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Abstract

Autism Spectrum Disorder (ASD) is a complex neuropsychiatric syndrome whose etiology includes genetic and

environmental components. Since epigenetic marks are sensitive to environmental insult, they may be involved in the

development of ASD. Initial brain studies have suggested a dysregulation of epigenetic marks in ASD. However, due to

cellular heterogeneity in the brain, these studies have not determined if there is a true change in the neuronal epigenetic

signature. Here, we report a genome-wide methylation study on fluorescence-activated cell sorting-sorted neuronal nuclei

from the frontal cortex of 16 male ASD and 15 male control subjects. Using the 450 K BeadArray, we identified 58

differentially methylated regions (DMRs) that included loci associated to GABAergic system genes, particularly ABAT and

GABBR1, and brain-specific MicroRNAs. Selected DMRs were validated by targeted Next Generation Bisulfite Sequencing.

Weighted gene correlation network analysis detected 3 co-methylation modules which are significantly correlated to ASD

that were enriched for genomic regions underlying neuronal, GABAergic, and immune system genes. Finally, we determined

an overlap of the 58 ASD-related DMRs with neurodevelopment associated DMRs. This investigation identifies alterations in

the DNA methylation pattern in ASD cortical neurons, providing further evidence that epigenetic alterations in disorder-

relevant tissues may be involved in the biology of ASD.
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Introduction

Autism spectrum disorder (ASD) is a group of neurodevelop-

mental conditions characterized by dysfunction in social com-

munication and stereotypic behavior (American Psychiatric

Association 2013). Genetic and environmental factors have

been implicated in the development of ASD, but the molecular

mechanisms underlying their interaction are still not fully

understood (Gaugler et al. 2014; Tordjman et al. 2014).

Epigenetic modifications have been ascribed as possible media-

tor between environmental cues and the genome to produce

adaptive or maladaptive behaviors (Petronis 2010). In addition,

genetic evidence suggests epigenetics as potential cofactor in

the aetiopathogenesis of ASD. As a matter of fact, whole-

exome sequencing (WES) studies on ASD cases identified de

novo loss-of-function mutations to be enriched for genes

encoding proteins belonging to histone-modifying enzymes

and chromatin remodeler families (De Rubeis et al. 2014;

Iossifov et al. 2014). Thus far, epigenome-wide association stud-

ies (EWAS) in ASD have been performed exclusively on a

restricted group of modifications: that is, DNA methylation

(Ladd-Acosta et al. 2013; Nardone et al. 2014), trimethylated his-

tone H3 at lysine 4 (H3K4me3) (Shulha et al. 2012), acetylated
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histone H3 at lysine 27 (H3K27ac) (Sun et al. 2016), long non-

coding (lnRNA) (Ziats and Rennert 2013; Parikshak et al. 2016),

and micro-RNA (miRNA) (Mor et al. 2015; Wu et al. 2016). In

addition, due to the scarce availability of ASD brain specimens,

many of these studies were carried out on peripheral tissues,

even though it is likely that the main molecular drivers of ASD

development are found in the brain. Therefore, even if these

studies could be useful to identify new epigenetic biomarkers,

they are far from being able to elucidate the epigenetic mecha-

nisms underlying disease’s molecular basis (Petronis 2010).

Only rigorous tissue and cell-specific-based epigenetic studies

can aim at reaching this goal. Recently, we and others have

profiled the DNA methylation signature of different Brodmann

Areas (BA) from ASD post-mortem brain specimens (Ladd-

Acosta et al. 2013; Nardone et al. 2014). Despite the unavoidable

heterogeneity among the studies, common findings were

detected: particularly, a very large number of CpGs upstream

the transcription start site (Tss) of Tetraspanin 32 (TSPAN32) was

found hypomethylated in autistic versus control cohorts by

2 independent studies (Ladd-Acosta et al. 2013; Nardone et al.

2014). Overall, these investigations constituted a preliminary

evidence of epigenetic dysregulation in ASD. In contrast to

well-established Genome Wide Association Study (GWAS), the

implementation of EWAS is still in its infancy, and many

potential confounding factors can hinder its progress (Rakyan

et al. 2011). While most of the sources of variability can be con-

trolled by improving experimental design and bioinformatics

approaches, the cellular mosaicism still constitutes a major

drawback in epigenetic studies, especially in highly heterogenic

tissues, such as the brain. Noticeably, a true signal originating

from a small cell population can often go undetected, whereas

bias in the results can stem from tissue-specific variation in the

ratio of cell types, due to physiological changes or as conse-

quence of medical condition (Rakyan et al. 2011). A method

that promises to significantly improve epigenetic interrogation

of highly heterogenic tissues, partly overcoming issues related

to mosaicism, is the upstream implementation of fluorescence-

activated cell sorting (FACS). To date, FACS have been success-

fully applied to answer many scientific questions that require

to focus on 1 cell type at time, that is, in immunology, cancer

or stem cell studies, however its use in post-mortem brain

studies is relatively new.

The investigation of DNA methylation signature in FACS-

sorted neuronal nuclei from ASD brain specimens, can provide

vital information regarding distortions in methylation pattern-

ing during development, that otherwise would probably be lost

in the bulk of the signal. Recently, Lister et al. and Spiers et al.,

in mouse prefrontal cortex and in human fetal brain studies,

respectively, have demonstrated that extensive methylome

reconfiguration occurs during development from fetal to young

adult, particularly during synaptogenesis, and it is considered

a critical process in defining the neuron molecular identity

(Lister et al. 2013; Spiers et al. 2015). Previous ASD post-

mortem brain studies have demonstrated a dysregulation in

the regional patterns of gene expression that differentiate

between cortical brain regions (Voineagu et al. 2011; Ziats and

Rennert 2013; Parikshak et al. 2016). Since DNA methylation

plays a substantial role in neuron differentiation (Xie et al.

2013; Mo et al. 2015), it is plausible that disturbances in its

patterning may be involved in the lack of regional transcrip-

tome identity. In addition to the above, mounting experimen-

tal and epidemiologic evidence support the hypothesis that

ASD could possibly emerge during the same time window

when methylation patterning in the brain is highly dynamic

and liable to insults (Ciernia and LaSalle 2016), making this

investigation worthwhile.

Materials and Methods

Samples Information

Frozen brain samples from 15 ASD cases and 16 controls were

acquired through the Autism Tissue Program (http://www.

autismbrainnet.org), with all the brain specimens deriving from

Harvard Brain Bank except for 2 ASD brain samples received

from the UK Brain Bank for Autism. For nearly all the indivi-

duals, brain tissue was obtained from the anterior prefrontal

cortex (PFC), BA10, with the exception of 1 and 2 specimens

obtained from the frontal cortex BA9 and BA8, respectively. All

samples were from males due to both low number of available

female samples and high epigenetic variability between males

and females. Individuals with known Copy Number Variations

or delirious mutations were excluded from this study. When

choosing samples, we matched for age, PMI, and brain mass. In

addition, we needed to choose samples which were never

thawed, in order to ensure preserved nuclear integrity, which is

necessary for the FACS analysis. In short, after extraction of

5ml of cerebral spinal fluid, full brains were removed from the

skull, and cut in half by cutting in the midsagittal plane

through the corpus callosum. Half of the brain was then imme-

diately frozen on dry ice, followed by long-term storage in a

−70 °C freezer (the other half was fixed with formalin). Our

studies were performed only on frozen samples. Full protocol is

available from the Autism BrainNet. Ethical approval for this

research was granted by Bar Ilan University Institutional

Review Board, and written informed consent for every individ-

ual tested was given to the Autism Tissue Program by the

patient himself or his next-of-kin. A summary of clinical fea-

tures of each subject is available in Supplementary Table 1.

FACS Analysis

Neuronal nuclei were isolated from 500mg of liquid nitrogen

pulverized brain tissue as previously described by Matevossian

et al. (Matevossian and Akbarian 2008) with few minor changes

to the original protocol. In summary, nuclei concentration,

antibody titration and staining time were carefully calibrated to

determine the best experimental conditions: 2.8ml of nuclei

resuspension solution (0.02% bovine serum albumin (BSA), 0.4%

goat serum in 1× phosphate-buffered saline (PBS)) were stained

with 5 ul of Anti-NeuN-PE antibody clone A60 (Millipore, MD,

USA) while rotating in the dark for 1 h at 4 °C. Unstained nuclei

were used to set the gates and as control to detect “auto-fluo-

rescence” or “innate” background staining, while Mouse IgG1 K

Isotype Control PE (eBioscience, CA, USA) was used to deter-

mine the background signal caused by nonspecific antibody

binding. FACS was performed by MoFlo® Astrios™ EQ cell sorter

(Beckman Coulter Inc., CA, USA). Before the sort, samples were

filtered through a 40 μm filter tube to prevent clogging the

machine. To optimize the gating parameters, each sample

underwent a pre-sort analysis on unstained, IgG1 K Isotype

Control PE, and Anti-NeuN-PE stained nuclei aliquots. Post-

sort analysis of NeuN+ and NeuN− collected events was car-

ried out to assess sample purity: NeuN+ and NeuN− sorted

nuclei displayed a purity >95% and >99%, respectively (Fig. 1B,

C). FloJo v10.1 was employed to analyze and plot FACS raw

data. In order to confirm the high efficiency of the sorting by

an independent technique, we stained unsorted, NeuN+, and

NeuN− FACS-sorted nuclei from the sample AN07176 with
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4′,6-diamidino-2-phenylindole (DAPI) and Anti-NeuN-PE Ab,

and subsequently imaged them with Axio Imager 2 with

ApoTome system microscope (Zeiss, Germany, EU) (Fig. 1D,E).

DNA Extraction and 450 K BeadArray Data Analysis

Genomic DNA was extracted from approximately 2.5 × 106

FACS-sorted neuronal nuclei using the AllPrep DNA/RNA/

miRNA Universal Kit (Qiagen, Germany, EU), and its concentra-

tion was assessed by Qubit 2.0 Fluorometer using the Qubit

dsDNA BR Assay Kit (Life. Technologies, MA, USA). DNA sam-

ples were then submitted to the Genomics Core Facility of “The

Rappaport Family Institute for Research in the Medical

Sciences” (Haifa, IL), and processed as follows: for each individ-

ual, 500 ng of genomic DNA were converted twice with sodium

bisulfite using the EZ-96 DNA Methylation™ Kit (Zymo

Research, CA, USA) in order to minimize potential bias intro-

duced by variable conversion efficiency. Genome-wide DNA

methylation was assessed by Infinium HumanMethylation450K

BeadChip (Illumina, CA, USA) array technology. Chip Analysis

Methylation Pipeline (CHaMP) package (Morris et al. 2014) was

employed to normalize and process the output generated by

iScan System (Illumina, CA, USA). Briefly, iScan Control

Software was used to extract signal intensities for each probe

Figure 1. Isolation of neuronal nuclei by FACS. (A) Flow chart of the methods employed in the study. (B) Side scatter vs. forward scatter plot of sorted nuclei that had

been stained with anti-NeuN-PE. A subset of the population I (identified in the figure as Ia) composed of large neural nuclei was gated for our analysis. The choice to

gate only the large NeuN+ population was dictated by technical limitations of the FACS instrument to perform efficiently if the gate would have included all NeuN+

events. (C,D) After sorting nuclei to NeuN+ and NeuN− populations, we performed post-sort analysis on each of the sorted nuclei populations. In C (left), image of

post-sort analysis of NeuN+ nuclei. In D (right), post-sort analysis of NeuN− nuclei. We confirmed a purity >95% and >99%, respectively. (E) Unsorted cortical nuclei

stained with DAPI (blue) and Anti-NeuN-PE antibody (orange). (F) Above, images of FACS-sorted NeuN+ nuclei stained with DAPI and Anti-NeuN-PE antibody show a

positive staining for both the markers. Below, images of FACS-sorted NeuN− nuclei stained with DAPI and Anti-NeuN-PE antibody show positive staining for DAPI but

negative staining for Anti-NeuN-PE antibody.

Cortical Neuron DNA Methylation Profile in Autism Nardone et al. | 5741
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and generate iDAT files that were imported into R statistical

environment 3.1.3 (https://www.r-project.org/) using Illuminaio

tool implemented in Minfi package (Aryee et al. 2014). After run-

ning basic quality control metrics, raw data were filtered out

for probes with a detection P-value > 0.01 in at least 1 sample or

with bead count <3 in at least 5% of samples per probe (n =

12 989). Probes targeting CpGs on sex chromosomes (n = 11 650)

or probes with polymorphic CpGs/SNPs at single base extension

(SBE) or within ≤10 bp from SBE site at allele frequency (AF)

≥0.01 (n = 31 368) (Chen et al. 2013) were discarded, leaving

430 544 probes for downstream analysis (Supplementary

Table 2). Probes in sex chromosomes were removed due to the

fact that sex chromosomes displayed a very different distri-

bution of beta values, which would introduce a bias in nor-

malization procedures. Conversely, cross-reactive probes

(n = 30 969) recently identified by Chen et al. (2013) were not

removed from the dataset during our analysis. In our follow-

up analysis, we found that no cross-reactive probes were

detected within significant differentially methylated regions

(DMRs), and no enrichment for them in any of the 8

weighted gene correlation network analysis (WGCNA) mod-

ules related to ASD/control state resulted after hypergeo-

metric test (HyperP≈1) (Supplementary Table 2). Following probe

filtering, data underwent different methods integrated in

CHaMP to identify and correct for technical or biological vari-

ables, such as type II bias (BMIQ), batch effects (SVA + ComBat)

and copy number variations (CNVs). The SVA tool was used to

determine if any known covariates showed significant correla-

tion to beta values, in which case CHAMP can normalize the

data for covariates that show correlations. None of the covari-

ates in our study showed significant correlation, according to

CHAMP. As a follow-up, we performed a separate Principal

Component Analysis (PCA) on our data, which revealed no sig-

nificant correlation for covariates, including age, brain mass,

NeuN+ purity, and PMI on principal components in the data

(Supplementary Fig. 1). The detection of differentially methyl-

ated positions (DMPs) was performed using Limma package

(Ritchie et al. 2015) while DMRs were determined using Probe

Lasso (Butcher and Beck 2015), a flexible window-based

approach, recently implemented in CHaMP, that gathers neigh-

boring significant CpG-signals to define clear DMR boundaries.

Statistical significance and other features related to DMRs are

available in Supplementary Table 3 as well as basic quality con-

trol statistics for 450 K BeadArray (Supplementary Figs. 2 and 3).

Targeted Next-Gen Bisulfite Sequencing and Statistical

Methods

Targeted Next-Gen Bisulfite Sequencing (NGBS) was used to

validate differences in DNA methylation detected by Illumina

450 K BeadArray. Overall, we tested 4 significant DMRs encom-

passing 25 CpG sites by targeted NGBS. DNA samples were sub-

mitted to the Genome Center at “Barts and The London School

of Medicine and Dentistry” (London, UK). Briefly, for each sam-

ple a total amount of 500 ng of DNA was equally divided into 3

aliquots, that underwent separate bisulfite conversions (EZ-96

DNA Methylation™ Kit) followed by independent PCR reactions

using primers designed ad hoc to amplify a specific region of

interest with a specific barcode for each PCR. The separate bar-

coded PCR products were then pooled and sequenced on MiSeq

(Illumina, CA, USA) to generate in excess of 2000 sequence

reads per amplicon that were down sampled to 2000 for down-

stream analysis. Sequences were mapped to the target gene

and methylation status was called with Bismarck (Krueger and

Andrews 2011). Only 100% mapped reads were considered for

analysis. For each sample, the percentage of DNA methyla-

tion at single CpG resolution was quantified as the average of

3 technical replicates (3 separate bisulfite conversions and

PCR reactions). For each region tested by targeted NGBS, the

genomic coordinates, amplicon sequence, PCR primers and

CpG sites, along with their methylation values are reported in

Supplementary Tables 4 and 5. Statistical analyses were per-

formed by SPSS software package (version 22.0; SPSS,

Chicago, IL, USA). Levene’s test was employed to assess the

homogeneity of variance in the data distribution across the

groups, and unequal variance was assumed if the test was

significant (P < 0.05). We employed 2-tailed Independent t-

test and Mann–Whitney U-test to compare groups with equal

and unequal variance, respectively (Supplementary Table 6).

Spearman’s rank correlation coefficient (rs) was used to deter-

mine the correlation between 450 K BeadArray and targeted

NGBS methylation values.

Weighted Gene Correlation Network Analysis

TheWGCNA R software package was applied to the entire methyl-

ation dataset mainly with the aim of identifying co-methylation

modules (Langfelder and Horvath 2008). Briefly, pairwise Pearson’s

correlations between methylation values were used to build a

signed network. A soft threshold of 14 was used, as defined by the

scale-free topology criterion. Subsequently, average linkage hier-

archical clustering coupled with a topological overlap matrix

(TOM)-based dissimilarity measure, were employed to construct a

dendrogram of the network whose branches, defined by the

“dynamic tree cut” function, corresponded to single modules. The

threshold to merge closely related modules was set at minimum

height of 0.1. Each module was assigned a color, and a Module

Eigengene (ME) corresponding to its first principal component,

was calculated. The ME can be correlated to any sample trait (e.g.,

age, PMI, diagnosis of ASD, etc.) to assess the significance of

module-trait association (eigengene significance). We used

Kendall’s tau correlation tool in R package to correlate between

trait (ASD) and eigengenes, due to the binary nature of the ASD

diagnosis. For each probe, WGCNA defines the module member-

ship (MM), that is the correlation between the single β values and

the ME, and its corresponding P-value. In addition, to incorporate

external information into the co-methylation network, WGCNA

computes the probe significance (PS), that is the absolute value of

correlation between each probe and a given trait. In our case, the

probe significance is the correlation between the methylation of

each probe and ASD diagnosis.

Gene Ontology, PPI Network Analysis, and GWAS

Enrichment Analysis

Enrichment analyses for Biological Processes and InterPro GO

categories were performed on co-methylation modules using

GREAT online software (http://great.stanford.edu/great/public/

html/) (McLean et al. 2010). GRCh37 (UCSC hg19, Feb/2009) was

chosen as human genome reference assembly and only probes

with MM > 0.7 were included in the analysis. The background

was set to the 450 K BeadArray, instead of the whole genome,

to avoid any potential bias due to the array-specific design, for

example, the imbalance in the number of probes associated to

each gene or located in different genomic regions. GO terms

were considered significant when showing a Region-based

Fold Enrichment >2 and Bonferroni-corrected Hypergeometric

P-value <0.01 (BonfHyperP < 0.01). The parameters and criteria

5742 | Cerebral Cortex, 2017, Vol. 27, No. 12
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employed by GREAT to: 1) assign univocally a CpG to the dis-

tal, proximal, or intragenic region of a transcript (if present in

the fixed range), 2) infer statistical significance from enriched

genomic regions, and 3) associate genomic regions to GO

annotations, along with further data output, are reported in

Supplementary Table 7.

Protein-Protein Interaction (PPI) Network Analysis was per-

formed by CluePedia (Bindea et al. 2013), a ClueGO plugin for

pathway insights that uses integrated experimental and in sili-

co data. Only genes associated to >3 probes with MM > 0.7 were

considered for the downstream analysis. For each module

investigated, a list composed exclusively by genes associated

to a significant number of probes (HyperP < 0.01), was input-

ted into CluePedia. The output, comprised of nodes and edges

datasets, was imported in Cytoscape 3.3.0 that is designed for

network data integration, analysis and visualization (Shannon

et al. 2003). For each module, node and edge attributes along

with network topological parameters, are listed in Supplementary

Tables 8–11.

The specificity of the modules associated to ASD/control

state was evaluated by assessing their enrichment for ASD-

related genes, and for GWAS related to other psychiatric and

non-psychiatric disorders. The hypergeometric test was done

at the level of the probes, not the genes, do the variable number

of probes in each gene. Therefore, we first calculated the num-

ber of probes the array, in each disorder, and in each module,

as well as the number of probes from each disorder that are

found in each module. The probe numbers can be found in the

embedded text in Supplementary Table 12. Only probes with

MM > 0.7 were included in the test. The statistical significance

for enrichment of disorder-related probes in each module was

computed by hypergeometric test (HyperP < 0.01) in R

(Supplementary Tables 12 and 13). Gene lists were retrieved

from different sources: (https://gene.sfari.org/autdb/HG_Home.

do) for ASD, (http://jjwanglab.org/gwasdb) (Li et al. 2012) for

Alzheimer, Atherosclerosis, Diabetes type2, Systemic Lupus

Erythematosus (SLE) and Psoriasis, and from a recent publica-

tion authored by Ripke et al., for Schizophrenia (Ripke et al.

2014). Permutation testing to determine 1000 permutated data-

sets of module probes-disorder probes overlaps was performed

in R package.

DMRs Overlaps

To test the overlap between 58 DMRs detected by the present

study against 4 792 DMRs by Spiers et al. (2015) and 6 480 DMRs

by Jaffe et al. (2016) we used the intersect module in Bedtools

(v2.25.0) (Quinlan and Hall 2010) and, for confirmation, the

findOverlaps function in GenomicRanges R library (Lawrence

et al. 2013). Statistical significance for number and extent of

overlapping intervals, was computed at global and local (Chr

level) levels by implementing the Fisher’s exact test (FET) module

in Bedtools (v2.25.0) (Quinlan and Hall 2010). The background

was set to the regions covered by the 450 K BeadArray (omitting

X,Y Chr), instead of the whole genome. Statistical value (localP)

and overlapping intervals at each chromosome are in

Supplementary Tables 14 and 15. The overlap between our 58

DMRs and DMRs identified by Lister et al. (2013) in NeuN+ ver-

sus NeuN− nuclei from Dorsolateral PFC (DLPFC), was performed

manually using Genome Browser online tool (http://genome.

ucsc.edu/). The DNA methylation directions (Hypomethylation;

Hypermethylation) of NeuN+ versus NeuN− nuclei at each DMR

are reported in Supplementary Table 14.

Results

FACS of Neuronal Nuclei from Post-mortem Brains

To investigate the neuron-specific DNA methylation signature

in ASD, we employed FACS-mediated enrichment of neuronal

nuclei followed by hybridization of bisulfite-converted DNA on

Illumina 450 K BeadArray. Brain samples were dissected from

the prefrontal cortex (BA8-10) of 15 individuals with an ADI-R-

confirmed diagnosis of ASD and 16 matched controls. Clinical

data for these individuals are provided in Supplementary

Table 1, and more in-depth case reports are available online

(http://research.autismbrainnet.org). All the samples were

obtained from male subjects and there were no significant dif-

ferences for Age, (Post-mortem interval) PMI, Brain Mass and

Global DNA Methylation levels between ASD and control

groups (Supplementary Fig. 4). To efficiently separate neuronal

from non-neuronal nuclei, we applied FACS to the purified

brain nuclei after Anti-NeuN-PE Ab staining. The parameters,

defined for each step of the entire procedure, were calibrated to

obtain the best performance (Fig. 1A; Supplementary Fig. 5). We

note that to ensure the high purity of NeuN+ cells, was nec-

essary to gate for a fraction of larger nuclei, which is more

enriched for neuronal nuclei. The purity of NeuN+ and NeuN−

nuclei fractions was determined by post-sort analysis to be

approximately >95% and >99%, respectively, for all the FACS-

sorted samples (Fig. 1B–D). The high efficiency and reproduc-

ibility of the FACS were confirmed for some of the samples

randomly chosen by microscopy (Fig. 1E,F) and by performing a

FACS technical replicate of the control sample AN07176

(Supplementary Fig. 6). In order to rule out the possibility that

differences in DNA methylation could stem from biases intro-

duced by FACS, we determined the percentage of nuclei, singlets

and NeuN+ sorted events at level of the Ist, IInd and IIIrd gate,

respectively, along with the post-sort NeuN+ purity of ASD ver-

sus control groups. No statistical difference between the per-

centage of events was detected at any of the 3 gates and at the

level of post-sort analysis of NeuN+ between ASD and control

groups (Supplementary Fig. 7).

For each sample, genomic DNA was extracted from FACS-

sorted NeuN+ nuclei, bisulfite-converted and probed with

Illumina 450 K BeadArray. To validate the reproducibility of

450 K BeadArray we implemented 2 strategies: in 1 case, 2 FACS

technical replicates of the same brain sample were bisulfite-

converted and probed on 2 different microarrays from the

same batch; in the other case, 2 aliquots of the same FACS-

sorted sample were independently bisulfite-converted and

probed on 2 different batches of microarrays. In both cases, the

β values between the samples were highly correlated (Pearson’s

r > 0.99) (Supplementary Fig. 8).

Differentially Methylated Regions in Neurons of ASD

Subjects

After pre-processing, stringent quality controls and normaliza-

tion procedures, we tested ASD and control datasets for differ-

ential methylation both at the level of single CpG, referred to as

DMPs, and at level of genomic region, referred to as

Differentially Methylated Regions (DMRs), according to the

CHaMP package (see Materials and Methods). To this end,

CHaMP implements 2 functions Limma and Probe Lasso: the first

treats all CpGs as independent entities, while the second con-

siders the combinatorial effect of neighboring CpG sites. By

using Limma method, we detected 11 886 DMPs at P-value <0.01,

albeit none survived multiple testing correction (FDR < 0.05),
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whereas with Probe Lasso we identified 58 DMRs at FDR < 0.05,

the majority of whom were closely associated or overlapped a

known transcript (Table 1; Supplementary Table 3). It is of inter-

est that 2 of the top 10 DMRs are related to the genes GABBR1

and ABAT, which are part of GABAergic system. Moreover, 2

other DMRs, located on different arms of the chromosome 8, are

closely associated to the genes Mir124-1 and Mir124-2, 2 highly

conserved microRNAs that play a crucial role in fine-tuning gene

expression during brain development (Sun et al. 2015) and, at

adulthood, in regulating social behavior (Yang et al. 2012; Gascon

et al. 2014; Bahi 2016). Subsequently, we validated 37 CpGs span-

ning 4 DMRs by targeted Next Generation Bisulfite Sequencing

(NGBS) (Fig. 2A–C; Supplementary Fig. 9a) and demonstrated a

high correlation between the methylation values detected by

450 K BeadArray and targeted NGBS (Fig. 2D–F; Supplementary

Fig. 9b). About 25 out of the 37 CpGs we detected in the NGBS

were represented by probes on the original 450 K microarray,

while the additional 12 CpGs are neighboring methylation sites

within the DMR, which were not represented on the microarray,

but which were also found to have significant changes in the

NGBS analysis. This further verifies that these genetic regions

are DMRs. Two of the DMRs we sequenced, associated with

Gamma-Aminobutyric Acid Type B Receptor Subunit 1 (GABBR1) and

Mir124-2, displayed hypomethylation in ASD versus control

group while the other 2 DMRs, related to Family With Sequence

Similarity 124 Member B (FAM124B) and long non-coding RNA

Nuclear Enriched Abundant Transcript 1 (lnNEAT1), showed the

opposite tendency. All the CpGs investigated were statistically

significant at P-value <0.01 except for 3 CpGs, from lnNEAT1, at P-

value <0.05 (Supplementary Table 6).

Perturbation of Neuronal Co-methylation Modules

in ASD

The investigation of DMRs is a powerful tool for detecting with

high confidence changes in methylation levels on large scale,

nevertheless it fails to consider that multiple dispersed loci

may change methylation patterns concordantly. To character-

ize DNA methylation changes associated with ASD at system

level, we applied a clustering analytical approach called

weighted gene correlation network analysis (WGCNA), that is

well-suited to identify correlation patterns among β values

across the entire dataset. WGCNA identified 34 discrete methyl-

ation modules, and their first principal component (module

eigengene) was used to assess the correlation of each module

to a specific trait (Fig. 3A). In total, 8 modules were found to be

significantly correlated with ASD/control state. Particularly

interesting were the greenyellow (n. probes=4 614, r = −0.53, P =

5e−04), green (n. probes=14 558, r = −0.37, p = 0.01) and brown

modules (n. probes=49 145, r = 0.44, P = 4e−03) (Fig. 3A) that

included 429 out of 537 CpGs belonging to the significant DMRs

(brown=278, greenyellow=80, green=71). As shown on the left

side of Fig. 3B–D, the greenyellow and green modules displayed

an inverse correlation with the ASD/control state, while the

Table 1 Top 25 DMRs detected in cortical neuronal nuclei between ASD and control groups. Table of main DMRs’ attributes: genomic coordi-
nates, size, probe number, Δβ value and statistical significance, names of gene/s related to each DMR, functional (genomic location) and topo-
logical (neighborhood location) features

Chr dmr.start dmr.end dmr.size n.Probes deltaBeta

(ASD-ctrl)

FDR Gene Genomic location Neighborhood

location

13 113 697 522 113 700 412 2891 15 −0.03 8.5E−05 MCF2L Body Shelf, shore

17 75 314 823 75 316 738 1916 14 −0.05 3.2E−04 SEPT9 5′UTR Open sea

6 30 649 851 30 653 916 4066 33 0.04 5.9E−04 KIAA1949 Body, 5′UTR Open sea, shelf, shore

18 74 728 721 74 729 664 944 14 0.06 1.4E−03 MBP TSS1500, TSS200, 5′UTR,

firstExon

Open sea

2 225 266 222 225 266 914 693 10 0.09 4.6E−03 FAM124B TSS200, 5′UTR, firstExon Open sea

11 62 474 608 62 475 095 488 8 −0.05 4.6E−03 BSCL2 5′UTR Shore

16 8 806 101 8 807 301 1201 13 −0.03 4.6E−03 ABAT 5′UTR Open sea

6 29 599 012 29 599 538 527 10 −0.04 5.2E−03 GABBR1 Body Shore

8 65 291 378 65 296 546 5169 16 −0.06 7.2E−03 MIR124-2 TSS200, Body, IGR

(+284 +3092)

Shore, shelf

10 88 423 626 88 428 687 5062 13 0.07 7.2E−03 OPN4-LDB3 3′UTR, TSS1500, TSS200,

5′UTR

Open sea

12 58 013 239 58 013 654 416 15 0.04 7.2E−03 SLC26A10 TSS1500, TSS200 Island

12 104 443 484 104 444 249 766 9 0.07 8.6E−03 GLT8D2 TSS1500, TSS200, 5′UTR Open sea

7 150 147 440 150 148 331 892 9 0.06 1.0E−02 GIMAP8 TSS1500, TSS200, 5′UTR Open sea

17 1 810 379 1 811 517 1139 9 −0.05 1.5E−02 RTN4RL1 IGR (−27 512 −26 497) Shore, island

11 123 986 008 123 986 248 241 9 0.07 1.9E−02 VWA5A TSS200, 1stExon Open sea

12 114 841 523 114 842 097 575 8 -0.03 1.9E−02 TBX5 5′UTR, Body Shore

6 164 505 292 164 508 210 2919 10 0.07 2.5E−02 QKI IGR (+670522 +671630) Open sea

2 236 715 276 236 716 843 1568 6 0.07 2.9E−02 AGAP1 Body Open sea

4 1 166 607 1 167 081 475 7 0.05 2.9E−02 LOC100130872-

SPON2

TSS200, Body Shore

12 106 978 914 106 979 561 648 7 −0.03 2.9E−02 RFX4 Body Shore, island

22 25 615 204 25 615 564 361 7 0.05 2.9E−02 CRYBB2 TSS1500, TSS200 Open sea

19 1 466 929 1 468 058 1130 7 0.06 3.0E−02 APC2 Body Island

7 101 555 285 101 558 745 3461 10 −0.05 3.0E−02 CUX1 Body Shelf, shore

8 9 765 052 9 768 548 3497 6 −0.06 3.0E−02 MIR124-1 IGR (+4685 +5902) Shore, shelf

11 65 193 185 65 198 928 5744 18 0.07 3.0E−02 NEAT1 Body, IGR (+4664 +7754) Shelf, open sea
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brown module was directly correlated to it. Of particular impor-

tance, Module Membership (MM) strongly correlated to Probe

Significance (PS) for ASD for each of these 3 modules (greenyel-

low m: r = 0.66, P < 1e−200; green m: r = 0.53, P < 1e−200; brown

m: r = 0.61, P < 1e−200) (Fig. 3B–D right side). This supports the

assertion that core CpGs of each module are also strongly asso-

ciated with ASD. In contrast, the correlations between MM and

PS in 3 of the other 5 modules that displayed significant

correlation to ASD (purple, saddlebrown, cyan) were not signifi-

cant (at cutoff of P < 0.01) (Supplementary Fig. 10). In addition,

these same 3 modules were the least significant of the 8 signifi-

cant modules in the WGCNA analysis, therefore providing fur-

ther evidence that the correlation of these 3 modules to ASD

may be due to stochastic mechanisms, and not true biological

changes. The other 2 modules, orange and skyblue, which did

show significant correlation to ASD, contained very few probes

Figure 2. Validation of 3 independent DMRs by targeted NGBS technology. (A, B, C) Dot plots displaying methylation values at single CpG resolution in ASD and control

cohorts for 3 independent DMRs tested by targeted NGBS. The black bar represents the median of the methylation values distribution at each CpG site. Above each

plot, a custom track displays the CpGs tested by targeted NGBS (red) in relation to the significant CpGs detected by 450 K BeadArray (blue), the array background

(black) and the closest UCSC gene. Each individual CpG within DMRs had a P-value <0.01. CpGs that were represented on the 450 K BeadArray are labeled by their illu-

mina annotation numbers. CpGs that were not represented in the original microarray are labeled by their placement within the examined region. A detailed enumer-

ation of methylation for each CpG investigated by targeted NGBS is reported in Supplementary Table 5. (D, E, F) Scatter plots displaying the correlation (Spearman’s

rank rs correlation coefficient) and its statistical significance (P-value) between targeted NGBS and 450 K BeadArray methylation values. For each DMR, Spearman’s

rank rs was calculated by plotting simultaneously the targeted NGBS versus the 450 K BeadArray methylation values of each single probe. A color-coded legend univo-

cally identifies each probe. GABBR1 (GABA B Receptor 1), Mir124-2 (MicroRNA 124-2), FAM124B (Family with Sequence Similarity 124 Member B).
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(less than 200 each). Therefore, we did not include those mod-

ules in our further analysis. Next, we examined the distribu-

tion of CpG sites for each of the 3 modules from a topological

and functional perspective. Analysis of neighborhood location

revealed a probe enrichment in low-density CpG areas (open

sea >shelves >shores) (greenyellow m: P < 3.1e−86; green m:

P < 1e−200; brown m: P < 1e−200) and a depletion in high-

density CpG areas (islands) (greenyellow m: P < 4.2e−86; green

and brown m: P < 1e−200) (Fig. 3E). Analysis of genomic

location revealed a probe enrichment in gene bodies (greenyel-

low m: P < 2.6e−08; green m: P < 1.4e−171; brown m: P < 3.5e

−70) and a depletion in Tss200 (greenyellow m: P < 1.8e−17;

green m P < 3.2e−195; brown m: P < 1e−200) and 1stExon

(greenyellow m: P < 1.1e−07; green m P < 1.8e−144; brown m:

P < 4.5e−99) that were common to all 3 modules, while other

genomic features showed opposite behavior between green,

brown versus greenyellow module, with intergenic and 3′UTR

regions enriched in the first 2 (Intergenic green m: P < 3.2e−15;

Figure 3. WGCNA applied to methylation data. (A) Table of Module-Trait relationship. Each cell reports the Kendall’s τ correlation coefficient and its P-value between

the eigengene value of each module (rows) and a specific trait (columns). (B; C; D) On the left side, heat map plotting the β values of each CpG in the module (rows)

across the samples (columns), and bar chart of the corresponding module eigengene values (y-axis) across the samples (x-axis), for the greenyellow, green and brown

modules. ASD and control samples are color-coded in red and green, respectively. On the right side, scatter plots indicate the correlation (Pearson’s r correlation coef-

ficient) and its significance (P-value) between CpG site Significance (GS) (y-axis) and MM (x-axis) for the corresponding modules. (E, F) Bar plots displaying the topologi-

cal (neighborhood location) and functional (genomic location) CpG distribution in the 450 K BeadArray, greenyellow, green, and brown modules. The bar plots

representing Neighborhood and Genomic locations are color-coded according to the respective legend (right) that univocally identifies each subgroup. The number of

CpGs associated to each subgroup is expressed as percentage of the total.
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brown m: P < 1e−200. 3′UTR green m: P < 1.4e−33; brown m:

P < 5.1e−14) and depleted in the greenyellow module (3′UTR

P < 0.2; Intergenic P < 7.3e−05) whereas Tss1500 and 5′UTR

regions depleted in the first 2 (Tss1500 green m: p < 1e−07;

brown m: P < 9.6e−126. 5′UTR green m: P < 8.9e−28; brown m:

P < 1.5e−29) and enriched in the greenyellow module (Tss1500

P < 1.4e−08; 5′UTR P < 001) (Fig. 3F).

ASD-related Co-methylation Modules are Enriched for

Synaptic, Neuronal, GABAergic and Immune Processes

To gain insight into the biological meaning of each module, we

performed GO analysis for Biological Process and InterPro cate-

gories on CpGs within greenyellow, green, and brown modules.

To determine the enrichment for CpG sites in respect to a gene

Figure 4. Gene Ontology and PPI Network analysis. GO analysis for Biological Process and InterPro categories on CpGs associated to greenyellow, green and brown

modules. (A) Dot plot depicting the top 5 enriched terms for each of the 2 GO categories. The analysis was performed on CpGs with MM > 0.7 using GREAT web-based

tool, and were considered significant only GO terms with a Region-based Fold Enrichment >2 and BonfHyperP < 0.01. (B) A table chart reporting the ID and a brief

description of each GO term. RTK, receptor tyrosine kinase. TLR, toll-like receptor. GABA, γ-Aminobutyric acid. BAIAP2, brain-specific angiogenesis inhibitor (BAI1)-

binding protein. GPCR, G-protein-coupled receptor. ABAT, 4-aminobutyrate aminotransferase. (C, D) Circle plots displaying PPI network analysis performed on gene

sets resulting from the merging of greenyellow and green modules, and from brown module, respectively. The top twelve most interconnected genes (hubs) are dis-

played in the middle of the circle plot. The edge width (k value, 0.1 < k < 1) reflects the strength of PPI derived from experimental evidence. The node size, defined by

−log10 HyperP-value, reflects the per-gene enrichment for a number of probes greater than expected by chance, considering the total number of probes in 450 K

BeadArray, the probe number assigned by Illumina to each gene, and the module size. Node transparency refers to the degree of connectivity. On the left, a legend

illustrates the numerical scale for all the parameters displayed in the circle plot.
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function or a genomic feature we used GREAT, a bioinformatics

tool designed for the analysis of cis-regulating factors, such as

epigenetic modifications (McLean et al. 2010). The analysis was

performed setting the 450 K BeadArray as background and

inputting only probes with MM > 0.7. Greenyellow and green

modules were both enriched for genes related to synaptic and

neuronal processes, that is, synaptic transmission (greenyellow

BonfHyperP < 1.3e−21; green BonfHyperP < 2.3e−23), regulation of

synaptic plasticity (greenyellow BonfHyperP < 1.7e−11; green

BonfHyperP < 3.2e−28), regulation of neuron projection develop-

ment (greenyellow BonfHyperP < 8.0e−09; green BonfHyperP <

2.3e−21), GABA metabolic process (greenyellow BonfHyperP <

8.0e−09) and GABA signaling pathway (green BonfHyperP < 4.9e

−06). Conversely, brown module revealed an enrichment for

genes related to immune response processes, that is,

chemokine-mediated signaling pathway (BonfHyperP < 1.9e−14),

or specifically for protein domains or families, such as TNF-like

domain (BonfHyperP < 2.3e−19) and complement C1q protein

(BonfHyperP < 2.0e−11). We considered significant only GO

terms showing a Region-based Fold Enrichment >2 and

BonfHyperP < 0.01 (Fig. 4A,B; Supplementary Table 7). Since in

biological systems genes do not stand on their own, but inter-

act reciprocally to form complex networks underpinning their

biological activity, in order to unravel this complexity, a

bottom-up analysis toward a systems biology approach, such

as in network analysis, is required. Considering that greenyel-

low and green modules had a substantial overlap of genes and

biological processes, we deemed worthwhile to merge them

into a single PPI network. According to the parameters set out

for the analysis (see Materials and Methods), we identified

12 hub proteins that can be grossly divided into 2 groups: a first

group composed of protein kinases at enzymatic or regulatory

activity with neuronal (CAMK2A, BRSK2, STK38L) and non-

neuronal specificity (PRKCA, PRKCB, PRKAG2, PRKAR1B); a sec-

ond group consisted of proteins that are subunits of NMDA

(GRIN1, GRIN2A, GRIN2B) and Kainate ionotropic receptors

(GRIK5) (Fig. 4C). Notably, of these neuron-specific serine/threo-

nine kinases, CAMK2A regulates NMDAR-dependent long-term

potentiation and neurotransmitter release, BRSK2 plays a key

role in polarization of neurons and axonogenesis, and STK38L

has been hypothesized, by sequence similarity, to be involved

in the regulation of structural processes in differentiating and

mature neuronal cells. On the other side, subunits of NMDA

and Kainate ionotropic receptors play a pivotal role in long-

potentiation and synaptic plasticity by regulating the glutama-

tergic neurotransmission. In the brown module, the top ranked

of 12 hub proteins was OAS2, a member of the 2–5 A synthetase

family, that are essential proteins involved in the innate

immune response to viral infection as part of the IFN-γ signal-

ing (Fig. 4D).

Module CpGs are Significantly Associated to ASD

Candidate Genes

We tested the specificity of these 3 modules to ASD by asses-

sing their enrichment for GWAS databases for other psychiatric

(Alzheimer and Schizophrenia) and non-psychiatric disorders

(SLE, Psoriasis, Diabetes type2 and Atherosclerosis), as well as

to the SFARI database of ASD associated genes. Due to the lack

of significant GWAS data for ASD, we used the genes in the

SFARI database that rank at strong confidence (gene score ≤4).

Remarkably, the greenyellow (P < 2e−12) and green (P < 1e−26)

modules were enriched exclusively for genes associated to ASD

while the brown module was enriched for immune genes

primarily linked to autoimmune disorders, that is, SLE (P < 2e

−07) and Psoriasis (P < 0.0001), and sometimes present in com-

plex diseases as Diabetes type2 (P < 0.004) having an immune

component among the risk factors (Fig. 5). We further tested

these positive findings with permutation testing with 1000 per-

muted databases. All of these enrichments were also signifi-

cantly correlated in the permutation analysis (Supplementary

Table 16).

ASD-related DMRs Overlap with Neurodevelopment-

specific DMRs

Next, we asked if the methylation patterns we detected both at

DMR and module system levels were preserved to a certain

extent in the methylation signature specific to early stages of

neurodevelopment. To this end, we referred to 2 recent manu-

scripts: the first, authored by Spiers et al. (2015), profiling the

whole human brain methylome from embryonic (post-

conceptional week (pcw) 4) to late fetal stage (pcw 26), whereas

the second, from Jaffe et al. (2016), investigating the DNA meth-

ylation signature in the dorsolateral prefrontal cortex (DLPFC)

from embryonic/fetal (Age mean: 14–20 pcw) to early/late child-

hood stages (Age mean: 6.6 years). First, we investigated the

overlap with the datasets at whole-genome resolution by com-

paring 58 DMRs (FDR < 0.05), found by the present study, versus

4 792 DMRs (FDR < 0.05) detected by Spiers et al. (2015) and

6 480 DMRs (FWER < 0.05) from Jaffe et al. (2016). Remarkably,

27 and 52 out of 58 DMRs overlapped with Spiers et al. (2015)

and Jaffe et al. (2016) datasets, respectively, at very high signifi-

cance level (FET, GlobalP < 1.4e−51; GlobalP < 8.5e−118)

(Supplementary Table 15). We also tested for the same overlap

at single chromosome resolution, demonstrating that all the 27

and 52 regions, for a total of 14 and 18 chromosomes repre-

sented, respectively, were statistically significant (FET, LocalP <

0.05). Furthermore, 18 out of 58 DMRs were commonly overlap-

ping between the 2 datasets (Supplementary Tables 14 and 15).

These findings were particularly striking considering that

methylation data from Spiers et al. (2015) and Jaffe et al. (2016)

were neither cell type nor brain region specific. However, the

remarkable overlap we detected against the 2 datasets, regard-

less of many limiting factors, suggests that regions that are

more likely to display dysregulated methylation in ASD brain,

are the same that undergo drastic reconfiguration of methyla-

tion levels from embryonic to late fetal neurodevelopmental

stage. Considering that brain development includes differentia-

tion of immature precursors into neuronal and non-neuronal

cell types, we referred to the Lister et al. (2013) study, that pro-

filed the global methylome reconfiguration occurring in NeuN+

and NeuN− cell populations, of mouse and human frontal cor-

tex, at indicative neurodevelopmental time points. We com-

pared all 58 DMRs from the present study against NeuN+ and

NeuN− methylation signatures detected at identical genomic

coordinates by Lister et al. (2013). Remarkably, all of the 58

DMRs were located in genomic regions characterized by oppo-

site methylation between NeuN+ and NeuN− populations (FET,

GlobalP < 1e−200), as summarized in Supplementary Table 14.

In Supplementary Fig. 11, we show 6 representative examples

of DMRs found by the current study at cell type-specific geno-

mic loci.

Discussion

The aim of this study was to profile the methylome landscape

of cortical neurons in individuals with a diagnosis of ASD

5748 | Cerebral Cortex, 2017, Vol. 27, No. 12

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
e
rc

o
r/a

rtic
le

/2
7
/1

2
/5

7
3
9
/4

2
5
9
7
4
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



compared to controls. To our knowledge, this is the first

genome-wide study to test neuron-specific methylation pat-

terns in ASD. Differential methylation analyses were performed

at 2 levels: at CpG resolution, where none of the 11 886 DMPs

(P < 0.01) survived multiple testing correction (FDR < 0.05), and

at region-based level, where 58 significant DMRs were identified

(FDR < 0.05). Importantly, analyzing differential methylation at

the regional level, compared to single site level, is considered

more appropriate both because it takes into account the func-

tional significance of multiple CpGs acting concertedly, and

because it better protects against technical artefacts, generally

affecting individual probes (Ladd-Acosta et al. 2013). In addi-

tion, FDR-based correction at the single CpG level is based on

the assumption that neighboring methylation sites are inde-

pendent features, which is not correct from a biological stand-

point. Therefore, the lack of significant DMPs is not

unexpected. Pipelines, such as bumphunting, which was inte-

grated into the CHAMP tool, have been created to find DMRs,

therefore overcoming these disadvantages. Remarkably, all

DMRs were closely associated or overlapped known transcripts,

suggesting they might play a critical role in regulating gene

expression (Lister et al. 2013). Of great interest, both for their

statistical significance and for their biological function, were 4

hypomethylated regions: the first 2 overlapping ABAT in 5′UTR

and GABBR1 in exon 2/3 (depending on the isoform), while the

other 2 overlapping a Tss200 region upstream of Mir124-2 and

an intergenic region (IGR) (+4685 +5902) downstream of Mir124-

1. The 58 identified DMRs had differential methylation ranging

from a 3% change to a 9% change. While these are modest

changes, they are comparable to the 3 DMRs found using a sim-

ilar bumphunting protocol in a previous study of the ASD brain

(Nardone et al. 2014). The fact that we found more DMRs is

likely due to the issue of tissue heterogeinity, since we exam-

ined FACS-sorted nuclei, compared to whole tissue. Despite the

modest changes in methylation, it is possible that they have

biological significance. Some of these changes may be occurring

in specific neuronal subtypes, where their expression is partic-

ularly important. For example, the GABA-related genes may be

dysregulated specifically in those neuronal subtypes where

they are expressed. Further analysis on specific neuronal sub-

types would be necessary to understand this issue.

Mir124 is a conserved class of MicroRNA that includes 3

members, Mir124-1, Mir124-2 and Mir124-3, located at different

genomic positions. Of high importance, Mir124 is the most

abundant microRNA in human brain and a master regulator of

neuronal identity able to suppress hundreds of non-neuronal

genes in a finely tuned spatial and temporal fashion (Sun et al.

2015). Mir124 plays a key role both in neurogenesis, by prevent-

ing the translation of many essential transcripts, for example,

Sox9, SCP1, Lhx2, JAG1, EfnB1, DLX2 (Sun et al. 2015; Cheng et al.

2009) and in neuronal differentiation, where ensures the trans-

ition from neuronal progenitors to mature neurons by directly

targeting specific transcripts, for example, Syngr2, Baf53a,

Baf45a, PTBP1, STAT3, LAMC1, ITGB1, NeuroD1, RhoG (Yoo et al.

2009; Sun et al. 2015). In adulthood, Mir124 regulates synaptic

plasticity by repressing BDNF and CREB (Sun et al. 2015). Of par-

ticular relevance to the current study, several publications have

found an association between Mir124 and social behavior. In

fact, dysregulated levels of Mir124 contributed to the onset of

cognition and social dysfunctions in a mouse model of fronto-

temporal dementia (FTD) and in mice bearing an EPAC null muta-

tion (Yang et al. 2012; Gascon et al. 2014). Similarly, lentiviral-

mediated overexpression of Mir124 in the hippocampus-induced

anxiety and ASD-like behaviors in rats (Bahi 2016). To add

another layer of complexity, Kerek et al. demonstrated that lack

of dietary methyl donors in utero in rats was associated with

growth retardation at E20 and, postnatally, with long-term brain

defects due to an increment of Mir124 expression (Kerek et al.

2013). Despite the lack of mechanistic evidence regarding epige-

netic regulation of Mir124 in the brain, the role of DNA methyla-

tion in regulating the expression of Mir124-1, -2, and -3 has been

shown in human pancreatic cancer (Wang et al. 2014). Moreover,

a recent study profiling the human brain methylome, from

embryonic to late fetal stage, reported age-related DMRs that

widely overlapped with those we found associated to Mir124-1

and Mir124-2 (Spiers et al. 2015). Notably, the region associated to

Mir124-2 was ranked as the second top significant age-related

DMR out of 4 792 (Spiers et al. 2015). Overall, considering the

abovementioned evidence, it is conceivable that any distortion of

methylation trajectory at developmentally regulated regions con-

trolling Mir124-1 and Mir124-2 might have detrimental effects on

diverse aspects of brain functioning and behavior.

ABAT and GABBR1 genes are part of the GABAergic system

and encode for 4-aminobutyrate aminotransferase, an enzyme

responsible for GABA catabolism, and for the subunit 1 of GABA

Figure 5. Enrichment analysis for disease-specific gene associations. Bar plots

showing the enrichment analysis of ASD/control trait-related modules for

GWAS of psychiatric and non-psychiatric disorders. In the case of ASD, GWAS

data were not used, but rather SFARI genes (gene score ≤4). Each color identifies

univocally a specific disorder as described in the color legend. The length of the

bars reflects the statistical significance of the enrichment analysis. Only

HyperP-value <0.01 were considered statistically significant.
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typeB receptor, respectively. The importance of GABAergic sys-

tem in the etiology of ASD was postulated on the basis of the

imbalance between excitatory/inhibitory (E/I) neurotransmission

(Hussman 2001), justified in part by the high prevalence of epi-

lepsy among ASD subjects (Canitano 2007), and supported by

post-mortem brain studies (Fatemi et al. 2009; Oblak et al. 2011).

These studies demonstrated in distinct brain regions a decrease

in RNA and protein levels of various GABA receptors’ subunits.

However, only recent transcriptomic (Voineagu et al. 2011) and

Magnetic Resonance Imaging (MRI) studies (Robertson et al. 2016)

determined the direct implication of GABAergic system in the

imbalance of (E/I) neurotransmission. Nevertheless, the molecu-

lar mechanisms underlying the dysregulation of GABAergic sys-

tem in ASD have not yet been fully elucidated. Despite the fact

that genetic linkage and GWAS studies have identified various

GABAergic genes as potential ASD candidates, only GABRB3

(Delahanty et al. 2011), SLC6A1 (De Rubeis et al. 2014), and

SLC12A5 (Kahle et al. 2014) genes are supported by strong/sug-

gestive evidences. Therefore, genetics alone does not appear to

be sufficient to explain GABAergic dysregulation in ASD.

For the last decade, mounting body of evidence from studies

on human, primate and mouse models, have pinpointed multi-

ple environmental agents as potential risk factors for ASD.

Many of them seem to act through epigenetic mechanisms,

such as DNA methylation, recently revised by 2 comprehensive

reviews (Ciernia and LaSalle 2016; Gesundheit et al. 2016). A

unique environmental factor, Maternal Immune Activation

(MIA), has been associated with ASD through both epidemiolog-

ical (Lee et al. 2014) and mouse model studies (Richetto et al.

2016). Of particular relevance to the current investigation,

recent studies on rodent models have linked MIA to dysregu-

lated DNA methylation of GABAergic genes (Labouesse et al.

2015; Richetto et al. 2016). Specifically, Labouesse et al. demon-

strated an association between hypermethylation at GAD1 and

GAD2 promoters, downregulation of both transcripts, presynap-

tic GABAergic impairments, and behavioral abnormalities in

offspring PFC of the MIA model (Labouesse et al. 2015). Notably,

similar dynamics were determined for GAD1 gene in the cere-

bellum of ASD subjects (Zhubi et al. 2014). Moreover, a genome-

wide methylation study, performed on mouse model of MIA,

identified methylation and expression changes at several loci

underlying GABAergic genes that are entailed in neuronal dif-

ferentiation and signaling, for example, DLX1, LHX5, LHX8

(Richetto et al. 2016). Further corroborating evidence for epige-

netic control upon GABAergic system also stems from genetic

models. A study on a mouse model of conditional MeCP2 KO,

specific to forebrain GABAergic neurons, demonstrated a corre-

lation between loss of MeCP2 occupancy 1 kb upstream of GAD1

and GAD2 Tss, decrease of their mRNA levels, and consequent

reduced inhibitory quantal size from GABAergic neurons.

Conversely, no decrease in GAD1 and GAD2 mRNA levels was

detected in MeCP2 KO excitatory forebrain neurons (Chao et al.

2010). Taken together, these data provide a strong evidence for a

role of DNA methylation as interface between environmental

insults at early developmental stages, dysregulation of GABAergic

system, and ASD onset.

WGCNA identified 3 discrete co-methylation modules show-

ing an inverse (greenyellow and green) and direct (brown) cor-

relation with ASD. GO analysis on greenyellow and green

modules highlighted regions encompassing neuronal and syn-

aptic genes, whereas GO on brown module highlighted regions

associated to immune genes. Interestingly, Voineagu et al.,

(2011) in a transcriptomic study on BA9, detected similar GO

annotations for the top 2 ASD-related modules. The neuronal

and immune modules showed inverse and direct correlation to

ASD trait, respectively (Voineagu et al. 2011). Furthermore, the

neuronal module presented a significant overlap with PVALB+

interneuron module and a synaptic module, previously identified as

part of the human brain transcriptional network (Oldham et al.

2009; Voineagu et al. 2011). Interestingly, GO analysis on green-

yellow and green modules revealed enrichment for GABAergic

system and synaptic categories. Besides this, CpGs within

DMRs related to ABAT and GABBR1 were also part of these 2

modules, further corroborating the hypothesis of epigenetic

control upon GABAergic system in ASD. GO analysis on brown

module highlighted a significant enrichment for immune

response categories, including TNF-like domain and comple-

ment C1q protein that we found differentially methylated in a

recent methylation study on ASD (Nardone et al. 2014). Thus,

our system level analysis of neuronal methylome in ASD

unveils the existence of a widespread epigenetic dysregulation

converging on common biological pathways. Moreover, the

functional overlap between co-methylation and co-expression

modules could suggest a possible epigenetic control over gene

expression.

Topological analysis for CpGs within ASD-related modules

indicated an enrichment of low-density CpG regions. It has

been demonstrated that CpGs located outside CpG islands

undergo dynamic methylation changes both spatially, for

example, in cell and tissue-specific contexts, and temporally

during development and ageing, whereas CpG islands near Tss

are usually stably unmethylated (Ciernia and LaSalle 2016).

Functional analysis revealed an enrichment for CpGs at gene

bodies and a depletion at Tss200 and 1stExon. Wu et al.,

proved, for the first time, that Dnmt3a-dependent DNA methyl-

ation at gene body is positively correlated with gene expression

in postnatal neural stem cells (NSCs) and is required for neuro-

genesis (Wu et al. 2010). This may suggest a partial explanation

behind the positive correlation between ASD-related co-

methylation modules from the present study and co-

expression modules from Voineagu et al. (2011). For example,

at the system level Voineagu et al. described increased gene

expression of immune system genes, whereas the present

study suggests increased methylation of immune genes in ASD

brains. The fact that the module of immune genes is enriched

for gene body CpGs may justify the positive correlation

between expression and methylation modules.

In our previous methylation study performed on unsorted

cells from BA10, we determined a highly significant enrichment

of differentially methylated CpGs in immune genes, in contrast

to the relatively modest changes in neuronal genes (Nardone

et al. 2014). Those findings do not coincide with our current

results that highlight both at system level, by WGCNA, and at

single region resolution, by DMR analysis, a more central role

of DNA methylation upon neuronal genes. Thus, it is conceiv-

able that our previous study was unable to detect neuron-

specific difference in methylation that, albeit present, did not

emerge from background noise. And if so, the hypomethylation

detected at multiple immune-related CpGs, may have origi-

nated only from the glia fraction. However, it should be men-

tioned that several biological and technical factors can

influence the resolving power of an epigenetic study (Rakyan

et al. 2011). While many of these factors can be controlled

through the implementation of experimental, statistical and

bioinformatics approaches, many others, above all brain mosai-

cism (Tasic et al. 2016), small-size changes in methylation,

small size of the cohorts, and low neuron/glia ratio (Herculano-

Houzel 2009) in PFC, are still the most challenging to be taken
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into account. Furthermore, despite the existence of statistical

methodologies for deconvolving heterogeneous epigenetic data

from post-mortem brain into their neuronal and non-neuronal

components (Montaño et al. 2013; Jaffe and Irizarry 2014), the

level of resolution and accuracy they reached so far, is still lower

than what is obtainable by FACS methodology(Shulha et al.

2012). Therefore, these issues are likely to explain part of the dis-

crepancies between different epigenetic studies. However, while

changes in immune genes were not as pronounced as in our pre-

vious study, one of the ASD-related modules (brown) was highly

enriched for genomic regions linked to immune genes, particu-

larly for genes related to complement response, whose dysregu-

lation in methylation have been previously implicated in ASD.

Neuronal expression of complement factors, including C1qA and

C3, plays a crucial role in synaptic pruning throughout neurode-

velopment and also in adulthood (Kettenmann et al. 2013).

Abnormalities in immune system at genetic, epigenetic or tran-

scription level, have already been identified in several psychiatric

disorders including Schizophrenia (Ripke et al. 2014; Sekar et al.

2016), Alzheimer (Hong et al. 2016) and, recently, also in ASD

by transcriptomic and epigenomic post-mortem brain studies

(Voineagu et al. 2011; Gupta et al. 2014; Nardone et al. 2014).

Therefore, it is conceivable that dysregulation of neuron-

specific methylation patterns at regions controlling immune

genes might be involved in the biology of ASD.

Several lines of evidence emerging from the present study

suggest that CpGs, undergoing highly dynamic DNA methyla-

tion during neurodevelopment, are particularly susceptible to

dysregulation in neurons of ASD individuals. First, there is a

significant overlap between ASD-specific DMRs, from the cur-

rent study, and age-specific DMRs reported by Spiers et al. and

Jaffe et al. in their recent publications (Spiers et al. 2015; Jaffe

et al. 2016). Second, all 58 ASD-specific DMRs belong to a class

of developmentally regulated regions characterized by opposite

methylation in NeuN+ versus NeuN− nuclei from DLPFC (Lister

et al. 2013). Nevertheless, we still cannot infer a direct causal

link between environmental cues, methylation changes and

ASD diagnosis: in fact, changes in methylation might arise as

result of genetic factors (Iossifov et al. 2014) or, alternatively,

they could represent the outcome of compensatory mecha-

nisms or, merely a late-appearing epiphenomenon (Petronis

2010). Additionally, environmental factors could act through

other mechanisms rather than epigenetics.

It should be mentioned that we might not have been able to

identify additional DMRs due to both technical and biological

limiting factors. First, the 450 K BeadArray does not include all

the CpGs in the human genome, and also includes very little of

the non-CpG methylation sites. Therefore, it is possible that

there are additional DMRs in the samples that we were not able

to detect. Second, the 450 K BeadArray focuses mainly, although

not exclusively, on high-density CpG regions, such as CpG

islands. However, we detected a high enrichment of CpGs in our

WGCNA modules for low-density CpG regions. Therefore, we

may have missed additional CpGs in low-density regions that

are not well represented on the microarray. On the other hand,

one of the major strengths of the 450 K BeadArray, compared to

sequencing methods, is the high quality and resolution of data

at the level of each CpG. Due to high costs, most whole-genome

sequencing studies are not able to reach such a high resolution

of methylation analysis, therefore decreasing the likelihood of

finding significant DMRs. An additional limitation of our study is

that we separated mostly the larger nuclear fraction for analysis,

due to technical necessity. Therefore, it is possible that our

DMRs are found in a specific neuronal subtype with larger nuclei,

and that we may have missed DMRs in neurons that have smal-

ler nuclei. Additionally, there is the possibility that methylation

changes occurs only in a specific neuronal subtype (Kozlenkov

et al. 2015; Mo et al. 2015), such as PVB + GABAergic interneur-

ons, that account only for 20% of NeuN+ cells in human PFC

(Kozlenkov et al. 2015). As such, those DMRs may not be detect-

able when analyzing the entire neuronal population.

There are a few other limitations of this study which must

be taken into account. First, we do not have information about

ethnicity for most of the samples, particularly the controls.

While the same is true for all previous studies utilizing this

brain bank, we cannot rule out the possibility that there are

some factors of ethnicity which may partially influence our

data. There is also limited information about medicines used

by patients for most of the samples. In addition, we point out

that all of the samples in this study came from the frontal cor-

tex, and all of the samples, except for 3 came from brodmann’s

area 10 (1 in brodmann’s area 9; and 2 in brodmann’s area 8).

Although these are all areas of the frontal cortex, we cannot

rule out slight changes in cortical neuron methylation between

these neighboring regions.

One other limitation of our study is sample size. The FACS

procedure demands intact neurons, which limits the sample

size to only those samples that have never been previously

thawed after initial freezing. One previous epigenetic study on

FACS-separated neurons in a psychiatric condition used similar

number of samples to that used on our study (they used 16

controls and 16 ASD cases) (Shulha et al. 2012). In their chip-

seq study on H3K4 methyation, they found spreading of H3K4

methylation from the promoter into gene bodies in a subset of

ASD cases, but did not find any significantly different methyla-

tion peaks between ASD and control cases. There are many

technical differences between our studies that may explain the

fact that the previous study was not able to decipher significant

differences between groups, including that chip-seq is much

less sensitive to small changes between samples compared to

the 450 K BeadArray, in addition to the fact that chip-seq only

detects relative, and not absolute quantities. In addition, it is

possible that DNA methylation, and not histone methylation

may play a larger factor in ASD. A previous study of DNA meth-

ylation in non-sorted ASD brain samples used 21 control and 19

ASD samples (Nardone et al. 2014). In that study, they used the

450 K BeadArray and a similar bioinformatic pipeline to our

study, therefore allowing for a stronger comparison between

studies. They identified 4 intital DMRs at FDR < 0.1, 3 of which

they verified in a seperate brain region, while our study identi-

fied 58 DMRs at FDR < 0.05. Therefore, it is plausable that the

neuron-specific approach used in the present study allowed for

the identification of more DMRs due to the reduction in cell-

type epigenetic heterogeinity.

Despite the fact that observational studies cannot provide

direct mechanistic insight into the role of DNA methylation in

the aetiopathogenesis of ASD, dysregulation of DNA methyla-

tion detected by human (Ladd-Acosta et al. 2013; Nardone et al.

2014) and rodent studies (Richetto et al. 2016) both at regional

and network-based level, strongly supports its critical function

in the ASD aetiopathogenesis. Considering our system level

analysis of neuronal methylome in ASD within the framework

of cell type and developmental stage-specific methylation sig-

natures, we can speculate as to whether environmental insults

could alter the normal brain development by interfering with epi-

genetic machinery and ultimately leading to long-lasting func-

tional and behavioral changes. However, additional research is

warranted to ascertain this hypothesis.
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