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ABSTRACT

Dyson orbitals, their electron-binding energies, and probability factors provide descriptions of electrons in molecules that are experimen-
tally verifiable and that generalize qualitatively useful concepts of uncorrelated, molecular-orbital theory to the exact limit of Schrödinger’s
time-independent equation. Dyson orbitals are defined as overlaps between initial, N-electron states and final states with N ± 1 electrons
and therefore are useful in the prediction and interpretation of many kinds of spectroscopic and scattering experiments. They also are
characteristic of N-electron initial states and may be used to construct electron densities, one-electron properties, and total energies with cor-
related Aufbau procedures that include probability factors between zero and unity. Relationships with natural orbitals, Kohn–Sham orbitals,
and Hartree–Fock orbitals facilitate insights into the descriptive capabilities of Dyson orbitals. Electron-propagator approximations that
employ the Dyson quasiparticle equation or super-operator secular equations enable direct determination of Dyson orbitals and obviate the
need for many-electron wavefunctions of initial or final states. Numerical comparisons of the amplitudes and probability factors of Dyson
orbitals calculated with several self-energy approximations reveal the effects of electron correlation on these uniquely defined, one-electron
wavefunctions.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0016472., s

INTRODUCTION

Orbital terminology continues to influence the formulation and
identification of problems in molecular science. Whereas many-
electron wavefunctions suffice to determine quantities that are mea-
sured in experiments, they are too complicated to invoke a quali-
tative discussion of all but the simplest molecules or atoms. Such
in discourse is an indispensable part of the reasoning by analogy1

that has propelled the dialectic between chemical-bonding theory
and experimentation since the 19th century. Reduction of the infor-
mation in many-electron wavefunctions being necessary for this
purpose, one-electron wavefunctions or energies customarily suf-
fuse discussions that anticipate subsequent experiments or calcula-
tions. These terms occupy a central place in the basic curriculum
that students attempt to master before undertaking research. They
are deeply embedded in the communication of discovery, even as
deliberations continue on their ultimate meaning or the possibility
of their experimental verification.2,3 For many scientists, orbital ter-
minology functions chiefly as a mnemonic device for the recall of

data or construction of paradigms. Orbitals, pragmatically invoked
in these ways, serve an inductive purpose: to facilitate the recog-
nition of patterns in molecular structure, properties, energetics, or
reactivity.4,5

Orbital concepts have been indispensable in the design and exe-
cution of practical, quantum-chemistry algorithms. The motivation
of developers is utilitarian: these concepts are introduced only as
means to improving standards of accuracy and efficiency. Orbitals
underlie construction of many-electron wavefunctions,6,7 propaga-
tors,8 and density matrices.9–11 They are an essential instrument
in Kohn–Sham theory for the optimization of electron densities.12

Orthogonalized orbitals make Hamiltonian matrices sparser.13,14

Canonical, closed-shell, Hartree–Fock orbitals simplify equations
of many-body theory.15 Natural orbitals assist in the recognition
of important, correlation effects.9–11,16 Localized orbitals can eco-
nomically capture the essence of short-range, electron correlation.17

Orbital spaces define rules for the selection of configurations in
variational calculations.7 Propitious orderings of orbitals facilitate
employment of density-matrix-renormalization-group methods.18
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TABLE I. Comparison of Hartree–Fock and Dyson-orbital concepts.

Concept Hartree–Fock picture Dyson picture

One-electron equation (h1 + J-K)ϕp = εp ϕp [h1 + J-K + Σ(εp)]ϕp = εp ϕp

Electron-binding energy Koopmans εp Correlated εp
Probability factor Pp = 1 Pp = [1 − δ ⟨ϕp|Σ(εp)ϕp⟩/δE]−1

≤ 1

Dyson spin-orbital ϕp Pp
1/2 ϕp

Density matrix, ρ(x,x′) Σi
occupied ϕi(x)ϕi

∗(x′) Σp
e detachments Pp ϕp(x)ϕp

∗(x′)

Electronic energy, ⟨H⟩ 1/2Σi
occupied (h1 ii + εi) 1/2Σp

e detachments Pp (h1 pp + εp)

Electronic density, ρ(x) Σi
occupied |ϕi(x)|

2 Σp
e detachments Pp|ϕp(x)|2

E− detachment intensity, T α|⟨ϕi|Top χ
continuum⟩|2 α Pp|⟨ϕp|Top χ

continuum⟩|2
E− number sum rule N = Σi

occupied Pi N = Σp
e detachments Pp

In each of these examples, orbitals are servants of a reduction-
ist project: to deduce molecular properties from the principles of
quantum mechanics.

In these inductive and reductive activities, orbitals are regarded
as means to an end. They serve merely as aids to pattern recogni-
tion or to quantitative prediction. They enable description of phys-
ical reality, but they are not part of that reality. Despite the utility
of orbital concepts in reasoning by analogy, constants of motion
of many-electron Hamiltonians and their wavefunctions are the
preferred criteria for assigning spectra.

Can orbitals also be ends? Can the amplitudes and energy of an
orbital be verified by an experimental measurement and a corrob-
orating calculation based on reductionist principles? Can orbitals
be uniquely defined for all molecular systems without sacrificing
their ability to reveal relationships between physical and chemical
properties?

Dyson orbitals, their probability factors and associated,
electron-binding energies provide affirmative answers to these ques-
tions. Dyson-orbital concepts are uniquely defined in terms of
many-electron wavefunctions without reference to any mean-field
model. Amplitudes of Dyson orbitals are experimentally verifiable.
These one-electron wavefunctions are characteristic of transitions
between states in which an electron is removed or added, but they
also suffice to construct electron densities and one-electron-density
matrices of individual states. They provide opportunities to analyze
the properties of many-electron systems in terms of one-electron
constituents while rigorously accounting for the effects of electron
correlation. Exact, correlated total energies can be partitioned into
contributions from Dyson orbitals, thus enabling the analysis of
molecular shapes and other qualitative features of potential energy
surfaces in terms of one-electron energies. Dyson-orbital concepts
are completely compatible with standard, probabilistic interpreta-
tions of quantum mechanics, Pauli’s exclusion principle, and exact
descriptions of electron interaction.

Definitions of Dyson spin-orbitals and their probability fac-
tors begin this Perspective. The role of Dyson spin-orbitals in the
interpretation of transitions between initial and final states for a
variety of spectroscopic and scattering experiments follows. Rela-
tionships between Dyson spin-orbitals and the properties of ini-
tial states are discussed, and examples of the effects of electron
correlation on Dyson spin-orbitals are reviewed. Electron-density

differences and their connections to Dyson spin-orbitals provide
an alternative way to analyze changes in electronic structure that
accompany electron detachment or attachment. Comparisons with
natural and Kohn–Sham spin-orbitals are made. A direct calcu-
lation of Dyson spin-orbitals may be achieved without many-
electron wavefunctions through solutions of the Dyson quasiparticle
equation of electron-propagator theory, an approach to electronic
structure that reveals relationships between total energies, density
matrices, and one-electron properties. From this foundation, cor-
related Aufbau concepts, summarized in Table I, that improve on
molecular-orbital doctrines emerge, with rules for the construction
of electron densities from Dyson spin-orbitals and their probabil-
ity factors. The advantages of Dyson and localized spin-orbitals are
compared, as are alternative orbital concepts that pertain to initial
states and electron binding energies. The mapping of the eigen-
values of the Dyson quasiparticle equation to energies of electron
detachment and attachment is reviewed. Residues of the electron
propagator are connected to initial-state density matrices. Localiza-
tion in temporally evolving Dyson orbitals is considered. Perturba-
tive approaches to Dyson spin-orbitals and their electron-binding
energies are discussed in terms of the Dyson quasiparticle equa-
tion and the equivalent super-operator secular equation. Alternative,
many-body approaches that involve the evaluation of many-electron
wavefunctions are discussed. Numerical results on molecules and
anions display the effects of electron correlation on Dyson spin-
orbitals. The section titled Conclusions considers how Dyson-
orbital concepts improve on previous, molecular-orbital antecedents
and provide a deeper understanding of molecular electronic
structure.

DYSON SPIN-ORBITALS AND THEIR PROBABILITY
FACTORS

Dyson spin-orbitals of electron detachment and attachment
from an initial, N-electron state (ΨI) to a final state with N ± 1
electrons (ΨF) are defined by the following equations:

φ
Dyson
FI (x1) ≙√N ∫ Ψ

∗

F (x2, x3, x4, ..., xN)
×ΨI(x1, x2, x3, ..., xN)dx2dx3dx4...dxN , (1)

J. Chem. Phys. 153, 070902 (2020); doi: 10.1063/5.0016472 153, 070902-2

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics

PERSPECTIVE scitation.org/journal/jcp

φ
Dyson
IF (x1) ≙√N + 1∫ Ψ

∗

I (x2, x3, x4, ..., xN+1)
×ΨF(x1, x2, x3, ..., xN+1)dx2dx3dx4...dxN+1, (2)

where xw is the space-spin coordinate of electron w. Integrations
over the coordinates of N − 1 or N electrons occur in the two def-
initions.8,19 Whereas the usual, overlap integral involves two wave-
functions with the same number of electrons and has a single value,
the present integrations yield an overlap function between states
with different numbers of electrons. The values of the Dyson spin-
orbitals at a specific value of x are known as generalized-overlap
or Feynman–Dyson amplitudes. (Concepts introduced by the pio-
neers of quantum electrodynamics have been applied in many fields,
including quantum chemistry.20)

The norms of the Dyson spin-orbitals are called pole strengths,
intensity factors, or probability factors (P) and may vary between
zero and unity such that

0 ≤ PIF ≙ ∫ dx ∣φDysonIF (x)∣2 ≤ 1. (3)

Normalized, Dyson spin-orbitals with the usual (i.e., unity) normal-
ization convention, ϕDysonIF (x), can be written as a product of a Dyson
spin-orbital and the inverse, square root of the probability factor,

ϕ
Dyson
IF (x) ≙ P−0.5IF φ

Dyson
IF (x). (4)

The squaredmodulus of the overlap integral betweenΨI and an anti-
symmetrized product of a spin-orbital with ΨF in Eq. (1) (i.e., for
electron detachments) is maximized when that spin-orbital equals
the normalized Dyson spin-orbital.21 A similar relationship is valid
for the initial and final states of Eq. (2), which pertains to electron
attachments.

Exact probability factors in systems with electron interaction
are less than unity for two reasons. First, when spin-orbitals are
allowed to relax in calculations on wavefunctions of final states,
their overlaps with their counterparts in the initial states are no
longer unity, even after they are maximized through a singular-value
decomposition22 (see the discussion of density-difference matrices
for Δ-self-consistent-field23 calculations below). Relaxation effects
on Dyson spin-orbitals and their electron-binding energies must be
defined in terms of spin-orbital optimization procedures for ini-
tial and final states. For a given electron binding energy, at least
one of the states must have an odd number of electrons. Therefore,
relaxation effects usually are defined in terms of closed-shell,24,25

unrestricted26,27 or restricted, open-shell28 Hartree–Fock Ansätze.
For transitions that involve one or two states in which there is no
dominant Slater determinant, the definition of orbital relaxation can
become considerably more complicated.

Second, electron correlation introduces Slater determinants
into the initial-state and final-state wavefunctions that may differ
by more than one spin-orbital, even when the same set of spin-
orbitals is used to construct both wavefunctions. Consider, for exam-
ple, a closed-shell, Hartree–Fock Slater determinant in the initial
state that differs by only one canonical spin-orbital from a frozen-
orbital, single-vacancy Slater determinant (i.e., the approximation
that follows fromKoopmans’s identity29) in the final state. The same,
initial-state Slater determinant differs by three spin-orbitals from a

Slater determinant that is singly substituted (i.e., having a promo-
tion from an occupied to a virtual spin-orbital) with respect to the
one used to describe the final state in the Koopmans approxima-
tion. (Such Slater determinants are called two-hole, one-particle or
2h1p configurations of spin-orbitals and are also known as single
shake-up determinants.) The integral in Eq. (1) yields a normalized,
canonical, Hartree–Fock spin-orbital in the first case, but the integral
vanishes in the second case. Configuration interaction in the initial
state can also be responsible for probability factors that are less than
unity even when the final state has only a single Slater determinant
(vide infra).

Because any basis of spin-orbitals can be used to construct
full configuration-interaction wavefunctions, it is possible to adopt
a terminological convention that considers orbital relaxation to
be a kind of correlation effect. This convention will be employed
henceforth, and reference to relaxation effects will be minimized
unless the analysis of Δ-self-consistent-field23 calculations is under
consideration.

DYSON SPIN-ORBITALS AND TRANSITION
INTENSITIES

Sudden transitions30 between an initial state and an N-electron,
final state constructed as an anti-symmetrized product of a state with
N − 1 electrons and an orthogonal, continuum spin-orbital, χ, have
probabilities, Tsudden

IF , that are proportional to probability factors and
the squared moduli of transition integrals between a normalized,
Dyson spin-orbital and χ,

T
sudden
IF αPIF∣∫ χ

∗(x)T̂ϕDysonIF (x)dx∣2. (5)

Probability factors therefore provide relative intensities in the sud-
den approximation when two or more transition integrals may be
assumed to be equal, that is,

Tsudden
IF

Tsudden
IF′

≙
PIF

PIF′
. (6)

This approximate proportionality has been employed for assign-
ments of principal and shake-up final states in photoelectron spectra
and strong-field ionization experiments.31–33

Early studies of molecular photoionization intensities adopted
a plane-wave approximation to χ.34–38 The sudden approximation
is most valid in photoionization experiments that involve radiation
of high energy with respect to electron-binding energies such that
the ejected electron’s spin-orbital has minimal overlap with spin-
orbitals that are at least partially occupied in the initial state.19,39–42

Under such circumstances, the electric-dipole approximation to the
transition operator, T̂, may not suffice for the quantitative prediction
of transition intensities and therefore contributions from magnetic-
dipole, electric-quadrupole, and other terms may be needed.43

Despite this limitation, calculations that employ only electric-
dipole-matrix elements between orthogonalized plane-waves and
Dyson orbitals expressed in terms of nuclear-centered, Gaussian
functions have proven useful in the interpretation of photoelec-
tron spectra.32,44–48 Photoionization cross sections that account for
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post-electric-dipole effects have been reported for several molecules
in the gas phase.49 A recent, alternative approach employs the
electric-dipole operator and a non-orthogonalized, Coulomb wave
in which the latter function’s central, nuclear charge becomes an
adjustable parameter.50 In calculations where the initial state is
an anion, a plane-wave description of the photoelectron is more
appropriate.51

Information that pertains to Dyson spin-orbitals may be
obtained from electron momentum spectroscopy (EMS), wherein
collisions between a gas-phase, target molecule and an electron
result in production of two electrons.52–56 In EMS, momenta of
electrons in the target may be inferred from the momenta of the
entering electron and the departing pair of electrons. After invok-
ing the plane-wave, impulse approximation, the expression for cross
sections reads

σEMSα∫ dΩ ∣φDyson(k)∣2, (7)

where an average over rotations is performed in the integral.
EMS provides experimental data that may be compared directly
with calculations of the squared moduli of Dyson spin-orbitals
obtained from correlated, ab initio, many-electron wavefunc-
tions57–60 or electron-propagator techniques.61–66 These calcula-
tions have demonstrated the importance of electron correlation in
describing the diffuse regions of Dyson spin-orbitals. EMS has been
extensively applied to molecules of broad chemical interest, e.g.,
glycine, and to testing localized and delocalized orbital concepts of
chemical bonding.67–69

Dyson spin-orbitals in momentum space can be probed by
Compton scattering, wherein an incoming photon yields an out-
going photon and an electron.70,71 After making the reasonable
assumption that a plane wave describes the ejected electron, partial-
triple-differential-scattering cross sections become proportional to
factors of the form shown in Eq. (5). Matrix elements are propor-
tional to Fourier transforms (i.e., the momentum-space represen-
tations) of Dyson spin-orbitals. The electron-momentum density is
proportional to the total, triple-differential-scattering cross section,
which is obtained by summing over its partial counterparts for each
final state.

In Penning-ionization, electron spectroscopy,72 a collision
between an excited state of He and a molecule yields a continuum
electron and a molecular cation,73–76

M + He∗ →M
+ + He + e

−. (8)

The helium atom is a convenient choice, for its excitation energy
exceeds the valence-ionization energies of typical molecules. Cross
sections obtained with a given kinetic energy of the ejected elec-
tron are proportional to the squared moduli of exchange-electron-
repulsion integrals that involve a Dyson spin-orbital, a continuum
function, and the 2s and 1s orbitals of the helium atom. These
data constitute a sensitive probe of the diffuse regions of Dyson
spin-orbitals.

An interpretation of angle-resolved, photoelectron spectra77

(ARPES) that assumes the sudden approximation for final states,
the uniformity of the electromagnetic vector-potential (A), neglect
of Auger effects, and a plane-wave (eik

∗
r) description of the

emitted electron yields a simple relationship between transition

probabilities (WIF) and Fourier transforms of Dyson spin-
orbitals.78,79 This proportionality may be expressed as

WIFα∣A ⋅ k∣2∣φDyson(k)∣2. (9)

Provided that the four assumptions are valid, ARPES intensities cor-
respond to cuts of the modulus of the momentum representation of
a Dyson spin-orbital, with the radius of the cut depending on the
momentum vector of the photoelectron. Experiments on molecules
oriented by absorption on surfaces have been able to identify various
kinds of σ and π orbitals by comparing the observed and predicted
maps of intensities.80

Interpretations of ionization spectroscopy that are founded
on the squared moduli of Dyson spin-orbitals may safely ignore
any loss of phase information. This deficiency in the character-
ization of Dyson spin-orbitals can be overcome in some cases
by taking account of the size or symmetry of a molecular tar-
get with polarized light.81 After making some reasonable assump-
tions on the spatial extents of the Dyson spin-orbitals, it is possible
to construct iterative algorithms that yield phase information.82 A
general approach, known as orbital tomography, employs phase-
retrieval algorithms used in coherent-diffraction imaging and has
been applied to molecules oriented by absorption on surfaces.83–85

Dyson spin-orbitals that pertain to the lowest, ionization ener-
gies of weakly bound, organic molecules absorbed on metallic sur-
faces have been characterized, and phase patterns that result in
bonding or antibonding relationships between nuclei have been
inferred.

Tomographic imaging of Dyson spin-orbitals can be realized
via field ionization of aligned molecules in the gas phase followed
by re-collision of the emitted electron with the target induced by
laser fields.86 The resulting, oscillating dipoles emit high-harmonic
radiation whose amplitude, phase, and polarization may be mea-
sured. A Fourier transform of the product of the dipole operator
and theDyson spin-orbital of the lowest, ionization energy is thereby
determined.

The variety of techniques and the abundance of chemical appli-
cations that are described by Dyson spin-orbitals are evidence of
the relevance of this concept in understanding molecular electronic
structure. In each class of experiments, information on transitions
from a selected initial state to a variety of final states can, in principle,
be aggregated to characterize an initial state’s properties.

DYSON SPIN-ORBITALS, ELECTRON DENSITIES,
AND PROPERTIES

In addition to describing bound-continuum, transition inten-
sities, Dyson spin-orbitals also provide information about initial-
state properties, such as the electron density. The one-electron,
reduced-density matrix of an initial, N-electron state,9

γI(x, x′) ≙ N ∫ dx2dx3dx4 . . . dxNΨI(x, x2, x3, . . . , xN)
×Ψ

∗

I (x′, x2, x3, . . . , xN), (10)

after insertion of a complete set of final states with N − 1 electrons
and employment of Eqs. (1) and (4) reads

J. Chem. Phys. 153, 070902 (2020); doi: 10.1063/5.0016472 153, 070902-4

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics

PERSPECTIVE scitation.org/journal/jcp

γI(x, x′) ≙∑
F

′

φ
Dyson
F (x)[φDysonF (x′)]∗

≙∑
F

′

PFϕ
Dyson
F (x)[ϕDysonF (x′)]∗. (11)

(The initial-state indices of the Dyson spin-orbitals, normalized,
Dyson spin-orbitals, and probability factors have been omitted for
brevity; note that the primed summation includes final states with N
− 1 electrons and no final states with N + 1 electrons.) The expec-
tation value of a one-electron operator, O1, may be resolved into its
normalized Dyson spin-orbital components such that

⟨O1⟩ ≙∑
F

′

PF⟨ϕDysonF ∣ O1ϕ
Dyson
F ⟩. (12)

The initial state’s electron density at space-spin coordinate x, ρI(x),
likewise consists of Dyson spin-orbital contributions in the expres-
sion

ρI(x) ≙ γI(x, x) ≙∑
F

′

PF ∣ϕDysonF (x)∣2. (13)

Probability factors simultaneously convey information about tran-
sitions and initial states after integrating over all space and spin
coordinates to obtain the sum rule,

∫ dxρI(x) ≙ N ≙∑
F

′

PF . (14)

In general, the summations over F may comprise principal, final
states with probability factors near unity (e.g., cases where Koop-
mans’s identity29 is qualitatively valid) and copious correlation final
states (e.g., shake-ups) with low probability factors. The Dyson spin-
orbitals constitute an over-complete, non-orthogonal set of one-
electron functions. Each term in the summation over F is physically
meaningful and has potential utility in interpretations of chemical
bonding that assume knowledge of γ or ρ. (Examples include the
quantum theory of atoms in molecules87 and natural-bond-order
theory.88) Many qualitative indices of electronic structure, including
atomic charges and bond orders, may be decomposed into Dyson-
spin-orbital components. Relationships between frontier-molecular
orbitals and patterns of chemical reactivity1,4,5,89,90 (such as elec-
trophilicity and nucleophilicity) may be generalized from their orig-
inal, uncorrelated context by employing Dyson spin-orbitals that
incorporate the effects of electron correlation and that are sub-
ject to experimental examination. Dyson spin-orbitals of atoms and
molecules decay asymptotically (i.e., as R → ∞) according to the

function RBe−
√

2ωR, where ω is the corresponding ionization energy

and B ≙ (2ω)− 1
2 − 1.91,92

For an uncorrelated initial state, onemay, in accord with Pauli’s
requirement of anti-symmetrized wavefunctions for many-electron
systems, assign N electrons to N spin-orbitals in the N! ways that
are characteristic of a Slater determinant. In this limit, there is no
ambiguity in the role of the occupied spin-orbitals in assembling the
electron density: the probability that an electron is assigned to one
of these spin-orbitals is unity. The spin-orbital contributions to one-
electron properties, such as kinetic energy, are equally definite.

Once electron-interaction terms appear in the Hamiltonian,
such certainty is abolished. One cannot describe one-electron

properties that depend on off-diagonal elements of the one-electron,
reduced-density matrix (e.g., kinetic energy) of an N-electron sys-
tem with only N spin-orbitals. (For properties that depend only on
the diagonal elements of the one-electron, reduced-density matrix,
the electron density suffices.) The electron density and the one-
electron, reduced-density matrix now have contributions from the
much larger set of Dyson spin-orbitals that correspond to final states
with N − 1 electrons. The squared modulus of a given Dyson spin-
orbital contributes a quantity of electron density equal to its proba-
bility factor; the sum of these contributions equals N. These factors
may be understood as summable, transition probabilities associated
with their corresponding, Dyson spin-orbitals. If all the matrix ele-
ments of T̂ in Eq. (5) were equal, transition intensities that pertain
to final states with N − 1 electrons would be proportional to these
probabilities. The predicted photoelectron spectrum would pro-
vide a definite, albeit probabilistic, mapping between intensities and
spin-orbitals.

WEAK AND STRONG CORRELATION

The weak-correlation limit for a many-electron system occurs
when one-electron terms in a Hamiltonian dominate the two-
electron terms. In such cases, the N-electron, initial state approaches
a single, Slater determinant built with spin-orbital eigenfunctions
of the one-electron Hamiltonian. Final states with N ± 1 electrons
become Slater determinants that differ from that of the initial state
only by annihilating an electron in a hitherto occupied spin-orbital
or by adding an electron to a hitherto unoccupied spin-orbital.
Dyson spin-orbitals equal these eigenfunctions and their proba-
bility factors equal unity. There are only N non-vanishing terms
in Eq. (13). Transitions to other, final states with more than one
change in spin-orbital occupation number with respect to the initial
determinant have vanishing probability factors.

The Fock operator generated in a stable, closed-shell, Hartree–
Fock calculation provides an example of a model Hamiltonian
without correlation. The absence of correlation yields Dyson spin-
orbitals that are equal to canonical Hartree–Fock spin-orbitals. For
this model Hamiltonian, there are only N non-vanishing terms in
Eqs. (11)–(14).

For typical, closed-shell molecules, perturbative corrections
associated with the introduction of the Møller–Plesset fluctuation
potential93 produce Dyson spin-orbitals for the lowest ionization
energies and largest electron affinities that strongly resemble canon-
ical, Hartree–Fock spin-orbitals, but with probability factors near
0.9.94–97 The deviation of the probability factor from unity is a conse-
quence of electron correlation. In some cases, such consequences can
be confined to the initial or final state. In H2, for example, expansion
of the full-configuration-interaction wavefunction in terms of the
exact spin-orbitals of H2

+ produces a dominant determinant with
a doubly occupied 1σg orbital. The Dyson spin-orbital is composed
chiefly of the same 1σg spin-orbital with minor, interfering contri-
butions from higher, nσg (n > 1) spin-orbitals of H2

+ that originate
from single replacements (i.e., 1σgnσg configurations) with respect
to the dominant determinant. The probability factor is less than
unity because of the presence of determinants without the 1σg orbital
in the H2 wavefunction. Even in the absence of electron correlation
in one of the states, probability factors can deviate from unity.
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Copious, correlation states with low probability factors appear
at higher energies, and their Dyson spin-orbitals may have contribu-
tions from more than one canonical, Hartree–Fock spin-orbital.31

This trend underlies the manifest breakdown of the uncorrelated,
molecular-orbital picture mentioned above in the inner-valence-
energy region of photoelectron spectra and has been extensively
documented by experiment and calculation.31 Quasi-degeneracy
between occupied, inner-valence, spin-orbital energies and the sum
of two, occupied, outer-valence, spin-orbital energies minus a low-
lying, virtual, spin-orbital energy (i.e., a zeroth-order, shake-up
energy) typically foreshadows the appearance of numerous correla-
tion states that have no clear counterpart at the uncorrelated, frozen-
orbital (i.e., Ref. 29) level of theory. In such cases, correlation effects
are much stronger in final states than in initial states and the Koop-
mans picture is obliterated. Despite this complication, every final
state has its Dyson spin-orbital and probability factor. Schemes for
efficiently performing summations over these final states to produce
densities or properties are discussed below.

For strongly correlated, initial states, even electron-binding
energies with the smallest, absolute values may be accompanied
by probability factors that are far from unity. For example, the
1S state of the carbon atom in a 2p complete-active-orbital space
(with 1s and 2s orbitals in an inactive core) has the following,
multi-configurational wavefunction:

Ψ ≙ 3−0.5(∣∣⋯ψ1αψ−1β∣∣ + ∣∣⋯ψ−1αψ1β∣∣ − ∣∣⋯ψ0αψ0β∣∣), (15)

where the active, atomic spin-orbitals in the three Slater determi-
nants have ml and ms subscripts. A single, Slater determinant suf-
fices to describe each of the six, degenerate, 2P states of the carbon
cation. For a frozen, active-orbital space, each of the six, normalized,
Dyson spin-orbitals equals one of the atomic spin-orbitals, each of
the probability factors equals one third and the sum of probabil-
ity factors equals the number of active electrons, two. Even in the
absence of electron correlation in the final states, probability factors
can be much lower than unity. Electron correlation in initial states
also can underlie the appearance of correlation final states that are
dominated by two-hole–one-particle configurations of spin-orbitals
with respect to an initial state’s reference determinant. For the 1S
state of the beryllium atom in a 2s-2p, complete-active space, the
wavefunction reads

Ψ ≙ λ∣∣⋯ψsαψsβ∣∣ + (1 − ∣λ∣23
)
0.5

× (∣∣⋯ψ1αψ−1β∣∣ + ∣∣⋯ψ−1αψ1β∣∣ − ∣∣⋯ψ0αψ0β∣∣). (16)

The sums of probability factors for the 2S and 2P final states are 2|λ|2

and 2(1 − |λ|2), respectively. The 2P states are shake-ups with respect
to the closed-shell, 2s2, reference configuration and the correspond-
ing Dyson spin-orbitals are 2p functions. Intensity ratios therefore
have the potential to reveal the strength of electron correlation (i.e.,
the deviation of |λ| from unity) in the reference state.

DYSON SPIN-ORBITALS AND ELECTRON-DENSITY
DIFFERENCES

The squared modulus of a Dyson spin-orbital equals the
electron-density difference between initial and final states only in

the uncorrelated limit.98 Therefore, Fukui functions99 (postulated,
electron-density derivatives typically approximated by differences
between N-electron and N ± 1-electron ground states) and electron
densities (i.e., squared moduli) associated with Dyson spin-orbitals
are equivalent at the frozen-orbital, Hartree–Fock level of theory.
Higher levels of theory yield Dyson spin-orbitals whose norms are
less than unity. In perturbative approaches that employ the Møller–
Plesset fluctuation potential,93 the largest term in the electron-
density difference for a Koopmans-like final state is the squared
modulus of the Dyson spin-orbital.100–102 Probability factors, being
the integrated, squared moduli of the Dyson spin-orbitals, therefore
are indices of the importance of electron correlation in describing
final states.

Because the squared modulus of a Dyson spin-orbital is always
non-negative, it cannot describe accumulation of electron density
when final states have N − 1 electrons or depletion of electron den-
sity when final states have N + 1 electrons. (Such results imply Fukui
functions with negative values.103) To describe such effects, it is nec-
essary to procure differences of electron densities between initial
and final states. When the difference of one-electron reduced den-
sity matrices between initial (N electron) and final (N ± 1 electron)
states is diagonalized, the absolute value of the sum of the eigenval-
ues equals unity, but the individual eigenvalues may be positive or
negative. For a closed-shell molecule where Koopmans’s identity is
qualitatively valid (with the Dyson spin-orbital being well approx-
imated by a canonical, Hartree–Fock spin-orbital), there will be an
eigenfunction of the density-difference matrix (with an eigenvalue
close to unity) that closely resembles the Dyson spin-orbital. For a
simple shake-up final state with a low probability factor in which
even a single, configuration-state function (i.e., a symmetry-adapted
combination of Slater determinants) with three open shells domi-
nates, there may be little resemblance between the squared modulus
of the normalized Dyson spin-orbital and the difference of electron
densities.

Natural-ionization spin-orbitals are eigenfunctions of the dif-
ference of initial-state and final-state reduced density matrices with
N andN − 1 electrons, respectively. A density-difference matrix pro-
duced with single-determinantal wavefunctions for the initial and
final states has a single, unit eigenvalue and N − 1 pairs of eigenval-
ues, (z, −z), that sum to zero, where 0 ≤ z ≤ 1.22 For low-lying final
states in which a Koopmans picture is qualitatively reasonable (i.e.,
where all values of z are close to zero and far from unity), the squared
modulus of the spin-orbital with the unit eigenvalue provides the
principal component of the change in the electron density. The spin-
orbitals with the paired eigenvalues provide insights into the adap-
tation of the remaining N − 1 electrons to the removal of an elec-
tron from the spin-orbitals with the unit eigenvalue. This analysis of
orbital relaxation effects is applicable toΔ-SCF (self-consistent-field)
calculations23 or to any cases in which the initial and final states have
idempotent, reduced-density matrices. For the initial and final states
of Koopmans’s identity, all N− 1 values of z vanish, for an absence of
relaxation in the final-state spin-orbitals is postulated. Kohn–Sham
determinants, whose chief purpose is to produce an electron-density
function with Fermionic characteristics, have nonetheless supplied
idempotent, reduced-density matrices of initial and final states for
this analysis in several applications.104,105

The effects of orbital relaxation from initial-state to final-state
determinantal wavefunctions may be clarified by performing a
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singular-value decomposition on the rectangular matrix whose ele-
ments are overlaps between the two sets of occupied spin-orbitals.106

The resulting corresponding spin-orbitals107 do not change the two
determinantal wavefunctions (except perhaps by a phase factor)
and have a diagonal overlap matrix. (The diagonal elements may
have absolute values from zero to unity.) One of the spin-orbitals is
orthogonal to all the others, and its squared modulus represents the
principal change in the electron density. The remaining N − 1 pairs
of initial and final spin-orbitals have maximized overlaps, S, which
are related to their corresponding value of z by z2 = (1 − |S|2).22 After
removal of an electron from the former, principal spin-orbital in
the initial-state determinant, maximum overlaps between the initial
state’s and the final-state’s spin-orbitals are in effect. The principal,
natural-ionization spin-orbital equals the normalized Dyson spin-
orbital; the probability factor equals the product of the squares of the
N − 1 paired-spin-orbital overlaps. Shake-up final states will display
one or more values of z that can approach unity.

Natural-ionization spin-orbitals may be extracted from any
density-difference matrix, but those that arise from correlated cal-
culations do not necessarily produce the paired eigenvalues obtained
with single-determinant wavefunctions. Positive and negative eigen-
values correspond to natural-ionization spin-orbitals that, respec-
tively, describe electron depletion and accumulation in the final state
with respect to the initial state. In electron-propagator calculations,
density-difference matrices have been employed in the evaluation of
final-state, one-electron properties, including gradients with respect
to nuclear positions. For example, in second-order-self-energy cal-
culations, the elements of the density-differencematrix in the canon-
ical Hartree–Fock basis may be evaluated with algorithms that have
quartic arithmetic scaling.100–102 In non-Dyson, electron-propagator
methods,108 final-state wavefunctions give rise to density-difference
matrices that also are easily evaluated.

DYSON SPIN-ORBITALS AND NATURAL
SPIN-ORBITALS

Natural spin-orbitals, ϕnat , are eigenfunctions of the one-
electron, reduced-density matrix whose eigenvalues or occupation
numbers, nnatp , sum to N.9–11 The number of natural orbitals pro-
duced in a calculation is determined by the dimension of the spin-
orbital basis, M. The Hermiticity of the one-electron, reduced-
density matrix derived from variational calculations guarantees the
orthonormality of the natural spin-orbitals. The eigenvalues, which
may have values between zero and unity, provide a prioritized list of
spin-orbitals for inclusion in a variational calculation that optimizes
overlap with a reference wavefunction. (In some classes of non-
variational calculations, the positivity of the eigenvalues is not guar-
anteed.) The one-electron, reduced-density matrix of an N-electron
initial state may be expressed in terms of M orthonormal, natural
spin-orbitals or Dyson spin-orbitals that correspond to observable
transitions,

γI(x, x′) ≙ M

∑
p=1

n
nat
p ϕ

nat
p (x)[ϕnatp (x′)]∗

≙∑
F

′

PFϕ
Dyson
F (x)[ϕDysonF (x′)]∗

≙∑
F

′

φ
Dyson
F (x)[φDysonF (x′)]∗. (17)

In variational calculations, the sum rule
M

∑
p=1

nnatp ≙ N is always

obeyed, regardless of the quality of the wavefunction. As basis sets
and wavefunction flexibility approach the exact limit, additional
natural spin-orbitals with eigenvalues close to zero appear, with
minimal changes to the terms with the highest natural occupation
numbers. (This theme has been amply explored and exploited in
the context of basis-set optimization.109,110) Equation (14) provides
an alternative criterion for judging the quality of a one-electron,
reduced-density matrix whose Dyson-spin-orbital components are
subject to experimental confirmation or refutation.

Canonical orthogonalization of the Dyson spin-orbitals of elec-
tron detachment expressed in terms of M independent functions
yields only M natural spin-orbitals.98 In general, these Dyson spin-
orbitals are linearly dependent, for the number of final states with N
− 1 electrons far exceeds M. Only in the absence of electron inter-
action do the Dyson spin-orbitals with non-zero probability factors
form an orthonormal set. After defining the overlap matrix of the
Dyson spin-orbitals with

ΔFF′ ≙ ⟨φDysonF ∣φDysonF′ ⟩, (18)

itsM non-zero eigenvalues and their eigenvectors are given by

ΔU ≙ Uμ. (19)

(Matrices are represented by bold type.) The natural-spin-orbital,
occupation numbers are the non-zero eigenvalues of the overlap
matrix of the Dyson spin-orbitals of electron detachment, i.e., nnatp

≙ μp. The natural spin-orbitals may be expressed as

ϕ
nat
p ≙∑

F

′

φ
Dyson
F UFpμ

−0.5
p , (20)

where the summation again occurs only over final states with N
− 1 electrons. Natural occupation numbers are related to overlaps
between natural and Dyson spin-orbitals through

n
nat
p δpq ≙∑

F

′⟨ϕnatp ∣φDysonF ⟩⟨φDysonF ∣ϕnatq ⟩
≙∑

F

′

PF⟨ϕnatp ∣ϕDysonF ⟩⟨ϕDysonF ∣ϕnatq ⟩. (21)

Equations (20) and (21) establish that natural spin-orbitals and their
occupation numbers may be decomposed into more fundamental
and experimentally accessible, Dyson-spin-orbital constituents.

Occupation numbers (i.e., normalized-orbital expectation val-
ues of the density operator) that occur in population analyses of indi-
vidual states may be calculated for normalized Dyson spin-orbitals.
Each of these occupation numbers exceeds its corresponding prob-
ability factor and their sum exceeds N. Despite ambiguities asso-
ciated with overlapping or overcomplete sets of orbitals, connec-
tions between experimental measurements and occupation numbers
defined in various ways can have qualitative utility.

APPROXIMATE DYSON SPIN-ORBITALS FROM
KOHN–SHAM DETERMINANTS

The one-electron operator that appears in the Kohn–Sham
equations12 may differ from the Fock operator of the Hartree–Fock
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equations in its treatment of exchange and correlation, and its origi-
nal purpose was to generate a Slater determinant and a correspond-
ing electron density. Eigenfunctions of the Kohn–Sham operator
can be excellent approximations to Dyson spin-orbitals of closed-
shell molecules with probability factors close to unity.111 Density
functionals have been reparameterized to yield spin-orbital energies
that are within a few tenths of an eV of experiment for representa-
tive sets of molecules.112–115 The model, one-electron Hamiltonian
of Kohn–Sham theory may be adjusted to overcome deficiencies in
approximate self-energies such as those used in the GW family of
methods.116 This operator provides a convenient and accurate suc-
cessor to empirical, tight-binding Hamiltonians that efficiently gen-
erate molecular orbitals for the analysis of chemical bonding.117 The
chief deficiencies of this approach to procuring Dyson spin-orbitals
are those that pertain to any one-electron Hamiltonian: all non-
vanishing, probability factors equal unity and there are no accessible
correlation (shake-up) states. Inner-valence, spin-orbital energies
obtained in this way represent at best an average over many final
states.

OBTAINING DYSON SPIN-ORBITALS
FROM CORRELATED, ONE-ELECTRON
OPERATORS

Dyson spin-orbitals are eigenfunctions of an energy-dependent
(i.e., E-dependent), non-local, one-electron operator in the Dyson
quasiparticle equation,95,118–125

∥f + Σ(E)∥ϕDysonF ≙ ϕ
Dyson
F ϵF . (22)

The Fock (f ) term in the operator has Coulomb and exchange com-
ponents that depend on the one-electron, reduced-density matrix of
the initial state. The energy-dependent, self-energy operator, Σ(E),
depends on the initial state’s second- and higher-order reduced-
density matrices. Diagrammatic and algebraic approaches to deriv-
ing approximate versions of the self-energy matrix are subject to
systematic improvements that approach the exact limit.8,126,127 The
solution of the eigenvalue equation supplies the normalized Dyson
spin-orbital but does not suffice to determine probability factors.
Energy derivatives of Σ(E) matrix elements provide the missing
information in

PF ≙
⎛⎜⎝1 −

d⟨ϕDysonF ∣Σ(E)ϕDysonF ⟩
dE

⎞⎟⎠
−1

. (23)

In practice, Σ(E) may be calculated at several values of the energy
until the latter variable becomes equal to an eigenvalue, ϵF . When
self-consistency is attained in Eq. (22) (i.e., when E = ϵF), the deriva-
tive in Eq. (23) is evaluated to give the probability factor, PF , and
therefore the Dyson spin-orbital, φDysonF .

Each of the self-consistent eigenvalues ϵF equals an electron-
binding energy. As more terms are added to the self-energy operator
and as basis sets are improved, exact results may be approached.
This conclusion is applicable to all varieties of final states, regard-
less of probability factors. Because of the energy dependence of the
Σ(E) operator, the number of solutions (corresponding to poles and

residues of the electron propagator) far exceedsM, the dimension of
the spin-orbital basis.

As the f operator depends on the one-electron, reduced-density
matrix of the initial state, corrections to canonical, Hartree–Fock
spin-orbital energies may be present in its matrix elements. These
terms are sometimes denominated constant self-energy contribu-
tions. Because they do not vanish as the absolute value of E increases
without bound, they are often denoted by Σ(∞). [Matrix elements of
Σ(E) approach zero as |E| →∞.] In many cases where Kohn–Sham
spin-orbitals and their energies are employed, energy-independent
terms that arise from the difference between the exchange operator
and the exchange–correlation potential also are incorporated into
the self-energy corrections to the Kohn–Sham, spin-orbital energies.

DYSON SPIN-ORBITALS AND TOTAL ENERGIES

The total electronic energies that underlie potential energy
hypersurfaces may be resolved into contributions from Dyson spin-
orbitals according to

⟨H⟩ ≙ 1
2
∑
F

′

PF(⟨ϕDysonF ∣h1ϕDysonF ⟩ + ϵF), (24)

where h1 is the one-electron (kinetic plus nuclear-attraction) com-
ponent of the Hamiltonian operator, H.8,95,120 By replacing the Fock
operator with its one-electron, Coulomb (J) and exchange (K) con-
stituents and employing the Dyson quasiparticle equation (22), one
may separate the electron-interaction terms, which have coefficients
of one half, in the expression

⟨H⟩ ≙∑
F

′

PF⟨ϕDysonF ∣(h1 + 1
2
∥J − K + Σ(E)∥)ϕDysonF ⟩. (25)

The total energy of an initial state consists of measurable quantities
(i.e., the Dyson spin-orbitals and their electron-binding energies)
such that

⟨H⟩ ≙ 1
2
∑
F

′⟨φDysonF ∣(h1 + ϵF)φDysonF ⟩. (26)

Equations (22) and (23) therefore are the conceptual foundation of
relationships between electron detachment energies and initial-state
properties such as total energies, electron densities, dipole moments,
momentum distributions, and so forth. Dyson spin-orbitals that
connect initial, N-electron states to final states with N − 1 electrons
are the fundamental units that occur in each summation. Equa-
tion (26) generalizes total energy expressions based on summations
over occupied spin-orbitals (obtained with Hartree–Fock calcula-
tions or by other means), which have been employed to explain
trends in molecular shapes with Walsh diagrams.128–130

In the uncorrelated, closed-shell or unrestricted Hartree–Fock
approximations, there are only N non-vanishing pole strengths
(each of which equals unity), the Dyson spin-orbitals equal their
canonical, Hartree–Fock counterparts and the electron-detachment
energies are those given by Koopmans’s identity. Hartree–Fock, total
energies therefore are expressed in terms of canonical spin-orbitals
(CSOs) as
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⟨H⟩ ≙ 1
2

occupied

∑
i

(⟨ϕCSOi ∣h1ϕCSOi ⟩ + ϵKoopmans
i ), (27)

but, because of the invariance of Slater determinants with respect
to unitary transformations of their spin-orbitals,131 these total ener-
gies can also be assembled in terms of localized spin-orbitals (LSOs),
where

⟨H⟩ ≙ 1
2

occupied

∑
i

(⟨ϕLSOi ∣h1ϕLSOi ⟩ + ⟨ϕLSOi ∣ fϕLSOi ⟩). (28)

The latter terms, having no connection to energies of electron
detachment or to Dyson spin-orbitals and lacking a unique localiza-
tion procedure for their generation, obliterate relationships between
properties of stationary initial and final states.

To encompass the effects of electron correlation on total ener-
gies, more than N spin-orbitals must be recruited. The Dyson quasi-
particle equation can be employed to accomplish this aim by gener-
ating final states with N − 1 electrons that are much more numerous
than the number of electrons. Explicit consideration of all the final
states required to recover the summations of Eqs. (24)–(26) may be
avoided with contour integrations in the complex plane.

INITIAL-STATE PROPERTIES FROM THE ELECTRON
PROPAGATOR

The electron propagator matrix, G(E), may be related to the
Fock and energy-dependent, self-energy matrices via

G(E) ≙ ∥E1 − f − Σ(E)∥−1. (29)

Total energies may be expressed as

⟨H⟩ ≙ Trace[ 1
4πi ∮c (h1 + E1)G(E)dE], (30)

where the c subscript denotes a contour in the complex plane that
encloses all electron-detachment energies and no attachment ener-
gies.8 Evaluation of the electron propagator matrix at a small num-
ber of complex values of E that are not close to electron-detachment
energies (which are real numbers) is usually more efficient than
obtaining contributions to the total energy from each Dyson spin-
orbital of electron detachment. Most of these numerous contribu-
tions have small probability factors and pertain to high energies
of electron detachment. Their collective contributions are easier to
evaluate by employing the contour integral of Eq. (30).

A simpler contour integral yields the spin-orbital-density
matrix,

γ ≙
1
2πi ∮cG(E)dE. (31)

The collective contributions of the Dyson spin-orbitals to one-
electron properties (such as the dipole moment) therefore may be
evaluated efficiently with

⟨O1⟩ ≙ Trace(O1γ). (32)

DYSON SPIN-ORBITALS AND RESIDUES
OF THE ELECTRON PROPAGATOR

The electron-propagator matrix8,132,133 may be expressed in
terms of Dyson spin-orbitals and electron binding energies as fol-
lows: Let Dyson spin-orbitals be expanded in terms of M orthonor-
mal functions, χ, according to

ϕ
Dyson
F ≙

M

∑
p=1

χpCpF . (33)

In its spectral, energy-dependent representation, the electron-
propagator matrix reads

Grs(E) ≙ limη→+0
⎛
⎝
N+1e−

∑
F

CrFC
∗

sF

E − ϵF + iη
+

N−1e−

∑
F

CrFC
∗

sF

E − ϵF − iη

⎞
⎠. (34)

The two summations refer to attachments or detachments of elec-
trons to yield final states with N ± 1 electrons. The values of E
that cause matrix elements to increase without bound (i.e., approach
infinity) are known as poles and correspond to electron-binding
energies. The numerator of such a singular term is called a residue
and provides the r–s contribution to the squaredmodulus of the cor-
responding Dyson spin-orbital. Note that the energy parameter, in
general, is defined to be a complex number. For a given pole, a sum
over residues of diagonal matrix elements suffices to produce a pole
strength (probability factor),

PF ≙
M

∑
r=1
∣CrF ∣2. (35)

The indices r and s may refer to any set of orthonormal spin-orbitals.
For example, symmetrically orthogonalized, atomic, natural spin-
orbitals134 could be employed to yield atomic, bond, hybridized or
other kinds of contributions to a given Dyson spin-orbital.

The spin-orbital-density matrix,Π, of uncorrelated, molecular-
orbital theory matrix may be generalized with

Πrs ≙∑
F

′

CrFC
∗

sF (36)

so that

γI(x, x′) ≙ M

∑
r,s=1

χr(x)Πrsχ
∗

s (x′). (37)

The summation of Eq. (36) may be avoided by evaluating the
contour integral of Eq. (31) for Gsr(E).

CORRELATED AUFBAU PRINCIPLES

Natural spin-orbitals are generally conceded to be characteris-
tic of a given state. Equation (17) establishes that Dyson-spin orbitals
are equally characteristic of N-electron initial states and that they
have the additional advantage ofmapping uniquely (i.e., one-to-one)
onto final states with N − 1 electrons. Transitions observed between
initial and final states provide experimental tests (via, for example,
EMS or ARPES) for the verification of Dyson spin-orbitals calcu-
lated with Eqs. (22) and (23) or by less direct means that require
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the evaluation of many-electron wavefunctions and integration of
their products according to Eq. (1) or (2). The Dyson spin-orbital
concept requires no introduction of model Hamiltonians, especially
those that are free of electron interaction, or approximations of
many-electron states by lone Slater determinants or other limited,
configuration-interaction Ansätze.

Resolving the interpretive dilemma of state-specific vs tran-
sition orbitals requires a modification of several, traditional,
molecular-orbital concepts (such as probability factors of unity
or the assumption that density differences equal squared mod-
uli of Dyson orbitals135,136) in which electron correlation has been
ignored.

1. In the presence of electron interaction, the squared modulus of
a Dyson spin-orbital is not equal to the electron-density differ-
ence between an initial, N-electron state and a final state with
N − 1 electrons,

Δρ(x) ≙ ρI(x) − ρF(x) ≠ ∣φDysonFI (x)∣2. (38)

Only in the absence of electron interaction can equality be
restored.

2. For correlated systems, Dyson spin-orbitals are not normal-
ized to unity. Equality with unity in Eq. (3) is realized only in
the absence of electron correlation; otherwise, probability fac-
tors lie between unity and zero. When electron interaction is
neglected, there are N final states with N− 1 electrons that have
probability factors of unity, and therefore, the associated prob-
ability that an electron has been ejected from an occupied spin-
orbital is equal to one. In the final state of this approximation,
the formerly occupied spin-orbital now is completely unoccu-
pied. In an interacting system (one in which electron correla-
tion is present), the probability factor associated with a given
Dyson spin-orbital is less than one. The sum of these probabil-
ities [see Eq. (14)] equals the number of electrons in the initial
state, N. In the final state, the normalized Dyson spin-orbital
may be partially occupied (i.e., have a non-zero expectation
value of the electron-density operator) because of electron cor-
relation. Probability factors are indices of the importance of
electron correlation and final-state relaxation of spin-orbitals
for a given transition.

3. The number of non-vanishing, Dyson spin-orbitals that cor-
respond to final states with N − 1 electrons is much larger
than N for systems with electron interaction. This result has
been abundantly confirmed by photoelectron experiments. In
the familiar terminology of configuration interaction, most of
the numerous, closely spaced peaks of the inner-valence (high-
electron-binding energy) spectral region have been assigned
to final, many-electron wavefunctions wherein configurations
with three or more spin-orbital differences with respect to a
reference Slater determinant (e.g., two vacancies in the occu-
pied spin-orbitals and one added electron in the virtual spin-
orbitals of the reference determinant) dominate and where the
frozen-orbital, single-vacancy Slater determinants (e.g., those
of Koopmans’s identity) are unimportant. Dyson spin-orbitals
offer a succinct characterization of the broad spectral features
that arise from many transitions, each with a low probability
factor. The inevitable appearance of such inner-valence spectra

in molecules is evidence of electron correlation, for an uncor-
related model would predict non-vanishing intensity only for
N final states described by single-vacancy determinants. For
correlated systems, it is incorrect to state that a transition of
electron detachment annihilates an electron in a normalized
Dyson spin-orbital, for this function has a non-unit probability
factor in the initial state, a non-vanishing occupation number
in the final state, and non-vanishing overlaps with other Dyson
spin-orbitals.

4. The construction (building-up or Aufbau) principles of tra-
ditional, uncorrelated, molecular-orbital theory that produce
electron densities ascribe unit probability to each occupied
spin-orbital in an initial-state, N-electron Slater determinant.
To account for electron correlation, a similar process of con-
struction with Dyson spin-orbitals requires the introduction of
non-unit probability factors for each electron-binding energy
below the chemical potential. These factors correspond to
a non-orthogonal set of Dyson spin-orbitals that suffices to
reconstruct electron densities. For most closed-shell molecules
and ions, pole strengths are close to 0.9 for electron affini-
ties and the first few electron-detachment energies. Somewhat
smaller values near 0.8 are usually obtained for the princi-
pal, core-electron-detachment energies. Between these rela-
tively simple regions lies the inner-valence spectrum, which
typically displays copious final states with low probability
factors.

Upon accepting an award named for G. N. Lewis by the California
Section of the American Chemical Society, Mulliken in 1960 posed
a question that has been interpreted in a variety of ways: What are
the electrons really doing in molecules?137 To many investigators,
the terms in this question express a desire to know about the posi-
tions, momenta, and energies of electrons understood to be quan-
tum mechanical particles that are subject to Fermi–Dirac statistics
and Pauli’s principle of exclusion. To the extent that the stationary
states of time-independent theory can provide a satisfactory answer
to such a question, spin-orbitals associated with electron-binding
energies, probabilities of transition between initial and final states,
and components of the initial state’s electron density provide the
most complete description. Dyson spin-orbitals are the foundation
of improved Aufbau concepts in which probability factors incor-
porate correlation effects while respecting anti-symmetrization. In
this improved picture of chemical bonding, interacting quantum
mechanical systems are described in terms of spin-orbitals with
probability factors that correspond to observable transitions.

Table I exhibits a comparison of the Hartree–Fock and Dyson
pictures of electronic structure. Dyson spin-orbitals, their proba-
bility factors, and electron-binding energies obtained from a cor-
related one-electron (Dyson quasiparticle) equation supplant the
less numerous Hartree–Fock spin-orbitals in building-up or Auf-
bau procedures for density matrices, electron densities, and total,
electronic energies. Probability factors also appear in formulas for
transition intensities and sum rules. In the Dyson picture, the
Coulomb–exchange (J–K) potential of the canonical, Hartree–Fock
equations is improved by the energy-dependent, non-local, self-
energy operator, Σ(E), in the self-consistent solution of the Dyson
quasiparticle equation. The latter operator may be systematically
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improved to the exact limit wherein exact, electron-binding ener-
gies and normalized, Dyson spin-orbitals emerge as eigenvalues and
eigenfunctions.

COMPARISON OF DYSON AND LOCALIZED
SPIN-ORBITALS

For most closed-shell molecules and ions, Koopmans’s iden-
tity provides qualitatively valid results for the largest electron affini-
ties and the lowest electron-detachment energies. For transitions
between open-shell species in which the initial and final states are
dominated by a single Slater determinant, canonical, unrestricted
Hartree–Fock spin-orbital energies may remain useful to a simi-
lar degree when spin contamination is not large. Canonical orbitals
of restricted, open-shell Hartree–Fock theory that satisfy the Bril-
louin and Koopmans conditions with respect to configuration-
state functions offer a more rigorous alternative that conserves
spin quantum numbers.138–141 (Note that the formal satisfaction of
the Brillouin and Koopmans conditions by unrestricted Hartree–
Fock spin-orbitals is not identical to the satisfaction of these con-
ditions with respect to configuration-state functions by orbitals
in restricted, open-shell Hartree–Fock theory.) In such cases, the
self-energy term of Eq. (22) introduces corrections to canoni-
cal Hartree–Fock spin-orbital energies that are usually necessary
for making convincing spectral assignments. (The order of final
states predicted with canonical, Hartree–Fock spin-orbital ener-
gies is often incorrect.94,96,97,142) Dyson and canonical Hartree–Fock
spin-orbitals bear a close resemblance to each other, with the chief
difference being the deviation of the correlated, probability fac-
tor from its uncorrelated value of unity. Canonical spin-orbitals
of closed-shell, Hartree–Fock theory and their correlated, Dyson
counterparts have a clear interpretive advantage over localized spin-
orbitals for the assignment of electron-binding energies to spectral
peaks.

Localized spin-orbitals,143–145 obtained via unitary transforma-
tions of their canonical counterparts, preserve the Hartree–Fock
Slater determinant131 and therefore generate alternative ways of
dividing the same electron density with respect to spin-orbital con-
tributions.146–150 (In calculations on large molecules, localized spin-
orbitals also may be employed17 to increase the efficiency of cal-
culations without adversely affecting the numerical precision or
physical significance of the results.) The interpretive advantages of
such an alternative basis accrue when a localized property, such
as a bond angle or a spin-density at a nuclear position, may be
ascribed to a small subset of localized spin-orbitals. Confirmation
or generalization of traditional, localized notions of chemical bond-
ing, especially those that pertain to electron pairs, may provide
insight into a self-consistent-field determinant. Acceptance of the
concept of three-center, two-electron bonds in boranes was abetted
by such means.151 Theoretical characterizations of inorganic clus-
ters increasingly appeal to schemes that partition electron densities
according to electron pairs distributed over three or more centers.152

Valence-shell-electron-pair-repulsion theory,153,154 a staple of basic,
structural-chemistry curricula, has a similar qualitative foundation
that resembles the Edmiston–Ruedenberg localization criterion.145

As with any orbital concept, the utility of localized-orbital con-
cepts rests on their explanatory economy and predictive accuracy.

Explanatory economy may be optimized for different audiences
depending on their educational traditions and depth of interest in
electronic structure. In the best case, predictions based on orbital
concepts can stimulate experimentation that can confirm or refute
well-defined hypotheses.

Techniques for obtaining localized analyses of electron den-
sities may be extended to incorporate electron correlation. Isopy-
cnic (density-conserving) spin-orbitals obtained with correlated
(i.e., non-idempotent) one-electron, reduced-density matrices may
be defined by optimization criteria (e.g., those of Boys143,144 or
Edmiston and Ruedenberg145) that lead to localized amplitudes.155

As with Dyson spin-orbitals, these functions form non-orthogonal
sets (the linear transformations from natural spin-orbitals are not
unitary) with non-integer, occupation numbers that sum to N.
Examples include the non-orthogonal orbitals produced in the sim-
plest varieties of generalized, valence-bond theory.156

Procedures for obtaining localized orbitals that invoke only the
one-electron, reduced-density matrix and an optimization criterion
(e.g., the generalized Foster–Boys144 or Edmiston–Ruedenberg145

schemes) avoid biased interpretations of chemical bonding that may
arise when the one-electron basis or wavefunction Ansätze are pre-
pared with a certain result in mind. One-electron properties (e.g.,
electrostatic potentials and spin densities) may be analyzed in terms
of a sum over localized spin-orbital matrix elements of the cor-
responding operator. Simplified interpretations may be procured
when one or a small number of terms dominate the summation. In
the absence of such simplicity, the meaning of a single, localized,
spin-orbital’s expectation value may be obscure, and an appeal to
the entire summation over localized spin-orbitals may be required.

Whereas well-defined, localized spin-orbitals are founded on
an array of global indices (i.e., the one-electron, reduced-density
matrix) of only a single state, Dyson spin-orbitals of electron detach-
ment map onto transitions between an initial, N-electron state
and specific final states with N − 1 electrons while retaining their
relevance to the properties of the initial state. Summations over
both kinds of spin-orbitals may be compared with the results of
experimental measurements of one-electron properties and pro-
vide uniquely defined ways of deconstructing electron densities. The
panoply of electron-spectroscopic methods and scattering experi-
ments that result in electron detachment from a target state pro-
vide complementary tests of the predicted Dyson spin-orbitals.
Recent measurements on Dyson spin-orbitals have been limited to
the lowest, electron-detachment energies. Full reconstruction of the
one-electron-density matrix from experiment therefore remains a
remote, but attractive, prospect.

CORRELATED, INITIAL-STATE SPIN-ORBITALS

Spin-orbitals that characterize an initial state may be defined
in various ways. The elements of the Fock and self-energy matri-
ces that appear in the Dyson quasiparticle equation may be deter-
mined completely by reduced-density matrices of the initial state.
No appeal to final-state information is required to evaluate f or Σ(E)
exactly or in approximate calculations. Dyson spin-orbitals suffice
to construct the one-electron, reduced-density matrix of the ini-
tial state. Their one-electron expectation values, electron-binding
energies, and probability factors appear in total-energy expressions
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that are exact. Experimental techniques that provide information
on the amplitudes of Dyson spin-orbitals in position or momentum
space continue tomultiply. As thesemethods of observation advance
toward transitions of higher energy, the limit of complete recon-
struction of the one-electron, reduced-density matrix by experimen-
tal means can be approached. The mapping of Dyson spin-orbitals
to final states does not diminish their relevance to the electronic
structure of an initial state.

Natural spin-orbitals are the most efficient in the reconstruc-
tion of the one-electron, reduced-density matrix of an initial state.
Electron-binding energies, natural spin-orbitals, and total energies
may be related to each other with the extended Koopmans (EK) the-
orem.92,157 The lowest electron-detachment energy of a given irre-
ducible representation and spin with respect to a full configuration-
interaction energy of the initial state may be approximated by an
eigenvalue in a secular equation,

f
EK
c
EK
≙ ρc

EK
e
EK , (39)

where the elements of the matrix f
EK depend on one-electron and

two-electron reduced-density matrices of the initial state and ρ is the
former density matrix. The initial state’s total energy may be recov-
ered with a summation over natural spin-orbitals (p) according to

⟨H⟩ ≙ 1
2
Trace[h1ρ + f

EK] ≙ 1
2
∑
p

[h1,ppnnatp + f
EK
pp ]. (40)

A given, natural spin-orbital and its corresponding, occupation
number have no necessary connection to electron-binding energies
or transition probabilities. Dyson spin-orbitals that emerge from EK
calculations are not equal to natural spin-orbitals and are expressed
as linear combinations of them. (The diagonal elements of f EK in the
natural basis belonging to a complete-active-space, self-consistent-
field wavefunction have been used recently to estimate electron-
detachment energies.80) Probability factors equal unity only when
ρ is idempotent and are less than unity otherwise. Equation (39)
is subject to numerical instabilities because the exact, one-electron-
density matrix has infinitely many non-zero eigenvalues,158 most of
which will be exceedingly small. Such difficulties can be expected
to become more severe with the improvement of basis sets for the
description of the initial state. The separate task of describing the
EK spin-orbitals159,160 [which are determined by the eigenvectors
of Eq. (39), have vanishing, natural-occupation numbers in their
respective, final states, and serve chiefly as probes of long-range
decay in density matrices] requires the inclusion of basis func-
tions that are remote from the nuclei and the bulk of the electron
density.

Other kinds of initial-state orbitals may be based on local-
ized pictures of chemical bonding that originated with Lewis and
Langmuir,161,162 appeared in quantum mechanical form in the
Heitler–London–Slater–Pauling163–166 theory of valence bonds and
its subsequent generalizations,167–170 and re-emerged from various
protocols for the extraction of localized molecular orbitals from
single-determinantal or correlated wavefunctions. In a priori
approaches, a variational Ansatz that mathematically expresses
a localized orbital concept (e.g., the perfect-pairing, generalized
valence bond wavefunction156) is optimized with respect to param-
eters that allow for the variation of orbitals. Such optimizations

do not necessarily confirm the original, localized-orbital concepts.
For example, recent variational calculations of various kinds of
valence-bond wavefunctions for ethylene and acetylene yielded
hybridized spn orbitals with n very far from the expected values
of 2 and 3.171 In a posteriori approaches, reduced-density matri-
ces obtained from many-electron wavefunctions are analyzed in
terms of localized concepts. For example, electron densities of corre-
lated wavefunctions may be decomposed into non-orthogonal spin-
orbital contributions by performing isopycnic transformations that
can employ a variety of localization criteria.155

To obtain localized pictures of electronic structure, it is not
necessary to appeal to reduced-density matrices or even to orbital
concepts. The positions and spins of N electrons that correspond
to the global probability maximum of a many-electron wavefunc-
tion inevitably generate completely localized representations of elec-
tronic structure.172,173 Averaging procedures that consider other sets
of electronic coordinates of high probability are needed for a real-
istic representation of a specific energy eigenstate that respects the
uncertainty principle.174

ELECTRON-BINDING ENERGIES

Exact Dyson spin-orbitals are eigenfunctions of the Fock plus
self-energy operator in the Dyson quasiparticle equation. Their
eigenvalues are exact electron-binding energies. Several kinds of
spectra provide independent measurements of these spin-orbital
energies and experimental tests, which may confirm or refute pre-
dictions based on calculations. Amplitudes and squared moduli of
Dyson spin-orbitals also are subject to experimental scrutiny.

Canonical Hartree–Fock spin-orbital energies equal electron-
binding energies in zeroth order with respect to the Møller–Plesset
fluctuation potential.93 In zeroth order, Dyson spin-orbitals equal
canonical, Hartree–Fock spin-orbitals. Both statements remain true,
regardless of the spin-orbital basis (canonical or localized) used to
express the zeroth-order counterpart of the operator in the Dyson
quasiparticle equation.

As the operator in the Dyson quasiparticle equation approaches
the exact case (e.g., in progressively higher orders of the Møller–
Plesset fluctuation potential), the resulting electron-binding energies
andDyson spin-orbitals will be unaffected by the choice of basis used
to express the f and Σ(E) matrices. The Dyson spin-orbitals that typ-
ically emerge from these calculations offer a succinct description of
an electron detachment and provide a uniquely defined contribution
to the initial-state, electron density.

Dyson spin-orbitals of electron attachment are not included
in summations that pertain to initial state properties, but they are
useful in the interpretation of many kinds of spectroscopic and scat-
tering experiments.175,176 Bound, final states with N + 1 electrons
correspond to Dyson spin-orbitals whose amplitudes approach zero
at long distances from the nuclei and electrons of the initial state
with N electrons. For most molecules and atoms, there are only
a small number of stable anions, and each final state is assigned
to a diffuse, Dyson spin-orbital. (It is not unusual for there to be
zero bound anions, especially for saturated, non-polar, closed-shell
species.) Cationic initial states often have many positive electron
affinities, some of which may be associated with the Rydberg series
of molecular excited states.177–183 Marginal cases in which the energy
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of electron attachment is close to zero may occur for molecules with
polar or ionic bonds. Electrostatic potentials in such systems lead
to diffuse, Dyson spin-orbitals of electron attachment whose largest
absolute amplitudes accumulate near molecular regions of net pos-
itive charge. Electron-correlation effects can be decisive in deter-
mining the stability of an electron-attached species with respect to
an initial state. Stable anions correspond to asymptotically decaying
Dyson spin-orbitals, a characteristic that should be verified through
basis-set improvements in marginal cases. Caution should be exer-
cised when calculations produce small, negative electron affinities
that approach zero with the enlargement of atomic basis sets, for
they are likely to yield Dyson spin-orbitals that are projections of
continuum functions onto the basis set.

To enable the study of temporary anions, stabilization tech-
niques extend the ambit of unaltered quantum-chemistry technol-
ogy to the calculation of resonance energies and lifetimes.176,184,185

Complex absorbing potentials offer an alternative route to these
data with relatively minor modifications to standard codes.186–190

Basis-set quality and improved treatments of correlation effects
may affect amplitudes near nuclei and at long range of Dyson
spin-orbitals corresponding to electron–molecule resonances.191,192

Orthogonality relationships between the real and imaginary parts of
Dyson spin-orbitals have been illustrated in calculations on several
molecules.193,194

When applying standard codes to valence, temporary anions,
such as π∗ resonances in unsaturated organic molecules, consider-
able care should be exercised in procuring reference spin-orbitals
that are qualitatively reasonable. A common pitfall occurs when
default options, in combination with large, flexible basis sets, gen-
erate highly diffuse, non-valence, reference spin-orbitals, for sub-
sequent, perturbative, many-body calculations are unlikely to yield
Dyson spin-orbitals of electron attachment with valence character-
istics. Preliminary calculations with few or no diffuse functions often
procure better initial guesses for valence, anionic states that may be
updated with larger basis sets and correlation methods.

SPIN-ORBITAL UNIQUENESS

Any many-electron wavefunction, exact or approximate, may
be used to produce a one-electron, reduced-density matrix. The
natural spin-orbitals and their occupation numbers therefore are
uniquely defined and more robust than any procedure based on a
localization protocol, which may not converge to a unique set of
spin-orbitals. Such ambiguities (e.g., σ–π vs banana patterns associ-
ated with double bonds, alternative resonance structures) often beset
widely used localization methods.143–145

Dyson spin-orbitals are defined solely in terms of many-
electron states. They have the additional advantage of being phys-
ically meaningful not just collectively (as in the case of the natural
spin-orbitals), but individually as well. Consider the r–s element of
the spin-orbital-density matrix of an initial, N-electron state in an
orthonormal spin-orbital basis,

ρrs ≙ ⟨ΨI ∣ a†
r asΨI⟩. (41)

Insertion of a complete set of final states with N − 1 electrons with
index F yields

ρrs ≙∑
F

′⟨ΨI ∣ a†
rΨF⟩⟨ΨF ∣ asΨI⟩ ≙∑

F

′

C
∗

rFCsF . (42)

After using Eq. (33), the one-electron, reduced-density operator for
the initial state reads

∑
rs

χr(x)ρrsχ∗s (x′) ≙∑
F

′

φ
Dyson
F (x)[φDysonF (x′)]∗. (43)

One needs only state functions (i.e.,ΨI and theΨF set) fromHilbert-
space methods or eigenfunctions of the Dyson quasiparticle equa-
tion to define these spin-orbitals, which may be regarded as Fourier
coefficients in the expansion of ΨI in terms of the ΨF set. No par-
titioning of direct space or Hilbert space has been postulated. No
concepts external to the Schrödinger equation except spin have been
introduced.

LOCALIZED DYSON SPIN-ORBITALS

To substitute a set of localized spin-orbitals for Dyson spin-
orbitals in Eq. (43), it is necessary to introduce a sum over an
alternative set of states with N − 1 electrons that are not eigen-
functions of the many-electron Hamiltonian. In the context of
time-independent theory, they may be introduced, for example, to
produce an advantageous basis for non-adiabatic, vibronic wave-
functions. This approach may provide more succinct interpretations
of photo-detachment spectra when final states with small energy
differences induce changes in point-group symmetry.

Time-dependent superpositions of stationary states with N − 1
electrons may correspond to Dyson spin-orbitals that temporally
evolve195 from one localized function to another. Temporally short
pulses of light that suffice for production of an evolving, localized
Dyson spin-orbital could provide an opportunity to observe ampli-
tudes that conform to notions inherited from introductory textbooks
(e.g., lone pairs on water molecules196) or to other desired patterns.
The design of such optical protocols could also serve to control the
reactivity of final states.

The concept of Dyson spin-orbitals is sufficiently capacious as
to encompass the delocalized patterns that emerge from traditional,
molecular-orbital theory and temporally evolving amplitudes that
evoke the localized notions of valence-bond theory. In the former
case, the mission of spectroscopy in seeking information on station-
ary states is served. In the latter case, the goal of point-wise control of
the electronic structure and reactivity by optical means is advanced.

DYSON ORBITALS FROM PERTURBATIVE,
ELECTRON PROPAGATORS

Perturbative approximations for the self-energy operator in the
Dyson quasiparticle equation may be derived from the following
expression of the electron propagator matrix:8,19

G(E) ≙ (a† ∣ (EÎ − Ĥ)−1a†). (44)

A column vector of creation operators corresponding to orthonor-
mal spin-orbitals is represented by a†. The identity and Hamiltonian
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super-operators are defined19,197 by their actions on elementary field
operators or products of them, X, such that

ÎX ≙ X, (45)

ĤX ≙ XH −HX. (46)

Matrix elements are evaluated according to an inner product that
reads

(X ∣Y) ≙ ⟨0 ∣X†
Y + YX

† ∣ 0⟩ (47)

in which the N-electron reference state is designated as |0⟩. After
introducing an inner projection of the inverse (resolvent) super-
operator, one obtains

G(E) ≙ [(a† ∣ a†)(a† ∣b)][(a† ∣ (EÎ − Ĥ)a†) (a† ∣ (EÎ − Ĥ)b)(b ∣ (EÎ − Ĥ)a†) (b ∣ (EÎ − Ĥ)b) ]
−1

× [(a† ∣ a†)(b ∣ a†) ], (48)

where b is the vector of products of n creators and (n − 1) anni-
hilators from n = 2 to n = N + 1.198 This vector encompasses n-
particle–(n − 1)-hole (e.g., 2p1h, 3p2h) and n-hole–(n − 1)-particle
(e.g., 2h1p, 3h2p) products.

After orthogonalizing the threefold (2h1p and 2p1h) and higher
products in b to the space of simple creators (a†) and to each other,
the matrix expression for the electron propagator reads

G(E) ≙ [10][E1 − (a† ∣ Ĥa
†) −(a† ∣ Ĥ)d)

−(d ∣ Ĥ)a†) E1 − (d ∣ Ĥ)d)]
−1[1

0
], (49)

where d corresponds to the orthogonalized set of product operators.
The poles of the electron propagator are eigenvalues of the

super-operator secular equations in the combined space of a† and
d operators,

ĤC ≙ Cϵ. (50)

The residues (and therefore the Dyson spin-orbitals) are determined
by the elements of C that pertain to the primary operator (a†) space.
(C also has elements that pertain to the d operators.) In Eq. (49), only
the upper-left block of the inverse matrix survives multiplication by
the unit and zero matrices. Elements of the (a† ∣ Ĥa

†) matrix in a
general basis of orthonormal spin-orbitals with indices p, q, r, and s
read

(a†
p ∣ Ĥa

†
q) ≙ hpq +∑

rs

(pq ∣∣ rs)⟨0 ∣ a†
r as ∣ 0⟩ ≙ fpq (51)

and constitute a generalized Fock matrix in which the refer-
ence state’s one-electron-density matrix determines the Coulomb-
exchange operator. The inverse of the electron propagator matrix
reads

G
−1(E) ≙ E1 − f − Σ(E). (52)

The energy-dependent, self-energy operator is given by

Σ(E) ≙ (a† ∣ Ĥd)(d ∣ (EÎ − Ĥ)d)−1(d ∣ Ĥa
†). (53)

[Contributions to f that arise from correlation in |0⟩ are sometimes
denominated energy-independent or constant, self-energy terms
and are denoted by Σ(∞).] Poles of the electron propagator corre-
spond to zero eigenvalues of G−1(E) and therefore to self-consistent
(with respect to E) eigenvalues in the Dyson quasiparticle equa-
tion. Normalized Dyson orbitals are obtained as the corresponding
eigenfunctions.

Electron-propagator calculations based on Hartree–Fock ref-
erence determinants and renormalized approximations to Σ(E)
[where non-vanishing, off-diagonal elements in the inverse matrix
of Eq. (53) generate terms in all orders of the fluctuation poten-
tial] often employ the super-operator secular equation (50) to obtain
Dyson spin-orbitals and their transition probabilities. Examples
include the algebraic diagrammatic constructions133,199 in the third
(ADC3) and fourth (ADC4) orders and the non-diagonal, renor-
malized second order124,125,200 (NR2) method. (Comparisons of the
accuracy and computational efficacy of the NR2 and ADC3 meth-
ods have appeared recently.201,202) A variety of iterative procedures
for the diagonalization of large matrices,203–206 some of which were
designed for configuration interaction,207,208 have been successfully
employed in obtaining eigenvalues (i.e., electron-binding energies)
that are not subject to any variational bounds.

Calculations on outer-valence, electron-binding energies (e.g.,
the lowest ionization energies of a closed-shell molecule) that are
complete only through second or third order in Σ(E) usually yield
normalized Dyson orbitals that are dominated by a single canoni-
cal, Hartree–Fock component and probability factors above 0.85.209

Such results provide justification for neglect of off-diagonal elements
of Σ(E) in the canonical spin-orbital basis. In diagonal-self-energy
approximations, the Dyson quasiparticle equation is reduced to an
especially simple form where a self-energy correction to a canoni-
cal orbital energy typically requires only two or three iterations with
respect to E,

E ≙ ϵ
CMO
p + Σpp(E). (54)

The family of diagonal (also known as quasiparticle) methods
includes the second-order (D2), third-order (D3), outer-valence-
Green-function (OVGF),121,210–212 partial-third-order (P3),213,214

partial-fourth-order (P4),215–218 and renormalized-partial-third-
order (P3+)124,219 approximations. These methods have enjoyed
widespread success even when differences between Koopmans’s
results (i.e., ϵCMO values) are small for spin-orbitals that correspond
to the same irreducible representation. For example, the P3+method
for electron-detachment energies from closed-shell molecules
and anions generates mean unsigned errors of 0.1 eV–0.2 eV
with algorithms that have a smaller fifth-power arithmetic scaling
factor than that of the electron-repulsion-integral transformation
to the molecular-orbital basis.201,202 Composite models that take
advantage of the approximate additivity of basis-set and correlation
effects employ large basis sets in D2 calculations that have third-
power arithmetic scaling and P3+ results generated with relatively
small basis sets.220 The D2 method has served as a template for
several methods that employ semi-empirical Hamiltonians or that
introduce parameters for the same-spin and opposite-spin terms in
the energy-dependent self-energy.221–225
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Diagonalmethods constrain Dyson spin-orbitals to be products
of a canonical, Hartree–Fock spin-orbital and the square root of the
probability factor,

φ
Dyson(x) ≙ P0.5

ϕ
CMO(x). (55)

D2 and D3 self-energies evaluated with E ≙ ϵCMO
p are identical to

the terms generated by Rayleigh–Schrödinger perturbation theories
(RSPT) of the same orders.126,127,226 Final-state orbital relaxation and
correlation terms and initial-state correlation terms in the diago-
nal elements of Σ(E) have been identified through third order.19,227

These properties of the simplest diagonal methods describe elec-
tron detachment or attachment in terms of a Dyson spin-orbital that
remains unaltered by many-body effects, except for a reduction in
its probability factor. Pair correlation energies in the N-electron ref-
erence state are subtracted or added in final states described with
frozen spin-orbitals.

A perturbative analysis of the eigenvalues and eigenvectors
that emerge from the super-operator secular equation (50) reveals
the common origin of these outcomes. The zeroth-order equation
defined in terms of the Møller–Plesset partitioning of the Hamilto-
nian recovers Koopmans’s identity in E0 and a corresponding unit
vector (with its non-zero element in the a† space) for C0,

Ĥ0C0 ≙ C0E0. (56)

It is easily shown that E1 ≙ C
†

0Ĥ1C0. The first-order correction to the
eigenvector reads

C1 ≙ (E01 − Ĥ0)−1Ĥ1C0. (57)

The first-order super-operator matrix elements between the a† and
d spaces are confined to 2p1h and 2h1p (triple) operators. Because
couplings between a

† operators vanish in first order, only 2p1h
and 2h1p elements appear in C1. Therefore, the Dyson spin-orbital
remains proportional to a canonical Hartree–Fock spin-orbital, but
with a diminished probability factor. The second-order electron
binding energy,

E2 ≙ C
†

0Ĥ1C1, (58)

is identical to the RSPT result of the same order. In the second-order
correction to the eigenvector,

C2 ≙ (E01 − Ĥ0)−1Ĥ2C0 + (E01 − Ĥ0)−1Ĥ1(E01 − Ĥ0)−1Ĥ1C0,
(59)

there are non-vanishing elements in the a
†, triple and quintuple

spaces. Here for the first time, there are terms that do not reduce
the probability factor and that correspond to non-diagonal self-
energies. Now the Dyson spin-orbital is expressed in terms of all the
canonical, Hartree–Fock spin-orbitals instead of just one. Although
C2 appears in the first term of the following expression for the
third-order energy correction:

E3 ≙ C
†

0Ĥ1C2 + C
†

0Ĥ2C1 + C
†

0Ĥ3C0, (60)

the effects of quintuple and non-Koopmans a† operators are can-
celed by the sparsity of Ĥ1. Potential instabilities in the first term
of the C2 expression due to small denominators are rendered
irrelevant.

These results indicate that attempts to extend diagonal approx-
imations beyond third order may encounter difficulties, for correc-
tions arising from non-diagonal self-energies may be of the same
magnitude as those that pertain to triple and quintuple opera-
tors. The most successful diagonal methods (such as P3+124,125 and
OVGF121,211) that surpass D3 confine themselves to higher-order
terms that arise from simple (a†) and triple operators. Endowed
with a convenient compromise of efficiency and accuracy, they
have been extensively applied to a variety of molecules, anions, and
clusters.94,97,142,214

Convenient alternatives to the Hartree–Fock spin-orbital basis
that reflect the presence of stronger correlation effects can be sup-
plied by Brueckner determinants. The chief modification in the
super-operator Hamiltonian matrix that follows from this choice is
the presence of non-zero, occupied-virtual Fock matrix elements.
Diagonalization of the occupied–occupied and virtual–virtual blocks
of the Fock matrix (i.e., production of semi-canonical or pseudo-
canonical orbitals) results in algorithms that have only minor
changes with respect to their antecedents that are based on canon-
ical, Hartree–Fock spin-orbitals. The Brueckner-doubles (BD),
coupled-cluster method228 is a useful generator of spin-orbitals in
cases where reference–state correlation is relatively strong. The BD,
triple-field-operator (or BD-T1) approximation229–233 of the elec-
tron propagator has proven to be a versatile tool for calculations on
core ionization energies, on valence electron detachment energies
of closed-shell molecules and anions, and on species with diffuse or
biradical character. A Dyson spin-orbital in the latter cases can be
dominated by a single Brueckner spin-orbital, whereas its expan-
sion in terms of Hartree–Fock orbitals displays several significant
components.

DYSON SPIN-ORBITALS FROM RELATED TECHNIQUES

For reference states with multiconfigurational character that is
imposed by the unpairing of electrons or by symmetry, several gen-
eralizations have been introduced in electron-propagator method-
ology.234–239 Multiconfigurational, spin-tensor, electron-propagator
(MCSTEP) calculations237–239 usually employ a complete-active-
space, self-consistent-field wavefunction240,241 as a reference state
and an operator manifold that consists of products of N-electron,
ket–bra excitation operators with simple or triple field operators.
MCSTEP methods have been applied to a variety of small open-
shell or diradicaloid molecules and have produced electron binding
energies of accuracy comparable to the results obtained with multi-
reference wavefunctions.242–245 These works contain little discussion
of the Dyson spin-orbitals that were produced thereby.

A variety of many-body methods that employ initial-
state and final-state wavefunctions also produce Dyson spin-
orbitals. In equation-of-motion, coupled-cluster theory, a similarity-
transformed Hamiltonian obtained via an initial-state calculation is
diagonalized in a basis of determinants with N ± 1 electrons.15,246–251

In the usual formulation, the Hamiltonian matrix is non-Hermitian,
and therefore, left and right eigenvectors that are not adjoints of
each other are produced. Therefore, only the squared moduli of the
corresponding Dyson spin-orbitals are well defined. (There is also
no guarantee that the eigenvalues are real; this potential problem
appears not to be encountered in practice.) The stationarity of the
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effective Hamiltonian enables decoupled consideration of final states
with N + 1 or N − 1 electrons and therefore generates final-state
wavefunctions whose overlaps with initial-state wavefunctions yield
Dyson spin-orbitals.

Another many-body approach that also decouples electron
attachments from detachments constructs an effective Hamilto-
nian matrix in the determinant spaces of N + 1 or N − 1 elec-
trons. In the non-Dyson electron propagator methods,108,252–255 the
electron-attachment and electron-detachment terms of Eq. (34) are

considered separately. The matrix that is diagonalized is Hermitian,
and the Dyson spin-orbitals are well-defined. Wavefunctions for
the final states are available for the evaluation of final-state prop-
erties.252

NUMERICAL EXAMPLES

Normalized Dyson spin-orbitals calculated at the uncorrelated
(Koopmans’s theorem or KT) level of theory are presently compared

FIG. 1. Radial plots of Dyson orbitals along a C–H bond of methane, their corresponding ionization energies (IEs), and their probability factors (PFs) for the 12T2 and 22A1

final states of CH4
+ calculated with various electron propagator methods, the aug-cc-pVTZ basis, and a bond distance of 1.0899 Å. The iso-surfaces of the normalized Dyson

orbitals are practically identical.
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to those obtained with non-diagonal second order (ND2), NR2,
and BD-T1 self-energies. (These calculations were executed with
the development version of Gaussian,256 and figures were generated
with Multiwfn,257 Gnuplot,258 and GaussView.259) In ND2 and NR2
calculations, Dyson spin-orbitals are obtained from the eigenvec-
tors of the super-operator secular equations in the form of linear
combinations of canonical, Hartree–Fock spin-orbitals. In BD-T1
calculations, the Dyson spin-orbitals are expressed as linear com-
binations of pseudo-canonical Brueckner orbitals.

Figure 1 shows that Dyson orbitals of the lowest, ionization
energies of methane calculated in various approximations are nearly
identical for the 2T2 and 2A1 final states of the methane cation.
The aug-cc-pVTZ basis260 is employed; the C–H distance, opti-
mized with the coupled-cluster single, double, and perturbative
triple method [CCSD(T)],261 is 1.0899 Å. In the former case, ampli-
tudes along a C3 axis have extrema near the hydrogen nuclei and can
be regarded as a pattern of constructive interference between carbon
2p and hydrogen 1s functions. A similar conclusion that involves the

FIG. 2. Radial plots of Dyson orbitals along a B–H bond of BH4
−, corresponding vertical electron detachment energies (VEDEs), and their probability factors (PFs) for the

12T2 and 22A1 final states of BH4 calculated with various electron propagator methods, the d-aug-cc-pVTZ basis, and a bond distance of 1.2397 Å. The iso-surfaces of the
normalized Dyson orbitals are practically identical.
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carbon 2s function follows for the 2A1 final state’s Dyson orbital. The
chief deficiency of the canonical, Hartree–Fock orbitals is their unit
probability factors. Occupied, canonical, Hartree–Fock orbitals are
usually excellent approximations to correlated, normalized Dyson
orbitals for the lowest ionization energies of closed-shell molecules.
Exposure of this orbital to the self-energy of the Dyson quasiparticle
equation yields an improved, vertical, ionization energy that is closer
to experiment [14.4 eV is the maximum of a broad peak262 that is
in close agreement with the ΔCCSD(T) result of 14.37 eV obtained
with the same basis] than the KT prediction for the lowest ionization
energy. A similar predictive quality is attained for the 2A1 final state,
where the BD-T1 result exceeds the ΔCCSD(T) value by 0.08 eV.
The probability factor of 0.9 is larger for the first ionization energy
than for the second, inner-valence value of 0.85.

Similar conclusions follow for the Dyson orbitals of electron
detachment from the isoelectronic anion, BH4

−. As with methane,

closed-shell, canonical Hartree–Fock orbitals bear a close resem-
blance to correlated, normalized Dyson orbitals, which differ from
their uncorrelated counterparts chiefly in their probability factors.
(A lack of convergence in the ND2 calculation on the second elec-
tron detachment energy is responsible for the absence of a cor-
responding curve in Fig. 2.) These results were obtained with the
d-aug-cc-pVTZ basis and a bond distance of 1.2397 Å. Probability
factors for the first electron detachment energy are larger than those
for the second. The lowest, vertical, electron-detachment energies
calculated with the correlated approximations are in excellent agree-
ment with a basis-set extrapolated value obtained with the CCSD(T)
method, 4.68 eV.202

Normalized Dyson orbitals for the carbon 1s ionization energy
of methane are compared in Fig. 3. The radial plots are nearly
indistinguishable, but probability factors of only 0.8 are obtained
in ND2 and BD-T1 calculations. (These results are typical for 1s

FIG. 3. Radial plots of Dyson orbitals along a C–H bond of CH4, corresponding core-ionization energies (IEs), and their probability factors (PFs) for the core-ionized, 2A1 final
state of CH4

+ calculated with various electron propagator methods, the aug-cc-pCV5Z basis (all electrons correlated), and a bond distance of 1.0899 Å. The ordering of the
radial plots in the proximity of the C atom (enlarged in the bottom left panel) is opposite to that in the long-range region (enlarged in the bottom right panel).
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ionization energies of closed-shell molecules.233) A closer exami-
nation of amplitudes near the carbon nucleus discloses a slightly
larger concentration there by the Hartree–Fock orbital. The ten-
dency to spread the amplitudes away from the nucleus by the
correlated Dyson orbitals is greater for ND2, which, in general, exag-
gerates correlation effects, than for BD-T1. The present ionization
energies may be increased with a relativistic correction of approx-
imately 0.05 eV that is based on the calculated total energies of
two-electron, atomic cations.233,263 After this update, the BD-T1
ionization energy is only 0.2% larger than the experimental value,
290.91 eV.264 Most of the corrections to the Koopmans result
are captured with diagonal (P3+) or simple non-diagonal (ND2)
self-energy approximations. The chief deficiency of uncorrelated
theory lies not in its approximation to the normalized Dyson orbital,
but in the absence of the energy-dependent, self-energy operator,
which is responsible for describing orbital relaxation in final states
and consequent reductions in probability factors.

A strongly correlated pair of diffuse electrons in the tetrahedral
(double-Rydberg265,266) isomer of NH4

− produces significant differ-
ences in Dyson orbitals that result from the four approximations
(see Fig. 4). The d-aug-cc-pVTZ basis was used; the optimized N–H
distance was 1.0411 Å. Perturbative improvements over KT results
that are included in ND2 and NR2 calculations diminish extrema
that occur in the internuclear region and amplify those just beyond
the protons on C3 axes. In BD-T1 calculations, employment of
more renormalized terms in the self-energy accentuates these trends.
This approximation produces the most rapidly decaying, long-range
tail in the Dyson orbital. Similar trends are seen along C2 axes of
symmetry. Two radial nodes foreshadow the united-atom limit,
wherein the present Dyson orbital approaches a 3s function of Na−.
The two minima result chiefly from interference between a non-
valence (3s) function on the nitrogen nucleus and diffuse s functions
on the hydrogen nuclei. Most of the electron density that corre-
sponds to these Dyson spin-orbitals lies outside the ammonium

FIG. 4. Radial plots of Dyson orbitals along a N–H bond of NH4
−, corresponding vertical electron detachment energies (VEDEs), and their probability factors (PFs) for the

2A1 final state of NH4 calculated with various electron propagator methods, the d-aug-cc-pVTZ basis and a bond distance of 1.0411 Å. Radial plots in the long-range region
are enlarged in the two bottom panels.
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core. The BD-T1 method succeeds in obtaining an accurate electron
detachment energy (experiment = 0.47 eV267,268) and a probability
factor that lies between 0.85 and 0.90.

Differences between Hartree–Fock and correlated amplitudes
of normalized Dyson orbitals are even more pronounced in ozone,
a molecule with appreciable diradical character.195,231 In Fig. 5, the
results for the 2A1 final state of the ozone cation are displayed.
Absolute values of Hartree–Fock amplitudes along theO–O internu-
clear and C2 axes contrast with those of normalized Dyson orbitals

obtained with the correlated methods. ND2 amplitudes differ most
from their Hartree–Fock counterparts. NR2 results differ less, and
BD-T1 amplitudes differ least. At long distances from the nuclei,
Hartree–Fock orbitals decay most rapidly, followed by BD-T1, NR2,
and ND2. Corrections to the Koopmans prediction for the ioniza-
tion energy are overestimated by ND2. P3+ and NR2 suffice to over-
comemost of the remaining errors of ND2. The BD-T1 prediction is
in excellent agreement with experiment269 and produces a probabil-
ity factor of 0.9. An improved description of the normalized Dyson

FIG. 5. Radial plots of Dyson orbitals along an O–O bond (upper panel) and the main C2 axis (lower panel) of ozone, corresponding ionization energies (IEs), and their
probability factors (PFs) for the 2A1 final state of O3

+ calculated with various electron propagator methods, the aug-cc-pVQZ basis, a bond distance of 1.263 Å, and a bond
angle of 117.4○. Expt. denotes an experimental result obtained from a photoelectron spectrum.269
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orbital, its energy, and its probability factor result from employment
of the renormalized BD-T1 self-energy.

Dyson orbitals for the 2B2 final state in Fig. 6 have even more
obvious differences. As in the 2A1 state, the Hartree–Fock ampli-
tudes have greater absolute values in the O–O bond regions. The
ND2 and NR2 contours diminish the depth of one of the internu-
clear minima produced with Hartree–Fock, and BD-T1 eliminates it
entirely. Correlation decreases absolute amplitudes and changes the
positions of nodes near the central nucleus. It also produces more
diffuse outer contours beyond the terminal nuclei. ND2 overcor-
rects the Koopmans prediction for the ionization energy. NR2 and
BD-T1 are in close agreement with the experimental value, but the

probability factor for NR2 is too low. The BD-T1 calculation pro-
duces a probability factor near 0.9 and is in excellent agreement with
the experimental peak.269 For the first two ionization energies, the
most important self-energy terms pertain to electron correlation in
final states wherein the removal of an electron from a σ orbital pro-
vokes a compensating accumulation of π electrons near the terminal
oxygen nuclei.

The next ionization energy of ozone corresponds to a 2A2 state;
the Dyson orbitals (Fig. 7) exhibit a π pattern generated by 2p func-
tions with opposite phases on the terminal nuclei. BD-T1 Dyson
orbitals are more diffuse than their Hartree–Fock counterparts.
All of the methods produce reasonable ionization energies with

FIG. 6. Radial and two-dimensional plots of Dyson orbitals along an O–O bond and in the molecular plane of ozone, corresponding ionization energies (IEs), and their
probability factors (PFs) for the 2B2 final state of O3

+ calculated with various electron propagator methods, the aug-cc-pVQZ basis, a bond distance of 1.263 Å and a bond
angle of 117.4○. Expt. denotes an experimental result obtained from a photoelectron spectrum.269
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respect to experiment269 and probability factors near 0.85. The most
prominent self-energy terms pertain to initial-state correlation of π
electrons that accentuates diradical character and to relaxation of
electrons in b1 orbitals that moves electron density from the central

to the terminal nuclei. The corresponding effects on the ionization
energy have opposite signs, and therefore, the total correction to the
Koopmans result is not as large as in the two other cases where there
are σ Dyson orbitals.

FIG. 7. Dyson orbitals of ozone, corre-
sponding ionization energies (IEs), and
their probability factors (PFs) for the 2A2
final state of O3

+ calculated with var-
ious electron propagator methods, the
aug-cc-pVQZ basis, a bond distance of
1.263 Å, and a bond angle of 117.4○.
Dyson orbitals are plotted in the plane
perpendicular to the plane of the nuclei
and containing the two terminal oxygen
atoms (middle panel) and in the paral-
lel plane that contains the central oxygen
(lower panel). Expt. denotes an experi-
mental result obtained from a photoelec-
tron spectrum.269
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FIG. 8. Dyson orbitals of D3h Cu3Cl3, cor-
responding ionization energies (IEs), and
their probability factors (PFs) for the 2A2

′

final state calculated with Koopmans’s
theorem (KT) and NR2 electron propaga-
tor methods, the cc-pVDZ basis, a Cu–Cl
bond distance of 2.207 Å, and a Cu–
Cl–Cu bond angle of 75○. Expt. denotes
an experimental result obtained from a
photoelectron spectrum.285

Such differences in the magnitudes of correlation effects with
respect to final states are typical of molecules in which there is a
low-lying Dyson orbital for the electron affinity with π characteris-
tics. Because ozone has a bound, 2B1 anion, triple-field operators that
involve virtual b1 orbitals are important in describing cationic, final
states that correspond to σ Dyson orbitals.231 Similar responses of
electrons in π orbitals to a σ vacancy occur in N2, heterocyclic com-
pounds, and many other molecules270–281 and are often responsible
for the failure of Koopmans’s results to produce the correct order of
final states.

Transition-metal complexes often have occupied, canonical,
Hartree–Fock orbitals that differ markedly from Dyson orbitals
of ionization energies calculated with correlated methods.282–284

A convincing assignment of the lowest peaks in the photoelec-
tron spectrum285 of the D3h Cu3Cl3 cluster can be obtained
with NR2/cc-pvdz,200,286,287 electron-propagator calculations. A
CCSD(T)/cc-pvdz optimization produces a Cu–Cl bond length
(2.205 Å) in close agreement with that of a previous computational
study (2.207 Å);288 MP2 frequencies confirm the D3h minimum.
Canonical, Hartree–Fock orbitals are in agreement with those of
previous calculations288 to within a few hundredths of an eV. Four,
predicted, vertical, ionization energies of 9.72 eV, 10.13 eV, 10.60 eV,
and 11.39 eV, respectively, for the 2E′, 2E′′, 2A2

′, and 2A2
′′ final

states are in reasonable agreement with the reported spectral features
(9.52 eV, 9.64 eV, 10.01 eV, 10.19 eV, 10.78 eV, and 11.25 eV) and
their pole strengths vary between 0.87 and 0.89. (The first two pairs
of features are associated with degenerate final states that are subject
to Jahn–Teller distortions.) Whereas the normalized Dyson orbitals
for the 2E′ and 2E′′ final states are composed almost entirely of a

single, canonical, Hartree–Fock orbital, significant mixing between
two, canonical, Hartree–Fock orbitals occurs in each of the Dyson
orbitals for the 2A2

′ and 2A2
′′ final states. In the normalized, a2

′

Dyson orbital, the fifth highest, canonical, Hartree–Fock orbital has
a coefficient of only 0.79. Amplitudes associated with Cu basis func-
tions are accentuated by the self-energy. In the Hartree–Fock orbital,
constructive interference between Cu 3d and Cl 3p functions occurs
in the interior of the cluster, but the Dyson orbital calculated with
the NR2 method displays a reversal of the Cu 3d phases (see Fig. 8).
Antibonding phase relationships between Cu centers are strength-
ened by the accumulation of contours in the central triangle of metal
atoms.

CONCLUSIONS

Since the discovery of the electron in the late 19th century,
chemists have speculated about the fate of these particles when
they are embedded in molecular matter. The classical theories of
Lewis161 and Langmuir162,289 have continued to influence reason-
ing about molecular structure and properties in the century after the
advent of quantum mechanics. Molecular-orbital theories have pro-
vided a way to connect structure, physical properties, and chemical
reactivity on a qualitative level,4,5,90,290 but quantitative accuracy in
ab initio, quantum-mechanical calculation persistently demands
correlated models of electronic structure. Such requirements appear
to undermine the validity of molecular-orbital theory, at least
in its ab initio, Hartree–Fock realization and to consign Auf-
bau principles based on delocalized, one-electron functions to
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quantitative irrelevance. Concepts of chemical bonding that retain
their exactitude in the presence of electron interaction therefore
constitute a higher standard of credibility in the field of molecular,
electronic-structure theory.

Dyson orbitals and their electron binding energies satisfy this
standard while retaining many of the conceptual advantages of
uncorrelated, molecular-orbital theory. With the advent of incisive
spectroscopic techniques andmethods of data analysis, it is now pos-
sible to infer the complex amplitudes of Dyson orbitals from exper-
imental measurements. Previous generations of spectroscopic and
scattering experiments that yielded electron-binding energies also
produced data on the squared moduli of Dyson orbitals, which are
components of initial-state, electronic densities. Improvements and
generalizations of current experimental techniques could, in prin-
ciple, suffice to reconstruct one-electron-density matrices and total
energies. Claims regarding Dyson orbitals that are based on calcu-
lations are falsifiable by means of experimental observation. Aufbau
principles for the properties of initial, N-electron states are restored
to quantitative relevance by the introduction of orbitals and orbital
energies that are mapped to final states, each with a spectroscopically
meaningful probability factor.

No assumptions regarding traditional, chemical concepts are
invoked in this approach to molecular, electronic-structure theory.
No model, one-electron Hamiltonians need be introduced. Many-
electron Ansätze that contain geminal or other group functions
never appear. Dyson-orbital concepts are agnostic with respect to
the qualitative traditions of molecular-orbital and valence-bond the-
ories, require no neglect of electron interaction, and can be applied
universally to any molecular system. There is no formal impediment
to calculating Dyson orbitals with many-electron wavefunctions of
any provenance.

Dyson orbitals are defined only in terms of many-electron, state
functions. Their amplitudes in position or momentum space and
their probability factors have a clear physical meaning. Electron den-
sities and reduced-density matrices used to calculate one-electron
properties may be constructed from Dyson orbitals. Together with
their electron-binding energies, Dyson orbitals are rigorously related
to total, electronic energies. Dyson orbitals are eigenfunctions of
a well-defined operator that depends only on the density matrices
of an initial state. These conclusions follow from the Schrödinger
equation with mathematical rigor.

The interpretive apparatus of chemical-bonding theory that is
founded on electronic densities or one-electron, reduced-density
matrices is readily applicable to Dyson orbitals, which are summable
components of both these entities. Dyson orbitals may be analyzed
in terms of the real-space or Hilbert-space partitioning schemes
that recur in widely used approaches to the recognition of pat-
terns in molecular structure, energetics, spectra, and reactivity. This
capability is applicable to molecules in their equilibrium structures
or to reacting species in which chemical bonds are forming or
breaking. Multi-photon experiments may be interpreted in terms
of Dyson orbitals that resemble distinct, localized, hybrid functions
that change with time.

Practical calculation of Dyson orbitals need not require the
evaluation of many-electron state functions. Direct procedures
based on the Dyson quasiparticle equation or the super-operator
secular equations provide Dyson orbitals and electron-binding ener-
gies with an accuracy that suffices to assign spectra and to provide

clear interpretation of chemical bonding in closed-shell and cer-
tain kinds of open-shell molecules. Efficient algorithms for perform-
ing these calculations continue to be accessible to computational
scientists.

Basic chemistry courses that introduce atomic and molecu-
lar structure typically present a series of chemical-bonding theories
that begins with classical notions such as Lewis’s electron dots161

and octets162,289 or Gillespie and Nyholm’s valence-shell-electron-
pair-repulsion model.153,154 Valence-bond notions163–166 that invoke
quantum-mechanical interference between hybrid orbitals in the
formation of bonding pairs often follow. Finally, molecular-orbital
theories291–295 are introduced, but discussion of delocalized orbitals
typically is confined to diatomic molecules. At this point, students
may be introduced to Dyson orbitals, their electron-binding ener-
gies, and probability factors and to the experiments that provide
realizations of these concepts.

Exact generalizations that relate uncorrelated, molecular-
orbital theory to Dyson-orbital concepts do not abolish the util-
ity of valence-bond or other theories that are founded on group
functions or spin couplings that involve two or more electrons.
Coincidence experiments of the future that probe two-electron or
higher, reduced-density matrices may provide tests of the quality
of wavefunctions that incorporate valence-bond or geminal con-
structs. The experimental relevance, universality, rigor, and com-
putational practicality of one-electron interpretations of electronic
structure based on Dyson orbitals do not foreclose advances in the
understanding of correlated, many-electron phenomena. Reason-
ing by analogy can profitably employ terms that explicitly invoke
electron correlation. The alternative languages found in chemical-
bonding theories will continue to acquire greater flexibility and
depth.

ACKNOWLEDGMENTS

This work was supported through Grant No. CHE-1565760 to
Auburn University. Professor Filip Pawłowski provided extensive
assistance in the execution of numerical calculations.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES

1K. Fukui, Int. J. Quantum Chem. 12(Suppl. 1), 277–288 (1978).
2P. Mulder, Int. J. Philos. Chem. 17(1), 24–35 (2011).
3W. H. E. Schwarz, Angew. Chem., Int. Ed. 45(10), 1508–1517 (2006).
4K. Fukui, Science 218(4574), 747–754 (1982).
5R. Hoffmann, Angew. Chem., Int. Ed. Engl. 21(10), 711–724 (1982).
6A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to
Advanced Electronic Structure Theory (Macmillan, New York, 1982).
7T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Electronic-Structure Theory
(John Wiley & Sons, Inc., 2000).
8J. Linderberg and Y. Öhrn, Propagators in Quantum Chemistry, 2nd ed. (Wiley-
Interscience, Hoboken, NJ, 2004).
9P.-O. Löwdin, Phys. Rev. 97(6), 1474–1489 (1955).

J. Chem. Phys. 153, 070902 (2020); doi: 10.1063/5.0016472 153, 070902-24

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1002/anie.200501333
https://doi.org/10.1126/science.218.4574.747
https://doi.org/10.1002/anie.198207113
https://doi.org/10.1103/physrev.97.1474


The Journal
of Chemical Physics

PERSPECTIVE scitation.org/journal/jcp

10P.-O. Löwdin, Phys. Rev. 97(6), 1490–1508 (1955).
11P.-O. Löwdin, Phys. Rev. 97(6), 1509–1520 (1955).
12W. Kohn and L. J. Sham, Phys. Rev. 140(4A), A1133–A1138 (1965).
13J. C. Slater, Phys. Rev. 34(10), 1293–1322 (1929).
14E. U. Condon, Phys. Rev. 36(7), 1121–1133 (1930).
15I. Shavitt and R. J. Bartlett, Many-Body Methods in Chemistry and Physics:
MBPT and Coupled-Cluster Theory (Cambridge University Press, New York,
2009).
16E. R. Davidson, Reduced Density Matrices in Quantum Chemistry (Academic
Press, New York, 1976).
17I.-M. Høyvik and P. Jørgensen, Chem. Rev. 116(5), 3306–3327 (2016).
18A. Baiardi and M. Reiher, J. Chem. Phys. 152(4), 040903 (2020).
19B. T. Pickup and O. Goscinski, Mol. Phys. 26, 1013–1035 (1973).
20F. J. Dyson, Phys. Rev. 75(11), 1736–1755 (1949).
21S. Klaiman and L. S. Cederbaum, J. Chem. Phys. 141(19), 194102 (2014).
22R. Zalik and J. V. Ortiz, “Eigenvalues of Uncorrelated, Density-Difference
Matrices and the Interpretation of Δ-Self-Consistent-Field Calculations” (unpub-
lished) (2020).
23P. S. Bagus, Phys. Rev. 139(3A), A619–A634 (1965).
24C. C. J. Roothaan, Rev. Mod. Phys. 23(2), 69–89 (1951).
25G. G. Hall and J. E. Lennard-Jones, Proc. R. Soc. London, Ser. A 205(1083),
541–552 (1951).
26J. A. Pople and R. K. Nesbet, J. Chem. Phys. 22(3), 571–572 (1954).
27G. Berthier, C. R. Hebd. Seances Acad. Sci. 238, 91–93 (1954).
28C. C. J. Roothaan, Rev. Mod. Phys. 32(2), 179–185 (1960).
29T. Koopmans, Physica 1(1-6), 104–113 (1934).
30R. Manne and T. Åberg, Chem. Phys. Lett. 7(2), 282–284 (1970).
31L. S. Cederbaum, W. Domcke, J. Schirmer, and W. Von Niessen, Adv. Chem.
Phys. 65, 115–159 (1986).
32M. S. Deleuze and L. S. Cederbaum, Int. J. Quantum Chem. 63(2), 465–481
(1997).
33M. Spanner, S. Patchkovskii, C. Zhou, S. Matsika, M. Kotur, and T. C.Weinacht,
Phys. Rev. A 86, 053406 (2012).
34I. G. Kaplan and A. P. Markin, Opt. Spektrosk. 24(6), 884–889 (1968).
35I. G. Kaplan and A. P. Markin, Opt. Spektrosk. 25(4), 493–499 (1968).
36I. G. Kaplan and A. P. Markin, Dokl. Akad. Nauk SSSR 184(1), 66–69 (1969).
37W. Thiel and A. Schweig, Chem. Phys. Lett. 12(1), 49–52 (1971).
38A. Schweig and W. Thiel, Chem. Phys. Lett. 21(3), 541–543 (1973).
39B. T. Pickup, Chem. Phys. 19, 193–208 (1977).
40F. O. Ellison, J. Chem. Phys. 61(2), 507–515 (1974).
41J. W. Rabalais, T. P. Debies, J. L. Berkosky, J. T. J. Huang, and F. O. Ellison, J.
Chem. Phys. 61(2), 516–528 (1974).
42J. W. Rabalais, T. P. Debies, J. L. Berkosky, J. T. J. Huang, and F. O. Ellison, J.
Chem. Phys. 61(2), 529–533 (1974).
43I. G. Kaplan and A. P. Markin, Sov. Phys. Dokl. 14, 36–37 (1969).
44Y. Öhrn and G. Born, Adv. Quantum Chem. 13, 1–88 (1981).
45M. Mishra and Y. Öhrn, Int. J. Quantum Chem. 18, 335–348 (1980).
46C. M. Oana and A. I. Krylov, J. Chem. Phys. 127(23), 234106 (2007).
47G. M. Seabra, I. G. Kaplan, V. G. Zakrzewski, and J. V. Ortiz, J. Chem. Phys.
121(9), 4143–4155 (2004).
48M. Deleuze, B. T. Pickup, and J. Delhalle, Mol. Phys. 83(4), 655–686 (1994).
49G. M. Seabra, I. G. Kaplan, and J. V. Ortiz, J. Chem. Phys. 123(11), 114105
(2005).
50S. Gozem, A. O. Gunina, T. Ichino, D. L. Osborn, J. F. Stanton, and A. I. Krylov,
J. Phys. Chem. Lett. 6(22), 4532–4540 (2015).
51C. M. Oana and A. I. Krylov, J. Chem. Phys. 131(12), 124114 (2009).
52C. E. Brion, Int. J. Quantum Chem. 29(5), 1397–1428 (1986).
53I. E. McCarthy and E. Weigold, Rep. Prog. Phys. 54(6), 789–879 (1991).
54R. J. F. Nicholson, I. E. McCarthy, and W. Weyrich, J. Phys. B: At., Mol. Opt.
Phys. 32, 3873–3886 (1999).
55C. E. Brion, G. Cooper, Y. Zheng, I. V. Litvinyuk, and I. E. McCarthy, Chem.
Phys. 270(1), 13–30 (2001).

56A. Lahmam-Bennani, J. Electron Spectrosc. Relat. Phenom. 123, 365–376
(2002).
57A. O. Bawagan, C. E. Brion, E. R. Davidson, and D. Feller, Chem. Phys. 113(1),
19–42 (1987).
58A. O. Bawagan, R. Müller-Fiedler, C. E. Brion, E. R. Davidson, and C. Boyle,
Chem. Phys. 120(3), 335–357 (1988).
59S. A. C. Clark, T. J. Reddish, C. E. Brion, E. R. Davidson, and R. F. Frey, Chem.
Phys. 143(1), 1–10 (1990).
60E. R. Davidson, D. Feller, C. M. Boyle, L. Adamowicz, S. A. C. Clark, and
C. E. Brion, Chem. Phys. 147(1), 45–50 (1990).
61S. Knippenberg, Y. R. Huang, B. Hajgató, J.-P. François, J. K. Deng, and
M. S. Deleuze, J. Chem. Phys. 127, 174306 (2007).
62C. G. Ning, X. G. Ren, J. K. Deng, G. L. Su, S. F. Zhang, S. Knippenberg, and
M. S. Deleuze, Chem. Phys. Lett. 421(1-3), 52–57 (2006).
63C. G. Ning, B. Hajgató, Y. R. Huang, S. F. Zhang, K. Liu, Z. H. Luo, S.
Knippenberg, J. K. Deng, and M. S. Deleuze, Chem. Phys. 343(1), 19–30 (2008).
64Y. R. Huang, S. Knippenberg, B. Hajgató, J.-P. François, J. K. Deng, and
M. S. Deleuze, J. Phys. Chem. A 111(26), 5879–5897 (2007).
65Y. R. Huang, C. G. Ning, J. K. Deng, and M. S. Deleuze, Phys. Chem. Chem.
Phys. 10(17), 2374–2389 (2008).
66M. S. Deleuze and S. Knippenberg, J. Chem. Phys. 125(10), 104309 (2006).
67Y. Zheng, J. J. Neville, and C. E. Brion, Science 270(5237), 786–788 (1995).
68J. J. Neville, Y. Zheng, and C. E. Brion, J. Am. Chem. Soc. 118(43), 10533–10544
(1996).
69C. E. Brion, S. Wolfe, Z. Shi, G. Cooper, and Y. J. Zheng, Can. J. Chem. 95(12),
1314–1322 (2017).
70I. G. Kaplan, B. Barbiellini, and A. Bansil, Phys. Rev. B 68(23), 235104 (2003).
71B. Barbiellini and A. Bansil, J. Phys. Chem. Solids 65(12), 2031–2034 (2004).
72V. Cermak, J. Chem. Phys. 44(4), 1318–1323 (1966).
73N. Kishimoto, J. Aizawa, H. Yamakado, and K. Ohno, J. Phys. Chem. A 101(28),
5038–5045 (1997).
74K. Ohno, H. Mutoh, and Y. Harada, J. Am. Chem. Soc. 105(14), 4555–4561
(1983).
75K. Ohno and Y. Harada, in Theoretical Models of Chemical Bonding, edited by
Z. B. Maksic (Springer, Heidelberg, 1991), Vol. 3, pp. 199–233.
76N. Kishimoto and K. Ohno, Int. Rev. Phys. Chem. 26(1), 93–138 (2007).
77A. Damascelli, Phys. Scr. T109, 61–74 (2004).
78M. Dauth, M. Wiessner, V. Feyer, A. Schöll, P. Puschnig, F. Reinert, and
S. Kümmel, New J. Phys. 16, 103005 (2014).
79P. Puschnig, S. Berkebile, A. J. Fleming, G. Koller, K. Emtsev, T. Seyller, J. D.
Riley, C. Ambrosch-Draxl, F. P. Netzer, and M. G. Ramsey, Science 326(5953),
702–706 (2009).
80P. Puschnig, A. D. Boese, M. Willenbockel, M. Meyer, D. Lüftner, E. M.
Reinisch, T. Ules, G. Koller, S. Soubatch, M. G. Ramsey, and F. S. Tautz, J. Phys.
Chem. Lett. 8(1), 208–213 (2017).
81M. Wiessner, D. Hauschild, C. Sauer, V. Feyer, A. Schoell, and F. Reinert, Nat.
Commun. 5, 4156 (2014).
82D. Lueftner, T. Ules, E. M. Reinisch, G. Koller, S. Soubatch, F. S. Tautz, M. G.
Ramsey, and P. Puschnig, Proc. Natl. Acad. Sci. U. S. A. 111(2), 605–610 (2014).
83P. Kliuiev, T. Latychevskaia, J. Osterwalder, M. Hengsberger, and L. Castiglioni,
New J. Phys. 18(9), 093041 (2016).
84P. Kliuiev, T. Latychevskaia, G. Zamborlini, M. Jugovac, C. Metzger, M. Grimm,
A. Schöll, J. Osterwalder, M. Hengsberger, and L. Castiglioni, Phys. Rev. B 98(8),
085426 (2018).
85P. Kliuiev, G. Zamborlini, M. Jugovac, Y. Gurdal, K. v. Arx, K. Waltar,
S. Schnidrig, R. Alberto, M. Iannuzzi, V. Feyer, M. Hengsberger, J. Osterwalder,
and L. Castiglioni, Nat. Commun. 10(1), 5255 (2019).
86J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B.
Corkum, and D. M. Villeneuve, Nature 432(7019), 867–871 (2004).
87R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University
Press, 1994).
88F. Weinhold and C. Landis, Valency and Bonding (Cambridge University Press,
Cambridge, 2005).

J. Chem. Phys. 153, 070902 (2020); doi: 10.1063/5.0016472 153, 070902-25

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1103/physrev.97.1490
https://doi.org/10.1103/physrev.97.1509
https://doi.org/10.1103/physrev.140.a1133
https://doi.org/10.1103/physrev.34.1293
https://doi.org/10.1103/physrev.36.1121
https://doi.org/10.1021/acs.chemrev.5b00492
https://doi.org/10.1063/1.5129672
https://doi.org/10.1080/00268977300102261
https://doi.org/10.1103/physrev.75.1736
https://doi.org/10.1063/1.4901347
https://doi.org/10.1103/physrev.139.a619
https://doi.org/10.1103/revmodphys.23.69
https://doi.org/10.1098/rspa.1951.0048
https://doi.org/10.1063/1.1740120
https://doi.org/10.1103/revmodphys.32.179
https://doi.org/10.1016/s0031-8914(34)90011-2
https://doi.org/10.1016/0009-2614(70)80309-8
https://doi.org/10.1002/9780470142899.ch3
https://doi.org/10.1002/9780470142899.ch3
https://doi.org/10.1002/(sici)1097-461x(1997)63:2<465::aid-qua18>3.0.co;2-7
https://doi.org/10.1103/physreva.86.053406
https://doi.org/10.1016/0009-2614(71)80613-9
https://doi.org/10.1016/0009-2614(73)80303-3
https://doi.org/10.1016/0301-0104(77)85131-8
https://doi.org/10.1063/1.1681925
https://doi.org/10.1063/1.1681926
https://doi.org/10.1063/1.1681926
https://doi.org/10.1063/1.1681927
https://doi.org/10.1063/1.1681927
https://doi.org/10.1016/s0065-3276(08)60291-9
https://doi.org/10.1002/qua.560180836
https://doi.org/10.1063/1.2805393
https://doi.org/10.1063/1.1773135
https://doi.org/10.1080/00268979400101501
https://doi.org/10.1063/1.2043087
https://doi.org/10.1021/acs.jpclett.5b01891
https://doi.org/10.1063/1.3231143
https://doi.org/10.1002/qua.560290534
https://doi.org/10.1088/0034-4885/54/6/001
https://doi.org/10.1088/0953-4075/32/15/317
https://doi.org/10.1088/0953-4075/32/15/317
https://doi.org/10.1016/s0301-0104(01)00385-8
https://doi.org/10.1016/s0301-0104(01)00385-8
https://doi.org/10.1016/s0368-2048(02)00033-6
https://doi.org/10.1016/0301-0104(87)80217-3
https://doi.org/10.1016/0301-0104(88)87220-3
https://doi.org/10.1016/0301-0104(90)85001-d
https://doi.org/10.1016/0301-0104(90)85001-d
https://doi.org/10.1016/0301-0104(90)85019-s
https://doi.org/10.1063/1.2772848
https://doi.org/10.1016/j.cplett.2006.01.040
https://doi.org/10.1016/j.chemphys.2007.09.030
https://doi.org/10.1021/jp0719964
https://doi.org/10.1039/b718588j
https://doi.org/10.1039/b718588j
https://doi.org/10.1063/1.2209690
https://doi.org/10.1126/science.270.5237.786
https://doi.org/10.1021/ja9613015
https://doi.org/10.1139/cjc-2017-0450
https://doi.org/10.1103/physrevb.68.235104
https://doi.org/10.1016/j.jpcs.2004.08.016
https://doi.org/10.1063/1.1726858
https://doi.org/10.1021/jp9633512
https://doi.org/10.1021/ja00352a009
https://doi.org/10.1080/01442350601053393
https://doi.org/10.1238/physica.topical.109a00061
https://doi.org/10.1088/1367-2630/16/10/103005
https://doi.org/10.1126/science.1176105
https://doi.org/10.1021/acs.jpclett.6b02517
https://doi.org/10.1021/acs.jpclett.6b02517
https://doi.org/10.1038/ncomms5156
https://doi.org/10.1038/ncomms5156
https://doi.org/10.1073/pnas.1315716110
https://doi.org/10.1088/1367-2630/18/9/093041
https://doi.org/10.1103/physrevb.98.085426
https://doi.org/10.1038/s41467-019-13254-7
https://doi.org/10.1038/nature03183


The Journal
of Chemical Physics

PERSPECTIVE scitation.org/journal/jcp

89R. Hoffmann and R. B. Woodward, Acc. Chem. Res. 1(1), 17–22 (1968).
90R. B.Woodward and R. Hoffmann, Angew. Chem., Int. Ed. Engl. 8(11), 781–853
(1969).
91J. Katriel and E. R. Davidson, Proc. Natl. Acad. Sci. U. S. A. 77(8), 4403–4406
(1980).
92M. M. Morrell, R. G. Parr, and M. Levy, J. Chem. Phys. 62(2), 549–554 (1975).
93C. Møller and M. S. Plesset, Phys. Rev. 46(7), 618–622 (1934).
94J. V. Ortiz, V. G. Zakrzewski, and O. Dolgounitcheva, in Conceptual Perspec-
tives in Quantum Chemistry, edited by J.-L. Calais and E. Kryachko (Kluwer,
Dordrecht, 1997), Vol. 3, pp. 465–517.
95J. V. Ortiz, Adv. Quantum Chem. 35, 33–52 (1999).
96O. Dolgounitcheva, V. G. Zakrzewski, and J. Ortiz, Fundamental World of
Quantum Chemistry: A Tribute to the Memory of Per-Olov Löwdin (Kluwer,
Dordrecht, 2003), Vol. 2, pp. 525–555.
97V. G. Zakrzewski, O. Dolgounitcheva, A. V. Zakjevskii, and J. V. Ortiz, Adv.
Quantum Chem. 62, 105–136 (2011).
98O. Goscinski and P. Lindner, J. Math. Phys. 11(4), 1313–1317 (1970).
99R. G. Parr and W. Yang, J. Am. Chem. Soc. 106(14), 4049–4050 (1984).
100J. Cioslowski and J. V. Ortiz, J. Chem. Phys. 96(11), 8379–8389 (1992).
101J. V. Ortiz, Int. J. Quantum Chem. 44, 1–11 (1992).
102J. Melin, P. W. Ayers, and J. V. Ortiz, J. Chem. Sci. 117(5), 387–400 (2005).
103J. Melin, P. W. Ayers, and J. V. Ortiz, J. Phys. Chem. A 111(40), 10017–10019
(2007).
104L. M. Thompson, H. Harb, and H. P. Hratchian, J. Chem. Phys. 144(20),
204117 (2016).
105J. L. Mason, H. Harb, J. E. Topolski, H. P. Hratchian, and C. C. Jarrold, Acc.
Chem. Res. 52(11), 3265–3273 (2019).
106R. L. Martin and E. R. Davidson, Phys. Rev. A 16(4), 1341–1346 (1977).
107A. T. Amos and G. G. Hall, Proc. R. Soc. London, Ser. A 263(1315), 483–493
(1961).
108J. Schirmer, A. B. Trofimov, and G. Stelter, J. Chem. Phys. 109(12), 4734–4744
(1998).
109T. H. Dunning, J. Chem. Phys. 90(2), 1007–1023 (1989).
110J. Almlöf and P. R. Taylor, J. Chem. Phys. 86(7), 4070–4077 (1987).
111P. Duffy, D. P. Chong, M. E. Casida, and D. R. Salahub, Phys. Rev. A 50(6),
4707–4728 (1994).
112Y. Jin and R. J. Bartlett, J. Chem. Phys. 145(3), 034107 (2016).
113D. S. Ranasinghe, J. T. Margraf, Y. Jin, and R. J. Bartlett, J. Chem. Phys. 146(3),
034102 (2017).
114D. S. Ranasinghe, J. T. Margraf, A. Perera, and R. J. Bartlett, J. Chem. Phys.
150(7), 074108 (2019).
115R. L. A. Haiduke and R. J. Bartlett, J. Chem. Phys. 148(18), 184106 (2018).
116J. W. Knight, X. Wang, L. Gallandi, O. Dolgounitcheva, X. Ren, J. V. Ortiz,
P. Rinke, T. Körzdörfer, and N. Marom, J. Chem. Theory Comput. 12(2), 615–626
(2016).
117R. Stowasser and R. Hoffmann, J. Am. Chem. Soc. 121(14), 3414–3420 (1999).
118A. J. Layzer, Phys. Rev. 129(2), 897–907 (1963).
119G. Csanak, H. S. Taylor, and R. Yaris, Adv. At. Mol. Phys. 7, 287–361 (1971).
120G. D. Purvis and Y. Öhrn, J. Chem. Phys. 60(10), 4063–4069 (1974).
121J. V. Ortiz, Comput. Chem. 2, 1–61 (1997).
122R. Flores-Moreno, J. Melin, O. Dolgounitcheva, V. G. Zakrzewski, and
J. V. Ortiz, Int. J. Quantum Chem. 110, 706–715 (2010).
123J. V. Ortiz, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 3(2), 123–142 (2013).
124H. H. Corzo and J. V. Ortiz, in Advances in Quantum Chemistry, edited by
J. R. Sabin and E. J. Brändas (Academic Press, 2017), Vol. 74, pp. 267–298.
125J. V. Ortiz, in Annual Reports in Computational Chemistry, edited by
D. A. Dixon (Elsevier, 2017), Vol. 13, pp. 139–182.
126S. Hirata, M. R. Hermes, J. Simons, and J. V. Ortiz, J. Chem. Theory Comput.
11(4), 1595–1606 (2015).
127S. Hirata, A. E. Doran, P. J. Knowles, and J. V. Ortiz, J. Chem. Phys. 147(4),
044108 (2017).
128A. D. Walsh, J. Chem. Soc. 1953, 2260–2266.
129R. S. Mulliken, Rev. Mod. Phys. 14, 204–215 (1942).

130R. J. Buenker and S. D. Peyerimhoff, Chem. Rev. 74(2), 127–188 (1974).
131V. Fock, Z. Phys. 61(1), 126–148 (1930).
132P. Jørgensen and J. Simons, Second Quantization-Based Methods in Quantum
Chemistry (Academic Press, New York, 1981).
133J. Schirmer, Many-Body Methods for Atoms, Molecules and Clusters (Springer
International Publishing AG, 2018).
134A. E. Reed, R. B. Weinstock, and F. Weinhold, J. Chem. Phys. 83(2), 735–746
(1985).
135D. G. Truhlar, J. Chem. Educ. 89(5), 573–574 (2012).
136D. G. Truhlar, P. C. Hiberty, S. Shaik, M. S. Gordon, and D. Danovich, Angew.
Chem., Int. Ed. 58(36), 12332–12338 (2019).
137R. S. Mulliken, Vortex 21, 182 (1960).
138B. N. Plakhutin and E. R. Davidson, J. Phys. Chem. A 113, 12386–12395 (2009).
139E. R. Davidson and B. N. Plakhutin, J. Chem. Phys. 132, 184110 (2010).
140B. N. Plakhutin and E. R. Davidson, J. Chem. Phys. 140(1), 014102 (2014).
141B. N. Plakhutin, J. Chem. Phys. 148(9), 094101 (2018).
142V. G. Zakrzewski, O. Dolgounitcheva, A. V. Zakjevskii, and J. V. Ortiz, Annu.
Rep. Comput. Chem. 6, 79–94 (2010).
143S. F. Boys, Rev. Mod. Phys. 32(2), 296–299 (1960).
144J. M. Foster and S. F. Boys, Rev. Mod. Phys. 32(2), 300–302 (1960).
145C. Edmiston and K. Ruedenberg, Rev. Mod. Phys. 35(3), 457–464 (1963).
146C. A. Coulson, Trans. Faraday Soc. 38, 433–444 (1942).
147J. Lennard-Jones, Proc. R. Soc. London, Ser. A 198, 1–13 (1949).
148J. Lennard-Jones, Proc. R. Soc. London, Ser. A 198, 14–26 (1949).
149G. G. Hall and J. Lennard-Jones, Proc. R. Soc. London, Ser. A 202, 155–165
(1950).
150J. Lennard-Jones and J. A. Pople, Proc. R. Soc. London, Ser. A 202, 166–180
(1950).
151W. N. Lipscomb, Science 196(4294), 1047–1055 (1977).
152D. Y. Zubarev and A. I. Boldyrev, Phys. Chem. Chem. Phys. 10(34), 5207–5217
(2008).
153R. J. Gillespie and R. S. Nyholm, Q. Rev., Chem. Soc. 11(4), 339–380 (1957).
154R. J. Gillespie and E. A. Robinson, Angew. Chem., Int. Ed. Engl. 35(5), 495–514
(1996).
155J. Cioslowski, Int. J. Quantum Chem. 38, 15–28 (1990).
156F. W. Bobrowicz and W. A. Goddard III, Molecular Electronic-Structure The-
ory, Modern Theoretical Chemistry Vol. 3 (Plenum Publishing Corporation,
1977), pp. 79–127.
157D. W. Smith and O. W. Day, J. Chem. Phys. 62(1), 113–114 (1975).
158G. Friesecke, Proc. R. Soc. London, Ser. A 459(2029), 47–52 (2003).
159M. Ernzerhof, J. Chem. Theory Comput. 5, 793–797 (2009).
160D. Vanfleteren, D. Van Neck, P. W. Ayers, R. C. Morrison, and P. Bultinck, J.
Chem. Phys. 130, 194104 (2009).
161G. N. Lewis, J. Am. Chem. Soc. 38(4), 762–785 (1916).
162I. Langmuir, J. Am. Chem. Soc. 41(6), 868–934 (1919).
163W. Heitler and F. London, Z. Phys. 44(6), 455–472 (1927).
164J. C. Slater, Phys. Rev. 37, 481–489 (1931).
165J. C. Slater, Phys. Rev. 38, 1109–1144 (1931).
166L. Pauling, J. Am. Chem. Soc. 53, 1367–1400 (1931).
167R. C. Ladner and W. A. Goddard III, J. Chem. Phys. 51(3), 1073–1087 (1969).
168D. L. Cooper, J. Gerratt, and M. Raimondi, Int. Rev. Phys. Chem. 7(1), 59–80
(1988).
169W. Wu, P. Su, S. Shaik, and P. C. Hiberty, Chem. Rev. 111(11), 7557–7593
(2011).
170P. C. Hiberty and B. Braïda, Angew. Chem., Int. Ed. 57(21), 5994–6002
(2018).
171L. T. Xu and T. H. Dunning, J. Phys. Chem. A 124(1), 204–214 (2020).
172A. Lüchow, J. Comput. Chem. 35(11), 854–864 (2014).
173A. Scemama, M. Caffarel, and A. Savin, J. Comput. Chem. 28(1), 442–454
(2007).
174A. Lüchow and R. Petz, J. Comput. Chem. 32(12), 2619–2626 (2011).
175J. Simons, J. Phys. Chem. A 112(29), 6401–6511 (2008).

J. Chem. Phys. 153, 070902 (2020); doi: 10.1063/5.0016472 153, 070902-26

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1021/ar50001a003
https://doi.org/10.1002/anie.196907811
https://doi.org/10.1073/pnas.77.8.4403
https://doi.org/10.1063/1.430509
https://doi.org/10.1103/PhysRev.46.618
https://doi.org/10.1016/s0065-3276(08)60454-2
https://doi.org/10.1016/b978-0-12-386477-2.00009-7
https://doi.org/10.1016/b978-0-12-386477-2.00009-7
https://doi.org/10.1063/1.1665261
https://doi.org/10.1021/ja00326a036
https://doi.org/10.1063/1.462291
https://doi.org/10.1002/qua.560440805
https://doi.org/10.1007/bf02708342
https://doi.org/10.1021/jp075573d
https://doi.org/10.1063/1.4951738
https://doi.org/10.1021/acs.accounts.9b00474
https://doi.org/10.1021/acs.accounts.9b00474
https://doi.org/10.1103/physreva.16.1341
https://doi.org/10.1098/rspa.1961.0175
https://doi.org/10.1063/1.477085
https://doi.org/10.1063/1.456153
https://doi.org/10.1063/1.451917
https://doi.org/10.1103/physreva.50.4707
https://doi.org/10.1063/1.4955497
https://doi.org/10.1063/1.4973727
https://doi.org/10.1063/1.5084728
https://doi.org/10.1063/1.5025723
https://doi.org/10.1021/acs.jctc.5b00871
https://doi.org/10.1021/ja9826892
https://doi.org/10.1103/physrev.129.897
https://doi.org/10.1016/s0065-2199(08)60363-2
https://doi.org/10.1063/1.1680858
https://doi.org/10.1142/9789812812148_0001
https://doi.org/10.1002/qua.22131
https://doi.org/10.1002/wcms.1116
https://doi.org/10.1021/acs.jctc.5b00005
https://doi.org/10.1063/1.4994837
https://doi.org/10.1039/jr9530002260
https://doi.org/10.1103/revmodphys.14.204
https://doi.org/10.1021/cr60288a002
https://doi.org/10.1007/bf01340294
https://doi.org/10.1063/1.449486
https://doi.org/10.1021/ed200565h
https://doi.org/10.1002/anie.201904609
https://doi.org/10.1002/anie.201904609
https://doi.org/10.1021/jp9002593
https://doi.org/10.1063/1.3418615
https://doi.org/10.1063/1.4849615
https://doi.org/10.1063/1.5019330
https://doi.org/10.1016/s1574-1400(10)06006-8
https://doi.org/10.1016/s1574-1400(10)06006-8
https://doi.org/10.1103/revmodphys.32.296
https://doi.org/10.1103/revmodphys.32.300
https://doi.org/10.1103/revmodphys.35.457
https://doi.org/10.1039/tf9423800433
https://doi.org/10.1098/rspa.1949.0083
https://doi.org/10.1098/rspa.1949.0084
https://doi.org/10.1098/rspa.1950.0091
https://doi.org/10.1098/rspa.1950.0092
https://doi.org/10.1126/science.196.4294.1047
https://doi.org/10.1039/b804083d
https://doi.org/10.1039/qr9571100339
https://doi.org/10.1002/anie.199604951
https://doi.org/10.1002/qua.560382406
https://doi.org/10.1063/1.430253
https://doi.org/10.1098/rspa.2002.1027
https://doi.org/10.1021/ct800552k
https://doi.org/10.1063/1.3130044
https://doi.org/10.1063/1.3130044
https://doi.org/10.1021/ja02261a002
https://doi.org/10.1021/ja02227a002
https://doi.org/10.1007/bf01397394
https://doi.org/10.1103/physrev.37.481
https://doi.org/10.1103/physrev.38.1109
https://doi.org/10.1021/ja01355a027
https://doi.org/10.1063/1.1672106
https://doi.org/10.1080/01442358809353205
https://doi.org/10.1021/cr100228r
https://doi.org/10.1002/anie.201710094
https://doi.org/10.1021/acs.jpca.9b11054
https://doi.org/10.1002/jcc.23561
https://doi.org/10.1002/jcc.20526
https://doi.org/10.1002/jcc.21841
https://doi.org/10.1021/jp711490b


The Journal
of Chemical Physics

PERSPECTIVE scitation.org/journal/jcp

176J. Simons, Annu. Rev. Phys. Chem. 62, 107–128 (2011).
177J. V. Ortiz, I. Martín, A. M. Velasco, and C. Lavín, J. Chem. Phys. 120(17),
7949–7954 (2004).
178J. Melin, J. V. Ortiz, I. Martín, A. M. Velasco, and C. Lavín, J. Chem. Phys.
122(23), 234317 (2005).
179A. M. Velasco, C. Lavín, I. Martín, J. Melin, and J. V. Ortiz, J. Chem. Phys.
131(2), 024104 (2009).
180A. M. Velasco, C. Lavín, O. Dolgounitcheva, and J. V. Ortiz, J. Chem. Phys.
141(7), 074308 (2014).
181A. M. Velasco, C. Lavín, M. Díaz-Tinoco, and J. V. Ortiz, J. Quant. Spectrosc.
Radiat. Transfer 187, 161–166 (2017).
182H. H. Corzo, A. M. Velasco, C. Lavín, and J. V. Ortiz, J. Quant. Spectrosc.
Radiat. Transfer 206, 323–327 (2018).
183S. Feuerbacher and R. Santra, J. Chem. Phys. 123, 194310 (2005).
184H. S. Taylor, Adv. Chem. Phys. 18, 91–147 (1970).
185K. D. Jordan, V. K. Voora, and J. Simons, Theor. Chem. Acc. 133(3), 1–15
(2014).
186U. V. Riss and H.-D. Meyer, J. Phys. B: At., Mol. Opt. Phys. 26(23), 4503–4535
(1993).
187M. Thodika, M. Fennimore, T. N. V. Karsili, and S. Matsika, J. Chem. Phys.
151(24), 244104 (2019).
188T. Sommerfeld and R. Santra, Int. J. Quantum Chem. 82(5), 218–226 (2001).
189R. Santra and L. S. Cederbaum, J. Chem. Phys. 117(12), 5511–5521 (2002).
190J. M. Herbert, Rev. Comput. Chem. 28, 391–517 (2015).
191A. Venkatnathan, M. K. Mishra, and H. J. A. Jensen, Theor. Chem. Acc. 104,
445–454 (2000).
192S. Mahalakshmi, A. Venkatnathan, and M. K. Mishra, J. Chem. Phys. 115,
4549–4557 (2001).
193T.-C. Jagau and A. I. Krylov, J. Chem. Phys. 144(5), 054113 (2016).
194T.-C. Jagau, K. B. Bravaya, and A. I. Krylov, Annu. Rev. Phys. Chem. 68,
525–553 (2017).
195A. Perveaux, D. Lauvergnat, B. Lasorne, F. Gatti, M. A. Robb, G. J. Halász, and
Á. Vibók, J. Phys. B: At., Mol. Opt. Phys. 47(12), 124010 (2014).
196Y. Liu, T. J. Frankcombe, and T. W. Schmidt, J. Phys. Chem. Lett. 11(3),
735–739 (2020).
197O. Goscinski and B. Lukman, Chem. Phys. Lett. 7, 573–576 (1970).
198R. Manne, Chem. Phys. Lett. 45(3), 470–472 (1977).
199J. Schirmer, L. S. Cederbaum, and O. Walter, Phys. Rev. A 28(3), 1237–1259
(1983).
200J. V. Ortiz, J. Chem. Phys. 108, 1008–1014 (1998).
201H. H. Corzo, A. Galano, O. Dolgounitcheva, V. G. Zakrzewski, and J. V. Ortiz,
J. Phys. Chem. A 119(33), 8813–8821 (2015).
202M. Díaz-Tinoco, H. H. Corzo, and J. V. Ortiz, J. Chem. Theory Comput.
14(11), 5881–5895 (2018).
203J. Baker, Chem. Phys. Lett. 101(2), 136–140 (1983).
204H. G. Weikert, H. D. Meyer, L. S. Cederbaum, and F. Tarantelli, J. Chem. Phys.
104, 7122–7138 (1996).
205J. Baker and B. T. Pickup, Chem. Phys. Lett. 76, 537–541 (1980).
206J. V. Ortiz, J. Chem. Phys. 99(9), 6716–6726 (1993).
207E. R. Davidson, J. Comput. Phys. 17(1), 87–94 (1975).
208J. Olsen, P. Jørgensen, and J. Simons, Chem. Phys. Lett. 169(6), 463–472
(1990).
209M. Díaz-Tinoco, H. H. Corzo, F. Pawłowski, and J. V. Ortiz, Mol. Phys.
117(17), 2275–2283 (2019).
210L. S. Cederbaum, J. Phys. B: At. Mol. Phys. 8, 290–303 (1975).
211W. von Niessen, J. Schirmer, and L. S. Cederbaum, Comput. Phys. Rep. 1,
57–125 (1984).
212V. G. Zakrzewski, J. V. Ortiz, J. A. Nichols, D. Heryadi, D. L. Yeager, and
J. T. Golab, Int. J. Quantum Chem. 60(1), 29–36 (1996).
213J. V. Ortiz, J. Chem. Phys. 104(19), 7599–7605 (1996).
214A. M. Ferreira, G. Seabra, O. Dolgounitcheva, V. G. Zakrzewski, and
J. V. Ortiz, Quantum-Mechanical Prediction of Thermochemical Data, Under-
standing Chemical Reactivity Vol. 22 (Kluwer, 2001), pp. 131–160.

215J. V. Ortiz, J. Chem. Phys. 89, 6348–6352 (1988).
216J. V. Ortiz, J. Chem. Phys. 89(10), 6353–6356 (1988).
217J. V. Ortiz, Int. J. Quantum Chem. 34(22), 431–436 (1988).
218J. V. Ortiz, Int. J. Quantum Chem. 23, 321–332 (1989).
219J. V. Ortiz, Int. J. Quantum Chem. 105, 803–808 (2005).
220M. Díaz-Tinoco, O. Dolgounitcheva, V. G. Zakrzewski, and J. V. Ortiz,
J. Chem. Phys. 144(22), 224110 (2016).
221D. Danovich, Encyclopedia of Computational Chemistry (John Wiley, New
York, 1998), Vol. 2, pp. 1190–1202.
222C.-H. Hu, D. P. Chong, andM. E. Casida, J. Electron Spectrosc. Relat. Phenom.
85(1-2), 39–46 (1997).
223F.-H. Lim, M. Nishida, Y. Hori, T. Ida, and M. Mizuno, Chem. Phys. Lett. 678,
159–166 (2017).
224J. Romero, J. A. Charry, H. Nakai, and A. Reyes, Chem. Phys. Lett. 591, 82–87
(2014).
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