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Original article

Dysregulation of the actin scavenging system and inhibition

of DNase activity following severe thermal injury
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Background: Circulating cell-free DNA (cfDNA) is not found in healthy subjects, but is readily detected

after thermal injury and may contribute to the risk of multiple organ failure. The hypothesis was that

a postburn reduction in DNase protein/enzyme activity could contribute to the increase in cfDNA

following thermal injury.

Methods: Patients with severe burns covering at least 15 per cent of total body surface area were recruited

to a prospective cohort study within 24h of injury. Blood samples were collected from the day of injury

for 12months.

Results: Analysis of blood samples from 64 patients revealed a significant reduction in DNase activity on

days 1–28 after injury, comparedwith healthy controls. DNase protein levels were not affected, suggesting

the presence of an enzyme inhibitor. Further analysis revealed that actin (an inhibitor of DNase) was

present in serum samples from patients but not those from controls, and concentrations of the actin

scavenging proteins gelsolin and vitamin D-binding protein were significantly reduced after burn injury.

In a pilot study of ten military patients with polytrauma, administration of blood products resulted in an

increase in DNase activity and gelsolin levels.

Conclusion: The results of this study suggest a novel biological mechanism for the accumulation of

cfDNA following thermal injury by which high levels of actin released by damaged tissue cause a reduction

in DNase activity. Restoration of the actin scavenging system could therefore restore DNase activity, and

reduce the risk of cfDNA-induced host tissue damage and thrombosis.

Paper accepted 8 June 2019

Published online in Wiley Online Library (www.bjs.co.uk). DOI: 10.1002/bjs.11310

Introduction

Although advances in burn care have improved patient
outcomes1, the prevalence of sepsis remains significant2,
and failure to diagnose and treat sepsis early leads to
multiple organ failure (MOF).
Major thermal injury and severe blunt trauma cause

global genomic changes in both the innate and acquired
immune pathways3. This response is often pronounced
and prolonged in patients who do not achieve clinical
recovery. Although MOF is well characterized clinically,
the mechanisms mediating organ damage and mortality
remain poorly understood4.

Quantification of cell-free DNA (cfDNA) in blood from

injured patients has shown potential to predict sepsis,

septic shock and mortality5–10. DNA from neutrophil

extracellular trap (NET) formation has been implicated

in immunothrombosis11. NETs provide a bridge between

innate immunity and the haemostatic system12, and are

capable of perturbing blood flow through capillary plexi13,

whichmaymanifest as tissue hypoxia. Recent evidence sug-

gests that intact chromatin is released fromNETs following

both sterile injury and sepsis in a burn injury/infection

model14. This chromatin is highly thrombogenic and

implicated in the pathogenesis of MOF13.

© 2019 The Authors. BJS published by John Wiley & Sons Ltd on behalf of BJS Society Ltd. BJS
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A previous study15 reported an increase in cfDNA
up to 28 days after severe thermal injury. This included
NET-derived DNA which, in combination with immune
parameters, identified burned patients who developed
sepsis15. Deoxyribonuclease (DNase) is responsible for
the breakdown of circulating chromatin and DNA16,17.
DNase protein levels have been reported to be normal
or abnormal in patients with traumatic injury and sep-
sis respectively18. Although a reduction in total DNase
activity19 and genetic mutations in the DNase isoform
DnaseIL320 have been shown to be associated with the
development of autoimmune diseases and thrombotic
microangiopathies21, DNase levels following thermal
injury have yet to be studied.
DNase 1 activity can be inhibited by actin released from

damaged cells, but enzyme activity is normally protected
by the actin scavenging system proteins, gelsolin and
vitamin D-binding protein (VDBP), which together bind
to and prevent build-up of circulating actin19,22,23. How-
ever, the inter-relationships between all these proteins
is complex owing to their dynamic nature and inter-
actions that ultimately control their individual plasma
concentrations24,25. Given the extensive tissue damage
following severe thermal injury, it is highly probable that
actin is released into the circulation, causing dysregulation
of the actin scavenging system, inhibition of DNase 1
activity and accumulation of cfDNA.
The aim of this prospective longitudinal cohort study

was to evaluate the effect of thermal injury on circulating
cfDNA levels and DNase activity, and to identify poten-
tial mechanisms involved in altered DNase activity. In a
separate follow-on pilot study, the impact of prehospital
resuscitation with plasma, which contains gelsolin and
VDBP, on DNase activity in military patients with severe
polytrauma was studied.

Methods

Patients with thermal injury and study design

Patients with a burn affecting at least 15 per cent of
the total body surface area (TBSA) were recruited into a
prospective longitudinal study within 24 h of injury and fol-
lowed up for 12months. Eighteen healthy controls were
included in the study. Blood samples were collected into
BD Vacutainer® tubes (Becton Dickinson, Oxford, UK)
containing either z-serum clotting activator or a 1/10 vol-
ume of 3⋅2 per cent trisodium citrate. Blood samples were
collected at ten time points after injury: day 1 (24 h or
less), day 3 (± 1 day), day 7 (± 1 day), day 14 (± 3 days),
day 21 (± 3 days), day 28 (± 3 days), month 2 (± 3 days),
month 3 (± 7 days), month 6 (± 7 days) and month 12

(± 7 days). Ethical approval was granted by a UK national

research ethics committee (Reference 12/EM/0432). The

Abbreviated Burn Severity Index (ABSI)26 and the revised

Baux score27 were calculated for each patient. The vari-

ables include: sex and age of patient, presence of inhala-

tion injury, presence of full-thickness burn and percentage

of TBSA burned26. The revised Baux score is a clinical

scoring system that can predict mortality following ther-

mal injury. It is calculated using the age of the patient,

percentage of TBSA burned and presence of inhalation

injury27. A diagnosis of sepsis was made when at least three

of the sepsis trigger criteria agreed by the American Burn

Association were met along with either a positive bacte-

rial culture or when a clinical response to antibiotics was

observed28.

Patients with polytrauma study design

A separate prospective cohort observational study

was undertaken. All trauma casualties requiring full

trauma team activation who presented to Camp Bastion,

Afghanistan, between November 2011 and August 2013

were eligible for inclusion in this study. A full trauma

team activation occurs for any patient triaged before hos-

pital admission as T1 (the most severe triage category)

or meeting the activation criteria (Table S1, supporting

information). All injured patients aged over 18 years were

considered for the study and the mechanism of injury was

explosion. Each patient was assessed against the inclusion

and exclusion criteria (Table S2, supporting information).

Because of the nature of major and massive haemor-

rhage after military trauma, a formal ethics submission

was not required by the Ministry of Defence Research

Ethics Committee as analysis was performed using leftover

plasma (waste), which is a negligible amount in relation to

the amount of clinical blood loss. The US ethical chain,

however, granted ethical approval (log number M-10242).

Informed consent was not required as this represented a

minimal risk study.

Preparation of platelet-free plasma and serum

Citrate anticoagulated blood was centrifuged at 2000 g for

20min at 4∘C. Plasma was then centrifuged at 13 000 g for

20min. For serum, blood samples were collected into BD

Vacutainer® tubes containing z-serum clotting activator

and allowed to clot for 30min at room temperature. Sam-

ples were centrifuged at 1500 g for 10min at room tem-

perature, after which the serum was removed and stored at

–80∘C pending analysis.

© 2019 The Authors. BJS published by John Wiley & Sons Ltd www.bjs.co.uk BJS
on behalf of BJS Society Ltd.
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Preparation of plasma from patients injured
in explosions

Some 4⋅5ml blood was collected into Vacutainer® sodium
citrate collection tubes, with a final ratio of blood to
anticoagulant of 9 : 1. Blood was centrifuged at 1500 g
for 20min (Heraeus® Megafuge 16 series®; ThermoSci-
entific, Altrincham, UK). The plasma was removed and
frozen at –30∘C. Frozen samples were transported to the
UK and stored at –80∘C.

Fluorometric analysis of plasma cell-free DNA
levels

Levels of cfDNA were measured by fluorometric assay
using SYTOX® Green dye (Life Technologies, Warring-
ton, UK). Some 10 μl plasma was incubated with 5 μmol/l
SYTOX® Green dye for 10min and fluorescence was
measured using a BioTek® Synergy 2 fluorometric plate
reader (NorthStar Scientific, Potton, UK) with excita-
tion and emission set at 485 and 528 nm respectively.
For calibration of samples, a λ-DNA (Fisher Scien-
tific, Loughborough, UK) standard curve was used. The
interassay and intra-assay coefficients of variation were 5⋅3
and 5⋅1 per cent respectively.

Quantification of DNase activity in serum
and plasma samples

DNase activity was quantified as described previously19. In
all experiments, 5 per cent serum or plasma was used for
calibration of DNase activity assays, and NET degradation
by pooled serum from nine healthy controls was used to
define 100 per cent activity. Fluorescence was measured
using a BioTek® Synergy 2 fluorometric plate reader with
excitation and emission set at 485 and 528 nm respectively.

Visualization of neutrophil extracellular trap
degradation by fluorescence microscopy

Isolated neutrophils (5× 104) were seeded on to glass
coverslips (VWR International, Lutterworth, UK) and
stimulated with 25 nmol/l phorbolmyristate acetate (PMA)
for 3 h (37∘C and 5 per cent carbon dioxide atmosphere) to
generate NETs. Following stimulation, neutrophils were
incubated for 6 h with 10 units/ml recombinant human
DNase 1 (ThermoScientific), or 5 per cent serum from
healthy controls or patients with thermal injuries. After
incubation, cells were fixed in 4 per cent paraformaldehyde
(37∘C and 5 per cent carbon dioxide atmosphere), per-
meabilized with 0⋅1 per cent Triton X-100, and the DNA
stained with 1 μmol/l SYTOX® Green dye. Once stained,

slides were mounted in Fluoromount™ (Sigma-Aldrich,
Poole, UK) medium and visualized using a Leica DMI
6000 B microscope (Leica, Newcastle Upon Tyne, UK)
with a× 20 objective.

Quantification of gelsolin and vitamin D-binding
protein

Gelsolin levels in serum were quantified using a LSBio™
Human GSN/Gelsolin enzyme-linked immunosorbent
assay (ELISA) kit (LifeSpan BioSciences, Nottingham,
UK). VDBP levels in serum were quantified using a VDBP
ELISA kit (ImmunDiagnostik, Bensheim, Germany).
DNase 1 levels were quantified in plasma using a human
DNASE1/DNase I ELISA kit (LifeSpan BioSciences).

Detection of actin in platelet-free plasma

Actin in platelet-free plasma (PFP) was detected by west-
ern blotting using rabbit antihuman primary antibody
against actin (A2103; Sigma-Aldrich) and horseradish
peroxidase-linked antirabbit IgG secondary antibody (GE
Healthcare Life Sciences, Amersham, UK) for 1 h. PFP
samples were diluted 1 : 5 before analysis. Antigens were
detected using enhanced chemiluminescence (GE Health-
care Life Sciences) and visualized using ChemiDoc™
technology (Bio-Rad, Watford, UK).

Statistical analysis

Data were checked for normality using the Shapiro–Wilk
test. Continuous variables were compared using
Mann–Whitney U test or unpaired t test, with Bonferroni
correction for multiple comparisons. The χ2 test was used
for analysis of categorical variables. A one-way ANOVA
followed by Bonferroni’s post hoc test was performed when
comparing patient data to normal controls.

Table 1 Characteristics of patients with thermal injury and

healthy controls

Patients with

thermal injury (n = 64)

Healthy controls

(n = 18)

Age (years)* 43 (16–88) 45 (20–96)

Sex ratio (M : F) 43 : 21 9 : 9

%TBSA burned* 35 (15–95)

ABSI score* 8 (4–14)

Survived 44

Sepsis 38

Multiple organ failure 19

*Values are mean (range). TBSA, total body surface area; ABSI, Abbrevi-
ated Burn Severity Index.

© 2019 The Authors. BJS published by John Wiley & Sons Ltd www.bjs.co.uk BJS
on behalf of BJS Society Ltd.
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Fig. 1 Thermal injury results in reduced DNase activity in the presence of stable or increased antigen levels
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bars) and individual values are shown. *P< 0⋅001 versus HC (1-way ANOVA followed by Kruskal–Wallis test). b DNase 1 antigen levels in serum taken
from 24 patients on D1 to D28 after thermal injury, and from HC. Median (horizontal bars) and individual values are shown. *P< 0⋅010 versus HC (1-way
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patients with thermal injuries (N = 3), serum from healthy controls (N = 3) and DNAse 1 positive controls (N = 3) (original magnification ×20).

Results

Demographic and clinical data for patients
with thermal injury

Some 64 adult patients with burns were included in the

study, with a mean age of 43 (range 16–88) years and mean

burn size of 35 (15–95) per cent TBSA. Eighteen healthy

controls were included with a mean age of 45 (20–96)

years (Table 1). The incidence of sepsis in this cohort of

burned patients was 59 per cent, with 38 patients expe-

riencing one or more septic episodes during the hospital

stay. The mean number of septic episodes per patient was

3. The mean time to the first episode was 5 (range 3–70)

days after injury, and the time to the last episode was 23

(3–130) days following injury. The incidence of MOF in

the cohort was 30 per cent (19 of 64). The mean number

of independent episodes of MOF was 2 per patient, with

the mean time to the first and last episodes of 5 (2–15)

and 15 (2–56) days respectively following injury. All

© 2019 The Authors. BJS published by John Wiley & Sons Ltd www.bjs.co.uk BJS
on behalf of BJS Society Ltd.
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Fig. 2 Thermal injury causes release of actin into the blood
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Fig. 3 Levels of vitamin D-binding protein and gelsolin are reduced after thermal injury
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Table 2 Data for patients with polytrauma injury

No FFP before

admission

(n = 5)

FFP before

admission

(n = 5) P*

Injury Severity Score 27 (17–59) 22 (16–42) 0⋅579

New Injury Severity Score 36 (18–75) 35 (16–66) 0⋅999

Interval between injury and

admission (min)

75 (30–135) 83 (50–130) 0⋅571

Values are mean (range). The mechanism of injury was explosion. FFP,
fresh frozen plasma. *Mann–Whitney U test.

patients received standardized burn resuscitation protocols
according to the Parkland formula and as such received
equivalent fluid resuscitation (mean(s.d.) 5⋅4(2⋅1)ml per
kg per cent TBSA). Twenty-one patients received fresh
frozen plasma (FFP) when required clinically. The time
between injury and the first unit received ranged from 1
to 57 (median 3) days; patients did not receive sustained

administration. Fifty-eight patients with burns (91 per
cent) had surgical necrotomies starting at a median 2 days
after admission to the burns centre. Of these, 54 (93 per
cent) had complete excision of all deep burns by a median
7 days after admission. The remaining four patients did
not survive until full excision of deep burns.

DNase activity in patients with thermal injury

On days 1–28 after burn injury, there was a significant
reduction in serum DNase activity, relative to that in
healthy controls (64 patients, P< 0⋅001) (Fig. 1a). Reduced
DNase activity was confirmed by fluorescence microscopy;
chromatin remained visible when treated with serum
from burned patients but not that from healthy controls
(Fig. 1c). DNase activity on the day of injury did not corre-
late with the size of thermal injury (per cent TBSA), ABSI
or revised Baux score (Fig. S1, supporting information).
Levels of DNase protein were quantified to investigate

Fig. 4 Blood products increase circulating gelsolin levels and protect against inhibition of DNase activity in patients with polytrauma
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*P= 0⋅028, †P= 0⋅032 (Mann–Whitney U test).
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whether the reduction in DNase activity was mediated
by a reduction in circulating DNase protein. Levels were
quantified in 24 patients who had reduced DNase activity
(below 50 per cent of that in healthy controls) within 24 h
of injury. There was no significant difference in DNase
protein levels on days 1–3 after injury, but a significant
increase was detected on days 7–14 and on day 28 after
injury compared with levels in healthy controls (P< 0⋅010)
(Fig. 1b).

Actin in serum following thermal injury

Circulating actin was detected in 16 of 20 samples taken
from patients within 24 h of injury, but not in plasma from
five healthy controls. Western blot data for plasma actin
in nine representative patient samples taken within 24 h
of injury and two healthy controls are shown in Fig. 2a
(full-length blots are available in Fig. S2, supporting infor-
mation). Actin was also measured at later time points in
five patients to assess its persistence in the circulation.
Actin was detectable up to day 23 after injury in these
patients (Fig. 2b; Fig. S3, supporting information). Lon-
gitudinal western blot data are shown for a patient with
a burn affecting 66 per cent of TBSA who developed
sepsis and MOF. Actin was detected within 24 h, and on
days 3 and days 20–23 after thermal injury in this patient
(Fig. 2b).

Effect of thermal injury on circulating vitamin
D-binding protein and gelsolin levels

Thermal injury resulted in a rapid and significant reduc-
tion in VDBP levels from day 1 to day 3 after injury
compared with levels in healthy controls (P< 0⋅001), with
values returning to control levels by day 7 (Fig. 3a). Levels
of VDBP weakly correlated with DNase activity across
all time points (r = 0⋅15, P = 0⋅013). Thermal injury also
resulted in a significant reduction in gelsolin from day
1 to day 21 after injury compared with levels in healthy
controls (P< 0⋅010), with values returning to control
levels thereafter (Fig. 3b). Levels of gelsolin also correlated
weakly with DNase activity across all time points (r = 0⋅13,
P = 0⋅0058).

Impact of fresh frozen plasma on gelsolin levels
and DNase activity in military patients
with polytrauma

Levels of gelsolin, VDBP and DNase activity were quan-
tified in plasma from patients with polytrauma admitted
to hospital following injuries sustained in explosions. This
cohort of military patients was split into patients who had

(5) or had not (5) received FFP before admission to hos-
pital. There was no significant difference in Injury Sever-
ity Score, New Injury Severity Score or time to admission
after injury between the two groups (Table 2). The decision
whether to administer blood products was determined by
resources available and not the mechanism or severity of
injury. Patients received an mean of 3 units of blood prod-
ucts before hospital admission.
Levels of DNase activity (Fig. 4a) and gelsolin (Fig. 4b)

were significantly higher in patients who received FFP
than in those who did not (P= 0⋅028 and P= 0⋅032 respec-
tively). There was no difference between the two groups in
circulating VDBP or cfDNA levels (Fig. 4c,d).

Discussion

This study showed a reduced ability of postburn injury
serum to degrade cfDNA ex vivo, with concomitant high
levels of cfDNA in the circulation15. Deficiency in DNase
activity will predispose patients to accumulation of cir-
culating cfDNA released following tissue injury15, and
during infection. A novel mechanistic link between the
initial traumatic injury and the pathogenesis of thrombosis
and MOF is suggested (Fig. 5). Furthermore, a prelimi-
nary study highlighted the potential benefit of targeting
the actin scavenging system and reduced DNase activity
following major trauma using human blood products.
There was a reduction in total DNase activity from day

1 to day 28 after injury, a time frame paralleled by an
increase in circulating cfDNA levels from analysis of the
same patient samples15. Measurement of cfDNA is not
straightforward as it can be released by necrosis and apop-
tosis as well as from NETs, resulting in significant differ-
ences in size. For example, chromatin released from NETs
is largely intact, in contrast to the heterogeneous/random
size of DNA released by necrosis and small/uniform DNA
by apoptosis29. In the present cohort, the rapid increase
in cfDNA correlated with measurements of burn size and
severity15. Therefore, although the initial increase in cir-
culating DNA most likely originated from tissue damage
caused by injury, the exact origin is difficult to determine.
Although PCR confirmed that the cfDNA was derived
from the nucleus15, these measurements cannot distinguish
between intact chromatin or oligonucleotides derived by
DNase degradation14. Circulating NETs originate from
neutrophils after induction of tissue injury and sepsis,
and are largely comprised of intact chromatin14. Owing
to the cytotoxic/prothrombotic nature of DNA30,31, the
initial increase in chromatin may therefore contribute to
the immediate host tissue and organ damage. The inabil-
ity to clear chromatin may result in an increased risk of

© 2019 The Authors. BJS published by John Wiley & Sons Ltd www.bjs.co.uk BJS
on behalf of BJS Society Ltd.
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Fig. 5 Hypothesis model suggesting how severe thermal injury results in disruption of the actin scavenging system which predisposes

to DNase activity inhibition and accumulation of cell-free DNA
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Following severe thermal injury, polymerized and monomeric actin is released, which immediately reduces vitamin D-binding protein and gelsolin levels.
The polymerized actin can then bind toDNase and inhibit its activity. Injury- and immune cell-derivedDNA can accumulate and potentially cause activation
of the intrinsic clotting cascade, impaired fibrinolysis, bind to platelets, and cause cellular damage and/or inflammation. NET, neutrophil extracellular trap.

thrombosis, host tissue damage, occlusion of capillary plexi
and MOF13,31. Importantly, thrombotic effects of DNA
and NETs are abolished by DNase32–34. Hence, reduced
DNase may predispose patients to host tissue damage,
thrombosis and organ damage mediated by NET-derived
DNA released following a burn injury. Although a reduc-
tion in DNase activity was shown, it was not possible to
determine accurately a level of DNase activity inhibition at
which this mechanism became important clinically.
Actin exists in a balance between monomeric and fil-

amentous forms35,36, and acts as a damage-associated
molecular pattern37. Circulating actin was detected in
patients with severe burns for up to 28 days after injury.
The immediate release of actin most likely resulted from
the extensive tissue damage, with further release caused by
surgery, infection and/or MOF. Indeed, 58 of 64 patients
in this study had surgical necrotomies starting a median of
2 days after admission, with 54 of these having complete
excision of deep burns by a median of 7 days. Lee and
colleagues38 have also reported increased levels of actin in
a cohort of patients with sepsis38.
Many of the detrimental effects of actin are normally

controlled by the proteins gelsolin and VDBP23. Levels of

both proteins decreased for up to 21 days after injury in the

present study. Decreased levels of gelsolin and VDBP have

also been reported in a number of disease pathologies asso-

ciated with tissue damage39–44, and have been suggested

to be good prognostic markers of outcome/organ damage

following severe trauma45–50. Of note, the initial reduc-

tion in VDBP and gelsolin levels occurred before the onset

of sepsis and MOF in the present cohort. It is probable

that excess actin released from the injury caused the imme-

diate reduction in their circulating levels. Therefore, all

patients with severe thermal injuries are predisposed to a

reduction in DNase activity, and the potential complica-

tions associated with the accumulation of cfDNA (Fig. 5).

Although this study has provided supporting evidence for

the potential effect of actin on the consumption of the actin

scavengers gelsolin and VDBP, and subsequent loss of pro-

tection of the inhibition of DNase activity, the dynamic

balance of their individual circulating concentrations will

be determined by their rate of biosynthesis, half-life and

consumption; this is complex in the context of severe injury

owing to surgery, treatment with blood products, vessel

wall leakiness and dilution caused by resuscitation.

© 2019 The Authors. BJS published by John Wiley & Sons Ltd www.bjs.co.uk BJS
on behalf of BJS Society Ltd.
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FFP is widely used in trauma and burns as an effective

resuscitation/coagulopathy therapy. Given the complexity

of FFP, it is difficult to assess which of its many components

provide benefit. By definition, FFP contains high levels
of gelsolin and VDBP, which may explain some of the

therapeutic potential in the context of traumatic injury51.

To investigate the potential therapeutic benefit of FFP,

the authors undertook a preliminary analysis of samples

acquired from military patients who had received FFP
before admission to hospital following severe polytrauma.

Early administration of FFP significantly increased gelsolin

levels immediately after severe trauma, which was also

accompanied by a significant increase in DNase activity,

though cfDNA levels were not reduced. In 2005, Chhabra
and co-workers52 showed that the N-terminal fragment of

gelsolin could bind to and disrupt actin–DNase complexes,

in turn restoring enzymatic activity52. FFP is not only

effective in treating trauma but was shown previously to
attenuate extracellular nucleosome levels and depletion of

DNase53,54, and to provide neuroprotection in models of

traumatic brain injury55–57.

Given the extensive literature and debate on the value

of FFP in trauma58–60, it may be more beneficial to
use gelsolin in isolation to scavenge excess actin and

restore DNase activity. Indeed, low plasma gelsolin lev-

els on admission to hospital following trauma have been

associated with poor outcome49. Data generated in a rat

burn model showed that administration of gelsolin before
burn injury protected against pulmonary microvasculature

dysfunction61. Although the underlying mechanism was

not confirmed, protection of DNase activity will improve

the clearance of circulating chromatin and cfDNA.
A major limitation of the DNA measurements in both

the trauma and burns cohorts in the present study is

that the size of chromatin/cfDNA was not determined14.

Another limitation is the relatively small sample size as this

study was designed to be exploratory in nature. As such, no
attempt was made to investigate whether levels of DNase

activity, gelsolin or VDBP differed between patients with

and without MOF. The fact that only some patients

received FFP, coupled with the sporadic timing and lack of

sustained administration, means that the effect it may have
exerted on DNase activity and the actin scavenging system

cannot be determined.

A model of postinjury complications has been described,

in which DNase activity was reduced following thermal
injury, driven most likely by raised circulating actin and

acute reductions in levels of the actin scavengers gelsolin

and VDBP. The reduced DNase activity and accumulation

of chromatin/cfDNA may have contributed to organ dam-

age, thrombosis, inflammation and impaired fibrinolysis

(Fig. 5). The results support the possible use of therapeutic

agents including not only DNase itself but FFP and gel-
solin, which can also restore and protect DNase activity in

severe injury.
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