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Abstract

Coronavirus disease (COVID)-19, as a result of Severe Acute Respiratory Syndrome Coro-

navirus 2 (SARS-CoV-2) infection, has been the direct cause of over 2.2 million deaths

worldwide. A timely coordinated host-immune response represents the leading driver for

restraining SARS-CoV-2 infection. Indeed, several studies have described dysregulated

immunity as the crucial determinant for critical illness and the failure of viral control.

Improved understanding and management of COVID-19 could greatly reduce the mortality

and morbidity caused by SARS-CoV-2. One aspect of the immune response that has to

date been understudied is whether lipid mediator production is dysregulated in critically ill

patients. In the present study, plasma from COVID-19 patients with either severe disease

and those that were critically ill was collected and lipid mediator profiles were determined

using liquid chromatography tandemmass spectrometry. Results from these studies indi-

cated that plasma concentrations of both pro-inflammatory and pro-resolving lipid mediator

were reduced in critically ill patients when compared with those with severe disease. Fur-

thermore, plasma concentrations of a select group of mediators that included the special-

ized pro-resolving mediators (SPM) Resolvin (Rv) D1 and RvE4 were diagnostic of disease

severity. Interestingly, peripheral blood SPM concentrations were also linked with outcome

in critically ill patients, where we observed reduced overall concentrations of these media-

tors in those patients that did not survive. Together the present findings establish a link

between plasma lipid mediators and disease severity in patients with COVID-19 and indi-

cate that plasma SPM concentrations may be linked with survival in these patients.

Introduction

Acute Respiratory Distress Syndrome (ARDS) is a life-threatening consequence of Severe

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. The syndrome is
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characterised by hypoxemia, diffuse bilateral pulmonary infiltrates, and reduced respiratory

system compliance [1, 2]. The mainstay of treatment is mechanical ventilation using specific

strategies to avoid ventilator-induced lung injury and lung strain [3]. Prior to the emergence

of SARS-CoV-2, the incidence of ARDS amongst patients in Intensive Care Units (ICUs) was

estimated to be 10%, with a mortality rate of 40% in those with severe disease [4].

Reports suggest that among those infected with SARS-CoV-2, up to 20% of patients develop

severe disease requiring hospitalization, while approximately 5%-8% of the total infected pop-

ulation needs ICU admission [5, 6]. The CDC outlines over 440,000 deaths secondary to

SARS-CoV-2 in the United States (https://covid.cdc.gov/covid-data-tracker/#cases_

casesper100klast7days), while UKmortality rates currently are reported at 112,660 (https://

coronavirus.data.gov.uk), making this now a leading worldwide cause of morbidity and mor-

tality. As well as the impact on patients’ lives, increased demand for critical care beds and

mechanical ventilators has a significant socio-economic impact and places increased pressure

on an already over-burdened healthcare system.

Although, the RECOVERY trial demonstrated dexamethasone to be efficacious in reducing

mortality in patients with severe disease [7] and Remdesivir has been shown to reduce length

of hospital stay [8], the treatments for SARS-CoV-2 remain limited and the mechanisms that

underlie these strategies are incompletely understood. It seems that development of severe dis-

ease is not solely related to viral load and could involve a delayed and excessive inflammatory

response [9]. Several groups have aimed at characterising this aspect in SARS-CoV-2 infection

and delineate distinctions in the inflammatory profile between SARS-CoV-2-related ARDS

compared with non-SARS-CoV-2 ARDS or other causes of respiratory failure requiring ICU

admission [10, 11]. However, many key questions remain unanswered, such as the degrees to

which viral load and host response affect disease severity and the immunologic mechanisms

behind this condition.

One aspect of the immune response that has, to date, been greatly understudied in COVID-

19 patients is the role of lipid mediators (LM). LM are autacoids produced from essential fatty

acids and constitute a central part of the concerted immune response. They are involved in all

aspects of the inflammatory response; from initiation, propagation, and resolution of inflam-

mation [12, 13]. While the resolution of inflammation was previously thought to be a passive

process, it has since been established that specific LM are central players in driving endoge-

nous counter-regulation of inflammation and activation of resolution [14, 15].

Arachidonic acid (AA), a poly-unsaturated fatty acid (PUFA), is the precursor for the pro-

inflammatory prostaglandins (PG), leukotrienes (LT), and thromboxanes (Tx) as well as the

pro-resolving lipoxins (LX). The omega-3 essential fatty acids eicosapentaenoic (EPA), docosa-

pentaenoic (n-3 DPA), and docosahexaenoic (DHA) are precursors to three families of special-

ized pro-resolving mediators (SPM), namely protectins, resolvins, and maresins. These

molecules play a pivotal role in regulating viral replication as well as in reprograming the host

innate and adaptive immune response [16–18]. Through the activation of cellular receptors,

each SPM exerts both cell and organ-specific properties that allow them to limit the infiltration

of polymorphonuclear neutrophils and promote efferocytosis [15, 19].

The role of SPMs in bacterial and viral infection has been well studied [19, 20] in animal

models of other viral infection including influenza and herpes simplex viruses, where SPMs

have been shown to reduce disease severity [21, 22]. Of note, one study explored the role of

LM in coronavirus infection, namely SARS-CoV. Here, the authors demonstrated that an

increase in pro-inflammatory eicosanoids following increased PLA2G2D levels in the lungs,

led to worse outcomes in SARS-CoV infected mice [23]. Other studies have identified the util-

ity of SPMs in promoting alveolar fluid clearance and the resolution of acute lung injury [24,

25].
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For these reasons, in the present study we aimed at characterising the LM profiles of

patients with COVID-19 in order to determine the potential relationships between plasma LM

levels and disease severity, as well as outcome in these patients.

Materials andmethods

Study setting and design

Between 16thMarch 2020 and 1st May 2020, 38 adult (age> 18 years) patients with confirmed

SARS-CoV-2 infection by viral PCR were recruited from Beaumont Hospital for an observa-

tional cohort study with peripheral blood lipid mediator profiling and analysis of clinical out-

comes. Blood sampling was performed within 24 h of recruitment.

Patients above 18 years of age were approached for informed consent to blood sampling by

the research team if they met the criteria of a positive PCR result for SARS-CoV-2. For patients

in the ICU lacking capacity, this was sought from their next of kin under appropriate ethical

approval. Informed consent was obtained retrospectively from these patients, where possible.

The cohort included patients admitted to the wards and ICU with SARS-CoV-2 infection.

The majority of patients were recruited within 72 h of a positive PCR result. Due to the pro-

spective nature of our sampling, we were able to capture a heterogenous population of ward

patients and ICU patients, some recruited before admission and during admission to ICU.

Patients were catagorised into two main groups, critically ill and severe disease. Patients were

categorised as critically ill if they required invasive mechanical ventilation in the ICU. The

severe group was defined by those who were managed at ward level with supplemental oxygen

or non-invasive ventilation. Plasma was obtained from peripheral blood by means of centrifu-

gation at 1500 g for 10 min at room temperature and then frozen before shipment. Demo-

graphics, age, gender, BMI, PaO2/FiO2 ratio, Sequential Organ Failure Assessment Score, d-

dimers, ferritin, ICU length of stay and survival were recorded for the cohort.

Ethical approval was received from the Beaumont Hospital Ethics Committee (REC #18/52,

17/06).

Lipid mediator profiling

Samples were thawed and 4 mL of ice-cold methanol containing deuterium-labelled internal

standards, representing each region of the chromatographic analysis (500 pg for d4-PGE2, d8-

5-HETE, d4-LTB4, d5-LXA4, and d5-RvD2, 250 pg for d5-MaR1, d5-MaR2, and d5-RvD3, 100

pg for d5-RvE1, and 25 pg for d5-17R-RvD1), were added to facilitate analytes identification

and quantification. Samples were then stored at -20˚C for a minimum of 45 min to allow for

protein precipitation. Subsequently, supernatants were subjected to solid phase extraction, col-

lecting methyl formate and methanol fractions. Following solvent evaporation, samples were

resuspended in methanol/water (1:1, vol/vol) phase for injection on a Shimadzu LC-20AD

HPLC and a Shimadzu SIL-20AC autoinjector, coupled with QTrap 6500+ or QTrap 5500

(ABSciex). For the analysis of unconjugated lipid mediator eluted in methyl formate fraction,

Agilent Poroshell 120 EC-C18 column (100 mm x 4.6 mm x 2.7 μm) was kept at 50˚C and

mediators eluted using a mobile phase consisting of methanol (0.01% acetic acid)/water

(0.01% acetic acid) of 20:80 (vol/vol) that was ramped to 50:50 (vol/vol) over 0.5 min and then

to 80:20 (vol/vol) from 2 min to 11 min, maintained till 14.5 min and then rapidly increased to

98:2 (vol/vol) for the next 0.1 min. This was subsequently maintained at 98:2 (vol/vol) for 5.4

min. Flow rate was maintained at 0.50 mL/min. In the analysis of peptide-lipid conjugated

mediators eluted in the methanol fraction, Agilent Poroshell 120 EC-C18 column (100

mm × 4.6 mm × 2.7 μm) was kept at 50˚C and mediators eluted using a mobile phase consist-

ing of methanol (0.5% acetic acid)/water (0.5% acetic acid) at 55:45 (vol/vol) over 5 min, that
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was ramped to 80:20 (vol/vol) for 2 min, maintained at 80:20 (vol/vol) for the successive 3 min

and ramped to 98:2 (vol/vol) over 3 min. This condition was kept for 3 min. A flow rate of 0.6

mL/min was used throughout the experiment. Both QTrap 6500+ and QTrap 5500 were oper-

ated using a multiple reaction monitoring (MRM) method and positive and negative acquisi-

tion mode, respectively, as previously reported [26]. Each lipid mediator was identified using

established criteria, these included: 1) matching retention time to synthetic or authentic stan-

dards with maximum drift between the expected retention time and the observed retention

time of ± 0.05 min, 2) presence of a peak with a minimum area of 2000 counts, 3) at least 4

data points, and 4) matching of at least 6 diagnostic ions to that of reference standard, with a

minimum of one backbone fragment being identified [26]. Calibration curves were obtained

for each mediator using lipid mediator mixtures at 0.78, 1.56, 3.12, 6.25, 12.5, 25, 50, 100, and

200 pg that gave linear calibration curves with an r2 values of 0.98–0.99.

Statistical analysis

Univariate statistical analyses were performed using R (https://www.r-project.org/), Prism 8,

and Microsoft Excel, while multivariate analyses were conducted using R and MetaboAnalyst

4.0 [27]. Differences between two groups were determined using two-tailed Mann-Whitney

test for non-normal data distribution and significance was considered as P-value< 0.05. Dif-

ferences among more than two groups were calculated using Kruskal-Wallis statistical for

non-normal data distribution and significance was determined using Benjamini Hochberg

correction and an adjusted P-value< 0.05.

Partial Least Squares-Discriminant Analysis (PLS-DA) was performed using MetaboAna-

lyst 4.0 and applying autoscaling on lipid mediator concentrations, together with Leave One

Out Cross Validation (LOOCV) method. PLS-DA builds a multivariate model that identifies a

direction to explain variance among variables (lipid mediator concentrations) and classify the

observations (samples). During classification, each sample is assigned with a score for each of

the two coordinates, representative of a combination of independent variables (principal com-

ponent, PC), and it is plotted as a single point in a two-dimensional scores plot. This approach

helps to visualise the clustering of samples based on profile similarity. Variance Importance of

Projection (VIP) is a measure of the relative contribution of the different variables, highlight-

ing which are the most relevant to the separation of observations into classes (e.g. pathological

status).

Least Absolute Shrinkage and Selection Operator (LASSO) regression model was per-

formed using the R package “glmnet” (https://cran.r-project.org/web/packages/glmnet/index.

html). This machine learning method performs both variable selection and regularization in

order to improve predictivity and interpretability of the statistical models it produces [28].

Here, the variables contributing the least to the prediction model are forced to a coefficient

value equal to zero, while the most relevant features are conserved. To create this model, we

first defined the value of λ (i.e. the numeric value defining how simple the model could be)

that minimises the cross-validation prediction error without losing relevant features, known as

λmin. With λmin, only a subset of variables is used successfully in the predictive model by fix-

ing the sum of all regression coefficients lower than a threshold. This results in a compromise

between prediction and simplicity of the model.

Results

Patient characteristics

During the study period, plasma samples were obtained from 23 critically ill patients with

SARS-CoV-2 infection and from 15 patients with severe disease. Baseline characteristics are

PLOS ONE Impaired resolution pathway in critically ill COVID-19 patients

PLOSONE | https://doi.org/10.1371/journal.pone.0256226 August 26, 2021 4 / 16

https://www.r-project.org/
https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/glmnet/index.html
https://doi.org/10.1371/journal.pone.0256226


outlined in Table 1. Of note, critically ill patients were younger than those with severe disease,

median age 51 (IQR 42–60) in critically ill group and 70 (IQR 44–73) in severe. Those in the

critically ill group also had lower baseline PaO2/FiO2 ratios when compared to their severe

counterparts, 142.5 (IQR 120–165) versus 237.8 (IQR 206.6–253.9). Those in the critically ill

group were also noted to have higher scores on the WHOOrdinal Scale for Clinical Improve-

ment [29] compared to those in the severe group, 7 (IQR 7–7) versus 5 (IQR 4–8) respectively.

Critically ill patients whose outcomes were known (n = 22) were then further categorised

into survivors and non-survivors (Table 2). The median age amongst those who survived to dis-

charge was 49 (IQR 44–60) compared to 55 (IQR 38–70) in non-survivors. Sequential organ

failure assessment scores on admission to ICU were the same between groups, median score 8

(IQR 6–9) in survivors and 8 (IQR 5–11) in non-survivors. WHOOrdinal Scale for Clinical

Improvement Scores were higher in non-survivors as compared to survivors, 8 (IQR 8–8) ver-

sus 7 (IQR 7–7). Median PaO2/FiO2 ratios on admission to ICU were also similar between

groups 150 (IQR 125.6–178.1) in survivors versus 146.3 (IQR 123.8–163.1) in non-survivors.

Upregulation of LM in patients with moderate disease

Using LC-MS/MS, we profiled LM in plasma from these patients and identified LM from all

four bioactive metabolomes, including n-3 DPA and DHAmetabolomes, in accordance with

Table 1. Demographics and clinical characteristics of COVID-19 patients with severe disease and critically ill
patients.

Critically ill (n = 23) Severe (n = 15)

Age (years) 51 (IQR 42–60) 70 (IQR 44–73)

Male, No. (%) 17 (74) 8 (53)

D-Dimer (ug/ml) 0.79 (IQR 0.52–1.26) 1.6 (IQR 0.6–2.4)

Ferritin (ng/ml) 1260 (IQR 788–1260) 1434 (IQR 569.5–1948)

PaO2/FiO2 Ratio(mmHg) 142.5 (IQR 120–165) 237.8 (IQR 206.6–253.9)

WHOOrdinal Scale for Clinical Improvement Score 7 (IQR 7–7) 5 (IQR 4–8)

Death, No. (%) 4 (18.2)� 4 (26.7)

Continuous variables are represented as median (interquartile range) and categorical variables are represented as

absolute numbers (percentages).
� Data available for n = 22.

https://doi.org/10.1371/journal.pone.0256226.t001

Table 2. Demographics and clinical characteristics of survivors and non-survivors within COVID-19 critically ill
patients.

Survivors (n = 18) Non-Survivors (n = 4)

Age (years) 49 (IQR 44–60) 55 (IQR 38–70)

Male No. (%) 12 (66) 4 (100)

BMI (kg/m2) 34.6 (IQR 29.7–41.6) 30.1 (IQR 23.1–39.6)

D-Dimer (ug/ml) 0.74 (IQR 0.45–1.20) 4.06 (IQR 0.67–37.52)

Ferritin (ng/ml) 1127 (IQR 730–2105) 1286 (IQR 1005–4509)

ICU Length of Stay (days) 9 (IQR 7.75–17.25) 12.5 (IQR 3–20)

SOFA Score 8 (IQR 6–9) 8 (IQR 5–11)

PaO2/FiO2 Ratio (mmHg) 150 (IQR 125.6–178.1) 146.3 (IQR 123.8–163.1)

Continuous variables are represented as median (interquartile range) and categorical variables are represented as

absolute numbers (percentages). Abbreviations: SOFA: Sequential Organ Failure Assessment.

https://doi.org/10.1371/journal.pone.0256226.t002
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published criteria [26]. PLS-DA, a multivariable linear regression model that uses variables (i.

e. LM) to separate experimental groups of observations (i.e. samples), was used to highlight dif-

ferences in LM concentrations between the two groups. Different LM clusters were observed

between plasma samples from patients with severe disease compared with critically ill patients

as depicted in the score plot shown in Fig 1A. Evaluation of the VIP scores, which identify the

LM that most strongly contribute to the observed separation, identified 18 LM with a VIP

score>1 (Fig 1B). Notably, the majority of LM was found to be differentially expressed

between the two groups and were upregulated in plasma of patients with severe disease.

Among the mediators upregulated in plasma from these patients were members of the pro-

inflammatory LT family, including LTB4, LTD4, LTE4, and LTC4, and the further metabolite

of the potent pro-thrombogenic and immunosuppressive mediator TxA2, TxB2. Additionally,

we also found increased concentrations of SPM in plasma from patients with severe disease

that included RvD1, MCTR1, RvT3, and PD1n-3 DPA (S1 Table).

LM pathway analysis was then performed to better evaluate potential differences in LM bio-

synthetic pathways between the two patient groups (Fig 2). This analysis highlighted that the

majority of LM downregulated in critically ill patients (including LT, RvD1, and RvD3) were

derived from 5-lipoxygenase (ALOX5), thereby suggesting a downregulation in the activity of

this enzyme with increasing disease severity.

Having observed a shift in LM profiles between the two patient groups, we next investigated

whether any LM could predict disease severity by using LASSO regression analysis [28].

This analysis identified a subset of 7 LM, namely TxB2, LTD4, RvE4, 20-COOH-LTB4,

20-OH-MaR1, RvD1, and RvD3, that provided an 87% accuracy in identifying disease

severity in these patients (Fig 3). Together, these findings demonstrate that LM levels become

dysregulated with decreasing disease severity, a shift linked with a downregulation in ALOX5

activity.

Higher SPM levels are linked with a better outcome in critically ill patients

Having observed differences in LM profiles between patients with severe disease and those

that were critical, we next examined whether these profiles were also reflective of outcome (i.

e. discharged vs. deceased) in critically ill patients. Among the 23 critical patients recruited

into this study, outcome was known for 22 subjects, where 18 were discharged from hospital

and 4 died (Table 2). Given the central role that SPM play in host protection and the regula-

tion of inflammation, we evaluated the overall SPM concentrations in plasma collected

within 24h from admittance to the ICU in the two patient groups. Fig 4 displays the mean

SPM concentrations as well as the ratio between the means of SPM to pro-inflammatory

eicosanoids (SPM/Pro) as a measure of the resolution status of these patients [30]. Both were

significantly decreased in deceased patients in comparison to discharged patients. Fig 4D

shows differences in LM profiles between the two patient groups as further highlighted using

PLS-DA, where a separation was observed between the patients’ clusters. Assessment of the

corresponding VIP scores indicated differential regulation of both SPM and pro-inflamma-

tory mediators between the groups, with an upregulation of pro-inflammatory eicosanoids

such as PGE2, and the further metabolite of LTB4, i.e. 20-OH-LTB4, in non-survivors (Fig 4D

and S2 Table).

In order to evaluate whether specific LM biosynthetic pathways are differently regulated in

non-survivors when compared with survivors, we performed a pathway analysis focusing on

those mediators found to be differentially modulated between the two groups (VIP scores>1).

Amongst the obtained results, a striking observation was a marked increase in the production

of AA-derived mediators from both the ALOX5- and COX pathways in non-survivors when
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compared with survivors (15R-LXA4, 6-trans-LTB4 and PGE2. Fig 5). These findings suggest

that alterations in LM biosynthesis, leading to an overall loss in SPM formation, contributes to

a worse outcome in patients with severe disease.

Fig 1. Upregulation of plasma LM concentrations in patients with severe disease. Plasma was collected from
COVID-19 patients with severe disease (n = 15) and critically ill patients (n = 23) with 24h of admittance. LM
identified and quantified using lipid mediator profiling and concentrations were evaluated using PLS-DA, generating
(A) scores plot displaying separation between the two groups and (B) VIP scores of 18 LM with the greatest
contribution to group separation.

https://doi.org/10.1371/journal.pone.0256226.g001
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Discussion

In this study, using a systematic approach, we investigated the peripheral blood LM concentra-

tions in patients diagnosed with SARS-CoV-2 infection. In critically ill patients, we observed a

down-regulation of LM biosynthetic pathways, characterised by a decrease in both pro-inflam-

matory eicosanoids and SPM. In addition, comparison of LM concentrations between criti-

cally ill patients that were discharged vs. those that did not survive demonstrated that higher

plasma SPM concentrations were linked with survival. Altogether, these findings suggest that

disruptions in LM biosynthesis, and in particular SPM, are linked with disease severity and

outcome in patients with SARS-Cov2 infections.

Fig 2. LM pathway analysis identifies an upregulation in ALOX5 activity in patients with severe disease. Pathway analysis highlighting those
biosynthetic pathways liked with mediators found to contribute to the separation between patients with severe symptoms and those that were critically ill in
the PLS-DA analysis (VIP Scores>1) for mediators from the (A) DHA, (B) n-3 DPA, (C) EPA, and (D) AA bioactive metabolomes. Results expressed as
fold-change differences vs concentrations in plasma from patients with severe disease. Results are representative of n = 23 critically ill patients and n = 15
patients with severe disease.

https://doi.org/10.1371/journal.pone.0256226.g002
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SARS-Cov-2 infection leads to a wide range of illness severity, ranging from asymptomatic

to ARDS requiring mechanical ventilation. For these reasons, significant effort has gone into

understanding the cellular and molecular mechanisms that lead within such a spectrum. Nota-

bly, underlying health conditions and in particular chronic inflammatory diseases are associ-

ated with a worse prognosis [31]. While the mechanisms driving disease severity remain

unclear, the clinical association of inflammatory mediators such as IL-6 and lactate

Fig 3. Plasma LM concentrations are diagnostic of disease severity. LASSO regression model (A) identified 7 LM (RvD3,
RvD1, 22-OH-MaR1, TxB2, LTD4, RVE4, and 20-COOH-LTB4) as the minimum number of variables based on λxsmin to
create the most stable model (B) with a percentage of accuracy of 87%. The model was validated by 10-fold cross validation.
LM are represented with lines of different colours based on their belonging metabolomes; blue DHA, red n-3 DPA, dark blue
EPA, and green AA.

https://doi.org/10.1371/journal.pone.0256226.g003
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dehydrogenase (LDH) with severe cases suggests that excessive inflammation is reflective of a

poor clinical outcome [32–34].

In the present study, we found that overall plasma LM concentrations were drastically

reduced in critically ill patients when compared with those that had severe disease. Combining

Fig 4. Increased plasma SPM concentrations are linked with survival in critically ill patients. Plasma was collected
from critically ill patients within 24h of admittance to the ICU and plasma lipid mediators were identified and
quantified using lipid mediator profiling. (A) Cumulative plasma SPM concentrations of (B) Ratio of SPM to pro-
inflammatory eicosanoids (Pro–LT, PG, TXB2). Results are mean ± SD. N = 18 for survivors and 4 for non-survivors.
Statistical differences were evaluated using Two-tailed Mann-Whitney test for non-normal data distribution and
significance was considered as P-value �

< 0.05. (C,D) LM profiles were evaluated using PLS-DA generated (C) score
plot displaying separation between the two groups and (D) VIP scores of 18 LM with the greatest contribution to
group separation. Results are representative of n = 18 for survivors and 4 for non-survivors.

https://doi.org/10.1371/journal.pone.0256226.g004

Fig 5. LM pathway analysis highlights upregulation of AA-derived LM in non-survivors patients. Pathway analysis highlighting those biosynthetic pathways
liked with mediators found to contribute to the separation between survivors and non-survivors groups in the PLS-DA analysis (VIP Scores>1) for mediators
from the (A) DHA, (B) n-3 DPA, (C) EPA, and (D) AA bioactive metabolomes.

https://doi.org/10.1371/journal.pone.0256226.g005
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these observations with the enhanced systemic inflammation of the non-surviving patients, it

is suggested that dysregulated LM biosynthesis is implicated in disease progression. This rela-

tion is further supported by the markedly reduced SPM concentrations in non-surviving

patients when compared with those eventually discharged. Similarly, in patients with menin-

geal tuberculosis LM concentrations in cerebrospinal fluids correlated with survival and lower

LM levels were observed in non-surviving patients when compared with surviving ones [35].

Lipid mediators are involved in both the initiation and perpetuation of phlogistic events as

well as in the termination of acute inflammation. Among the eicosanoids the PGs, LTs and

CysLTs are important in activating the immune response following tissue injury; PGs and

CysLTs promote vascular leak, facilitating cellular egress to the insult site, while LTB4 acts as a

potent chemoattractant. Excessive production of these molecules is associated with the propa-

gation of both local and systemic inflammation through dysregulated vascular responses and

leukocyte activation and recruitment. In addition, while CysLTs’ display ionotropic actions

and promote smooth muscle contraction in the lungs, PGs display immunosuppressive actions

by hindering effector T-cell responses, a relevant mechanism in other SARS-CoV infections

[23]. On the other hand, the SPM, display potent immune-regulatory actions during viral

infections, whereby RvE1 regulates pathogenic T-cell and neutrophil influx during herpes sim-

plex inflections and limits corneal neovascularization [22]. In influenza infections, the precur-

sor to the DHA-derived resolvins, 17-HDHA, upregulates the production of neutralizing

antibodies to the virus [36], whereas PDs family inhibits influenza virus replication via RNA

export machinery [21]. SPM also regulate eicosanoid formation, a mechanism that is at least in

part reliant on the ability of these molecules to switch the activity of enzymes involved in the

formation of these molecules. For instance, LXA4 limits LTB4 formation in macrophages by

preventing the phosphorylation of ALOX5, hence its translocation to the nuclear envelope.

This mechanism is also implicated in the upregulation of SPM because the retention of

ALOX5 in the cytosol leads to its coupling with ALOX15, in turn upregulating resolvins for-

mation. Furthermore, SPM reduce the production of pro-inflammatory cytokines, including

those involved in SARS-Cov-2 such as IL-6 and IL-1β [11, 37].

Herein we found a marked downregulation of both SPM and pro-inflammatory eicosa-

noids in critically ill patients compared with those with severe disease. Among SPM, we

highlighted a decrease in RvD1 and RvD3 which, together with their epimeric forms carrying

analogous biological functions, display potent lung protective actions in experimental models

of lung inflammation and bacterial infections via the regulation of innate host immune

responses, counter-regulation of inflammatory cytokine production, and regulation of epithe-

lial cell biology [38–40]. Moreover, RvD1 limits tissue oxidative stress and NF-kB activation

[13]. We also found a reduction in PD1n-3 DPA, a member of the n-3 DPA-derived PDs, which

also displays potent immune-regulatory actions on monocytes and macrophages, both of

which have been implicated in the propagation of systemic inflammation in COVID-19

patients [41]. Interestingly, in critically ill patients we found both a dysregulation of SPM for-

mation. Assessment of the biosynthetic pathways found to be altered highlighted a disruption

in the activity of ALOX5 in these patients. This observation is also in line with findings made

in patients with meningeal tuberculosis [35]. Notably, Schwarz and colleagues reported an

upregulation of ALOX5 expression in COVID-19 patients when compared with severe disease

[42]. This suggests that upregulation in the activity/expression of this enzyme is a protective

response that when dysregulated may lead to a poor outcome.

One of the challenges in treating patients with SARS-CoV-2 infections is the lack of robust

biomarkers that will predict severity of disease and disease course. Early diagnosis of severe

infection could aid earlier initiation of targeted life-saving treatments such as immune-modu-

lation. In this study, we investigated the utility of LM to differentiate patients with severe life-
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threatening disease from patients with milder disease in hospital, finding that indeed a subset

of these mediators were strong predictors of disease severity (accuracy 87%). Given that LM

are of great importance in orchestrating host immune response and that their biosynthesis is

rapidly regulated, as opposed to other components such as cytokines and chemokines, measur-

ing their plasma concentrations may be useful in evaluating disease severity. In this context,

the RECOVERY trial indicates that dexamethasone may be a useful means to regulate the

uncontrolled inflammation observed in patients with severe disease [7]. Of note, we found that

plasma levels of several PGs were upregulated in non-survivors when compared with survivors

who were later discharged. As dexamethasone inhibits PGs [43], these results may explain a

potential mechanism of action behind the benefit experienced by patients treated with such

medication.

Although providing interesting insights regarding the inflammatory changes following

COVID-19 infection, the present study presents some limitations. The main limit consists in it

being an observational study where we were unable to evaluate directly the expression of LM

biosynthetic enzymes and the activity of individual mediators found to be differentially regu-

lated. Another limitation may be derived from the range of drugs that these patients are receiv-

ing that may influence on both enzyme activity and expression.

Conclusions

In conclusion, this work underlines a potential role for LM in the early determination of both

disease course in patients with COVID-19 and disease outcome in critically ill patients. The

observations made herein suggest that the concomitant upregulation of SPM and pro-inflam-

matory eicosanoids in patients with severe disease reflects a more effective engagement of the

host immune response than in critically ill patients. Furthermore, plasma SPM concentrations

were lower in critical patients that did not survive when compared with those that were dis-

charged, indicating that impaired engagement of pro-resolving pathways may contribute to

the negative outcomes in these patients. These findings suggest that activation of LM biosyn-

thesis is a host protective response and defects in the expression/activity of LM biosynthetic

enzymes and receptors may contribute to disease severity.
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