and the nuclear translocation
of nuclear factor κB in both intestinal and brain tissues [269]. Additionally, LPS-induced
ulcerative colitis mediated systemic inflammation, increasing BBB permeability, leading
to inflammation in the substantia nigra region of the brain, and causing dopaminergic
loss [270].
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11. Synergetic Effect of Co-Infection and Microbial Interaction on a Neurological Disorder

The onset and progression of various infectious diseases are mainly associated with a
specific pathogen, yet it is not always the case. Co-infection with two or more pathogens is
now being reported to modulate the severity of neurological diseases aggressively [271].
The human host may become coinfected with multiple pathogens concurrently or may be
simultaneous infected with two or more pathogens. Reactivation of latently inhabiting
virulent pathogens upon infection with a new pathogen may also lead to coinfection
conditions [272]. Commensal gut microbiota has been found to regulate and activate viral
pathogenic genes through various mechanisms that either provoke or repress numerous
diseases [273].

The gut microbiota enhances viral infection through various mechanisms, including
through facilitating virus genetic recombination. Many viral genomes undergo recombi-
nation, which improves their environmental fitness and thus their infectivity [274]. After
exposure to the particular commensal gut microbiota, certain RNA viruses gain an advan-
tage in delivering their genomic content into target cells. The interaction of viruses with
microbiota aids the viral entry into the host cell. It ensures genetic recombination, which
further results in the generation of progeny with increased resistance to the restrictive
condition. The resistive capacity of the recombinant population has a more severe effect on
infectious disease outcomes. In addition, the gut microbiota also seems to enhance viral
stability as it modulates viral replication [275].

Moreover, viral infection has also been associated with the disruption of the gut mi-
crobiota, resulting in colon inflammation and ultimately promoting the pathogenesis of
various neurological disorders. Viral infection resulting from dysbiosis leads to the enhance-
ment of pathogenic microbial populations such as LPS and cytokine-producing bacteria.
This facilitates the aggregation of specific proteins, such as α-synuclein in the gut (ENS),
that can translocate to the CNS via the vagus nerve and aggravate neurological patholo-
gies [276]. The studies mentioned above establish that infection with a single pathogen
can make the environment conducive to other pathogens’ activation. The expression of
the morbific genes of co-existing pathogens may become enhanced during co-infection
conditions and can be best studied in co-infection models. However, co-infection scenarios
are still underexplored regarding the progression of neurodegenerative disorders. A possi-
ble hypothesis could be drawn regarding direct infection of one pathogen followed by a
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second infection to the neuronal cells and could be used for the study of their pathogenic
gene expression, and further specific markers concerning neurological disease could be
studied in the co-infected model to analyze the collaborative effect of pathogens on various
neurodegenerative markers (Figure 6).
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Figure 6. Schematic diagram depicting the effect of a lone bacterial or viral infection and pathogenic
coinfection in engendering neuroinflammation. The role of extracellular vesicles from bacteria-
infected cells in virus reactivation via PBMC in contributing to neuroinflammation has to be explored.
Meanwhile, the analysis of the combined effect of pathogens on various neurodegenerative markers
and inflammation could be contemplated in the co-infection models. NB:? signifies the nonavailability
of direct evidence and study needs to be done in this aspect.

12. Modulation of Gut Microbiota for Neurological Disorders in the Perspective of Host-
Directed Therapy: Microbiota-Targeted Technique “Fecal Microbiota Transplantation”

The proximal relationship between factors such as gut dysbacteriosis, elevated intesti-
nal permeability, and associated neurocognitive impairment recommends that manipulat-
ing the gut microbiota may provide a promising therapeutic option in a group of neuro
patients [277]. Fecal microbiota transplantation (FMT) is an approach for directly modifying
the victim’s gut microbiota to normalize the proportion and to acquire therapeutic efficacy
(Table 2) [278]. FMT is a biological therapy that involves the transmission of fecal matter
from one fit individual to another to cure a disease [279]. It is acknowledged as the “ulti-
mate probiotic” because it provides a significantly larger richness and variety of bacterial
strains than any readily accessible probiotic. Recently, there has been a surge of interest in
the potential advantages of FMT in both gastrointestinal and non-gastrointestinal diseases
(Table 2) Lately, case studies of patients with MS [280], myoclonus-dystonia, autism, de-
pression, and chronic fatigue syndrome who have been successfully treated with FMT have
opened up new avenues for more promising trials in characterizing FMT as a potential
therapy for such conditions. FMT has aided functional ability, favored neuronal axonal
regeneration, ameliorated animal metabolic profiling and weight gain, and substantially
improved gut barrier integrity and gastrointestinal motility in SCI (spinal cord injury) mice
(Table 2).
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A study by Yingli Jing’s group demonstrated that FMT-mediated gut microbial trans-
formation strengthens motor, cognitive, and GI functions in SCI mice, potentially via the
anti-inflammatory functions of SCFA. Elevated neurotransmitter levels of dopamine in PD
mice that already had acquired FMT from healthy mice revealed the significant application
of the microbiome modulation technique in various nervous system-related disorders [281].

Numerous animal studies and case reports from humans emphasize that FMT has
a beneficial impact on PD, MS, AD, and stroke. The possible health benefits of FMT for
patients with PD may be ameliorated by impaired α-syn accumulation in the intestinal
wall and, consequently, in the brain, as a result of reduced inflammation-induced oxida-
tive stress [282]. Greater availability and potency of levodopa following FMT with feces
from donors with reduced levels of bacterial tyrosine decarboxylases in their feces could
strengthen the beneficial effects on Parkinson’s symptoms [283]. A rise in Treg cell numbers
after FMT in MS patients may constrict autoimmunity with demyelination and possibly the
progression of the disease. Furthermore, feces from young healthy FMT donors may slow
the advancement of AD by decreasing the translocation of pro-inflammatory gut microbiota
from the gut to the brain and, as a result, the neuroinflammation processes facilitated by
them. In conclusion, fecal microbiota transplantation can restore a drastically changed gut
microbiota in neurodegenerative disorders.

13. Function of Modulated Microbial Communities in Healthy Aging and Rejuvenation

Age-related microbiome and gastrointestinal disorders are reversible and treatable
to some extent. To change the gut microbiota and encourage healthy aging, a number of
rejuvenation techniques have been used, including probiotic medication and fecal micro-
biota transplantation [284]. Previous research has consistently demonstrated a positive
association between the abundance of beneficial microflora and centenarian longevity. For
example, Akkermansia muciniphila stimulates the production of mucus in the gut, which is
essential for maintaining intestinal integrity and other advantageous symbioses [285]. The
oral treatment of Akkermansia also improves senescence-related phenotypes in intestinal
integrity, muscle function, and immune response in aged mice and thus extends the health
span, which is further supported by the understanding of the relationship between aging
and the gut microbiota [286]. Additionally, the relative abundance of the butyrate producer
Oscillospira in rejuvenated mice was dramatically raised by all rejuvenation techniques [287].

Besides probiotics, the consumption of some of the chemical compounds has been
proven to be helpful for the maintenance of gut microbial health [288]. N-Acetylcysteine
(NAC) is an FDA-approved drug primarily associated with its anti-inflammatory and
antioxidant activity, which supports the maintenance of a cellular redox imbalance [289]. It
is a potential drug to prevent glucose metabolic disturbances by reshaping the structure of
the gut microbiota.

In HFD-fed mice, NAC significantly ameliorates gut barrier disruption, glucose in-
tolerance, and inflammatory responses [290]. The potential regulatory mechanism may
help to reshape the altered gut microbial structure by intensifying the growth of beneficial
bacteria such as Akkermansia, Bifidobacterium, Lactobacillus, and Allobaculum and by reducing
the abundances of harmful bacteria such as Desulfovibrio and Blautia, which are concurrent
with the repair of disrupted metabolic pathways. These investigations reveal the prominent
role of NAC in alleviating gut dysbiosis and associated inflammation [291].

14. Conclusions

The architecture and composition of the gut microbiota undergo significant changes
throughout time, and these alterations are typically associated with or followed by ad-
verse health consequences. Numerous factors, such as the way of life, stress, nutritional
challenges, antibiotics, and the aging process may alter the gut microbiota. It has been estab-
lished that strategies to counteract these detrimental fluctuations contribute to alleviating
symptoms and recovery from certain conditions. The gut–brain axis is an important field of
study, with several studies associating changes in gut microbiota composition with a range
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of clinical disorders. The discovery of a biological connection between the microbiota, im-
mune signaling, and the CNS shows that the microbiota’s microbial metabolites or systemic
signals may alter neurological and immune function in the brain. Cancer, autoimmune
illnesses, and neurological conditions such as MS, PD, and AD have all been linked to
dysbiosis in the gut microbiota. Bacteria impact the immunological responses of the host
in part by producing metabolites. By regulating and reactivating each other’s pathogenic
genes, synergistic interactions between many pathogens may play a role in the onset and
progression of various neurodegenerative disorders. The dysbiosis of the gut microbiota
is caused by a rise in pathogenic microorganisms, which may be restored by probiotics,
prebiotics, predatory bacteria, and fecal microbial transplantation from healthy individuals.
These methods may assist in the battle against neurological symptoms resulting from micro-
bial dysbiosis. Furthermore, the discovery of microbiome-based biomarkers can improve
the precision of illness, including metabolic disturbances and neurological disorders. In
conclusion, the microbial population inhabiting and dwelling on the human body serves a
significant function in preserving the human host’s health. Any imbalance between “good”
and “bad” microflora may cause illness and reduce the quality of life of a person. Therefore,
it is essential that the function of microbiota in many diseases, particularly neurological
disorders, be highlighted and thoroughly researched.
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