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Abstract
Hepatocellular carcinoma (HCC) is a major health prob-
lem, being the sixth most common cancer world-wide. 
Dysregulation of the balance between proliferation and 
cell death represents a pro-tumorigenic principle in hu-
man hepatocarcinogenesis. This review updates the 
recent relevant contributions reporting molecular altera-
tions for HCC that induce an imbalance in the regula-
tion of apoptosis. Alterations in the expression and/or 
activation of p53 are frequent in HCC cells, which confer 
on them resistance to chemotherapeutic drugs. Many 
HCCs are also insensitive to apoptosis induced either 
by death receptor ligands, such as FasL or TRAIL, or by 
transforming growth factor-beta (TGF-β). Although the 
expression of some pro-apoptotic genes is decreased, 
the balance between death and survival is dysregulated 
in HCC mainly due to overactivation of anti-apoptotic 
pathways. Indeed, some molecules involved in counter-
acting apoptosis, such as Bcl-XL, Mcl-1, c-IAP1, XIAP or 
survivin are over-expressed in HCC cells. Furthermore, 
some growth factors that mediate cell survival are up-
regulated in HCC, as well as the molecules involved in 
the machinery responsible for cleavage of their pro-
forms to an active peptide. The expression and/or acti-
vation of the JAK/STAT, PI3K/AKT and RAS/ERKs path-
ways are enhanced in many HCC cells, conferring on 
them resistance to apoptotic stimuli. Finally, recent evi-
dence indicates that inflammatory processes, as well as 
the epithelial-mesenchymal transitions that occur in HCC 
cells to facilitate their dissemination, are related to cell 
survival. Therefore, therapeutic strategies to selectively 
inhibit anti-apoptotic signals in liver tumor cells have the 
potential to provide powerful tools to treat HCC.
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INTRODUCTION
Apoptosis represents a physiological way to eliminate 
excess cells during both liver development and regenera-
tion[1]. Indeed, insufficient apoptosis has been associated 
with development and progression of  tumors of  the liv-
er and the biliary tree[1,2]. Hepatocellular carcinoma (HCC) 
is a major health problem, being the sixth most com-
mon cancer world-wide[3]. It is a heterogeneous tumor 
commonly associated with chronic liver diseases which 
frequently culminate in cirrhosis, such as alcoholic cir-
rhosis and chronic hepatitis B and C infections. During 
recent years, major advancements in the knowledge of  
this complex disease have been reported[3]. This review 
is an effort to update the recent relevant contributions 
reporting molecular alterations for HCC that induce an 
imbalance in the regulation of  apoptosis.

THE P53 PATHWAY
Among the most common alterations observed in HCC 
are mutations in the p53 tumor suppressor gene (TP53)[4]. 
Different chemotherapeutic agents require p53 to induce 
apoptosis. Indeed, tumors with a disruption in the p53 
pathway are generally resistant to chemotherapy. The 
presence of  specific mutational hotspots in TP53 in dif-
ferent types of  human cancer implicates environmental 
carcinogens and endogenous processes. In this sense, so-
matic mutations at the third base in codon 249 of  TP53 
in HCC have been related to exposure to aflatoxin B1 
(AFB1), in association with HBV infection[4]. Chronic 
infection with HBV and HCV viruses and exposure to 
oxidative stress, including hemochromatosis or inflam-
mation, induce damage in the DNA and mutations in 
cancer-related genes, including TP53. Thus, it would 
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seem plausible that p53 mutation might operate in either 
HCC initiation or progression, depending on the con-
text. However, adenoviral delivery of  p53 recombinant 
DNA into mice models bearing hepatocellular carcino-
mas did not apparently suppress tumor growth[5]. De-
Pinho et al in a recent work[6] have helped to clarify this 
point. They have demonstrated that the effect of  p53 
loss in hepatocellular carcinoma that is associated with 
chronic liver disease is dependent on cellular context, 
in particular intact or dysfunctional telomeres, and they 
have hypothesized that a decreased p53 function might 
contribute to hepatocyte survival in the presence of  
telomere-induced chromosomal instability. 

THE TGF-β PATHWAY
The transforming growth factor-beta (TGF-β) family 
of  cytokines plays a physiological role during embryonic 
development and its misregulation can result in tumori-
genesis[7]. TGF-β-1 is an important regulatory suppressor 
factor in hepatocytes, inhibiting proliferation[8] and induc-
ing cell death[9]. Paradoxically, TGF-β may also modulate 
other pro-tumorigenic processes, such as cell invasion, 
immune regulation or microenvironment modification[7]. 
Blocking TGF-β up-regulates E-cadherin and reduces 
migration and invasion of  hepatocellular carcinoma 
cells[10]. Furthermore, liver tumors expressing late TGF-β-
responsive genes (anti-apoptotic and metastatic) display a 
higher invasive phenotype and increased tumor recurrence 
when compared to those that show an early TGF-β signa-
ture (suppressor genes)[11]. Indeed, the escape from the an-
tiproliferative and pro-apoptotic actions of  TGF-β might 
be a prerequisite for hepatocarcinoma progression[12].

Disruption of  the TGF-β pathway occurs in HCC[13] 
and might cause dysregulation of  apoptosis. In favour 
of  this hypothesis, recent studies have demonstrated 
that overexpression of  SMAD3 reduces susceptibility to 
develop hepatocarcinoma, by sensitizing hepatocytes to 
apoptosis through down-regulation of  Bcl-2[12]. However, 
perturbations at receptor or SMAD levels do not ap-
pear to be as frequent as they are in colon or pancreatic 
cancer[13] and expression of  TGF-β is up-regulated in a 
great percentage of  HCC patients[11,13]. Thus, other pos-
sible ways to disrupt TGF-β signalling might exist and 
they remain to be explored. Interestingly, Mishra et al have 
recently demonstrated that HCC might arise from loss of  
TGF-β signalling adaptor protein embryonic liver foldrin 
(ELF), a crucial Smad3/4 adaptor[14,15]. HCC cells might 
also overexpress a specific set of  microRNAs (miRNAs) 
that would allow the escape from TGF-β-induced apop-
tosis[16,17]. Furthermore, recent results have indicated that 
TGF-β might play a dual role in controlling apoptosis 
in hepatocytes and hepatoma cells. On one hand, it in-
duces cell death, but on the other it could activate anti-
apoptotic signals, the epidermal growth factor receptor 
(EGFR) being required for this effect[18-20]. Indeed, EGF 
is an important survival signal for TGF-β-induced apop-
tosis in hepatocytes[21]. The enzyme phosphatidylinositol 
3-kinase (PI3K) mediates the effect of  EGF on TGF-β-
induced death by acting upstream from the mitochondrial 

changes, probably counteracting TGF-β-induced oxida-
tive stress[22]. The autocrine loop of  EGFR activated by 
TGF-β in hepatoma cells would require a high activity of  
TACE/ADAM17[20], the metalloprotease responsible for 
shedding of  the pro-tumor necrosis factor (proTNF-α) 
that it is also necessary for shedding of  the EGF family 
of  growth factors[23]. Although the possible role of  an 
increased expression of  TACE/ADAM17 in the develop-
ment of  human hepatocellular carcinoma (HCC) has been 
barely studied, a recent report indicates that the quantities 
of  ADAM17 mRNA vary among different pathological 
types of  HCC, but are significantly higher in poorly dif-
ferentiated HCC than in well or moderately differentiated 
HCC[24]. Overexpression of  TACE/ADAM17 might 
confer an advantage on HCC cells by impairing TGF-β-
induced apoptosis through transactivation of  the EGFR. 
Concluding, HCC cells might impair the suppressor arm 
in TGF-β-signalling, with enhancement of  the response 
to this factor in terms of  tumor progression and invasion 
(Figure 1).

THE DEATH RECEPTOR PATHWAYs
HCCs show resistance to apoptosis mediated by sev-
eral death receptors. The majority of  the HCCs show 
one or more alterations in the Fas pathway molecules, 
which inhibit Fas-mediated apoptosis[25]. The status of  
Fas and Fas ligand (FasL) expression can predict HCC 
recurrence[26]. Loss of  response to Fas in HCC cells may 
be produced either by down-regulation of  Fas expres-
sion[25,27], concomitant with decreased expression of  
downstream molecules, such as FADD or FLICE[27], or 
by up-regulation or over-activation of  molecules that 
counteract its pro-apoptotic effect, including nuclear 
factor-kappaB (NF-κB), Bcl-2 or Bcl-XL

[28-30]. The cel-
lular FLICE/caspase-8-inhibitory protein (cFLIP), an 
intracellular inhibitor of  caspase-8 activation, is consti-
tutively expressed in human HCC cell lines and displays 
higher levels in HCC tissues than in nontumor liver 
tissues[31]. It has also been described that HCC tissues 
show overexpression of  BRE, an antiapoptotic protein 
that binds to the cytoplasmic domains of  tumour necro-
sis factor (TNF) receptor-1 and Fas, attenuating death-
receptor initiated apoptosis[32]. Furthermore, it has been 
suggested that extracellular factors might counteract 
Fas-induced apoptosis in HCC cells. Indeed, hepatocyte 
growth factor (HGF), through activation of  the PI3K/
AKT pathway, suppresses Fas-mediated cell death in 
human HCC cell lines, by inhibiting Fas-death-inducing 
signalling complex (DISC) formation, especially FADD 
and caspase 8 interaction[33] (Figure 2). 

TNF-related apoptosis-inducing ligand (TRAIL) se-
lectively induces apoptosis in various transformed cell 
lines but not in almost normal tissues[34]. HCC cells con-
stitutively express TRAIL mRNA and protein, but there 
are contradictory and confusing data about the expres-
sion of  the different TRAIL receptors in HCC cells and 
tissues[35-37]. Certain evidence indicates that most HCC 
cells are insensitive towards TRAIL-mediated apoptosis, 
suggesting that the presence of  mediators can inhibit the 
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TRAIL cell-death-inducing pathway in HCC[36,37]. It has 
been reported that hepatitis B virus core protein inhibits 
TRAIL-induced apoptosis by blocking the expression 
of  the TRAIL receptor 2 (TRAIL-R2/DR5)[38]. Overac-
tivation of  NF-κB and Bcl-XL in HCC cells might also 
restrain the TRAIL-mediated apoptosis[39]. After an initial 
debate about the potential liver toxicity of  TRAIL in 
freshly isolated human hepatocytes[37], there is a recent in-
terest in the development of  new therapeutic approaches 
that can sensitize HCC cells to TRAIL-induced apoptosis. 
Indeed, it has been proposed that TRAIL, in combination 
with chemotherapeutic agents, may have potential in the 
treatment of  HCC[40]. Of  clinical relevance, proteasome 
inhibitors and histone deacetylase (HDAC) inhibitors 
might sensitize HCC cells but not primary human hepato-
cytes for TRAIL-induced apoptosis[41,42].

ALTERATIONs IN THE EXPREssION OR 
FUNCTION OF APOPTOsIs REGULATORY 
PROTEINs
It is worthy of  note that many of  the genetic alterations 
observed in HCC lead to an imbalance in the pro- and 
anti-apoptotic members of  the Bcl-2 family[43]. Bcl-XL is 
overexpressed in a great percentage of  HCCs[44], and so 
is Mcl-1[45]. In contrast, pro-apoptotic members of  the 
family, such as Bax or Bcl-XS are down-regulated in HCC 
with dysfunction in the p53 pathway[46]. Furthermore, 
recent results have indicated that some pro-apoptotic 
members of  the BH-3-only family, such as Bid, show 
decreased expression in HCC related to hepatitis B or C 
infection[47]. 

Recent investigations have revealed that nearly 90% 
of  clinical tumors from advanced HCC patients express 
high levels of  X-linked inhibitor-of-apoptosis protein 
(XIAP), a well known inhibitor of  caspases. Studies in 
established HCC cell lines with different metastatic capa-
bilities indicated a correlation of  metastasis with resist-
ance to apoptosis and increased expression of  XIAP[48]. 
Interestingly, it had previously been suggested that XIAP 
might also function as a cofactor in TGF-β signalling[49]. 
Thus, overexpression of  XIAP might confer resistance 
to the apoptotic effects of  TGF-β, allowing HCC cells 
to respond to this cytokine in terms of  migration and 
invasion. Genome-wide analyses of  tumors in a mouse 
model of  liver cancer and in HCC tissue have recently 
revealed a recurrent amplification in a region of  human 
chromosome 11q22, delineating cIAP1, the known in-
hibitor of  apoptosis, as one of  the candidate oncogenes 
in the amplicon[50]. Survivin, another member of  the 
family of  inhibitor of  apoptosis proteins, is also overex-
pressed in HCC cell lines and tissues[51,52] and it has been 
suggested that it might play a pivotal role in metasta-
sis[53]. Survivin might play an important role in progres-
sion of  HCC not only by inhibiting apoptosis[54], but also 
by promoting cell proliferation[51] and may be positively 
correlated with high risk of  disease recurrence and poor 
prognosis[55]. Concluding, HCC cells show an imbalance 

in the expression of  pro- and anti-apoptotic proteins, 
which favours cell survival (Figure 2).

OvERACTIvATION OF sURvIvAL sIG-
NALs IN HCC CELLs
Some autocrine signal activators, such as EGF receptor 
(EGFR) ligands, might protect liver tumor cells from 
apoptosis induced by stress, physiological factors or 
pro-apoptotic drugs[56]. Dysregulation of  growth fac-
tor signalling, including EGF and IGF-1 pathways, has 
been well established in human HCCs[57,58]. Viral hepa-
titis infections might contribute to the enhancement of  
the expression of  EGFR ligands[59]. The tyrosine kinase 
p60c-src is also overactivated in hepatoma cells[56,60] that 
protect themselves from death stimuli[61], and it accounts 
in a large part for the desensitization of  liver tumor cells 
to TRAIL and CD95. Interestingly, blockade of  EGFR 
or c-Src in primary hepatocytes only marginally increases 
cell death[56,61], which indicates that both tyrosine kinases 
are critical effectors that specifically protect liver cancer 
cells from death stimuli, providing a weak point in can-
cer cells for a potential therapeutic approach. 

Signal transducer and activator of  transcription 
(STAT) proteins become activated by tyrosine kinases 
in response to cytokines and growth factors. It has been 
reported that suppressor of  cytokine signalling (SOCS)-1 
and (SOCS)-3, negative regulators of  the JAK2-STAT 
signalling pathway, are silenced by methylation in hu-
man hepatoma cell lines and HCC tissues, which leads 
to constitutive activation of  STAT3 in these cells[62,63]. 
Deletion of  the (SOCS)-3 gene in hepatocytes promotes 
the activation of  STAT3, resistance to apoptosis and ac-
celerated proliferation, resulting in enhanced hepatitis-
induced hepatocarcinogenesis[64]. In addition, hepatitis 
C virus (HCV) core protein exerts an inhibitory effect 
on (SOCS)-1 gene expression[65]. Hepatitis viruses also 
activate STAT-3 via oxidative stress[66-68], which might 
contribute to cellular transformation[69]. Abrogation of  
constitutive STAT3 activity sensitizes human hepatoma 
cells to apoptosis induced by TRAIL or drugs[70,71].

The PI3K/Akt pathway is also altered in HCC. 
The expression of  the PTEN gene product is reduced 
or absent in almost half  of  HCCs and hepatocyte-
specific abrogation of  PTEN expression in mice results 
in the development of  HCCs[72]. Recent results have 
indicated that the expression of  a negative regulator of  
PI3K (phosphatidylinositol-3-kinase interacting pro-
tein I: PIK3IP1) is reduced in most cases of  human 
HCC, pointing to a tumor suppressor-like function for 
this protein[73]. Interestingly, hepatic overexpression of  
PIK3IP1 negatively regulates PI3K activity in the tissue 
and suppresses the development of  HCC[73].

Overexpression of  Ras proteins is frequently observed 
in HCC[74], at least in part due to epigenetic silencing of  
inhibitors of  the Ras pathway[75]. Furthermore, it has been 
reported that the expression of  different ERK inhibitors, 
such as the Spred family of  Ras/ERK inhibitors or the 
dual-specificity phosphatase-1 (DUSP1), is dysregulated in 
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HCC[76,77]. Activated RAS oncogene collaborates with the 
hepatitis B virus HBx protein to transform cells by sup-
pressing HBx-mediated apoptosis[78]. Thus, dysregulation 
of  the Ras pathway might also be playing a role in balanc-
ing pre-neoplastic hepatocytes towards survival in HBV- 
or HCV-mediated HCC.

In summary, different molecular alterations may 
contribute to an enhancement of  anti-apoptotic signals 
in HCC cells that allow them to survive pro-apoptotic 
stimuli (Figure 3).

LIvER INFLAmmATION AND REsIsTANCE 
TO APOPTOsIs
A link between inflammation and liver cancer was sus-
pected some years ago, but the precise mechanisms are 
just beginning to be understood[79]. Recent experimental 
data support the hypothesis that inflammation promotes 
carcinogenesis and that NF-κB signalling is at the heart 
of  such inflammation[79]. Different studies have impli-
cated members of  the NF-κB/Rel family in both HBV- 
and HCV-induced neoplastic development of  the liver[80]. 

Several mechanisms have been proposed for activation 
of  NF-κB by the hepatitis virus. Overall, inflammatory 
hepatitis might activate NF-κB by the concerted action 
of  cytokines, such as TNF-α, chemokines or interleukins, 
and viral proteins, which likely will promote cell survival 
of  pre-cancerous hepatocytes[80]. Furthermore, a correla-
tion between EGFR ligands and NF-κB activity has been 
provided by studies in transforming growth factor-alpha 
(TGF-α)/c-Myc mice. Indeed, an important role for NF-
κB in inhibiting c-Myc-induced apoptosis was found 
essential for hepatocarcinogenesis[81]. Two pro-survival 
NF-κB targets are an antiapoptotic member of  the Bcl-2 
family, Bcl-XL, and a member of  the caspase inhibitors, 
XIAP, which are frequently overexpressed in human 
HCCs, as commented above[44,48]. Interestingly, the NF-
κB/Bcl-XL/XIAP axis potently counteracts the TGF-β-
induced apoptosis[82] and exerts a general cytoprotective 
role on preneoplastic hepatocytes[83]. Recent results also 
link NF-κB to the increase in the autocrine expression of  
EGF receptor ligands, such as TGF-α, in hepatocytes and 
hepatoma cells[84,85]. In summary, overactivation of  the 
NF-κB pathway might generate resistance to apoptosis, 
through different mechanisms, in HCC cells (Figure 2).

Many epidemiological studies demonstrate that 
treatment with non-steroidal anti-inflammatory drugs 
(NSAIDs) reduces the incidence and mortality of  certain 
malignancies, especially gastrointestinal cancer[86]. The 
cyclooxygenase (COX) enzymes are well known targets 
of  NSAIDs. Overexpression of  COX-2 in HCC cells 
increases proliferation and survival through Akt activa-
tion[87]. Accordingly, recent evidence indicates that selec-
tive inhibition of  COX-2 in HCC cells leads to a marked 
induction of  apoptosis and inhibition of  proliferation 
and, thus, may offer therapeutic and preventive poten-
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Figure 3  Overactivation of survival signals in HCC cells. In red, proteins 
either down-regulated or inactivated; in green, proteins either up-regulated or 
overactivated. See text for details.
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Figure 1  Dysregulation of the TGF-β pathways in HCC cells favours its 
pro-tumorigenic activities. In red, molecules whose expression is down-
regulated; in green, molecules either up-regulated or overactivated. See text for 
details.
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tial in human hepatocarcinogenesis[88]. COX-2 inhibi-
tors might induce apoptosis signalling in HCC cells via 
death receptors and mitochondria[89]. Recent data have 
demonstrated that simultaneous inhibition of  PI3K/
Akt/mTOR and COX-2 activity in in vitro models causes 
massive apoptosis of  neoplastic hepatocytes[90].

EPITHELIAL-mEsENCHYmAL TRANsI-
TIONs AND APOPTOsIs REsIsTANCE
During later stages in the development of  liver tumors, a 
loss in cell-cell contacts and the acquisition of  fibroblast-
ic-like phenotype is observed. This phenomenon, known 
as epithelial-to-mesenchymal transition (EMT), might 
contribute to increasing the migratory and metastatic 
capabilities of  the cells[91]. Cytokines, such as TGF-β and 
extracellular matrix molecules are thought to fundamen-
tally contribute to the microenvironmental interaction be-
tween stromal and malignant cells, and provide the basis 
for a broad repertoire of  epithelial transdifferentiation. 
Interestingly, EMT of  liver cells also results in enhanced 
resistance to apoptosis[92,93], probably due to up-regulation 
of  SNAI1, the gene that codifies for Snail, a repressor of  
E-cadherin expression that also has effects on cell home-
ostasis, inhibiting the cell cycle and preventing cell death[94] 
(Figure 1). 

A high percentage of  human HCCs show high levels 
of  β-catenin[95,96], either through stabilizing mutations of  
the β-catenin or overexpression of  FZD, therefore fa-
vouring the intracellular accumulation of  the protein[95]. 
Furthermore, certain evidence indicates that TGF-β might 
induce nuclear β-catenin accumulation, through induction 
of  PDGF signalling[97] (Figure 1). β-catenin expression 
leads to elevated EGFR levels in hepatocytes and inmu-
nohistological analysis shows high correlation between the 
expression of  nuclear/cytoplasmic β-catenin and EGFR 
in most hepatoblastomas[57]. β-catenin also participates 
in homotypic cell-cell interactions through its association 
with E-cadherin. Thus, β-catenin accumulation in HCC 
cells might contribute to impairing E-cadherin expres-
sion, mediating the EMT process, migration and survival. 
Indeed, there is evidence suggesting that up-regulation of  
CTNNB1, the gene encoding for β-catenin, also contrib-
utes to the enhancement of  hepatocellular carcinoma cell 
survival[98].

In summary, a significant number of  relevant molecu-
lar mechanisms altered in HCC initiation and progres-
sion are compromising the balance between survival and 
apoptotic signals in the pre-neoplastic hepatocytes. Some 
physiological pro-apoptotic molecules are down-regulated 
or inactivated in HCC, but the balance between death and 
survival is mainly disrupted due to overactivation of  anti-
apoptotic signals. Therefore, liver cancer cells might show 
stronger requirements of  these intracellular pathways to 
survive. The absence of  standard systemic therapy for 
advanced cases of  HCC has changed with the recent posi-
tive randomized trial testing the multikinase sorafenib, 
which represents a breakthrough in the management of  
this neoplasm[3,58]. Interestingly, sorafenib induces tumor 

cell apoptosis in HCC cells, through, at the least, inhibiting 
the RAF/MEK/ERK pathway[99]. Similar situations might 
be found with other multikinase inhibitor drugs that are 
on the way towards approval for HCC therapy[58,100]. Of  
relevance here is certain evidence indicating that erlotinib-
induced growth inhibition in HCC cells correlates with 
overexpression of  pro-apoptotic factors like caspase and 
gadds, as well as down-regulation of  anti-apoptotic fac-
tors, such as Bcl-XL

[101]. Another receptor tyrosine kinase 
inhibitor, sunitinib, which has also shown intriguing out-
comes in advanced HCC[100], is a strong apoptosis inducer 
in different tumor cells, an effect that is enhanced in the 
presence of  inhibitors of  the PI3-K/Akt/mTOR path-
way[102]. Bevacizumab, an anti-vascular endothelial growth 
factor (VEGF) monoclonal antibody, has been proven 
to be efficient in inhibiting the growth of  nonmetastatic 
HCC[103]. Interestingly, recent evidence indicates that 
VEGF signalling inhibitors might be effective in inhibit-
ing tumorigenesis more through their pro-apoptotic than 
their anti-angiogenic properties[104]. Therefore, therapeutic 
strategies to selectively inhibit anti-apoptotic signals in 
HCC cells might have the potential to provide powerful 
tools in the future to treat liver cancer.
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