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Implementation of Dyson orbitals for coupled-cluster and equation-of-motion coupled-cluster wave
functions with single and double substitutions is described and demonstrated by examples. Both
ionizations from the ground and electronically excited states are considered. Dyson orbitals are
necessary for calculating electronic factors of angular distributions of photoelectrons, Compton
profiles, electron momentum spectra, etc, and can be interpreted as states of the leaving electron.
Formally, Dyson orbitals represent the overlap between an initial N-electron wave function and the
N−1 electron wave function of the corresponding ionized system. For the ground state ionization,
Dyson orbitals are often similar to the corresponding Hartree-Fock molecular orbitals �MOs�;
however, for ionization from electronically excited states Dyson orbitals include contributions from
several MOs and their shapes are more complex. The theory is applied to calculating the Dyson
orbitals for ionization of formaldehyde from the ground and electronically excited states.
Partial-wave analysis is employed to compute the probabilities to find the ejected electron in
different angular momentum states using the freestanding and Coulomb wave representations of the
ionized electron. Rydberg states are shown to yield higher angular momentum electrons, as
compared to valence states of the same symmetry. Likewise, faster photoelectrons are most likely to
have higher angular momentum. © 2007 American Institute of Physics. �DOI: 10.1063/1.2805393�

I. INTRODUCTION

Photoelectron spectroscopy is a powerful technique for
probing the electronic structure of molecules and ions. By
measuring kinetic energy of the ejected electrons, one can
determine the electronic and vibrational energy levels of the
ionized system. The ensuing Franck-Condon progressions
contain information on the ionization-induced structural
changes from which changes in electronic wave functions
can be inferred, e.g., long progressions suggest the removal
of an electron from bonding or antibonding orbitals, etc.
More direct probe of the initial and target electronic wave
functions is possible by measuring angular distributions of
the photoelectrons �PADs�,1,2 which can be recorded in es-
sentially molecular frame by employing coincidence
spectroscopy.3 Furthermore, changes in the electronic struc-
ture in the course of a chemical reaction can be monitored by
introducing time resolution in photoelectron spectroscopy.4–7

However, retrieving the electronic structure information from
the experimentally measured PADs is not a straightforward
task, despite impressive progress in experimental techniques.

Different aspects of theoretical framework for calculat-
ing PADs have been developed by several groups.8–22 Moti-
vated by resonance enhanced multiphoton ionization
�REMPI� experiments in molecular beams, the dependence
of PADs on the initial and target rotational states has been
worked out in meticulous details. Molecular-frame PADs ap-
propriate for the experiments when the orientation of the

system is fixed in the laboratory frame have also been
discussed.10 Recently, simulations of time-resolved PADs,
which take into account nuclear dynamics, have been
reported.23–25

A central quantity in these studies is a so-called photo-
electron matrix element, which connects the initial and final
wave functions,22,26

Dkf
IF = ��IF

d �r���̂��kf
el �r��r, �1�

where �̂ is the dipole moment operator, �kf
el �r� is the final

�continuum� state of the ejected electron with kinetic energy
determined by its momentum k, and �IF

d �r� is a one-electron
quantity �called Dyson orbital� containing all the necessary
information about N and N−1 electronic wave functions of
the initial and the ionized states of the system,

�IF
d �1� = �N	 �I

N�1, . . . ,n��F
N−1�2, . . . ,n�d2 . . . dn . �2�

Dyson orbitals are also necessary for calculations of Comp-
ton profiles,27 electron momentum spectra,28,29 and interpre-
tation of other orbital imaging experiments.30–32

For atomic ionization, the electron continuum states
�kf

el �r� are well described by spherical waves �often referred
to as partial waves�, either freestanding or Coulomb, which
are the exact solutions for �unbound� motion of electrons in
centrally symmetric fields.33 For molecular ionization, the
potential created by the ionic core is noncentral and the
partial-wave description holds only in the asymptotic limit
when the electron is far from the ionized core.18,34a�Electronic mail: krylov@usc.edu.
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While considerable attention9,18–22 has been given to cal-
culating final states of the ionized electron, �kf

el �r�, the mo-
lecular electronic factor �IF

d �1� has been treated very ap-
proximately, most often within Hartree-Fock/Koopmans
framework. Effects of correlation on Dyson orbitals have
been discussed,35 mostly within Green function framework.36

The focus of this work is calculating Dyson orbitals
from high-level ab initio calculations of the initial and ion-
ized electronic wave functions by equation-of-motion
coupled-cluster �EOM-CC� methods. The departure from the
uncorrelated Koopmans approximation becomes particularly
important when ionization of electronically excited and
open-shell species is considered. The former is relevant to a
wide range of experiments,1–3,5–7 e.g., REMPI, in which n
photon excitation of the initial molecule is followed by m
photon ionization, or time-resolved pump-probe experiments
employing ionization probe to monitor the dynamics of an
electronically excited system.

It should be noted that the Dyson orbitals of Eq. �2� can
be computed for any initial and target many-electron wave
function, and their definition does not invoke propagator
formalism.37,38 In the latter, the Dyson orbitals are solutions
of an effective one-electron equation yielding correlated ion-
ization energies and pole strengths.36,39,40

The structure of the paper is as follows. The next section
discusses the theoretical framework for electronic factors,
Eqs. �1� and �2�, their relationship to PADs, and partial-wave
analysis of the outgoing electrons. Then EOM-CC methods
are briefly described, and the calculation of Dyson orbitals
within EOM-CC formalism is presented. The new methodol-
ogy is applied to calculate Dyson orbitals for photoionization
of the ground and electronically excited states of formalde-
hyde producing ground and excited states of the ion. The
partial-wave analysis, albeit approximate, reveals interesting
qualitative relationships between the character of the ionized
state and the final states of the photoelectrons.

II. THEORY

A. Molecular-frame PADs and electronic wave
functions

In this section, we summarize the formalism behind
PADs �see Ref. 1 for an excellent review� focusing on elec-
tronic factors involved. Our presentation is done in the mo-
lecular frame and averaging over molecular orientations is
discussed later.

Consider ionization of an N-electron system described
by the wave function �I

N�1, . . . ,n�, where i denotes the spa-
tial and spin coordinates of ith electron, i
�xi ,yi ,zi ,�i�
= �ri ,�i ,�i ,�i�, and the transformation between polar and
Cartesian coordinates is given in the Appendix. Assuming
that ionization is fast, i.e., within sudden ionization
approximation,8,11 the final state can be described by the in-
dependent cation and continuum wave functions,
�F

N−1�1, . . . ,n−1� and �kf
el �r ,��, respectively, with no corre-

lation between the outgoing and the remaining N−1 bound
electrons. The wave vector k is defined by kinetic energy of
the ejected electron:

k =
p

�
=

�2mE

�
. �3�

By applying time-dependent perturbation theory to de-
scribe ionization by electromagnetic field and within the di-
pole approximation, the probability of producing the ejected
electron in the final state �kf

el is26,33

IIFkf = 
	 �I
N�1, . . . ,n��̂�F

N−1�1, . . . ,n − 1�

��kf
el �n�d1 . . . dn
2

, �4�

where �̂ is a dipole moment operator associated with ioniz-
ing field, and all the functions and operators are expressed in
the molecular frame r. Invoking strong orthogonality condi-
tion, which is usually justified by vanishing overlap between
the core and the ionized electron,27,31 and by using the anti-
symmetric properties of the electronic wave functions and
integrating over the spin coordinates, we arrive at

IIFkf = 
	 �IF
d �r��̂�r��kf

el �r�dr
2

= �Dkf
IF�2, �5�

where �IF
d �r� is a Dyson orbital defined by Eq. �2� and Dkf

IF is
a photoelectron matrix element from Eq. �1�. Thus, the
squares of the dipole matrix elements, �Dkf

IF�2, give the prob-
ability to find the ionized core in state F and the ejected
electron in state f for initial state I of the system.

Equation �5� may be used as a starting point for deriving
PAD. The probability of finding an electron at the point
�� ,��, IIFkf�� ,��, can be obtained from Eq. �5� by changing
the three-dimensional integration over r by the integration
over the radial coordinate r only. Thus,

IIFkf��,�� = �Dkf
IF��,���2. �6�

Alternatively, IIFKf�� ,�� can be computed as1

I�k,�,�� =	 ��kf
el �r,�,���*�kf

el �r,�,�� · r2dr . �7�

The spatial part of the wave function of a free electron
�kf

el can be expanded over the basis of spherical waves,1

�kf
el �x,y,z� = �kf

el �r,�,�� = �
lm

CklmRkl�r�Ylm��,�� , �8�

where Ylm�� ,�� are familiar spherical harmonics,

Ylm��,�� = �lm��� · 	m��� �9�

and Rkl�r� is a radial part, which will be discussed below.
The angular and radial basis functions are orthonormal,

	
0

2


	m
*���	m� ���d� = �mm�

	
0




Ylm
* ��,��Yl�m���,��sin �d�d� = �ll��mm� �10�

	
0

�

r2Rkl�r�Rk�l�r�dr = 2
��k� − k� = ��E� − E� .
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Eq. �7� then becomes

I�k,�,�� = �
ll�mm�

Cklm
* Ckl�m�Ylm

* ��,��Yl�m���,��

�	 Rkl�r�Rk�l��r�r2dr . �11�

If the basis functions RklYlm of expansion �8� are the
eigenstates of a field-free Hamiltonian describing the ionized
electron �in the potential due to the core�, then the squares of
the corresponding expansion coefficients �Cklm�2 are just the
squares of the following photoelectron matrix elements:

�Cklm�2 = �	 �IF
�d��r��̂�r�Rkl�rn�Ylm��,��dr�2


 �Dklm
IF �2.

�12�

Their phases, the so-called scattering-induced phase shifts,1

depend on the interaction of the outgoing electron with the
ionized core and cannot be determined without solving some
kind of a Schrödinger equation for the outgoing electron.1

They can be defined as

Cklm = �Dklm
IF �ei�l. �13�

Thus, in this case, the overall probability of Eq. �11� assumes
the following simple form:

I�k,�,�� = �
ll�mm�

�Dklm
IF � · �Dkl�m�

IF �ei��l�−�l�

�	 Rkl�r�Rkl��r�r2dr · Ylm
* ��,��Yl�m���,�� .

�14�

This is the basis of partial-wave decomposition analysis of
the final continuum states. Under the above conditions, one
can easily calculate the probabilities of finding the ionized
electron in a certain angular momentum state from the Dyson
orbital by using Eq. �12�, however, the resulting partial-wave
decomposition coefficients �Dklm

IF � are not sufficient for calcu-
lating the PAD, unless interference between different outgo-
ing waves can be neglected, i.e., within random-phase ap-
proximation. This is generally not justified.41,42

The above assumption, i.e., that RklYlm are the eigen-
states of the field-free Hamiltonian describing the ionized
electron, is valid only for central potentials in which exact
separation of radial and angular motions is possible. This is
the case of atomic ionization. The choice of Rkl depends on
the system being ionized, e.g., for ionization of anions, the
potential due to the ionized core, which is neutral, is weak
and standing free waves �see the next section� are expected
to be a good approximation.34 For ionization of neutrals, a
more appropriate choice of Rkl is the eigenfunctions of the
Coulomb potential.33 When molecular ionization is consid-
ered, two approaches are possible. Expansion �8� can be re-
written using basis functions corresponding to molecular
point group symmetry,15 as has been done for diatomics by
Park and Zare.18 Alternatively, one may still use partial
waves to represent the state of the ionized electron, with the
understanding that Eq. �12� and, consequently, Eq. �14� are

no longer rigorously correct. Nevertheless, a small size of the
core relative to the continuous final state of the electron sug-
gests using Eqs. �12�–�14� as an approximation. This is es-
sentially equivalent to neglecting the interaction between the
core and the electron.34 Note that even under this approxi-
mation, Eq. �12� will give rise to more partial waves in the
case of molecular ionization as compared to atoms, where
the selection rules are strictly 
l= ±1. In this work, we apply
partial-wave decomposition for qualitative analysis of Dyson
orbitals and selection rules of molecular ionization. We em-
ploy both the freestanding and Coulomb waves �see next
section� and discuss the consequences of different choices of
the radial functions.

The Dyson orbital �d�1� introduced by Eq. �2� is an
analog of the reduced one-electron transition density matrix
and can be described as an overlap between the N and N
−1 electron wave functions of, for example, the neutral and
the cation. In the second quantization form,

�d�1� = �
p

�p�p�1� , �15�

�p = ��N�p+��N−1� , �16�

where ��p� are the reference molecular orbitals �MOs�.
Dyson orbitals are not normalized, and their norms are pro-
portional to the one-electron character of the ionization tran-
sition. For the Hartree-Fock description of the neutral, and
within the Koopmans approximation for the cation, the cor-
responding Dyson orbitals are just the cannonical Hartree-
Fock orbitals, and their norm is one. As Eqs. �5� and �12�
suggest, one may interpret Dyson orbitals as wave functions
of the ejected electron. For example, in a hydrogenlike atom,
Dyson orbitals are just electronic wave functions of the states
that are being ionized.

B. Radial functions Rkl

In this section we discuss two obvious choices of radial
functions Rkl in expansion �8�, i.e., the freestatnding and the
Coulomb waves. In the former case, Rkl�r� are expressed
through either the half-integer or spherical Bessel functions,
Jl+1/2 and jl,

33 respectively,

Rkl�r� =�2
k

r
Jl+1/2�kr� = 2kjl�kr� . �17�

The first few members of the series are

Rk0 = 2k
sin�kr�

kr
, �18�

Rk1 = 2k
sin�kr�
�kr�2 − 2k

cos�kr�
kr

, �19�

Rk2 = 6k
sin�kr�
�kr�3 − 2k

sin�kr�
kr

− 6k
cos�kr�
�kr�2 . �20�

The Rkl functions contain sin�kr� / �kr�n and cos�kr� / �kr�n

terms and have the overall form of damped oscillations. The
Rkl functions corresponding to kinetic energies of 0.25 and
1 eV and l=0–5 are plotted in Fig. 1. As one can see, the
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higher l is, the lower is the value of the function at small
distances. Also, lower kinetic energy corresponds to longer
oscillations.

It is instructive to compare Rkl with typical atomic orbit-
als, as done in Fig. 2, which displays the radial parts of the s,
p, and d Gaussian-type orbitals with the exponents represen-
tative of the carbon valence shell. These orbitals extend to
only about 5 Å, where only the lowest l radial functions have
significant density. By virtue of Eq. �12�, one can expect that
ionization of Rydberg states yields higher angular momen-
tum photoelectrons, as compared to ionization of valence
states of similar symmetry. High-l states also become more
probable for higher-energy electrons due to tighter oscilla-
tions in the Rkl functions with larger k values �i.e., Wigner
law�.

As kr becomes very small �kr� l�, the radial functions
have the following asymptotic behavior:43

Rkl = 2k
�kr�l

�2l + 1�!!
. �21�

The Coulomb waves have more complicated form that
involve confluent hypergeometric functions of complex
arguments.33 In this work, we consider only the limit of very
small k values �k→0�, in which the radial functions can be
expressed33 through the Bessel functions,

�Rkl/��k��k→0 = ��4
/r�J2l+1���8r�� . �22�

The Coulomb waves for k=0.01 eV are plotted in Fig. 3. The
most obvious difference between the Coulomb and the free-
standing waves �shown in the inset� is much tighter oscilla-
tions of the former, which can be rationalized in terms of
strong attractive character of the Coulomb potential. Thus,
for the same Dyson orbital, the expansion in the Coulomb
waves will contain higher angular momentum terms, and the
dependence of the corresponding �Cklm�2 on kinetic energy of
the electrons will be less pronounced.

C. Averaging over molecular orientations

Depending on the experimental setup, different distribu-
tions of molecules are sampled by ionization, which gives
rise to different types of PADs. The analytic expressions for
several experimental setups have been developed using an-
gular momentum algebra, as summarized in Ref. 1. We adopt
a more flexible numerical approach that enables us to aver-
age over any spatial distribution as described below.

By introducing Euler transformations R̂��� and R̂���
−1 be-

tween the molecular �x� ,y� ,z�� and the laboratory �x ,y ,z�
frames �see Appendix�, and by considering probability
��� ,� ,�� of different molecular orientations, Eq. �12� be-
comes

�Cklm�2 =	 �Cklm��,�,���2���,�,��d�d�d� , �23�

�Cklm��,�,���2

= 
	 �d�R���r���r�Rkl�rn�Ylm��n,�n�dr
2

, �24�

where �Cklm�2 are the �Cklm�2 coefficients averaged over all
molecular orientations in the laboratory frame. If all molecu-
lar orientations are equally probable, i.e., ��� ,� ,��=1 /4
,
most of the information about the Dyson orbital is lost. To
avoid the loss of information, the molecules could be pre-
aligned prior to ionization event, e.g., by electronic excita-
tion or by selecting a particular rotational state. Finally, in
coincidence experiments,3,44 the photoelectrons can be re-
corded in the recoil frame, thus allowing one to retrieve the
information about the Dyson orbital essentially in the mo-
lecular frame. Below we discuss averaging for two common
experimental setups.

Let us consider photoionization from electronically ex-
cited states, when the molecules are selected by the first laser
�assume the first laser is polarized along z axis�. The prob-

FIG. 1. Radial parts of the freestanding spherical waves, Rkl�r� for k
=0.271 a.u. �upper panel� and k=0.068 a.u. �lower panel�, which correspond
to photoelectron kinetic energies of 1 and 0.25 eV, respectively.

FIG. 2. Radial parts for the s, p, and d Gaussian-type orbitals with the
exponent �=0.1, a typical value for the carbon valence shell.
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ability of a molecule to be excited is proportional to the
scalar product between the laser dipole �l=z and the dipole
moment of an electronic transition �el,

���,�,�� = �R���
−1 �el · z�2. �25�

For diatomic molecules, the above yields two simple expres-
sions, for the parallel and perpendicular electronic transi-
tions,

�par��,�,�� = cos2��� , �26�

�per��,�,�� = sin2��� . �27�

In coincidence experiments, if molecules are aligned along z
axis, only averaging over the azimuthal angle � should be
conducted, as well as averaging between parallel and anti-
parallel �with respect to z axis� orientations.

D. Ionized, electron-attached, and electronically
excited states within EOM-CCSD formalism

Conceptually, EOM approach45–52 is similar to configu-
ration interaction �CI�: Target EOM states are found by di-
agonalizing the so-called similarity transformed Hamiltonian

H̄
e−THeT,

H̄R = ER , �28�

LH̄ = LE , �29�

LR = 1, �30�

where T, R, and L+ are general excitation operators with
respect to the reference determinant �	0�. Due to the non-

Hermitian nature of H̄, its left eigenstates L are not Hermit-
ian conjugates of R. Regardless of the choice of T, the spec-

trum of H̄ is exactly the same as that of the original
Hamiltonian H—thus, in the limit of the complete many-
electron basis set, EOM is identical to full configuration in-
teraction. In a more practical case of a truncated basis, e.g.,
when T and R are truncated at single and double excitations,
the EOM models are numerically superior to the correspond-
ing CI models,53 because correlation effects are “folded in”
in the transformed Hamiltonian. Moreover, the truncated
EOM models are size consistent �or, more rigorously, size

intensive�, provided that the amplitudes T satisfy the CC
equations for the reference state �	0�,

�	��H̄ − E�	0� = 0, �31�

where 	� denotes �-tuply excited determinants, e.g.,
�	i

a ,	ij
ab� in the case of coupled-cluster singles and doubles

�CCSD�.
By combining different types of excitation operators and

references �	0�, different groups of target states can be ac-
cessed, as explained, for example, in Refs. 52 and 54. In the
ionized/electron-attached EOM models,55–58 operators R are
not electron conserving �i.e., include different numbers of
creation and annihilation operators�,

�N−1 = RIP�CCSD
N = RIPeT1+T2	0,

�32�

RIP = �
i

rii +
1

2�
ija

rij
a a+ji ,

where �CCSD
N and 	0 are the reference CCSD wave functions

and the reference Slater determinant of the neutral, respec-
tively. Thus, for the ionization from the electronic ground
state, Dyson orbitals are defined as

�p
R = �	0e− �T1+T2��1 + ���p+�RIPeT1+T2	0� ,

�33�
�p

L = �	0e− �T1+T2�LIP�p�eT1+T2	0� .

Electronically excited states can be described when the
reference �	0� corresponds to the ground state wave func-
tion, and operators R conserve the number of electrons and
the total spin,47,49,59

�ex
N = REE�CCSD

N = REEeT1+T2	0, �34�

REE = r0 + �
ia

ri
aa+i +

1

4 �
ijab

rij
aba+b+ji , �35�

and the corresponding Dyson orbitals are thus

�p
R = �	0e− �T1+T2�LEE�p+�RIPeT1+T2	0� ,

�36�
�p

R = �	0e− �T1+T2�LIP�p+�REEeT1+T2	0� ,

FIG. 3. Radial parts of the Coulomb waves, Rkl�r� for
k=0.002 71 a.u. �Ek=0.01 eV�. Inset: The correspond-
ing freestanding spherical waves in the same r range.
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Similarly to one-particle transition density matrices in
EOM-CC for excitation energies �EOM-EE� theory,49 the
“right” and “left” Dyson orbitals, �p

R and �p
L, are not identi-

cal, and Eq. �12� should be rewritten as

�Cklm�2 =	 �d,R�r���r�Rkl�rn�Ylm��n,�n�dr

·	 �d,L�r���r�Rkl�rn�Ylm
* ��n,�n�dr . �37�

Since the same reference CCSD wave function is em-
ployed in both EOM-IP and EOM-EE calculations, the
evaluation of Dyson orbitals is very straightforward and does
not require to deal with nonorthogonal MO sets.

We implemented Dyson orbitals for the CCSD/EOM-
EE-CCSD/EOM-SF-CCSD and EOM-IP/EA-CCSD wave
functions of the initial and ionized/electron-attached states,
respectively. EOM-EE-CCSD includes single �1h1p, 1-hole-
1-particle� and double �2h2p� excitations in the EOM part,
see Eq. �35�, and is therefore appropriate for electronically
excited states that are dominated by single-electron excita-
tions. The SF variant allows us to consider initial states of a
diradical or triradical character, as well as some doubly ex-
cited states.54 EOM-IP-CCSD, which includes 1h and 2h1p
operators in the EOM part, see Eq. �32�, is capable of de-
scribing states dominated by Koopmans-type �1h� excita-
tions including the states with several singly ionized configu-
rations strongly mixed in the target wave function. EOM-
EA-CCSD includes 1p and 1h2p operators and allows access
to other types of open-shell states.

Our implementation of Dyson orbitals within EOM uses
a simple modification of our general EOM-CCSD code51 fol-
lowing the elegant idea first employed by Stanton who
pointed out that simply by adding a very diffuse orbital �e.g.,
the size of Earth� to the basis and generating guess vectors

that include excitations to/from this orbital is equivalent to
ionization/attachment. Thus, Dyson orbitals are simply the
corresponding row/column in the EOM-EE transition density
matrices.51,60 Their norms are proportional to the one-
electron character of the ionizing excitation. The two-
electron character of the ionization can be estimated only
from the two-particle transition density matrices,

�pqs
R = �	0e− �T1+T2�LEE�p+q+s�RIPeT1+T2	0� , �38�

�pqs
L = �	0e− �T1+T2�LIP�s+qp�REEeT1+T2	0� . �39�

For ionization transitions that have mainly two-electron char-
acter, the Dyson orbital norm is close to zero.

E. Implementation details

Our implementation consists of the two major parts: �i�
Calculation of Dyson orbitals, and �ii� the partial-wave de-
composition analysis and averaging. The first part, which is
based on Eqs. �16�, �33�, and �36�, requires calculation of
correlated wave functions of the initial and target states and
is implemented within the EOM-CC suite of codes in the
Q-CHEM electronic structure package.61 The Dyson orbitals
are expressed in terms of the reference MOs, see Eq. �16�,
and the normalized coefficients �p, as well as the norms of
the orbitals, are printed in the output. The values of the
Dyson orbital on a cubic grid can also be computed and
plotted using visualization software, e.g., VMD.62

The second part, which is a separate computer program,
calculates �Cklm�2, see Eq. �24�, for specified k values and up
to a maximum l and specified polarization of ionizing radia-
tion. The calculations are performed either in the molecular
frame, or, if averaging over the molecular orientations is re-
quested, over the ��i ,� j ,�k� grid with subsequent averaging,
Eq. �23�. The evaluation of integral �Eq. �24�� is done nu-
merically on the cubic �rlmn= �xl ,ym ,zn�� grid in the labora-
tory frame as follows. At each grid point rlmn, the values of

TABLE I. Vertical ionization energies �eV� and leading contributions to
Dyson orbitals for the ionization of CH2O in its ground state producing
various states of the cation, EOM-IP-CCSD /6-311G�2+ ,2+ �G**.

CH2O+ state IE �eV� Dyson orbital

X 2B1 �n�
2
2n


1 � 10.63 98.7% �2b1

1 2B2 �n�
2
1n


2 � 14.35 99.8% �1b2

1 2A1 �n�
1
2n


2 � 15.90 99.1% �5a1

TABLE II. Vertical excitation energies for selected valence �V� and Rydberg
�R� excited states of formaldehyde, calculated at the EOM-CCSD /6-311�2
+ ,2+ �G** level of theory �Ref. 68�.

State Eex �eV�

5 1A1 �V� 10.00
1 1A2 �V� 3.94
2 1A2 �R� 8.22
3 1A2 �R� 9.63
1 1B1 �R� 7.05
1 1B2 �V� 9.25
2 1B2 �R� 10.75

FIG. 4. Relevant MOs of formaldehyde.
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spherical waves are calculated using analytical expressions
�see below�, and the value of the Dyson orbital in the labo-
ratory frame is computed by making the transformation to
the molecular frame, Eq. �A4�, and calculating �d�R���r�
from the MO coefficients and analytic expressions of the
atomic basis functions.

The position of RklYlm and, consequently, the decompo-
sition coefficients �Cklm�2 depend on the origin of the labora-
tory coordinate system, which is unabigously defined only in
the spherically symmetric systems. For molecular systems,
we chose the center of density of the �left� Dyson orbital as
the origin of the laboratory and molecular frames,

FIG. 5. Dyson orbitals for the 1A2 and 1 1B2 excited
state ionizations of formaldehyde. The leading elec-
tronic configurations are shown for each state. Only the
excited electron MOs are shown for each state; the rest
of the electrons occupy the same MOs as in the corre-
sponding state of the cation.

FIG. 6. Dyson orbitals for the 1 1B1 and 2 1B2 excited
state ionizations of formaldehyde. The leading elec-
tronic configurations are shown for each state. Only the
excited electron MOs are shown for each state; the rest
of the electrons occupy the same MOs as in the corre-
sponding state of the cation.
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x̄ =	 �d�r�x�d�r�dxdydz ,

ȳ =	 �d�r�y�d�r�dxdydz , �40�

z̄ =	 �d�r�z�d�r�dxdydz .

In the case of atomic systems, the above �x̄ , ȳ , z̄� correspond
to the atom position. This choice is equivalent to orthogonal-
ity condition of the state of ionized electron to the Dyson
orbital from the pont of view of Eq. �1�.

The Bessel functions that enter the spherical waves ex-
pression, Eq. �17�, are implemented in the GNU SCIENTIFIC

LIBRARY.63 Alternatively, they can be easily calculated using
recurrence relations.43 At the small intramolecular r distances
used to calculate Dyson orbitals, often kr� l, and the
asymptotic formula in Eq. �21� should be used. Our numeric
tests show that there is no general threshold value �kr / l�min

for using Eq. �21�. For l=3–11, the kr / l threshold decreases
almost linearly as l increases, and one could fit a function
f�l�=al+b for the calculation of �kr / l�min. However, for pre-
cision the exact threshold for each l was used in our calcu-
lations. The Coulomb waves are also implemented in the
GNU SCIENTIFIC LIBRARY,63 with the l�kr restriction, which
does not always hold for our applications, especially when
l=0. Thus, we restricted our implementation of the Coulomb
waves to very small k values, as in Eq. �22�. The final �Cklm�2
values are stored in a binary file, for subsequent PAD mod-
eling, which gives a flexibility of calculating PADs in differ-
ent representations.

III. FORMALDEHYDE EXAMPLE

In this section we present the results for ionization of
formaldehyde from its ground and electronically excited
states of different characters. Our goal is to develop qualita-
tive understanding of the relation between the electron con-
figurations of the neutral molecule and its cation and the

shape of the corresponding Dyson orbital. We consider ion-
izing transitions of the following three types: �i� Same initial
state producing different final states; �ii� same final states
obtained from different initial states; �iii� different initial and
final states. We calculate the probabilities of different l, m
angular momentum states of the photoionized electron and
rationalize the results by extending the atomic selection rules
to delocalized MOs using Eq. �12�. Detailed data on the
computed Dyson orbitals are given in EPAPS.64 Correlated
Dyson orbitals for inner and outer valence ionizations of the
ground-state formaldehyde have been reported and employed
to interpret electron momentum and Compton profiles.65–67

A. Dyson orbitals

The frontier MOs of formaldehyde are depicted in Fig.
4. The highest occupied orbitals have n�, 
, and n
 bonding
characters, while lowest unoccupied molecular orbital is the

* MO. Removing an electron from highest occupied mo-
lecular orbital �HOMO� �n
 ,2b1� leads to the ground state

FIG. 7. Dyson orbitals for the 5 1A1 excited state ion-
izations of formaldehyde.

FIG. 8. Probabilities of finding photoelectrons in different l, m states for
ionization of the 1 1A2 excited state of formaldehyde producing the 1 2B1
ground state. The corresponding Dyson orbital is also shown. Ionization
polarization is along the y axis. Bars clustered around an l value correspond
to different m=−1¯ l values.
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�X 2B1� of the CH2O+ cation, while ionizations of the lower
MOs give rise to the 1 2B2 and 1 2A1 excited states �see Table
I�.

For Hartree-Fock �HF� wave functions and within the
Koopmans approximation, the Dyson orbitals for each of the
above ground state ionizations are just the corresponding ca-
nonical MOs of CH2O. When correlation is taken into ac-
count at the CCSD and EOM-IP-CCSD levels of theory �us-
ing the 6-311�2+ ,2+ �G*+ basis�, the Dyson orbitals remain
essentially unchanged and retain almost 100% Koopmans
character, as summarized in the last column of Table I, which
contains leading contributions to the corresponding Dyson
orbitals in terms of the canonical Hartree-Fock MOs. This is
not surprising for a well-behaved, closed-shell molecule
whose ground-state wave function is dominated by a single
electronic configuration and the cation states are nondegen-
erate. However, for ionization from excited states, in which
multiple configurations are present, we expect significant dif-
ferences with respect to the Koopmans picture.

The electronically excited states of formaldehyde are
summarized in Table II. The lowest valence singlet excited
state 1 1A2 corresponds to the n
→
* excitation. From
about 7 eV onward, several valence and Rydberg excited
states appear.68 We consider only one-electron transitions, for
which the norm of Dyson orbitals is relatively large.

The wave function of the lowest valence excited state

1 1A2 contains two major configurations, corresponding to
the 2b1�n
�→3b2�
*� and 2b1→5b2 �Rydberg� excitations.
The lowest state of the cation, which can be derived from
one-electron ionization of this excited state, is the 1 2B1
ground state. The calculated Dyson orbital is shown in Fig. 5
and consists of the 3b2 MO �71.4%�, 5b2 �92.4%�, as well as
smaller contributions from other b2 MOs. This composition
reflects the relative weights of Slater determinants that form
the initial 1 1A2 excited state �64.0% and 21.1%, respec-
tively�, as calculated from the EOM-EE amplitudes.

The next valence excited state is 1 1B2, which corre-
sponds to excitations to the same pair of MOs �3b2 and 5b2�,
but from the lower 5a1�n�� orbital. Ionization leads to the
1 2B2 excited state of CH2O+. The Dyson orbital MO com-
position for this 1 1B2→1 2A1 transition is almost the same
as for the above 1 1A2→1 2B1 ionization, despite different
characters of the initial and final states. What the two transi-
tions have in common is the “wave function” of the leaving
electron: In both cases it is a combination of the 3b2 and 5b2

MOs. These Dyson orbitals are also similar to the 3b2 MO
because 3b2 and 5b2 MOs have approximately the same an-
gular distribution and differ only by their radial dependence.
For one-electron ionizations, Dyson orbitals can be estimated
semiquantitatively by considering the ionization of each of
the electronic configurations of the initial state wave func-
tion, without relaxing the remaining occupied orbitals. Thus,

FIG. 9. Probabilities of obtaining different l, m states of
photoelectrons for ionization of the 1 1A2 excited state
of formaldehyde producing the 1 2B1 ground state, in
the limit of small kinetic energy �0.01 eV�, calculated
using the freestanding �upper panel� and the Coulomb
�lower panel� spherical waves. The corresponding
Dyson orbital is also shown. Ionization polarization is
along the y axis. Bars clustered around an l value cor-
respond to different m=−l¯ l values.
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a Koopmans-type picture applies to the ionization of multi-
configurational wave functions, which provides useful guide-
lines for rationalizing the shapes of complicated Dyson or-
bitals for excited state ionization.

The Koopmans-type picture also emerges from consid-
ering ionization of Rydberg excited states. The X 1B1 and
2 1B2 states consist mainly of excitations to the 9a1 and 7a1

Rydberg MOs from the 2b1�n
� and 1b2�
� orbitals, respec-
tively, as shown in Fig. 6. The Dyson orbitals for these
1 1B1→X 2B1 and 2 1B2→1 2B2 ionization transition contain
approximately the same combination of a1 MOs due to the
similarity of the excited electron wave functions.

Let us now analyze the Dyson orbitals for the transitions
between the different excited states of the neutral and the
same target state of the cation. The first three 1A2 states of
formaldehyde represent excitations from the HOMO to dif-
ferent b2 MOs; the resulting cation is in the ground 1 2B1
state. The 1 1A2 state corresponds to excitations to the al-
ready discussed 3b2 and 5b2 MOs, while the next two states
are the excitations to the plus and, respectively, minus com-
binations of 2b2 and 4b2 Rydberg MOs. As seen from Fig. 5,
the shapes of the Dyson orbitals for these n 1A2→1 2B1�n
=1–3� ionizations are very different indeed. This is easily
rationalized because the orbital levels of the leaving electron
are not the same: 3b2−5b2, 2b2+4b2, 2b2−4b2. For the last
two Dyson orbitals, the 2b2 :4b2 ratio is directly related to
the relative weights of the corresponding amplitudes in the
2 1A2 and 3 1A2 wave functions: 63.7% 2b2+16.2% 4b2, and,
respectively, 69.1% 2b2–19.5% 4b2.

The norms of Dyson orbitals, as discussed in Sec. II, are
related to one-electron character of the transition. In the case
of formaldehyde, the norm of all Dyson orbitals for one elec-
tron ionizations is found to be about 0.12. Our calculations
of other small molecules show that the norm of Dyson orbit-
als for one-electron ionization is approximately constant for
a given molecular species. An interesting case is the 5 1A1
excited state of formaldehyde �Fig. 7�, which involves two
different types of excitations: 1b2�
�→3b2�
*� and
2b1�n
�→5b1 �Rydberg�. Thus, ionization could lead to ei-
ther the 1 2B2 or X 2B1 cation states. The norms of the

TABLE III. The largest �Cklm�2 coefficients ��10−4� for three formaldehyde
ionization transitions: �A� 1 1A2�V�→X 2B1, molecular frame, �B� 1 1A2�V�
→1 2B1, averaging around y, �C� 2 1A2�R�→1 2B1, molecular frame. Ioniza-
tion polarization is along the y axis, perpendicular to the molecular plane,
and k=0.271 a.u. �Ek=1 eV�.

l �m�

�Cklm�2

A B C

0 0 7.8 7.1 5.3�101

1
0 3.7 2.2 2.0�10−3

1 ¯

a 1.1 ¯

0 1.6�10−1 8.3�10−2 1.2�102

2 1 ¯ 2.5�10−3
¯

2 1.2�10−1 1.2�10−1 1.8�102

3

0 3.1�10−2 1.9�10−2 3.8�10−2

1 ¯ 1.6�10−3
¯

2 2.9�10−2 1.7�10−2 2.3�10−2

3 ¯ 2.5�10−2
¯

4

0 6.8�10−2

1 ¯

2 10−5–10−6b 10−5–10−6 4.1�10−2

3 ¯

4 7.7�10−2

5 0
1
2 10−6–10−8 10−7–10−8 10−5–10−7

3
4
5

6

0 2.2�10−3

1 ¯

2 1.6�10−3

3 10−7–10−8 10−7–10−8
¯

4 8.4�10−4

5 ¯

6 3.3�10−3

aZero coefficients, due to symmetry.
bFor �Cklm�2�10−4, only the order of magnitude of the highest coefficients is
given.

FIG. 10. Probabilities of finding photoelectrons in dif-
ferent l, m states for ionization of the 1 1A2 excited state
of formaldehyde producing the 1 2B1 ground state. Ion-
ization laser is polarized along the y axis, perpendicular
to the molecular plane, and cylindrical averaging
around the y axis is conducted. Bars clustered around
an l value correspond to different m=−l¯ l values.
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5 1A1→X 2B2 and 5 1A1→X 2B1 Dyson orbitals are 0.078
and, respectively, 0.042, the sum of the values being 0.12.

B. Partial-wave decomposition: The �Cklm�2
coefficients

The squares of the Cklm coefficients give the probability
of obtaining a photoelectron with l, m angular momentum,
and wave number k, under the assumption that RklYlm are
eigenstates of the ejected electrons �see Sec. II A�. For ion-
ization of atoms the allowed states are 
l= ±1 with respect
to the Dyson orbital l quantum number. In the molecular
case, Dyson orbitals have lower symmetry, and the selection
rules are less strict.

Depending on the experimental setup, averaging over
molecular orientations is often necessary, see Eq. �23�. To
demonstrate the effect of the averaging on the Cklm, we con-
sider azimuthal averaging around the y molecular axis,
which would correspond to an experiment where the mol-
ecules are oriented perpendicular to the laser ionization po-
larization. Cylindrical averaging is conducted, for example,
in Stolow’s experiments on the NO dimer,44,69 which moti-
vated the present work. We also calculated the �Cklm�2 coef-
ficients for non-averaged CH2O Dyson orbitals, in order to
understand qualitatively the major l, m contributions.

Consider again ionization of formaldehyde from its low-
est valence excited state to the ground state cation, 1 1A2
→1 2B1 �Fig. 5�. Figure 8 shows the probabilities of produc-
ing different l, m angular momentum states. The highest co-
efficients are obtained for l=0, 1, 2, and 3. This is consistent
with the shape of the orbital: This b2 Dyson orbital could be
decomposed approximately into d and py orbitals. By exten-
sion of the atomic selection rules, the allowed Ylm states
would be indeed s, d, and p, f . The coefficients for other l
states are several orders of magnitude lower, although they
are not zero as would be in the atomic case. Thus, by decom-
posing the delocalized Dyson orbitals into different same-
center orbital contributions, one can rationalize the l, m an-
gular momentum states of the photoelectron. However, this
is possible only when Dyson orbitals have relatively simple
shapes.

It is interesting to compare the �Cklm�2 coefficients ob-
tained using the freestanding and Coulomb wave representa-

tions of the photoelectron wave function. The l, m decompo-
sition for the two cases, in the limit of very small k �0.01 eV�
are shown in Fig. 9. For the free-standing spherical waves,
there is a large difference among the s, p, and d contributions
due to the low density of the l�0 waves in the small r
Dyson orbital region. For the Coulomb waves, the l, m ex-
pansion extends to higher angular momentum and the l
=0–2 coefficients are within one order of magnitude. Thus,
one can expect that ionization of neutral species will produce
higher angular momentum photoelectrons than that of an-
ions, assuming similar shapes of the corresponding Dyson
orbitals.

After cylindrical averaging around the y axis, one ob-
tains the average coefficients �Cklm�2 in Fig. 10, using spheri-
cal wave representation. The highest coefficients correspond
to the l=0–3 angular momentum, but more m states become
populated. By rotating the molecular frame, the x ,y ,z pro-
jections of the electron angular momentum in the laboratory
frame change.

The highest �Cklm�2 contributions �above 10−4� are given
in Table III. Note that even the coefficients that give the
major contributions differ by a few orders of magnitude. This
is due to the smaller overlap of Rkl radial functions with high
l at smaller intramolecular distances �see Sec. II B�. There-
fore, high angular momentum states of the electron become
more accessible for ionization of the Rydberg states. For
comparison, Fig. 11 displays the �Cklm�2 decomposition of the
b2 Dyson orbital corresponding to the 2 1A2→X 2B1 ioniza-
tion. The angular distribution of this Dyson orbital is similar
to the previous one, but the increase in number of radial
nodes and the higher density at large radius result in larger
contributions from high l states, especially 4 and 6. Finally,
Fig. 12 compares the �Cklm�2 values computed using the free-
standing and the Coulomb waves for this Dyson orbital. The
resulting trend, higher angular momentum states for the Cou-
lomb waves, is similar to that observed for the valence
1 1A2→X 2B1 ionization.

The data shown in Figs. 8–12 are given in the EPAPS
supplement.64

FIG. 11. Probabilities of finding photoelectrons in dif-
ferent l, m states for ionization of the 2 1A2 excited state
of formaldehyde producing the 1 2B1 ground state. The
corresponding Dyson orbital is also shown. Ionization
polarization is along the y axis. Bars clustered around
an l value correspond to different m=−l¯ l values.
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IV. CONCLUSIONS

We report the implementation of Dyson orbitals within
the EOM-CC family of methods. Formally, Dyson orbitals
represent the overlap between an N-electron wave function
of the molecule and the N−1 /N+1 electron wave function of
the corresponding cation/anion, and are required for calculat-
ing PADs, Compton profiles, electron momentum spectra,
and are relevant for other orbital imaging experiments. In the
case of ionizing transitions, they can be interpreted as states
of the leaving electron and are required for calculating elec-
tronic factors of angular distributions of photoelectrons. Cor-
related Dyson orbitals are especially important for ionization
of electronically excited and open-shell species. As demon-
strated by the formaldehyde example, Dyson orbitals of the
ground-state closed-shell molecules are well approximated
by the corresponding HF molecular orbitals. For ionization
of species with multiconfigurational wave functions, the
shapes of the Dyson orbitals are more complex, however,
they still can be rationalized within Koopmans-type picture,
i.e., by considering leading EOM amplitudes in the Hartree-
Fock MO representation.

A complete PAD modeling requires the wave function of
the ionized electron to account for interference effects and
core-electron interactions, and will be pursued in a future
work. Under certain approximations, however, the Dyson or-

bitals can be employed in partial-wave decomposition, that
is, for evaluating the probabilities of finding the ionized elec-
tron in different angular momentum states. We discuss
partial-wave analysis and apply it to formaldehyde. The
wave function of the ionized electron is approximated by an
expansion in partial waves, either freestanding or Coulomb.
For relatively simple molecular Dyson orbitals, the �Cklm�2
contributions can be rationalized by decomposition of the
Dyson MO into different l, m same-center orbitals and the
extension of the atomic selection rules. Due to low density of
spherical waves at small r, ionization of Rydberg states is
more likely to produce higher angular momentum electrons.
Likewise, faster electrons are more likely to have higher an-
gular momentum. Anion ionization leading to neutral species
should favor lower angular momentum electrons due to the
longer oscillations of the freestanding versus the Coulomb
spherical waves. Thus, although quantitative simulation of
PADs involves more sophisticated treatment, simple partial-
wave decomposition of Dyson orbitals reveals interesting
trends that can be applied to the qualitative interpretation of
experimental PADs.
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APPENDIX: TRANSFORMATION BETWEEN POLAR
AND CARTESIAN COORDINATES

Transformation from polar to Cartesian coordinates is
given by

x = r cos���sin��� , �A1�

y = r sin���sin��� , �A2�

z = r cos��� . �A3�

An arbitrary rotation of a rigid body can be described by
the three sequential transformations, i.e., Euler rotations,70

r� = R���r = Rz���Ry���Rz���r , �A4�

where r denotes the coordinates in a fixed laboratory frame
and r�—in a molecular frame rotating with the body. Opera-
tors Rxi

��� describe rotation by angle � around laboratory
axis xi and assume the following simple form:

Rz��� = � cos��� − sin��� 0

− sin��� cos��� 0

0 0 1
� , �A5�

Ry��� = � sin��� cos��� 0

0 0 1

cos��� − sin��� 0
� . �A6�

The inverse transformation from the molecular to the
laboratory-fixed frame is readily obtained as

R���
−1 = Rz

−1���Ry
−1���Rz

−1��� = Rz�− ��Ry�− ��Rz�− �� .

�A7�

The ranges for � , �, and � are 0 . . .2
, 0 . . .
 and
0. . .2
, respectively.

The orientation of a diatomic molecule is uniquely de-
fined by one angle describing the orientation of molecular
axis with respect to, for example, z axis, and the correspond-
ing Euler transformation is thus Ry���. For nonlinear mol-
ecules in coincidence experiments, when one of the molecu-
lar axes is fixed, e.g., as in �NO�2 with the NN axis
coinciding with the laboratory axis z, there remains only one
degree of freedom, rotation around z axis, Rz���.
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