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Abbreviations: AML, acute myeloid leukemia; HSC, hematopoietic stem cell; LSC, 

leukemia stem cell 
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ABSTRACT 

 

We performed the first genome wide expression analysis directly comparing the 

expression profile of highly enriched normal human hematopoietic stem cells (HSC) and 

leukemic stem cells (LSC) from patients with acute myeloid leukemia (AML). Comparing 

the expression signature of normal HSC to that of LSC, we identified 3005 differentially 

expressed genes. Using two independent analyses, we identified multiple pathways that 

are aberrantly regulated in leukemic stem cells in comparison to normal HSC. Several 

pathways, including Wnt signaling, MAP Kinase signaling, and Adherens Junction, are 

well known for their role in cancer development and stem cell biology. Other pathways 

have not been previously implicated in the regulation of cancer stem cell functions, 

including Ribosome and T Cell Receptor Signaling Pathway. This study demonstrates 

that combining global gene expression analysis with detailed annotated pathway 

resources applied to highly enriched normal and malignant stem cell populations, can 

yield an understanding of the critical pathways regulating cancer stem cells. 
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INTRODUCTION 

 

With the ability to enrich for rare populations of cells using cell sorting techniques 

and the development of appropriate xenotransplant models, it has been possible to 

prospectively characterize the surface antigen phenotype of both normal and leukemic 

stem cell populations from normal and AML specimens. A number of lines of evidence 

have demonstrated that human HSC are contained in the Lin-CD34+CD38- fraction of 

hematopoietic progenitors (1, 2). Additional studies have demonstrated that human HSC 

also express CD90 (3-5). Perhaps the best demonstration of HSC function comes from 

human clinical trials of autologous mobilized peripheral blood in clinical transplantation, 

where long-term engraftment was provided by transplantation of purified CD34+CD90+ 

cells (6-8). In multiple published reports, a common phenotype for AML LSC has been 

identified and found to be negative for expression of lineage markers (Lin-), positive for 

expression of CD34, and negative for expression of CD38 (9-11). These Lin-

CD34+CD38- LSC were further shown to be positive for expression of IL-3Rα (CD123) 

and negative for expression of CD90 (Thy-1) (12-14). 

The cancer stem cell model has significant implications for the design of 

therapies for AML as well as other cancers. It postulates that in order to eradicate the 

tumor, therapies must target and eliminate the cancer stem cells. For the development of 

such cancer stem cell-targeted therapies, it is necessary to identify molecules and 

pathways that are preferentially expressed in these cancer stem cells compared to their 

normal counterparts. 

DNA microarray technology has proven to be a powerful tool for the large scale 

analysis of gene expression differences, particularly in cancer investigations (15). There 

are many published reports of gene expression profiles of bulk human AML samples, 
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including several very large cohorts (16-18). However, few studies have directly 

compared AML to normal hematopoietic cells (19). Comparisons of unfractionated 

populations may fail to identify critical differentially expressed genes and pathways 

within infrequent LSC and rare HSC populations. One report has investigated gene 

expression differences between LSC and non-LSC from the same AML samples in order 

to identify genes critical to LSC function; however, no direct comparison was made to 

normal HSC (20). An additional study has investigated gene expression differences 

between normal HSC and HSC from patients with 5q- myelodysplastic syndrome, and 

identified genes potentially involved in the pathogenesis of this disorder (21). We report 

the first analysis of gene expression differences between AML LSC and normal bone 

marrow HSC using two independently derived data sets. We have applied the gene sets 

to a systems level pathway analysis and have identified molecular pathways and 

networks that are dysregulated between AML LSC and HSC. 
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RESULTS 

 

Generation of gene expression profiles of human HSC and AML LSC 

Two independent sets of microarray gene expression profiles of human bone 

marrow HSC and AML LSC were generated at the University of Michigan (n=3 HSC, n=7 

AML) and Stanford University (n=4 HSC, n=9 AML) by fluorescence-activated cell 

sorting (FACS) of patient samples, followed by RNA purification, amplification, and 

hybridization to Affymetrix oligonucleotide-based microarrays. The clinical features of the 

AML samples are presented in Supplemental Table 1, and cover a range of subtypes of 

AML. These data sets were then combined for the bioinformatic analysis of differentially 

regulated pathways. 

 

Dysregulated pathways between AML LSC and HSC 

Although LSC and normal HSC share the common characteristics of unlimited 

self-renewal and multi-lineage differentiation, understanding how they differ from each 

other should reveal fundamental mechanisms governing leukemic transformation. While 

differentially expressed genes between LSC and HSC can be identified and validated 

individually, the full potential of genome-wide microarray analysis can be better realized 

in terms of gene regulatory networks, given that those genes, and the proteins they 

encode for, function in the context of intertwining pathways. We conducted an unbiased 

systems level pathway analysis without excluding any genes through a priori gene 

expression thresholds, by employing a newly developed algorithm dubbed integrative 

microarray analysis of pathways (IMAP) (22). This analysis first combines microarray 

data from multiple independent experiments through meta-analysis; a score for each 

pathway is assigned without specific gene expression cut-offs; the significance of each 

pathway is then computed by running 1 million iterations of randomly sampled genes. 
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We used the pathway information from Biocarta (http://www.biocarta.com), KEGG 

(http://www.genome.jp/kegg/), GeneGo (http://www.genego.com/), and Pathway Studio 

(http://www.ariadnegenomics.com/products/pathway-studio/) databases as references to 

derive the top dysregulated pathways. As shown in Table 1, among the top dysregulated 

pathways between LSC and HSC, are pathways involved in adherens junction, 

regulation of the actin cytoskeleton, apoptosis, MAPK signaling, and Wnt signaling. A full 

list of the top dysregulated pathways derived from all 4 databases, as well as up- or 

down-regulated pathways, is shown in Supplemental Table 2. Among the down-

regulated pathways in LSC are those related to tumor suppressors (such as RB and 

ATM signaling), CXCR4->Stat3/5B pathways, and regulation of translation initiation. 

Thus, global pathway analysis has identified critical biological networks perturbed in LSC 

compared to normal HSC. 

 

Identification of key molecular interactions within dysregulated pathways 

To identify changing molecular interaction and reaction networks contributing to 

the top dysregulated pathways between LSC and HSC, we mapped the relative 

expression levels of all the genes found in a given pathway in the context of their signal 

transduction and cell communication processes as defined by the KEGG pathway 

database using the Advanced Pathway Painter program (http://www.gsa-

online.de/eng/app.html). As shown in Figure 2, two of the top dysregulated pathways—

adherens junction (2a) and Wnt signaling pathway (2b)—are illustrated with red color 

representing genes up-regulated in LSC, green color representing genes down-

regulated in LSC, and yellow color representing genes with no significant change 

between LSC and HSC. Among the genes that are downregulated in LSC in the 

adherens junction pathway are α-Catenin, Afadin, and PAR3 (Figure 2a). Genes that are 

upregulated in LSC in the Wnt pathway include Axin and APC, whereas c-Jun, a 
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TCF/Lef target gene is downregulated in LSC (Figure 2b).  

 

Validation of top dysregulated pathways using functional groups enrichment 

analysis  

Independent of the IMAP analysis, which takes into account all the genes in a 

given pathway, we conducted a parallel analysis employing only differentially expressed 

genes (DEGs) from the combined datasets. The two AML microarray data sets were first 

combined as described above using z-scores. With p<0.05 we obtained 3005 DEGs 

(Supplemental Table 3). A heat map illustrating the expression of these genes across 

the Stanford samples is shown in Supplemental Figure 1. A functional enrichment 

analysis using this set of genes was performed using the DAVID program (the Database 

for Annotation, Visualization and Integrated Discovery; 

http://david.abcc.ncifcrf.gov/home.jsp)(23). The latest version of DAVID supports 40 

annotation categories, including Gene Ontology terms, KEGG pathways, protein-protein 

interactions, protein functional domains, swissprot keywords, disease associations, bio-

pathways, sequence general features, and literature. A number of functional groups or 

biological themes are identified as enriched in our AML dataset compared to the whole 

genome distribution of that specific group using DAVID (p<0.02). We developed a 

bioinformatic tool (Lee et al, unpublished) to visualize these enriched functional group 

associations using the Cytoscape program (http://www.cytoscape.org) (24). As shown in 

Figure 3, among the 3005 DEGs, genes involved in protein kinase activity, adherens 

junction, actin cytoskeleton, and apoptosis are specifically enriched. The size of each 

circle represents the number of genes in that specific functional group; the thickness of 

the lines represents the number of overlapping genes between the functional groups. 

Thus, two independent network analyses arrive at some common pathways differentially 

regulated between LSC and HSC, strongly implicating them in regulation of leukemic 
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stem cell functions. 



  Majeti et al. 

 10 

DISCUSSION 

 

While there is an abundance of data examining the gene expression profiles of 

normal and malignant bulk cell populations in AML, little has been done in the 

application of the stem cell model to gene expression analysis of AML samples. This is 

due in part to the difficulty in isolating a sufficient number of cells to perform these 

studies. Several studies have utilized CD34+ cells for microarray analyses, however, the 

expression of CD34 is often aberrant in AML and most studies to date have 

demonstrated there remains considerable heterogeneity in the CD34 positive fraction (9, 

12, 13). We and others have previously demonstrated the value of applying macro- and 

microarray technology to highly enriched populations of normal stem cells and their 

committed progeny to identify key regulators of cell fate choices (25-27). In 2002, 

Guzman et al. applied macro-array technology to compare leukemic and normal stem 

cell populations and identified, among other genes, activation of the NFκB pathway in all 

the LSC samples examined (28). Recently Gal et al. examined the gene expression 

profile of enriched leukemic progenitors from 5 patients using microarray technology and 

compared the results of their study to a dataset previously published for normal 

hematopoietic progenitors (20). The current study represents the first effort to 

simultaneously compare the transcriptional profiles of highly enriched LSC and normal 

HSC from a wide variety of patients using modern microarray technology. The direct 

comparison of expression patterns of LSC to HSC, as opposed to other non-stem cell 

populations, enhanced our ability to identify genes and pathways which are disrupted at 

the stem cell level in AML. This analysis provides critical insights into the differences 

between normal and malignant stem cell populations which may be used for the 

development of targeted therapies, as well as tools for assessing the impact of therapy 

on the LSC population.  
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The first data set was generated from sorted leukemic stem cells (LSC) from 7 

AML patients and normal hematopoietic stem cells (HSC) from 3 normal controls. The 

second data set was generated similarly from 9 AML patients and 4 normal individuals. 

We obtained 3005 differentially expressed genes with 1451 genes being up regulated 

and 1554 genes being down regulated in LSC when compared to normal HSC. Many of 

these genes have been previously identified as being playing a key role in normal stem 

cell biology as well as in leukemia. Despite the use of different microarray platforms, a 

detailed analysis of the two independently derived datasets demonstrated a significant 

degree of overlap between the gene signatures for the two cell types examined. 

In addition to providing a genome wide survey for genes whose expression is 

disrupted in leukemic transformation at the level of the stem cell compartment, a 

comprehensive, unbiased pathway analysis has allowed the identification of critical 

pathways which are dysregulated in LSC in comparison to normal HSC. Again, focusing 

on the difference between normal and leukemic as opposed to stem cell versus 

progenitor has allowed us to screen out many of the pathways that are involved in stem 

cell function which are not dysregulated in the leukemic state. Hence, the limited number 

of pathways we identified as being dysregulated. Furthermore, the significant degree of 

overlap within and between the different pathway tools utilized suggests that these 

pathways are critical in the evolution of cancer stem cells from their normal counterparts.  

To validate the data sets used, we performed an analysis employing only the 

3005 differentially expressed genes (DEGs) from the combined datasets using the DAVID 

program. This independent and parallel analysis demonstrated a significant degree of 

overlap with the unbiased pathway analysis and confirmed the validity of the datasets 

employed in these analyses using a system wide approach.  

Many of the pathways we identified as being aberrantly regulated in the LSC from 

the patients studied have already been established as playing key roles in leukemia 
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and/or leukemic stem cell biology including the Wnt canonical (29), the Adherens junction 

and NFκB pathways (28). Several of the pathways identified are involved in the 

interaction of the stem cells with their niche. There is a growing body of data 

demonstrating the importance of the interaction of stem cells with their niche in normal 

and malignant stem cell biology. Two classes of receptors and their ligands are critical in 

determining the nature of this interaction, cell adhesion molecules (CAMs) and 

chemokine receptors. Our current analysis demonstrates dysregulation of both gene 

families in the leukemic stem cells studied. Identification of dysregulation of these 

interactions is consistent with the hypothesis that alteration of the stem cell:niche 

interaction is a key step in the pathogenesis of cancer stem cells (30). In regard to CAMs, 

we identified several CAM related pathways that were aberrantly regulated in LSC 

including the Adherens junction and Tight junction pathways. In addition, pathway 

analysis of the data sets using the Biocarta, GeneGo, and Pathway Studio tools 

identified: How does salmonella hijack a cell, Adhesion Molecules on Lymphocyte, 

CXCR4 -> STAT3 signaling pathway, CXCR4 -> STAT5B signaling pathway, and the 

Angiopoietin - Tie2 signaling pathways (Supplemental Table 2).  

The adherens junction has been demonstrated to be critical in the interaction of 

HSC and niche in both the fetal liver stage as well as adult stage of hematopoiesis (31-

33). Our data confirms that N-cadherin and alpha-E catenin are expressed in normal 

human stem cells and that expression of these genes is disrupted in LSC. Several 

studies have also demonstrated that elements of the adherens junction are aberrantly 

expressed in leukemic cells compared to normal hematopoietic cells (34-38). We recently 

identified aberrant expression of CTNNA1 in highly enriched LSC from patients with 

advanced MDS and AML associated with abnormalities of chromosome 5 (39). Likewise, 

the Angiopoietin - Tie2 signaling pathway has been demonstrated to play an important 

role in normal and leukemic stem cell function (35, 36), and expression of Tie2 has been 
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shown to be lost in LSC. Finally, the selectins, as well as members of the tight junction 

complex are also involved in the interaction of normal stem cells with endothelial cells 

and are dysregulated during the leukemic transformation process.  

Another family of proteins critical to the normal and leukemic stem cell: niche 

interaction is the chemokine family. CXCR4 is a chemokine receptor that plays a key role 

in regulating normal and leukemic stem cell homing to the bone marrow niche. The role of 

CXCR4 signaling in AML is of significant interest as several targeted therapies which 

disrupt the interaction of CXCR4 with its ligand CXCL12 are currently being investigated 

in clinical trials.  

The Wnt canonical pathway was found to be dysregulated in this study between 

LSC and HSC, and has been implicated in the pathogenesis of several different types of 

human cancer, including leukemia. We have previously shown that the canonical Wnt 

pathway, signaling through nuclear beta-catenin, regulates the self-renewal of mouse 

HSC (40, 41). We have also shown that this pathway is aberrantly activated in 

downstream progenitors in the blast crisis phase of chronic myelogenous leukemia, 

resulting in the nuclear localization of beta-catenin where it likely acts to stimulate self-

renewal and contributes to the formation of leukemia stem cells (29). Our data suggests 

that this pathway may be dysregulated in AML stem cells, possibly contributing to 

pathogenesis. 

Many pathways not previously implicated in the regulation of leukemia stem cell 

functions were identified in our analysis. Several basic cellular biology pathways identified 

include Ribosome, Regulation of Actin Cytoskeleton, and Regulation of Translation Initiation. 

Numerous metabolic pathways were identified such as Glycosphingolipid, Androgen and 

Estogen, Glycerophospholipid, Regulation of Fatty Acid Synthase Activity, and Arginine 

Metabolism. Other pathways involved signal transduction including Angiotensin II, Oxidative 

Stress-Induced Gene Expression, T Cell Receptor, CD28, B Cell Receptor, and EGF 
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Signaling. Ultimately, detailed biological investigations will be necessary to determine the 

functional involvement of these pathways in leukemic pathogenesis.  

In summary, we have utilized gene expression profiling and annotated pathway 

resources to identify biological networks that are dysregulated in AML stem cells 

compared to normal HSC. The application of the stem cell model for AML to a systems 

biology analysis of stem cell expression networks has confirmed the role of several 

pathways previously demonstrated to be important in cancer stem cell function. In 

addition, this approach has identified several pathways not previously studied in cancer 

stem cells. Such networks are candidates for involvement in the regulation of critical 

cancer stem cell functions, and as such may be targets for therapeutic intervention. 
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MATERIALS AND METHODS 

 

Human Samples 

Normal human bone marrow mononuclear cells were either purchased from 

AllCells Inc. (Emeryville, CA) or obtained from National Marrow Donor Program 

discarded filter units. For AML specimens, peripheral blood and/or bone marrow was 

obtained following informed consent at the time of clinical presentation according to IRB 

approved protocols at the University of Michigan or Stanford University. Mononuclear 

cells were prepared using Ficoll-Paque Plus (GE Healthcare, Fairfield, CT), and either 

used fresh or cryopreserved in 90% FBS/10% DMSO in liquid nitrogen.  

 

Isolation and Purification of Normal HSC and AML LSC 

Viably frozen cells were thawed and resuspended in IMDM with 2% heat-

inactivated FBS and DNAse I (Sigma). For all normal specimens and leukemic samples 

with less than 10% of blasts expressing CD34, enrichment was performed prior to 

staining using CD34 positive selection (Stem Cell Technologies, Canada and Miltenyi 

Biotech, Germany). Cells were stained as previously described (39) (Supplemental 

Methods) and analyzed and sorted using FACSAria cytometers (BD Biosciences). 

15,000-65,000 normal HSC and approximately 50,000 to 150,000 AML LSC were sorted 

for RNA purification. 

 

RNA Purification, Amplification, and Microarray Analysis 

Total RNA was extracted using Trizol reagent containing either glycogen or linear 

acrylamide according to the manufacturer’s protocol, and then treated with DNaseI 

(Ambion, Austin, TX). For the University of Michigan samples only, RNA was re-

extracted in Trizol. All RNA samples were quantified with the RiboGreen RNA 



  Majeti et al. 

 16 

Quantitation Kit (Molecular Probes Inc., Eugene, Oregon), subjected to reverse 

transcription, two consecutive rounds of linear amplification, and production and 

fragmentation of biotinylated cRNA (Affymetrix). 15μg of cRNA from each sample was 

hybridized to Affymetrix HG U133 A or B (University of Michigan samples) or HG U133 

Plus 2.0 (Stanford University samples) microarrays. Hybridization and scanning were 

performed according to the manufacturer’s instructions (Affymetrix). The data from the 

University of Michigan and Stanford expression array studies was uploaded into ISB’s 

Systems Biology Experiment Analysis Management System (SBEAMS) and normalized 

using the GCRMA algorithm. 

 

Integration of Data Set 

Since the two data sets of LSC and HSC were obtained from different platforms 

(3 different chips) and/or different probe sets, the ability to directly compare the data sets 

to each other was limited, and the correlation coefficient between the two data sets was 

low. To obtain a statistically more robust data set, we developed a strategy to combine 

both datasets for an increased sample size (Figure 1). 

We performed meta-analysis for integration of the two different microarray data 

sets using a procedure similar to Setlur et al. (22). P-values were first calculated for all 

genes within each data set using the Wilcoxon rank-sum test to compare LSC against 

HSC samples. These p-values were then mapped onto a standard normal curve. That is, 

z-scores corresponding to the p-values were obtained by the following conversion:  

,
σ

μ−= pz  

where p is the p-value to be standardized, μ the mean of all p-values within a data set, 

and σ the standard deviation of the p-values within the data set. After standardization, 

the two data sets were integrated to get a weighted z-score for each gene by combining 
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all z-scores for the gene across the two data sets, using the following Liptak-Stouffer 

formula: 
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where m=2 for this study, i.e. the number of data sets; wi =1, the weight of the i-th data 

set; zi,g the z-score of gene g in the i-th data set. The less the value of zcomb,g, the less 

the probability of differential expression between HSC and LSC by chance. The 

probability can be calculated from the cumulative standard normal distribution: 
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Based on these probabilities, namely p-values, we could integrate our data without bias, 

and finally obtained 3005 potential differentially expressed genes with p-values less than 

0.05, and 387 genes with p-values less than 0.01.  

 

Dys-regulation of Pathway 

To define the dys-regulation of a pathway P, we first assigned a score sg to each gene g in 

the pathway P by the negative logarithm of its p-value pg, that was 

).log( gg ps −=  

We then gave a total score SP to the pathway P by summing up all scores of genes in the 

pathway, namely 

.∑
∈

=
Pg

gP sS  

To estimate a p-value for significance of this pathway, we iteratively computed similar scores 

one million times on randomly generated pathways of the same size as that of pathway P. 
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The frequency of scores which were larger than SP was used as the p-value of pathway P to 

describe its dys-regulation. For calculation of up- or down-regulated pathways, a positive or 

negative sg value was used respectively to compute the Sp. 
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FIGURE LEGENDS 

 

Figure 1. Schematic representation of dysregulated pathway identification 

 

Figure 2. Visualization of molecular interaction and reaction networks in the KEGG 

database: (2a) Adherens junction; (2b) Wnt signaling pathway. Red color represents 

upregulation in LSC, green color represents upregulation in HSC, and yellow color 

represents no significant change. 

 

Figure 3. Functional Groups Association Networks (FGAN) visualized using the 

Cytoscape program. Each node represents one enriched functional group (GO 

molecular function, GO cellular component, and Swissprot keywords) with p-value < 0.02 

performed by DAVID. A total of 3005 differentially expressed genes were evaluated by 

the functional enrichment analysis. The size of the node is proportional to the number of 

genes in each functional group. The largest functional group is the protein kinase activity 

of GO molecular function, which contains 103 genes. The edge width represents the 

number of shared genes between any two functional groups. 
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Table 1. Top 10 dysregulated pathways using the KEGG database 

 

Pathway source gene # hit # dys-pvalue up-pvalue down-pvalue 

Adherens junction KEGG 84 79 0 0.140219 0.859781 

Ribosome KEGG 117 94 0 1 0 

Regulation of actin cytoskeleton KEGG 221 214 0.000002 0.000015 0.999985 

Tight junction KEGG 133 128 0.000012 0.959437 0.040563 

Focal adhesion KEGG 239 234 0.000014 0.000776 0.999224 

Apoptosis KEGG 99 98 0.000136 0.073148 0.926852 

MAPK signaling pathway KEGG 251 249 0.000298 0.017295 0.982705 

T cell receptor signaling pathway KEGG 104 103 0.000694 0.021248 0.978752 

Jak-STAT signaling pathway KEGG 164 162 0.000753 0.028108 0.971892 

Wnt signaling pathway KEGG 154 149 0.002304 0.509085 0.490915 

       

This table summarizes the top 10 dysregulated KEGG pathways according to their dys-

regulation score (labeled dys-pvalue). The number of genes referenced in the KEGG 

pathways were labeled as gene #, and the number of genes that were found in our data 

set were labeled hit #. For each KEGG pathway, an unbiased systems level pathway 

analysis without excluding any genes was implemented by employing integrative 

microarray analysis of pathways (IMAP). The p-values of each pathway reflect the 

significance of dys-regulation (dys-pvalue), up-regulation (up-pvalue), and down-

regulation (down-pvalue) of the pathway. 
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Swissprot keywords

GO cellular component

GO molecular function

* Performed by DAVID
Functional Annotation Tool

Functional Groups 
(*P < 0.02) #genes
protein kinase activity 103
nucleoplasm 76
Golgi apparatus 61
chromosome 61
vacuole 45
actin cytoskeleton 31
T cell receptor signaling 
pathway 25
leukocyte transendothelial 
migration 24
adherens junction 24
tight junction 21
apoptosis 21
Jak-Stat signaling pathway 20
small GTPase binding 19
epithelial cell signaling 19
pore complex 18
amyotrophic lateral sclerosis 
(ALS) 9
interleukin receptor activity 8

double-stranded DNA binding 4

Figure 3
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