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Background: Seed-based studies on resting-state functional connectivity (rsFC) in 

schizophrenia have shown disrupted connectivity involving a number of brain networks; 

however, the results have been controversial.

Methods: We conducted a meta-analysis based on independent component analysis 

(ICA) brain templates to evaluate dysconnectivity within resting-state brain networks in 

patients with schizophrenia. Seventy-six rsFC studies from 70 publications with 2,588 

schizophrenia patients and 2,567 healthy controls (HCs) were included in the present 

meta-analysis. The locations and activation effects of significant intergroup comparisons 

were extracted and classified based on the ICA templates. Then, multilevel kernel density 

analysis was used to integrate the results and control bias.

Results: Compared with HCs, significant hypoconnectivities were observed between 

the seed regions and the areas in the auditory network (left insula), core network (right 

superior temporal cortex), default mode network (right medial prefrontal cortex, and left 

precuneus and anterior cingulate cortices), self-referential network (right superior temporal 

cortex), and somatomotor network (right precentral gyrus) in schizophrenia patients. No 

hyperconnectivity between the seed regions and any other areas within the networks was 

detected in patients, compared with the connectivity in HCs.

Conclusions: Decreased rsFC within the self-referential network and default mode 

network might play fundamental roles in the malfunction of information processing, while 

the core network might act as a dysfunctional hub of regulation. Our meta-analysis is 

consistent with diffuse hypoconnectivities as a dysregulated brain network model of 

schizophrenia.
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INTRODUCTION

Disrupted resting-state functional connectivity (rsFC) involving 
a number of brain networks has been suggested as the core 
pathogenesis of schizophrenia (1–3). Most previous studies tried 
to identify the specific deficits in neural networks related to the 
disease, which is crucial not only to understand the mechanism 
of schizophrenia but also to provide potential biomarkers for 
clinical use. As the most widely used and simply operated 
analytic technique, seed-based functional connectivity analysis 
has demonstrated widespread dysconnectivity in schizophrenia, 
based on the blood oxygen level-dependent (BOLD) time series 
extracted from regions of interest (ROIs) as seeds (4).

Despite the growing number of seed-based studies on rsFC 
in patients with schizophrenia (5–8), the results have been 
controversial regarding either the location of key regions or the 
effect of dysconnectivity (i.e., increased or decreased connectivity). 
Taking the default mode network (DMN) for example, some studies 
have reported decreased rsFC in schizophrenia patients compared 
with healthy controls (HCs) between the seed ROI at the posterior 
cingulate cortex (PCC) and other areas within the same network, 
including the medial prefrontal, lateral parietal, cerebellar, and 
insular regions (9, 10). In contrast, other researchers have found 
increased connectivity within the DMN of patients, although the 
same seed region had been defined (11, 12). Inconsistency might 
be affected by studied samples and methodologies; however, seed-
based studies pave a promising way to reveal the mechanisms of 
and biomarkers for schizophrenia (13). Therefore, it is necessary 
to merge divergent findings into a unified model of network 
functioning for a better characterization of the rsFC patterns. To 
fill this gap, meta-analysis could be a robust incorporation strategy 
by classifying seed ROIs and effects within brain networks (14), 
which has been proven effective to various studies in psychiatric 
imaging (15, 16). Recently, Dong and colleagues (17) conducted 
the first meta-analysis to illustrate rsFC within large-scale brain 
networks in schizophrenia patients. Based on a priori templates 
in which specific seed ROIs were selected before analysis (14, 
18–20), they found dominant hypoconnectivities within multiple 
networks. This study helped to conceptualize schizophrenia in 
terms of whole-brain rsFC; however, it was inherently constrained 
by a dependence on a priori data and a lack of the simultaneous 
investigation of brain systems (4, 13, 21).

Alternatively, independent component analysis (ICA) 
is a common blind source separation approach applied to 
functional MRI (fMRI) data (22, 23), allowing a fully data-driven 
exploration of spatiotemporal patterns of synchronized neuronal 
activity without any predefined seed region (24–26). It creates a 
reproducible parcellation of functional brain systems, so that bias 
is reduced while the consideration of data obtained using various 
atlases is more flexible (25). Using ICA, Mantini and colleagues 
identified a collection of brain networks based on the correlation 
between BOLD signals and electroencephalography rhythms 
(22, 23). These ICA-based networks have previously been used 
as brain templates in fMRI studies (27, 28), which decomposed 
the resting-state brain networks into eight spatiotemporal 
components, as follows: the dorsal attention network (DAN), the 
central executive network (CEN), the DMN, the core network 

(CN), the self-referential network (SRN), the somatomotor 
network (SMN), the visual network (VN), and the auditory 
network (AN). To our knowledge, no meta-analysis of large-scale 
rsFC studies in schizophrenia patients has been based on brain 
network maps using ICA. We aimed to conduct the present meta-
analysis to integrate the results of these studies in schizophrenia 
using the ICA-based brain templates. Our hypothesis was that 
distributed dysconnectivity would exist within multiple resting-
state brain networks in patients with schizophrenia.

METHODS

Literature Search
Literature searches were performed by four independent reviewers 
(SLi, NH, JD, and YG) in PubMed (https://www.ncbi.nlm.
nih.gov/pubmed) and Embase (https://www.embase.com) for 
relevant original articles from January 1, 2007, to April 1, 2018. 
Earlier studies were excluded to reduce potential confounds 
due to low gradient fields or traditional analysis methods. The 
keywords included schizophrenia, rest*(-ing), connect* (-ivity), 
and functional magnetic resonance imaging, or functional MRI, 
or fMRI, or magnetic resonance imaging or MRI. In addition, the 
references within each article were carefully checked for further 
recruitment. Studies were included if they were 1) original MR 
studies evaluating seed-based rsFC of whole brain or a specified 
network to compare schizophrenia patients with HCs and 
2) studies that provided seed ROI and peak effect coordinates using 
Montreal Neurological Institute (MNI) or Talairach coordinates. 
The exclusion criteria were as follows: 1)  the field strength of 
the MR scanner was less than 1.5 T; 2)  seed ROI or peak effect 
coordinates could not be retrieved; 3)  entirely identical samples 
and seed ROIs were reported in distinct articles; or 4) seed ROIs 
or investigated networks were beyond the abovementioned eight 
brain-network templates (22, 23). Reports utilizing the same sample 
but different seed ROIs were labeled as distinct studies. With the 
exception of one publication comparing combined patients of two 
groups (schizophrenia with and without hallucinations) with HCs 
(29), publications in which different subgroups of schizophrenia 
were each compared with a single HC group were identified as 
separate studies.

Data Extraction
The included studies contained the locations and peak effects 
of significant intergroup differences in rsFC, so the data were 
extracted and coded by three reviewers (SLi, YT, and DC), as 
follows, for subsequent meta-analysis. Inconsistencies were 
resolved by a third assessor (NH).

First, coordinates of each seed ROI and peak effect of each 
significant intergroup comparison were extracted. If the seed 
ROI was a spherical area or an anatomical domain from a 
standard atlas, the region center was calculated to retrieve 
representative coordinates. For those studies targeting specified 
networks rather than whole-brain systems, coordinates of each 
peak location were also collected. All the coordinates and peak 
effects were converted to the MNI space. Second, we classified 
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the peak coordinates into eight resting-state networks based 
on previous brain-network templates (22, 23): 1) the DAN, 
primarily including the left middle and superior occipital gyri, 
parietal gyrus, inferior and superior parietal gyri, and middle 
and superior frontal gyri; 2) the CEN, involving the dorsal 
lateral prefrontal and posterior parietal cortices; 3) the DMN, 
comprising the PCC/precuneus and the bilateral inferior 
parietal, middle temporal, angular, superior frontal, and medial 
frontal gyri; 4) the CN, the key regions of which were the anterior 
cingulate, bilateral insular cortices, and dorsolateral prefrontal 
cortex; 5) the SRN, referring to the ventromedial prefrontal and 
medial orbital prefrontal cortices, gyrus rectus, and pregenual 
anterior cingulate gyrus; 6) the SMN, relating to the primary 
sensory-motor cortices, precentral and postcentral gyri, and 
the supplementary motor area; 7) the VN, encompassing the 
occipital gyrus and the temporal–occipital regions along with 
superior parietal gyrus; and 8) the AN, including the bilateral 
middle and superior temporal gyri, Heschl’s gyrus, and temporal 
pole (Supplementary Table 1). Third, peak effects were classified 
into hyperconnectivity or hypoconnectivity in the schizophrenia 
groups based on the effect direction. Hyperconnectivity was 
defined as increased rsFC (higher positivity or less negativity 
of connectivity) in schizophrenia patients compared with HCs; 
hypoconnectivity was defined as decreased rsFC (less positivity 
or higher negativity of connectivity) in schizophrenia patients 
compared with rsFC in HCs.

Multilevel Kernel Density Analysis 
and Post Hoc Tests
To generalize the results of various studies and control publication 
bias, two reviewers (WZ and BT) conducted multilevel kernel 
density analysis (MKDA) using the MKDA toolbox (https://
canlabweb.colorado.edu/fmri-resources.html) by treating the 
proportion of studies that were activated in a region rather than the 
number of peaks as the test statistic (30). In the MKDA procedure, 
the multilevel nature of the data was taken into account, and then 
the comparison indicator maps (CIMs) were weighted by study 
quality and sample size (31). As a consequence, no single CIM 
could disproportionately influence the meta-analytic results, 
while more rigorous and larger studies would contribute more to 
the results (32–35).

First, the peak coordinates of each comparison map from 
the included studies were separately convolved with a spherical 
kernel (r = 15 mm) to generate the CIMs (30). The CIMs were 
limited to a maximum value of 1 so that the values across 
brain voxels were either 1 or 0, which represented a significant 
effect or no significant effect in the neighborhood, respectively. 
Second, the proportion of the study comparison maps (activation 
maps) that indicated hyperconnectivity or hypoconnectivity 
for each network within a 15-mm radius of each voxel was 
produced by averaging the CIMs weighted by sample size and a 
discounting factor (30). Third, differences between the resulting 
density maps were computed to test for two activated effects: 
hyperconnectivity and hypoconnectivity. Therefore, activation 
maps were summarized based on the height mode or extent 
mode: the height-based activation maps reflected the activation 

of voxels that exceeded the maximum expected across the whole 
brain or within specified network by chance only 5% of the 
time; the extent-based activation maps revealed the activation of 
clusters of contiguous voxels above the maximum expected in a 
cluster of that size by chance.

To correct for multiple comparisons, a Monte Carlo 
simulation was used to establish a familywise error rate threshold 
of p < 0.05 (14, 30). A jack-knife analysis was carried out to test 
the replicability of the results. We also performed Fisher’s exact 
tests to assess whether a specific anatomical region accounted 
for more of a significant effect than other regions from the same 
network by comparing the differences in effect likelihood ratio 
(LR) among regions in the same network.

RESULTS

The search protocol of meta-analysis followed the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines (36). The literature searches and criteria 
yielded a sample of 76 studies from 70 publications (9–12, 29, 
37–101) that reported on 2,588 schizophrenia patients and 2,567 
HCs. Demographic characteristics were calculated including 
gender ratio defined as male/female (patients, 1.39; HCs, 1.20), 
and weighted mean age (patients, 31.00; HCs, 31.17). Weighted 
mean duration of illness for patients was 89.79 months, and the 
Positive and Negative Syndrome Scale (PANSS) scores were 
evaluated (total, 73.46; positive, 18.80; negative, 18.27; general, 
34.89). Fifty-five studies provided medication information, 
and antipsychotic dosages were converted into chlorpromazine 
equivalents (mean chlorpromazine dosage, 478.58 mg/day) 
(Figure 1, Supplementary Table 2).

The extracted locations and activation effects of significant 
intergroup comparisons were classified into the eight networks 
based on the ICA-based brain templates: the DAN, CEN, DMN, 
CN, SRN, SMN, VN, and AN (Supplementary Table 3). The 
MKDA showed significant hypoconnectivity between the seed 
regions and additional areas within the AN, CN, DMN, SRN, 
and SMN (Table 1, Figure 2). No hyperconnectivity was detected 
between the seeds and any other regions within the networks. 
The jack-knife analysis showed that our results were reliable.

In the AN, schizophrenia was associated with decreased 
rsFC using extent-based threshold between the seed regions 
and the left insula, which is involved in processing emotional 
and self-attributed sensory stimuli (102). These seeds included 
the regions of the bilateral middle and superior temporal gyri, 
Heschl’s gyrus, and temporal pole. Post hoc tests revealed that 
seeds in the superior temporal gyrus (STG) were more likely 
than those in the medial prefrontal cortex (MPFC) and frontal 
pole to exhibit hypoconnectivity with the left insula (LR = 11.76; 
p = 0.003).

In the CN, seed regions were defined as areas within the 
anterior cingulate, bilateral insular, and dorsolateral prefrontal 
cortices. Hypoconnectivity was observed in the patients with 
schizophrenia based on the height threshold between the seeds 
and the right STG cortex related to the production, interpretation, 
and self-monitoring of language (103). The  likelihood of 
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hypoconnectivity did not differ among anatomical regions 
within the CN (p > 0.05; Supplementary Table 4).

In the DMN, seed regions were selected in the PCC/
precuneus, bilateral inferior parietal gyrus, angular gyrus, middle 
temporal gyrus, and superior and medial frontal gyri. The 
characteristic activated effect in schizophrenia was represented 
as hypoconnectivity between the seeds and the right MPFC 
based on the height threshold and the left precuneus and anterior 
cingulate cortex (ACC) based on the extent threshold. These 
areas mainly contribute to internal mental participation in self-
referential thinking and emotion processing (104–106). Post hoc 
tests indicated that seeds in the ACC, MPFC, and medial cingulate 
cortex (MCC)/PCC using height-based threshold (LR = 7.11~10.14; 
p = 0.006~0.026) and seeds in the MPFC, medial temporal gyrus 
(MTG)/STG, MCC/PCC, cerebellum, and precuneus on the extent 
mode (LR = 5.53~11.23; p = 0.003~0.048) were more likely to 

exhibit hypoconnectivity either with the right MPFC or with the 
left ACC and precuneus (Supplementary Table 4).

In the SRN, rsFC in patients with schizophrenia was reduced 
using extent-based threshold between the right STG specialized for 
self-referential processing (107, 108) and the seeds that included 
the ventromedial prefrontal cortex, medial orbital prefrontal 
cortex, gyrus rectus, and pregenual anterior cingulate gyrus. No 
differences among anatomical seed effects within the SRN were 
found in post hoc tests (p > 0.05; Supplementary Table 4).

In the SMN, schizophrenia was linked to hypoconnectivity 
based on the extent threshold between the right precentral gyrus, 
involved in motor function, and the SMN seeds, including the 
postcentral and precentral gyri and cerebellum. Compared with 
the seeds in the cerebellum and Broca’s area, the precentral 
seeds were more likely to show hypoconnectivity with the right 
precentral gyrus (LR = 6.90; p = 0.041).

FIGURE 1 | Flowchart of literature search.

TABLE 1 | Results of the meta-analysis of resting-state functional connectivity in patients with schizophrenia.

Seed networks Effect (threshold) Effect anatomy Coordinates Voxels Max. P P

x y z

AN SZ < HC (eb) Left insula −42 0 4 7,234 0.29 <0.05

CN SZ < HC (eb) Right superior temporal cortex 42 8 −6 1,987 0.22 <0.01

DMN SZ < HC (hb) Right medial prefrontal cortex 2 52 2 103 0.26 <0.05

SZ < HC (eb) Left precuneus −2 −68 32 2,282 0.16 <0.01

SZ < HC (eb) Left anterior cingulate cortex 0 36 22 5,648 0.17 <0.05

SRN SZ < HC (eb) Right superior temporal cortex 48 8 −4 2,463 0.20 <0.01

SMN SZ < HC (eb) Right precentral gyrus 50 −6 36 1,682 0.25 <0.05

AN, auditory network; CN, core network; DMN, default mode network; SRN, self-referential network; SMN, somatomotor network; SZ, schizophrenia; HC, healthy control; eb, 

extent-based; hb, height-based; Max. P, maximum P value.

The coordinates are from the Montreal Neurological Institute space. Voxels represent the sum of 1 × 1 × 1 mm3 voxels. Max. P is the maximum statistic of the studies presenting the 

peak effect weighted mainly by sample size. All the results are significant at p < 0.05 or < .01, corrected for familywise error rate.
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DISCUSSION

The present meta-analysis systematically integrated a sum of 76 
studies reporting rsFC of seed-based whole-brain networks and 
specified networks in patients with schizophrenia based on ICA 
brain templates, and the meta-analysis consistently indicated 
that individuals with schizophrenia exhibited large-scale 
hypoconnectivity involving the auditory system (AN), task and 
cognitive control (CN), self-referential processing (SRN), episodic 
memory and self-projection (DMN), and sensory-motor function 
(SMN). These diffuse disconnections across these brain networks 
suggest a dysregulated brain network model of schizophrenia in 
which network dysfunction is associated with deficits in sensory 
and associated self-referential processing. In this model, decreased 
coordination within the SRN and DMN might play core roles in 
the malfunction of information processing, while the CN might 
act as a dysfunctional hub of regulation.

As a key component of the AN, the STG contains primary 
auditory cortex and auditory association cortical areas (109, 
110). The morphological and functional abnormalities of 
the STG may be related to the experience of auditory verbal 
hallucinations (AVHs) and being less responsive to external 
auditory stimuli during ongoing AVHs compared with when 

they are absent (111,  112). On the other hand, the SRN is 
crucial in self-referential processing per se, accounting for 
differentiating stimuli related to one’s own self from those that 
are not relevant to inner concerns. The SRN receives information 
from exteroceptive stimuli through extensive connections from 
areas associated with primary and secondary auditory sensory 
modalities (113–118), and it has a role in both bottom-up and top-
down modulation between sensory, self-referential, and higher-
order processing (119). Furthermore, resting-state networks 
display a dominant direction of causal influence from the SRN 
to the AN (28). The dysconnectivity between the SRN seeds and 
the right STG suggested that the frontotemporal pathways may 
be a neural substrate underlying dysfunction of auditory and 
language processing in schizophrenia, i.e., AVHs that are core 
symptoms of the disease (120, 121). Our findings are in accord 
with many prior structural and functional neuroimaging studies 
of hallucinations (121), leading to cognitive models that have 
implicated disrupted frontotemporal pathways as a potential 
cause of AVHs and the failure to appropriately monitor inner 
speech generation.

Decreased rsFC was present in patients with schizophrenia 
between the DMN seeds and the regions within the right 
MPFC and left ACC, which is in line with the results of the 
DMN regarding the within-network connectivity by Dong 
and colleagues (17). Reduced synchronized neuronal activity 
within the DMN may support the dysfunctional pattern of 
schizophrenia in self-related processes relevant to emotional 
processing, self-referential mental activity, and the recollection 
of prior experiences (122). The reduced connectivity across 
the DMN, salience network (SN), and central executive 
network (CEN) further supports a triple network model in 
psychopathology (17). Such an imbalanced system of networks 
fails in dynamic regulation across salience processes, internal 
mental processes, and goal-relevant external stimuli (123), which 
is related to multiple phenomenological domains and the total 
symptom burden of schizophrenia (124, 125). Moreover, our 
analysis revealed hypoconnectivity between the seeds and the 
left precuneus, which was beyond the extent of hypoconnectivity 
described in the DMN by Dong and colleagues (17). This might 
be due to differences in brain-parcellation modes. It should be 
noted that the DMN is also thought to be related to AVHs (126, 
127), and the anatomical regions of the DMN and SRN partially 
overlap. However, the SRN exerts a strong directional causal 
influence over the DMN (28), and the SRN is represented by 
distinct power spectra of electroencephalography (23) and spatial 
patterns of the BOLD signal from the DMN (23, 27, 28). Future 
research designs and phenomenological subcategorizations of 
individuals with AVHs might facilitate discrimination of different 
neurocognitive mechanisms (127).

Decreased mutual cross-network effects were exhibited 
between the AN involving the STG and the CN involving the 
insula, suggesting weakened synchronization between resting-
state networks. Our results are in line with previous structural 
(128, 129) and functional (130, 131) MR studies in patients with 
schizophrenia that reported a direct association between the 
indices of auditory cortex connectivity and psychotic symptoms. 
Acting as a hub within the CN, the insula is not only connected 

FIGURE 2 | Meta-analysis of abnormal resting-state function connectivity 

(rsFC) in schizophrenia.
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with the wide array of regions processing external sensory 
stimuli but also responsible for interoceptive awareness of the 
body’s internal state, which is uniquely distinct from the external 
environment. Disrupted interoception processing within the 
insula would be expected to distort the evaluation of stimuli 
and boundaries of the self, resulting in allowing internal sensory 
information to be attributed to an external source (102). Taken 
together, our results suggest an etiology of AVHs in schizophrenia, 
leading to dysfunction in distinguishing an internally generated 
interoception from an external sensory experience (132, 133).

We also detected hypoconnectivity between the SMN seeds 
and the right precentral gyrus, which implies diminished activity 
within this network. Compared with HCs, schizophrenia patients 
showed limited connectivity in areas more strongly related to 
motor functions, such as the lateral M1 with the supplementary 
motor and medial motor areas (134). In addition, reduced cortical 
volume and attenuated activation of the precentral gyrus have been 
associated with motor-related cognitive dysfunction and impaired 
behavioral performance in the emotional face task (134–136), 
which is correlated with the clinical severity of schizophrenia. 
Although these findings corroborate the dysconnectivity 
hypothesis of schizophrenia, there are also patterns of increased 
connectivity within extensive motor networks of the patients 
(134, 137) and ultrahigh-risk youths (138). Despite the mixed 
findings, our analysis could be beneficial for better understanding 
of the relationships across the motor systems.

Further, we analyzed the data with other two organizations 
of resting state networks (20, 139) to test the repeatability of 
results (Supplementary Table 5). The hypoconnectivity in the 
DMN is consistent with our results between the seeds and the 
left precuneus/ACC using Yeo’s and Power’s templates, which 
makes internal mental participation in self-referential thinking 
and emotion processing more convincing (122). We also found a 
similar hypoconnectivity within the SMN in the right precentral 
gyrus using Yeo’s template, instead of the left postcentral gyrus 
with Power’s template; changes in different brain regions 
within the same network may reflect the extensiveness of the 
dysconnectivity in motor system. Meanwhile, we detected 
the decreased connectivity across the SMN in schizophrenia in 
the left ACC both in Yeo’s and Power’s network organizations. 
This might be due to different network classifications, in which 
our template included brain regions relating to auditory and 
visual systems; and functional alternations in the ACC have been 
found to be associated with attention and sensorimotor processes 
in patients (140, 141). Using Yeo’s and Power’s templates, we found 
extensive hypoconnectivities in individually defined networks. 
The hypoconnectivities between seeds in the limbic network (LN) 
and left STG/left inferior parietal gyrus were detected using Yeo’s 
templates, which is consistent with findings in the frontoparietal 
network (FPN) and DMN in Power’s classification. We also 
found decreased connectivity in the ventral attention network 
(VAN) between the seeds and the right middle temporal cortex 
using Yeo’s template rather than ours and Power’s. In addition 
to common network definitions including the DMN, SMN, 
DAN, and FPN, we had some findings in distinctive network 
definitions using Power’s template. The hypoconnectivities in 
the left insula within the cingulo-opercular network (CON) and 

the left parahippocampal gyrus within unknown network (UnN; 
mostly related to the memory retrieval process) were detected, 
and the findings in the left insula are consistent with our findings 
in the AN, while the parahippocampal gyrus participated in the 
key process of memory (142).

Our study reflected decreased rsFC with affected anatomic 
regions including left ACC, insula, precuneus and right STG, 
MPFC, and precentral gyrus. Previous large meta-analyses 
in cortical and subcortical changes using MRI (143, 144) have 
revealed structural alternations including widespread thinner 
cortex and smaller surface area in frontal and temporal regions, 
as well as reduced volume in the hippocampus, which is mostly 
consistent with our functional findings in the CN, SRN, and part 
of the DMN, while changes in precuneus and some subcortical 
regions are not consistent with our results in other networks. 
Moreover, we detected different performance of the left and 
right hemispheres, which was not shown in structural changes. 
These overlaps and diversities of brain alternations in structure 
and function existed in different networks and might suggest 
different pathophysiological process in different networks 
affected by schizophrenia.

Although our findings support the dysconnectivity hypothesis 
of schizophrenia (145) and identify regions associated with the 
pathogenesis of the disease, limitations should be considered 
in three perspectives. First, the exclusion of negative findings 
may have biased the results. This should motivate studies using 
improved methodology beyond MKDA, thereby both positive and 
negative findings could be matched. Second, the network spatial 
maps used in our analysis did not give consider the epencephalon, 
despite its potential role in the cerebello-thalamo-cortical circuit 
in psychosis (134, 146). A new parcellation template would 
benefit from more comprehensive network mapping. Third, we 
did not test whether the results are independent from the different 
types of schizophrenia patients due to limited number of studies 
included in the context of each brain network. Analysis with 
subtypes of schizophrenia would be a strong supplement, and 
more studies of specific networks will be needed in the future.

In conclusion, the present meta-analysis provides insight into 
rsFC within multiple brain networks based on ICA templates 
in schizophrenia and suggests diffuse hypoconnectivities as 
a dysregulated brain network model of the disease. Future 
systematic analyses including more homogenous samples are 
demanded, in view of the relationships across brain networks, 
and correlations between the levels of connectivity and clinical 
severity of schizophrenia.
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