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Abstract

Duchennemuscular dystrophy (DMD) is caused by frameshift mutations in theDMD gene that prevent the body-wide translation

of its protein product, dystrophin. Besides a severe muscle phenotype, cognitive impairment and neuropsychiatric symptoms are

prevalent. Dystrophin protein 71 (Dp71) is the major DMD gene product expressed in the brain and mutations affecting its

expression are associatedwith the DMDneuropsychiatric syndrome. Aswith dystrophin inmuscle, Dp71 localises to dystrophin-

associated protein complexes in the brain. However, unlike in skeletal muscle; in the brain, Dp71 is alternatively spliced to

produce many isoforms with differential subcellular localisations and diverse cellular functions. These include neuronal differ-

entiation, adhesion, cell division and excitatory synapse organisation as well as nuclear functions such as nuclear scaffolding and

DNA repair. In this review, we first describe brain involvement in DMD and the abnormalities observed in the DMD brain. We

then review the gene expression, RNA processing and functions of Dp71. We review genotype-phenotype correlations and

discuss emerging cellular/tissue evidence for the involvement of Dp71 in the neuropathophysiology of DMD. The literature

suggests changes observed in the DMD brain are neurodevelopmental in origin and that their risk and severity is associated with a

cumulative loss of distal DMD gene products such as Dp71. The high risk of neuropsychiatric syndromes in Duchenne patients

warrants early intervention to achieve the best possible quality of life. Unravelling the function and pathophysiological signif-

icance of dystrophin in the brain has become a high research priority to inform the development of brain-targeting treatments for

Duchenne.
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Introduction

The X-linked neuromuscular disorder, Duchenne muscular

dystrophy (DMD), is one of the most common fatal genetic

disorders diagnosed in childhood. It is caused by frameshift

mutations in the DMD gene that prevent the body-wide trans-

lation of its protein product, dystrophin. Although

characterised by the progressive loss of muscle strength and

function [1], cognitive impairment and neuropsychiatric

symptoms are also prevalent. Mounting evidence links these

symptoms to the loss of dystrophin in the brain.

Unlike skeletal muscle, the central nervous system (CNS)

sees the expression of a large variety of DMD transcripts im-

plicated in diverse cellular processes [2]. Dystrophin protein

variants (Dp) are named based on their length in kilodaltons

and are produced through unique promoter usage, alternative

splicing and/or alternative polyadenylation signals. The most

predominant in the brain is the Dp71 variant expressed in

neurones and glia, except during foetal development where

Dp140, also expressed throughout the CNS, dominates [3, 4].

Distal DMDmutations affecting the expression of these shorter

variants are linked to cognitive impairment [5–11]. Dp140 and

Dp71 are both heavily implicated. The risk and severity of

cognitive disability are associated with a cumulative loss of

distal DMD gene products [5, 12]. Thus, it is not entirely clear

which, if any, single DMD gene product is responsible for the

CNS phenotype. There is limited information on Dp140, likely

due to its restricted expression pattern. In contrast, our knowl-

edge of Dp71 has expanded rapidly, there are mouse models

devoid of Dp71 and the literature has become complex. In light
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of this and the fact that 100% of individuals with mutations

affecting Dp71 have intellectual disability [5, 6, 8, 9, 11], we

limit the focus of this review to Dp71.

As many as 14 isoforms of Dp71 have now been described

(Fig. 1) and our understanding of the function(s) of Dp71 has

increased. Here, we provide a detailed update on Dp71 and

review the accumulating evidence linking its loss to the

neuropathophysiology of Duchenne. We first describe the

‘DMD neuropsychiatric syndrome’ coined by Ricotti [13]

and the abnormalities observed in the DMD brain. We then

review the gene expression and RNA processing of Dp71 and

its function(s) and discuss how the absence and/or alteration

of Dp71 likely contributes to the neuropathophysiology of

DMD.

The Duchenne Brain: Human and Animal
Models

Emotional, Behavioural and Neurodevelopmental
Observations

Whilst most individuals with DMD are not intellectually dis-

abled, the risk of cognitive impairment is higher than for the

general population. Full-scale intelligent quotients (FSIQ) are

consistently reported at one standard deviation below the nor-

mal population mean [13, 14] and levels of intellectual dis-

ability within Duchenne cohorts vary between approximately

19 and 35% (Table 1, [13–15]). Patients with distal DMD

mutations affecting the expression of all DMD gene products

have lower FSIQ scores than those with mutations that result

in only the absence of full-length dystrophin [5]. Patients lack-

ing Dp140 and/or Dp71 have a particularly high incidence of

neurodevelopmental disorders [13]. There is a reported in-

crease in epilepsy in patients with Duchenne compared with

the general population (Table 1) and other brain-related co-

morbidities such as attention deficit hyperactivity disorder

(ADHD) and obsessive compulsive disorder (OCD) are more

prevalent in patients who have both DMD and epilepsy com-

pared with non-epilepsy Duchenne patients [17]. Internalising

disorders are reported in around a third of patients [13, 16]

with depression, anxiety and OCD all having a higher preva-

lence than for the general paediatric population (Table 1).

Externalising problems have been reported through parent

reports in 15% of DMD patients [13], and other studies

reveal a diagnosis of ADHD in up to 32% of DMD co-

horts [10, 13, 28].

Fig. 1 Dp71 isoforms and

preferred nomenclature. Dp71

splice isoforms are grouped

according to their C-terminus.

The d group contain exons 78 and

79, the f group lacks exon 78 and

has an alternative exon 79 (79f),

the e group contains part of intron

77 (i77) and lacks exons 78 and

79 and the g group isoform has a

stop codon in exon 77. Their dif-

ferential C-termini are illustrated

and the location of dystroglycan

and syntrophin-binding sites are

indicated

Table 1 Neurological comorbidities in DMD patients

Comorbidity Approximate prevalence (%) Reference(s)

Intellectual disability 19–35 [14–16]

Epilepsy 2–12 [17–20]

Autism 20 [13, 21–23]

Internalising problems 24–34 [13, 16]

Depression 17–27 [24–26]

Anxiety 24–29 [16, 25–27]

OCD 5–14 [16, 27, 28]

Externalising problems 15 [13]

ADHD 12–32 [10, 13, 28]

Reading disability 40–50 [29–32]
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In addition to the comorbidities listed in Table 1, memory

deficits are widely acknowledged with impairments in short-

term working memory particularly apparent (e.g. story recall,

digit span and auditory comprehension) [33–38]. Together

with a high occurrence of reading disabilities (40–50%,

Table 1) and speech delay [39], these deficits likely affect

academic achievement. In the study by Ricotti [13], over a

third of boys presented with at least two neurological comor-

bidities and Battini et al. [34] show that cognitive impairment

is apparent even in patients without intellectual disability.

Individuals with the similarly progressive disorder, spinal

muscular atrophy, do not show the reading and learning dis-

abilities described for DMD suggesting that cognitive impair-

ment in DMD does not depend on motor disability [40]. The

b r e a d t h a n d c l u s t e r i n g o f b e h a v i o u r a l a n d

neurodevelopmental disorders in DMD reveal the existence

of a ‘DMD neuropsychiatric syndrome’ [13] which warrants

prompt management and therapeutic intervention.

Animal Models

It is unlikely that animal models can fully recapitulate the

DMD neuropsychiatric syndrome, although alterations in

learning and behaviour are apparent. The most commonly

used DMD disease model is the mdx mouse which harbours

a naturally occurring nonsense mutation in dmd exon 23

resulting in an absence of full-length dystrophin expression

[41]. Fear-motivated defensive behaviour, and according to

some studies anxiety, are enhanced in mdx mice [42, 43].

Altered social behaviour and ultrasonic communication are

noted [44] and learning and memory performance is impaired

in some studies [45–49] but not others [50, 51]. Other mdx

strains have been developed to explore the contribution of the

different DMD gene products to pathology and disease phe-

notype. The mdx3cv mouse retains a low level of expression

of near full-length dystrophin but is deficient in C-terminal

dystrophin gene products [52]; Im et al. [53] show this to be

the onlymdx strain without Dp71 expression in the brain. The

mdx3cvmice display enhanced anxiety-related behaviour and

reduced locomotion in comparison with mdx, although sur-

prisingly learning impairments are subtle and in some tests

on par with mdx [54]. Dp71-null mice have been developed

by homologous recombination; in contrast tomdx strains, they

do not display muscular dystrophy [55]. These mice have

deficits in cognitive flexibility, spatial learning and memory

and cerebellum-dependent navigation strategies [56, 57].

Results from the Daoud et al.’s study [58] suggest that the

learning deficits in Dp71-null mice are more severe than

mdx. Reports of cognitive deficiency in any dog or large

DMD animal models are scarce. In dystrophin-deficient min-

iature poodles, learning difficulties and abnormal behaviours

have been reported, these dogs have a large deletion on the X

chromosome encompassing the entire DMD gene [59].

Gross Anatomical and Histological Observations

There is conflicting evidence relating to the presence and ex-

tent of anatomical brain abnormalities in DMD. Many studies

report no gross central nervous system disturbances [60–63].

Other work describes both gross and histological abnormali-

ties in DMD patients with varying degrees of severity

[64–67]. Jagadha and Becker [66] report several neuropatho-

logical observations including neuronal loss, gliosis, Purkinje

cell loss and abnormal dendritic development. One autopsy

report of a DMD individual with severe intellectual disability

revealed an atrophic brain with unusual multifocal small nod-

ules in multiple layers of the prefrontal cortex [67]. The nod-

ules were of astrocytic origin and believed to be a result of

changes during early brain development. Other studies have

also reported brain atrophy amongst DMD cohorts [68, 69].

Yoshioka et al. [68] observed slight cerebral atrophy in 67% of

DMD patients and found that severity correlated with age.

This is suggestive of a progressive cerebral degeneration, al-

though there have been no longitudinal studies to confirm if

the behavioural and cognitive symptoms themselves are

progressive.

The head circumference of boys with Duchenne is larger

than the normal population indicative of macrocephaly [70,

71]. Although the majority of DMD patients with relative, or

absolute, macrocephaly are intellectually impaired, head cir-

cumference does not correlate with intellectual performance in

DMD [70]. Interestingly, in Alzheimer’s disease patients with

cerebral atrophy, a larger head circumference is associated

with less cognitive impairment [72]. To some extent, the larger

head circumference in DMD may be determined by hypertro-

phy of temporal muscles, skull shape is also significantly

rounder in DMD patients compared with controls [73].

Conversely, no differences are found in skull morphology of

mdx mice, presumably since bite force is unaffected in these

mice [74, 75].

Electrophysiological studies using electroencephalograms

(EEG) on DMD patients have been reviewed in 2002 [63],

most studies report a higher proportion of abnormalities

amongst DMD patient groups. A transcranial magnetic stim-

ulation study showed reduced excitability of the motor cortex

attributed to altered synaptic functioning and reduced dystro-

phin at the synapse [76].

An MRI study by Doorenweerd et al. [12] confirms the con-

sensus that upon routine assessment, the brains of individuals

with DMD (and animal models) show no gross abnormalities.

Detailed quantitative analysis of images from an increased sam-

ple size did however reveal significantly smaller total brain and

grey matter volumes in a DMD patient group. Further analysis

showed significantly smaller greymatter regions in the left insula

and occipital lobe, but these regions are too small to account for

the reduced volume alone. White matter fractional anisotropy

was also lower and radial diffusivity higher in DMD patients
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versus controls indicating that while white matter volume is un-

affected, its structural organisation is compromised [12]. Smaller

grey matter volume has been reported elsewhere [77] and

Doorenweerd et al. suggest that, after correcting total brain vol-

ume to intracranial volume, altered brain maturation is responsi-

ble for smaller Duchenne brains rather than atrophy [12]. These

alterations were more pronounced in patients lacking Dp140,

patients lacking Dp71 were unavailable to this study.

Independently of grey matter volume, cerebral blood flow

(CBF) is lower (17%) in DMD patients compared with controls

with no correlation to age, ambulation or cardiac involvement

[12], CBF is also reduced to the same extent in the mdx mouse

[78].

MRI studies inmdxmice have shown no significant differ-

ences in total brain volumes [75, 79, 80], although regional

structural changes are apparent with reports of enlarged lateral

ventricles [80], hippocampus, globus pallidus and caudate pu-

tamen and a smaller hypothalamus [75].

Molecular Pathophysiology

Although shorter DMD transcripts are more abundant in the

brain, full-length gene products are also produced (Table 2).

Doorenweerd et al. [81] provide a detailed analysis of the

spacial and temporal expression patterns of DMD transcripts

in the healthy human brain. Expression from the dystrophin

Purkinje promoter in mice produces Dp427p in cerebellar

Purkinje cells, but such expression is absent in the human

brain throughout development [81, 86] suggesting a different

role for Dp427p in mouse than human and questioning the use

of mouse models to study the brain in DMD. Interestingly,

there is a cerebellar and hippocampal focus to biochemical

alterations in DMD brains. Phonological dyslexia and verbal

working memory deficits, commonly observed in DMD, are

associated with the cerebellum [32, 40, 63, 93–95] and learn-

ing and memory are linked to the hippocampus. Cyrulnik in

2008 [21] argued that Duchenne is a cerebellar disorder, and

recently in vivo, electrophysiology studies on mdx mice have

revealed abnormal cerebellar circuit function [96]. The find-

ings of Doreenweerd et al. in 2017 [81] emphasise the amyg-

dala and hippocampus since it recently transpired that, in con-

trast to animal studies, DMD expression is highest in the hip-

pocampus and amygdala and lowest in the cerebellum in the

human brain.

In contrast to subtle changes in gross anatomy, abnormal-

ities at the microscopic level are robust, with most knowledge

arising from studies on the mdx mouse. The absolute number

and the packing density of cells in the corticospinal system of

mdx mice are 50% lower than controls and corticospinal

neurones were found to have a rounder cell body than pyra-

midal controls [97]. There is also a significant reduction in

hippocampal cell density [98].

Full-length dystrophin co-localises with GABAA receptors

in the mouse cerebellum, cerebral cortex and hippocampus

[99]. GABAA clusters are reduced in the mdx amygdala, cer-

ebellum and hippocampus, most notably in cerebellar

Purkinje cells, indicating a role for Dp427 in the clustering

or stabilisation of GABAA receptors in central inhibitory syn-

apses [42, 99]. Similarly, the absence of Dp71 in other models

is associated with altered clustering of the water channel

aquaporin-4 and the Kir4.1 potassium channel in retinal glial

cells as well as altered clustering and maturation of hippocam-

pal neuronal glutamatergic receptors [58, 100]; these are

discussed later in relation to the functional diversity of

Dp71. Interestingly, in the mdx mouse brain, Dp71 is found

in monomeric form compared with a crosslinker-induced olig-

omeric state observed in control brains [101].

Positron emission tomography (PET) studies have revealed

regional glucose hypometabolism in DMD patients in dystro-

phin expressing regions. This appears unrelated to motor def-

icit and is indicative of lowered synaptic activity and is a

common characteristic of disorders involving cognitive im-

pairment [62, 102]. Altered glucose metabolism is also appar-

ent in mdx mice which have significantly decreased free glu-

cose levels and increased glucose use [103]. Like in dystro-

phic muscle, there are abnormal metabolite ratios in the brains

Table 2 DMD gene products expressed in the brain

DMD product Expression Reference(s)

Dp427m Low but detectable throughout brain development [81–83]

Dp427c Postsynaptic density of neurones in the cerebral cortex, hippocampus, amygdala and cerebellum [81, 82, 84, 85]

Dp427p Purkinje cells [81, 86, 87]

Dp260 Retina [88]

Dp140 Cerebral cortex during foetal development with some low expression postnatally in the cerebellum [4, 81, 88]

Dp116 Schwann cells [89]

Dp71 Ubiquitous and stable throughout development and adult life [81, 90, 91]

Dp40 Ubiquitous [92]

m muscle, c cortical, p Purkinje. Splice isoforms are not shown

Mol Neurobiol (2020) 57:1748–1767 1751



of DMD patients and mdx mice such as a higher ratio of

inorganic phosphate to ATP [104, 105]. These altered ratios

do not correlate with cognitive profile or genotype and could

be related to CO2 retention which is typically associated with

neuromuscular disorders [63, 106]. Conversely, a proton mag-

netic resonance spectroscopy study by Doorenweerd reported

a preserved biochemical composition in human DMD brains

when compared with age-matched controls [107].

A chronically sustainable increase in choline-containing

compounds has been reported in the frontal cortex and cerebel-

lum of DMD patients and is not thought to be associated with

intellectual disability but rather a beneficial compensatory

mechanism [61, 103, 108]. In older mdx mice, the increase in

choline-containing compounds is confined to the cerebellum

and hippocampus [80, 103]. An elevation in choline-

containing compounds is observed in a number of brain disor-

ders and thought to be indicative of an unsustainable increase in

membrane turnover from inflammation or increased cell divi-

sion [61, 63]. The fact that in DMD, the increase is sustainable

suggests that it is not due to changes in membrane turnover but

is rather a permanent change in the level of water-soluble cho-

line-containing compounds [61].

An age-related reduction in the water channel protein

aquaporin-4 has been observed in astrocytic end feet sur-

rounding capillaries in the brains of mdx mice. This was ac-

companied with swelling of the astrocytic perivascular pro-

cesses which is an early indicator of brain oedema [109].

Altered cellular volumes have been reported in mdx brains

[105] but no differences have been found in the response to

hypoosmotic shock [103]. A reduction of Dp71 at glial end

feet has been shown to alter blood brain barrier (BBB) devel-

opment which is altered in the mdx mouse [110, 111].

Dystrophin expression parallels BBB development and

perivascular glial arrangement in control mice [110, 112].

In mdx mice, CA1 hippocampal neurones have an in-

creased susceptibility to hypoxia-induced reduction in synap-

tic transmission, this indicates a role for dystrophin in

protecting neurones from hypoxia-induced damage [113].

Biochemical studies on learning and memory appear as con-

flicting as their behavioural counterparts described above,

likely due to the nature of the training procedures used in

memory and learning tasks. Sesay et al. [51] report no differ-

ences in long-term potentiation (LTP) in CA1 and dentate

gyrus areas of the hippocampus in mdx mice compared with

controls. Vaillend et al. [50] also reported no change in LTP in

either mdx or the mdx3cvmouse which has altered expression

of all dystrophin gene products. Instead, dystrophin deficiency

appears to increase NMDA receptor–mediated short-term po-

tentiation in mdx mice [50, 54, 114, 115], this may be due to

the decreased GABAA receptor clustering in dystrophin-

deficient hippocampal neurones [114]. In a later study, using

different training paradigms, Vaillend et al. did report en-

hanced CA1 hippocampal LTP in mdx mice demonstrating

that memory defects may be corrected through specific train-

ing procedures, such as extended or distributed training [48].

Such altered synaptic plasticity may be responsible for the

defects in memory consolidation in learning tasks observed

in mdx mice: notably impaired long-term object recognition

and impaired long-term spatial memory. An observed reduc-

tion in the number of CA1 pyramidal neurones in the

anterodorsal hippocampus of mdx mice may also contribute

to hippocampal-dependent learning and memory deficits in

DMD [98].

In the Dp71-null mouse, the excitation/inhibition balance

of the prefrontal cortex is shifted in favour of increased exci-

tation. Whilst inhibitory transmission is unaffected, alterations

of AMPA receptor–mediated glutamatergic transmission are

apparent along with reduced synaptic plasticity [57].

Helleringer et al. in 2018 also report that Dp71 deficiency

increases excitatory transmission [56]. They studied cerebellar

physiology and function showing that enhanced transmission

at climbing fibres on Purkinje neurones is linked to impair-

ments in synaptic plasticity and the clustering of postsynaptic

density protein 95 (PSD-95).

Collectively, both animal and human DMD studies have

revealed molecular abnormalities centred around the hippo-

campus, amygdala and cerebellum. Given the predominance

of Dp71 expression in these areas, and indeed the CNS as a

whole, to understand the neuropathophysiology of Duchenne,

a detailed understanding of this DMD gene product is

essential.

Dp71 Gene Expression and Splice Variants

Dp71 (also known as apo-dystrophin-1) was first described as

a 6.5-kb mRNA transcript in 1990 and subsequently con-

firmed to be encoded by a 4.8-kb mRNA present in all tissues

with the exception of skeletal muscle [90, 91, 116–118].

Recently and contradictorily, Dp71 transcript and protein have

been detected in skeletal muscle [119]. The promoter is ap-

proximately 8-kb upstream of Dp427m exon 63, the transcript

has a novel first exon encoding a unique seven amino acid N-

terminal sequence, MREQLKG [116, 120]. Thereafter, Dp71

shares exons 63–79 with full-length dystrophin which encode

for the C-terminal and cysteine-rich domains. Dp71 therefore

lacks the whole spectrin-like repeat and N-terminal actin-

binding domains of full-length dystrophin, although the novel

N-terminus of Dp71 does encode an actin-binding domain

sufficient to localise Dp71 to actin filaments [121]. Studies

on the promoter reveal it to be a housekeeping-type promoter

as expected for ubiquitously expressed genes. It has a high GC

content, four potential specificity protein 1 (Sp1)-binding sites

and no TATA box [122]. Sp1 is a positive regulator and binds

to GC-rich regions in the Dp71 promoter region to help define

the transcription start site (Fig. 2). Dp71 is thought to be
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expressed during early myogenesis to aid in cytoskeletal re-

modelling [121] but its expression is then inactivated in ma-

ture muscle to prevent competition with full-length dystrophin

for dystrophin-associated protein-binding sites [3, 123]. In

contrast, in neurones, Dp71 expression remains strongly in-

duced even in differentiated neurones. Sp1 works with acti-

vating protein 2α (AP2α) to maintain Dp71 expression, with

AP2α acting as a negative regulator that is released from the

AP2 motif during neuronal differentiation (Fig. 2) [124].

Dp71 expression has been shown to be developmentally reg-

ulated in several models. Transcript and protein are elevated

during cAMP-induced differentiation of rat astrocytes [125]

and nerve growth factor (NGF)–induced differentiation of

PC12 cells [126, 127]. Sarig et al. [55] studied the differential

activity of the Dp71 promoter during mouse development and

showed that relatively high Dp71 promoter activity was ob-

served alongside morphogenic events and terminal differenti-

ation in several tissues including the CNS. Of note, the hip-

pocampus showed particularly high activity in line with the

latest findings by Doorenweerd [81]. The constitutive expres-

sion levels of Dp71 have been shown to be regulated post-

translationally by the ubiquitin proteasome pathway in PC12

cells with phosphorylation being involved in the proteasome-

dependent degradation of Dp71 [128].

Unlike muscle, the brain sees the highest regulatory com-

plexity in RNA processing events. It is not surprising that the

predominant dystrophin protein variants in the brain are alter-

natively spliced [129]. Several isoforms of Dp71 have been

described as a result of alternative splicing. At the time of writ-

ing, we are aware of 14 Dp71 isoforms, although some are yet

to be detected at the protein level (Fig. 1 and Table 3). This is in

contrast to the recently identified Dp71 in skeletal muscle

which is found with all exons intact [119]. Austin et al. [91]

in 1995were the first to characterise four canonical alternatively

spliced Dp71 transcripts in cultured human aminocytes. The

four isoforms differ according to the presence or absence of

exons 71 and 78 (Fig. 1). The absence of exon 78 shifts the

reading frame and creates a unique C-terminus by replacing the

last 13 amino acids (RNTPGKPMREDTM) with 31 new resi-

dues (HNVGSLFHMADDLGRAMESLVSVMTDEEGAE).

Dp71 lacking exon 71 was termed Dp71d and Dp71 lacking

exon 78 termed the founder sequence, or Dp71f. Subsequently,

this terminology was replaced with Dp71a and Dp71b respec-

tively and the isoform missing both exons 71 and 78 termed

Dp71ab. A fifth Dp71 isoform, first described in human foetal

neural tissue, lacks exons 71–74 [130, 131]. The additional loss

of exons 71–74 (an in-frame deletion of 330 bp) removes the

110 amino acid syntrophin–binding domain and the isoform is

detected as a 58-kDa protein on western blot. The isoform,

termed Dp71Δ110, can also be alternatively spliced for exon

78 creating a sixth isoform [131]. To our knowledge,

Dp71Δ110 has only been detected in the CNS where it repre-

sents a relatively small proportion of Dp71 isoforms in the brain

[131]. In 2012, Saint Martin et al. [132] described a new alter-

native splicing event in rat PC12 cells that gives rise to the

Dp71e isoform. Dp71e retains the last 34 bp of intron 77 that

results in a frameshift and premature stop codon preventing the

translation of exons 78 and 79. The unique C-terminus of

Dp71e is hydrophilic and composed of 10 amino acids,

DLSASSSLYY. Subsequently, two Dp71e isoforms with exon

71 or exons 71–74 removed have been described in rat PC12

cells [133]. Aragon et al. [133] have further extended the rep-

ertoire of Dp71 isoforms using mouse brain and retina tissue to

identify four new isoforms with varying splicing patterns be-

tween exons 71 and 74 (Fig. 1). Finally, the most recently

discovered isoform of Dp71 is deleted for exons 68–76 and

exon 78 (the smallest yet, predicted to be 25 kDa) and was

described in a glioblastoma cell line and termed Dp71bΔ68-76.

Dp71bΔ68-76 has a unique C-terminus due to a stop codon in

exon 77, the unique amino acids are VRKIFSVLPRTQAQG.

These authors also describe an isoform missing exons 71, 73

and 78 termed Dp71ab△73 [134]. Rani report such Dp71′b′ type

isoforms to be themajor type of Dp71 in glioblastoma cell lines.

Aragon et al. [135] have demonstrated that the Dp71d group of

isoforms is highly expressed in the brain, while the Dp71f

group predominates in the retina; Dp71e group is thought to

be expressed at very low levels [135].

Dp71 isoforms have a complicated nomenclature.

Recently, the multitude of additional splice variants has

prompted their grouping according to C-terminal structure.

Current, and favoured, nomenclature was described by

Aragon et al. in 2018 [135] and is updated here in Fig. 1 and

Table 3. In line with this favoured nomenclature and as pro-

posed by Rani et al. [134], the Dp71bΔ68-76 isoform forms a

Sp1 Sp1 Ap2

Sp1

Ap2

Dp71 coding sequence 

+1

Sp1 Sp1 

Fig. 2 The Dp71 promoter

region. Dp71 expression during

neuronal differentitation is

maintained by the combined

action of Sp1 and AP2α as

positive and negative regulators

respectively. The transcription

start site (+1) and Dp71 coding

region are indicated
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new group, g, and can be renamed Dp71gΔ68-76. The d group

of Dp71 isoforms contain exons 78 and 79, the f group lacks

exon 78 and has an alternative exon 79 (79f) and the e group

contains part of intron 77 (i77) and lacks exons 78 and 79. The

f group isoforms have a more hydrophobic C-terminus than

the d and e groups and can be detectedwith specific antibodies

such as 5F3 [3, 136]. The g group isoform has a stop codon in

exon 77.

Although some isoforms have yet to be detected at the

protein level, it is clear that RNA processing is responsible

for the ubiquity and functional diversity of Dp71 in the brain.

Functional Diversity of Dp71

The multitude of Dp71 isoforms described above makes func-

tional studies difficult. Many studies and reviews concerning

the DMD neuropsychiatric syndrome have considered Dp71 a

single protein and many use a pan Dp71 antibody unable to

discriminate between splice isoforms. It is important that the

repertoire of isoforms in a chosen model be established along-

side any functional studies. This has been done for example in

a glioblastoma cell line [134] and PC12 cells [133], the latter

being the most common cellular model to asses Dp71 func-

tion. PC12 cells are derived from a pheochromocytoma of the

rat adrenal medulla. The tissue has an embryonic origin from

the neural crest with populations of neuroblastic cells. It must

be noted that this model system has some limitations for the

study of the human nervous system. In this review, the term

Dp71 should be taken to encompass the whole family of iso-

forms unless otherwise stated; where specific splice isoform

data is available, we use current nomenclature described

above.

A canonical function of Dp71 in the brain relates to the

clustering of the water channel aquaporin-4 (AQP4) and the

inwardly rectifying potassium channel Kir4.1 in retinal Müller

glial cells [137, 138]. It is well documented that DMD patients

withmutations towards the centre and 3′ end of theDMD gene

have an abnormal electroretinogram. Retinal Müller glial cells

are responsible for maintaining retinal homeostasis; Dp71 is

the only dystrophin gene product expressed in these cells and

it anchors AQP4 and Kir4.1 channels at the glial perivascular

end-feet which are essential for osmoregulation and potassium

buffering respectively (Fig. 3) [139, 140]. Retinal Müller glial

cells are a common cell model used to study Dp71 [3] and a

clear role for Dp71 in retinal osmoregulation and vascular

permeability of the retina is established. A role for Dp71 in

the clustering of ion channels and receptors is not limited to

glial cells with Dp71 reported to play a role in the clustering

and maturation of glutamatergic receptors in hippocampal

neurones (Fig. 4) [58]. Dp71-null mice have increased excit-

atory transmission, aberrant synapse density, organisation and

maturation as well as reduced synaptic plasticity in the CA1

hippocampus [58, 100]. Beyond these roles in glia, synapse

Table 3 Dp71 isoform grouping and nomenclature
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functions and neuronal excitability, the emerging complexity

of Dp71 splice isoforms and their differential subcellular

localisations has led to an expanding repertoire of functions

which we discuss below.

Dp71 has long been confirmed a cytoskeletal plasma

membrane–associated protein in various tissues and cells in-

cluding cultured rat brain astrocytes [3]. Like full-length dys-

trophin in muscle, Dp71 forms a dystrophin-associated pro-

tein complex (DAPC) in the brain [3]. Dp71 therefore retains

some recognisable functionality of full-length dystrophin

through binding with dystroglycans, dystrobrevins and

syntrophins since their binding domains are located near the

C-terminus. The dystroglycan-binding site on dystrophin has

been delineated to amino acids 3054–3271 (spanning exons

61–68, [141]) whilst syntrophin-binding sites are coded by

exons 73–74 [142]. Although Dp71 is able to restore the

DAPC in skeletal muscle, it does not compensate for the lost

function of Dp427; thus, even though Dp71 interacts with

some of the same proteins, it likely has different functions than

full-length dystrophin [91]. The existence of Dp71 splice iso-

forms without the capacity to bind such dystrophin-associated

proteins demonstrates a complex functional diversity regulat-

ed via RNA processing. Blake et al. [143] indicate differences

in DAPC composition between neurones and glia and show

Dp71 to be associated with α-dystrobrevin-1 and syntrophin

in glia; interestingly, such complexes are still formed in

mdx3cv mice which lack C-terminal dystrophins, although

later studies have shown disruption of such complexes in

these mice [144]. Dp71-DAPCs in several tissues have since

been characterised and revealed to differ according to cell type

andmicroenvironment (reviewed by [3]). Dp71-DAPCs in the

CNS contain the following: β-dystroglycan, δ-sarcoglycan,

α1-syntrophin in rat retinal Müller glial cells [145] and α-

dystrobrevin-1, α1- and β2-syntrophin, and α- and β-

dystroglycan in glial end-feet and vascular endothelial cells

[144]. In undifferentiated PC12 cells, Dp71fΔ71 is associated

with β-dystroglycan, β1-syntrophin, β-dystrobrevin and α-,

β-, and γ-sarcoglycan [146]. During NGF-induced differenti-

ation, the complex is altered to contain β-dystroglycan, α1-

syntrophin,β-dystrobrevin, γ-sarcoglycan and neuronal nitric

oxide synthase (nNOS). The latter hints at an involvement for

Dp71fΔ71 in signal transduction during neuronal differentia-

tion [146].

A role for Dp71 in neuronal differentiation is supported by

the fact that Dp71d and f are upregulated during PC12 cell

differentiation. Reduced Dp71 expression inhibits NGF-

Fig. 3 The canonical non-

neuronal role of Dp71. In the ret-

ina, Dp71 anchors aquaporin 4

(AQP4) and the inwardly rectify-

ing potassium channel (Kir4.1) at

the glial perivascular end-feet of

Müller glial cells. α-syn, alpha-

syntrophin

Fig. 4 A proposed synaptic

function for Dp71. Dp71

organises glutamate receptor

distribution at the postsynaptic

density. The exact position and

binding of Dp71 in relation to

PSD-95 and particular receptors is

unclear
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induced neurite outgrowth and neuronal differentiation in

PC12 cells [147]. Acosta et al. show that the late differentia-

tion marker, microtubule-associated protein 2 (MAP2) is

inhibited along with Dp71 and that the loss of Dp71 also

correlates with altered dystrophin-associated protein expres-

sion. Furthermore, Aragon et al. 2016 [133] identified Dp71

isoforms in PC12 cells localised to neurite extensions and

growth cones suggesting a role in differentiation and neurite

growth, also supported by [58] who showDp71f expression in

the growth cones of cultured neurones from Dp71-null mice,

more so in excitatory synapses. The splice isoform Dp71eΔ71

has also recently been shown to have a role in neurite out-

growth in PC12 cells through regulating the expression of the

cytoskeletal proteins HspB1, S110A6 and K8 as well as the

HCNP protein involved in neurotransmitter synthesis [148].

These authors overexpressed Dp71eΔ71 during neuronal dif-

ferentiation and found overexpression to increase neuronal

differentiation and alter the expression profile. Cytoskeletal

reorganisation and neurotransmitter synthesis are both re-

quired for differentiation which appears a key role for Dp71

in neurones. In support of these findings, the same group

generated a Dp71 mutant lacking exons 78 and 79,

Dp71Δ78-79 which they show to stimulate PC12 proliferation

[149], cell differentiation [150] and neurite outgrowth through

the phosphorylation of HspB1 [151].

Dp71 expression is not confined to the plasma membrane

indicating it has different functions within the same cell (Fig.

5). Both Dp71d and Dp71f have been found in cultured neuronal

nuclei [152]. Using Dp71 group–specific antibodies, Dp71d was

found within nuclear granules in both neurones and astrocytes

whilst Dp71f nuclear staining was only observed in neurones

[152]. Dp71f and Dp71fΔ71 are also localised to the nucleus of

HEK293 cells with Dp71f appearing more dominant and

Dp71fΔ71 specific to only the nucleus [153]. Alternative splicing

determines the subcellular localisation of Dp71. Using GFP-

tagged constructs with or without exons 71 and 78, Gonzalez

et al. [154] determined that the construct lacking both exons 71

and 78 (Dp71fΔ71) is found exclusively in the cytoplasm of

HeLa, C2C12 and N1E-115 cells whilst Dp71dΔ71 was found

exclusively in the nucleus. Dp71d and Dp71f, containing exon

71, had both nuclear and cytoplasmic localisations. Marquez in

2003 [127] later confirmed the exclusive localisation of

Dp71dΔ71 and Dp71f Δ71 to the nucleus and cytoplasm of

PC12 cells respectively. The presence of either exon 71 or exon

78 therefore appears to determine the subcellular localisation of

Dp71. Furthermore, during NGF-induced PC12 cell differentia-

tion, Dp71f Δ71 relocates from the cytoplasm to neuritic process-

es such as the growth cone and Dp71dΔ71 appears to relocate

almost entirely to the nucleus where it binds the nuclear matrix

during the late stages of neuronal differentiation in PC12 cells

(Fig. 5) [127, 155], thus not only are Dp71 levels upregulated but

there is a differential subcellular localisation of Dp71 isoforms

during neuronal differentiation. Garcia Cruz et al. [148] also

document an increase in nuclear expression of Dp71eΔ71 during

neuronal differentiation. Interestingly, throughout the process of

differentiation, Dp71 maintains a co-localisation with β-dystro-

glycan, including during the relocation of Dp71dΔ71 to the nu-

cleus where levels of β-dystroglycan are also increased [127].

Dp71 is known to interact directly withβ-dystroglycan, the most

abundant dystrophin-associated protein that binds intracellularly

to dystrophin and extracellularly to α-dystroglycan forming a

strengthening link between the extra cellular matrix and the cy-

toplasm [156]. Thus, it is suggested that a Dp71-containing

DAPC exists in the nucleus of neuronal cells. Indeed, Dp71

co-immunoprecipitates with sarcoglycans, β-dystroglycan,

syntrophins and dystrobrevins in HeLa, C2C12 and PC12 nucle-

ar fractions where a nuclear DAPC is formed [3, 157–159].

Dp71 does not contain a nuclear localisation signal (NLS)

but, like other nuclear proteins, phosphorylation appears to

regulate its nuclear transport. Dp71dΔ71 is phosphorylated at

serine and threonine residues in PC12 cells by protein kinase

C (PKC) and the Ca2+/calmodulin-dependent protein kinase

II (CaMKII) with NGF treatment stimulating phosphorylation

and CaMKII-phosphorylated Dp71d favouring a nuclear

localisation (Fig. 5) [155]. It is suggested that a CaMKII phos-

phorylation site located in exon 79 modulates the nuclear

localisation of Dp71dΔ71 since this site is not present in the

unique C-terminus of Dp71f group isoforms. Phosphorylation

of dystrophin is known to mediate its interactions with mem-

bers of the DAPC and actin [155] and β-dystroglycan con-

tains a NLS [160]; therefore, Dp71 may access the nucleus

through its interaction withβ-dystroglycan [3]. More recently,

it was determined using truncation mutants in C2C12 cells

that Dp71d shuttles between the nucleus and cytoplasm

through association with importin (IMP) α/β and the exportin

CRM1 [161]. These authors found the cysteine-rich zinc-

finger ZZ domain is required for import and that Dp71

likely utilises microtubules and the motor protein dynein

for retrograde transport to the nucleus from the plasma

membrane [161]. The alternative splicing of Dp71 may

control phosphorylation events (and ultimately function)

since phosphorylation of Dp71 by cyclin-dependent kinase

1 (CDK1) occurs at a site in exon 78; such a site is not

present in utrophin, a protein with high homology to dys-

trophin [91]. Thus, Dp71 is precisely and differentially

regulated during PC12 cell differentiation.

Besides the plasma membrane and nucleus, Dp71d and

Dp71f group isoforms have been observed in the Golgi appa-

ratus and Dp71d in the neurofilament cytoskeleton [152].

Dp71d group isoforms are also reported to be localised in

microsomes and a Dp71f-like protein is expressed in mito-

chondria of mdx3cv mice [162].

Taken together, RNA processing is important for the cor-

rect localisation and function of dystrophin in the brain with

the C-terminal end in particular determining the location and

thus function of each isoform.
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Adhesion

Given Dp71 isoforms are differentially expressed and local-

ised during neuronal differentiation and the apparent role of

Dp71 in signalling during neuronal differentiation, it is unsur-

prising a role for Dp71 in adhesion has been described given

that adhesion and differentiation are closely linked.

The DAPC is known to interact with the integrin adhesion

system including proteins such as the integrins, viniculin,

talin, paxillin and focal adhesion kinase (FAK); evidence

now links Dp71 with cell adhesion in the brain [3]. In the

glioblastoma cell line, U-373 MG Garcia-Tovar et al. showed

a Dp71f group isoform localised to the focal complex and

leading borders of lamellipodia where it co-localises with vin-

culin, β1-integrin and α-actinin [163]. Dp71fΔ71-74 and

Dp71dΔ71-74 also appear to be involved in the remodelling

of the platelet cytoskeleton where in mdx3cv mice thrombin-

mediated platelet adhesion is impaired [3, 164]. Dp71fΔ71

binds to the adhesion complex in PC12 cells, associating with

FAK, β1-integrin, actin, talin and α-actinin (Fig. 5) [165,

166]. The depletion of Dp71 results in a reduction of β1-

integrin adhesion complex components and deficient adhesion

to laminin [166]. Cerna et al. further demonstrate that

Dp71fΔ71 binds directly to FAK and β1-integrin, thus Dp71

is a structural component of theβ1-integrin adhesion complex

in PC12 cells required for correct function and/or assembly

and stability [166]. Interestingly, in the study by Cerna, β-

dystroglycan was not detected in immunoprecipitates of β1-

integrin and FAK suggesting the binding of β-dystroglycan to

Dp71 is out of the context of the adhesion complex.

Adhesion, neurite outgrowth and differentiation are closely

linked, it is proposed that the deficient adhesion activity of

Dp71fΔ71-depleted PC12 cells is responsible for their lack of

NGF-induced neurite outgrowth [3, 147]. Cerna et al. pro-

posed a model which we update in Fig. 5 of how Dp71fΔ71

associates with the β1-integrin adhesion complex. Its associ-

ation with α-actinin suggests crosstalk between the Dp71-

containing DAPC and the adhesion complex with Dp71

Fig. 5 Multiple non-synaptic roles of Dp71. (1) Upon NGF-induced dif-

ferentiation, Dp71d is phosphorylated by CaMKII and relocates to the

nucleus where it forms a nuclear DAPC and may mediate nuclear re-

sponses during NGF signalling. In contrast, Dp71f moves to the cell

surface and localises with the DAPC in areas such as the growth cone

to play a role in neurite outgrowth. (2) Nuclear Dp71d binds to the DNA

repair protein, RAD51. It also plays a role during cell division (3). (4)

Dp71f is a facilitator of cell adhesion and binds to the β1-integrin adhe-

sion complex. (5) Dp71 aids in cross-communication between the DAPC

and the β1-integrin adhesion complex. Figure created with Biorender.

com
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conferring stability [166]. Such intricate functions require in-

vestigation in DMD and human-derived model systems.

Cell Division

Dp71 depletion studies in PC12 cells have revealed a role in

cell division. Dp71-depleted cells have reduced growth with a

delay in G0/G1 transition and an increase in apoptosis during

nocodazole-induced mitotic arrest [167]. Dp71 localises with

lamin B1 and β-dystroglycan (which are involved in cell di-

vision, [168, 169]) at the mitotic spindle poles, cleavage fur-

row and midbody, these proteins are reduced at these sites

upon Dp71 depletion in PC12 cells [167]. Dp71 is therefore

considered a component of the mitotic spindle and cytokinesis

protein complexes and could modulate the cell division cycle

through interactions with lamin B1 and β-dystroglycan (Fig.

5). Based on the antibodies used and knowledge of Dp71

isoform expression in PC12 cells, the Dp71dΔ71 splice variant

with predominant nuclear localisation and an intact exon 78 is

implicated here.

Of relevance to a role in cell division, it is interesting to

note the poorly defined, but intriguing, role of dystrophin, and

Dp71 in particular, in tumourigenesis where its association

with proteins such as FAK implicate Dp71 in cell migration

and invasion [170, 171]. This has been reviewed by [172] and

is outside the scope of this review.

Nuclear Function(s)

The proposed role of Dp71 in the nucleus is primarily as a

scaffolding protein at the nuclear envelope [3]. This is support-

ed by the presence of nuclear Dp71d group containing DAPC

complexes and the presence of Dp71d in the nuclear matrix

and/or envelope in various cell lines as discussed above (Fig.

5). Dp71 also directly interacts with the nuclear envelope pro-

tein lamin B1 [157, 158]. Such a nuclear scaffolding role im-

plicates Dp71, indirectly, in nuclei morphology, gene expres-

sion and DNA repair since these functions, and others, utilise

the support of the nuclear matrix and/or envelope. The nuclear

envelope consists of two lipid bilayer membranes and nuclear

pore complexes. Lamins are intermediate filaments associated

with the inner nuclear membrane and are the principle compo-

nent of the nuclear matrix. Nuclear matrix–associated

Dp71dΔ71 increases during neuronal NGF-induced differentia-

tion and relocates from the periphery of the nuclear matrix to

the centre of the nucleoskeletal structure [173]. The depletion of

Dp71 results in reduced levels of lamin B1 and the

mislocalisation of emerin, an integral protein of the inner nu-

clear membrane [167, 173]. Such changes to Dp71dΔ71

localisation and expression demonstrate the dynamic nature of

Dp71dΔ71 in the nucleus and further evidences the role of Dp71

during neuronal differentiation. To further support an extended

role for Dp71 in nuclear functions, Dp71 has been shown

through immunoprecipitation and immunocytochemistry to

bind to RAD51 in human bronchial epithelial cells [174].

These authors do not determine the specific isoform(s) of

Dp71 in their study but depletion of Dp71 increases DNA dam-

age and H2O2-induced apoptosis. RAD51 is a protein involved

in homologous recombination repair upon DNA damage; it

additionally binds to lamin B1 (Fig. 5) and its binding to

Dp71 in epithelial cells warrants further investigation in neuro-

nal cell models as does the overall nuclear function of Dp71 in

DMD and human-derived model systems.

Dp71 functions are diverse but they include closely related

processes such as differentiation, neurite outgrowth and cell

adhesion. It would be interesting for future studies to delineate

the Dp71-binding sites and isoform specificity of protein-

protein interactions in relation to the functions described

above. Utrophin is a foetal homologue of dystrophin and is

regarded as a potential replacement for dystrophin loss in

DMD. Interestingly, utrophin upregulation in the brain does

not ameliorate the behavioural deficits in mdx mice [175]

highlighting the functional importance of specific DMD gene

products such as Dp71 in the brain and their association to the

neuropathophysiology of the disease.

Role of Dp71 in the Neuropathophysiology
of DMD

Genotype-Phenotype Correlations

The existence of ‘hot-spots’ for DMD gene mutations, and

exceptions to the reading frame hypothesis [2], has instigated

many DMD and Becker muscular dystrophy (BMD)

genotype-phenotype relationship studies. BMD is a milder

condition caused by in-frame mutations in the DMD gene,

BMD patients express varying levels of dystrophin protein.

Enhanced genetic testing and genotype definition in the

dystrophinopathies has led to a growing understanding of

the genotype-phenotype relationship that is proving beneficial

for diagnostic and treatment purposes [2, 176, 177].

Original studies in the 1990s showed no genotype-phenotype

correlation in relation to the DMD neuropsychiatric syndrome,

but these were conducted with limited understanding of C-

terminal dystrophin gene products and the complexity of the

DMD gene [2, 178, 179]. It is now clear that the frequency and

severity of CNS involvement increase with the accumulated loss

of distal dystrophin gene products, with DMD mutations after

exon 63 (and therefore Dp71 loss) associated with the most

severe intellectual impairment [2, 7–9, 11, 180–182]. Mutations

located after exon 63 are rare and affect the expression of Dp71,

as well as all other brain DMD gene products. All individuals

with mutations disrupting Dp71 expression reported to date have

severe intellectual impairment, it has even been known for brain

comorbidities such as autism to precede a diagnosis of Duchenne
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[2]. Desguerre et al. in 2009 identified four sub-populations of

DMD based on the severity of muscle and brain dysfunction;

they show that mutations upstream of exon 30 correlated well

with spared cognition but not motor function [183]. Most recent-

ly, it is reported that, in steroid-naïve boyswith dystrophinopathy,

speech delay and learning difficulties are more common in boys

with mutations downstream of DMD exon 45 [39]. In 1998,

Moizard et al. reported two patients with severe intellectual dis-

ability with DMD mutations altering Dp71 transcripts [7]. The

same group later demonstrated amongst a larger cohort without

DMD deletions or duplications who have severe intellectual im-

pairment that all patients with point mutations resulting in the

termination of Dp71 expression were the most severely affected

[8]. A large study on 81 DMD and BMDpatients withmutations

either affecting all dystrophin gene products (54 patients) or all

products except Dp71 (27 patients) found that the BMD patients

with intellectual disability had mutations affecting Dp71 expres-

sion and thatmutations upstream of exon 62 inDMDpatients are

associated with normal to borderline cognitive performance [6].

Ricotti et al. add further support in an even larger multicentre

study of 130 DMD patients reporting a higher incidence of intel-

lectual disability in 14 patients with distal DMD mutations af-

fecting all gene products [13]. They report 64% of individuals

with mutations affecting Dp71 had intellectual disability com-

pared with 25% of those withmutations affectingDp260, Dp140

and Dp116, whilst only 15% of patients presented with intellec-

tual disability when the mutations only affected full-length dys-

trophin [13]. The groupwith Dp71 disruptingmutations also had

the most severely affected working memory and highest Social

Communication Disorder Checklist (SCDC) score.

Tissue and Cellular Evidence

The localisation and function of Dp71 variants in the brain

combined with the genotype-phenotype observations de-

scribed above provide strong support for the involvement of

Dp71 in cognitive impairment and the DMD neuropsychiatric

syndrome. There are conflicting reports concerning the level

to which Dp71 expression is affected in mdx mice. Nico et al.

show reduced levels of Dp71 in the brains of mdx mice com-

pared with controls indicating that mdx mice may be a model

of Dp71 deficiency [184]. However, this is contradicted in

other studies including in our own unpublished data. An im-

portant model for understanding how Dp71 loss can contrib-

ute to cognitive impairment is the Dp71-null mouse. Daoud

et al. in 2009 carried out the first detailed functional and be-

havioural characterisation of the brain in these mice [58].

Cultured primary neurones had abnormal glutamatergic syn-

apse maturation and organisation and altered synapse density

[58]. Glutamatergic transmission was enhanced and synaptic

plasticity reduced in the CA1 hippocampus. These mice have

a reduced exploratory and novelty-seeking behaviour as well

as deficits in spatial learning and memory [58]. Dp71-null

mice display altered expression of some, but not all, DAPC

proteins, for example β-dystroglycan and α-syntrophin ex-

pressions are reduced whilst γ1-syntrophin is overexpressed

bymore than 200%,α-dystrobrevins were unchanged indicat-

ing a requirement of Dp71 for the anchoring of some but not

all DAPC proteins [58]. Dp71 loss in cultured neurones from

these mice affected the clustering and distribution of the syn-

aptic proteins type-1 vesicular glutamate transporter

(VGLUT1) and PSD-95; Dp71 loss is believed to increase

the stabilisation and/or local translation of PSD-95 [56, 58].

The mice have abnormally large clusters of PSD-95 and a

reduced number of excitatory synapses. Dp71 therefore may

organise glutamate receptor distribution (Fig. 4). Dp71-null

mice have reduced synapse density and the morphology of

the postsynaptic active zone is disrupted. Daoud et al. suggest

that a postsynaptic mechanism contributes to the enhanced

synaptic transmission in Dp71-null mice [58]. The unusual

accumulation of PSD-95 in Dp71-null synapses could in-

crease NMDAr gating and delivery to the synapse thus in-

creasing AMPAr currents. Thus the role of Dp71 is not direct-

ly in synaptic plasticity but rather organisation and maturation

of the synapse.

The morphogenesis and plasticity of the synapse are

known to play a role in intellectual disability [185] and thus

it can be speculated that the lower IQ levels observed in DMD

patients may be explained by altered synapse organisation and

maturation. The behavioural characteristics of the Dp71-null

mouse are also in agreement. These mice display reduced

exploratory behaviour, slight retention deficits in inhibitory

avoidance and impaired spatial learning and memory [58].

Deficits in exploratory behaviour have been linked to en-

hanced glutamatergic transmission [186], although this behav-

iour to our knowledge has not been specifically assessed in

DMD patients although could be postulated from the clinical

observations discussed earlier. Dp71-null mice have more se-

vere learning impairments thanmdxmice supporting the view

that Dp71 plays a role in the neuropathophysiology of DMD.

The respective and combined involvement of both

GABAergic and glutamatergic functions in the basis of intel-

lectual disability in DMD remains to be elucidated; since un-

like Dp71-null mice, in DMD patients, a cumulative loss of

Dp427, Dp140 and Dp71 is likely a key contributor to the

severity of brain involvement in DMD. Further studies on

the mdx3cv mouse model may shed light here, although com-

pensatory mechanisms such as from the small level of Dp427

present add a complication.

Induced pluripotent stem cells (iPSCs) prepared from

patient-derived blood or fibroblasts are fast becoming an im-

portant tool for studying the disease pathogenesis and repre-

sent a human model to study the neuropathogenesis of DMD.

The latest technology has seen the differentitation of skeletal

muscle cells that recapitulate key DMD disease features [187].

In 2019, two papers described alterations in iPSC-derived
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neurones and astrocytes from DMD patients with variable

deletions. Patel et al. characterised five DMD astrocytic lines

from patients with deletions affecting the expression of either

Dp427, Dp427 and Dp260 or Dp427, Dp260 and Dp140

[188]. Behavioural problems or autism is described in three

patients, all of which have mutations affecting all three DMD

gene products. Interestingly, cortical neuronal progeny from

these patients did not show any obvious abnormalities consis-

tent with the fact that neurones do not express Dp427 in suf-

ficient amounts and Dp71 remains unaffected in these lines.

Cytoskeletal abnormalities (increased cell area, volume and

branching), alterations in Ca2+ handling and nitric oxide sig-

nalling were observed in iPSC-derived astrocytes from DMD

patients when compared with controls. Patel demonstrate that

iPSC-derived astrocytes from DMD patients have significant

defects in glutamate handling with decreased glutamate up-

take/consumption, they find that increased new production of

glutamate by these astrocytes in turn causes neuronal defects

such as decreased neurite outgrowth and hyperexcitability and

reactive astrogliosis. It is interesting that Dp71 is preserved in

these astrocytes and studies using iPSC-derived from DMD

patients with mutations affecting Dp71 are warranted.

Ruggieri et al. in 2019 report on iPSC-derived neurones (glu-

tamatergic sensory lineages) from a DMD patient with a mu-

tation in intron 70 and reduced Dp71 expression in the derived

cells [189]. The patient has mid-level intellectual disability.

iPSC-derived neurones from this patient were smaller in both

perimeter and surface area and have irregular nuclei compared

with control; adult neural stem cells from mdx mice are also

reduced in size [111]. Using the pan-Dp71 antibody

MANDRA1, Dp71was not strongly associatedwith the mem-

brane and scattered in the cytoplasm in contrast to the control.

DMD-differentiated neurones were able to produce an action

potential but were more typically unipolar or bipolar com-

pared with the multipolar controls, DMD neurones presented

with more strongly spread out processes than controls. Ultra-

structurally, the patient neurones had dilated processes con-

taining autophagic vacuoles. Ruggieri et al. report an increase

in the expression of the sarco/endoplasmic reticulum Ca2+-

ATPase (SERCA2) pump in iPSC-derived neurones from

the DMD patient as well as cytosolic Ca2+ overload.

SERCA2 is located on the endoplasmic reticulum (ER) mem-

brane and is a key protein responsible for clearing intracellular

Ca2+. SERCA2 dysregulation is implicated in disorders affect-

ing cognitive ability [190]. Thus, Ca2+ dyshomeostasis occurs

in Dp71-reduced sensory neurones as well as in skeletal mus-

cle. An increase in the release of Ca2+ from intracellular stores

(SR/ER) is associated with spatial learning deficit inmdxmice

since a reduction of [Ca2+]i improves cognitive function in

mdx mice [191]. This is the first study from a human model

demonstrating abnormalities in Dp71-deficient neurones that

are associated with cognitive impairment. Further studies on

iPSC-derived neuronal and glial cells from Dp-71-deficient

DMD patients are required to elucidate the precise cellular

processes and mechanisms that may contribute to the

neuropathogenesis of DMD.

Using transcriptomic data from Allen Human Brain and

BrainSpan atlases, co-expression analysis of Dp427, Dp170

and Dp71 + Dp40 has revealed an association with genes

involved in neurodevelopmental disorders [81]. Genes co-

expressed with Dp71 + Dp40 (undifferentiated in this study)

were enriched in gene ontology terms related to wound

healing, cell motility, actin cytoskeleton and receptor binding.

The top phenotype identified was abnormal cerebral vascula-

ture. This Doorenweerd et al. study implies that the structural

abnormalities identified in the brains of patients lacking

Dp427 and Dp140 are aggravated further in patients also

missing Dp71 and Dp40. Several X-linked developmental

disorders linked to intellectual impairment are associated with

proteins involved in regulating cytoskeletal organisation at

excitatory synapses [185]. Further, abnormal neuronal migra-

tion during development is associated with autism spectrum

disorders [192]. Given Dp71 binds to key regulators of this

process such as FAK and β1-integrin, we investigated a role

for Dp71 in cell migration finding that DMD patient–derived

fibroblast cell lines lacking Dp71 migrate at a faster rate than

control [170]. β1-integrin-meditated cell adhesion modulates

neuronal migration and synaptogenesis during central nervous

system development [193]. It is reasonable to suggest that

neuronal migration be disturbed in DMD patients lacking

Dp71. In support of this, work by Niks et al. [194] suggests

that the changes in the DMD brain are structural and indicate

perturbed brain development as opposed to progressive cere-

bral damage. Indeed, cerebral heterotopia, where neurones do

not migrate properly, has been recorded upon autopsy in 1988

where it was also suggested abnormal dendritic development

and branching may underlie intellectual impairment [66]. The

increased excitation in prefrontal networks identified in the

Dp71-null mouse affects executive functions critical for

intellectual function in humans [57]. In line with alter-

ations in neurodevelopment, excitation/inhibition imbal-

ance along with executive dysfunctions is associated with

the pathogenesis of neurodevelopmental disorders comor-

bid for intellectual disability and neuropsychiatric disor-

ders [57].

Glial cells have an important physiological role in reg-

ulating neuronal excitability through the buffering of po-

tassium; abnormal potassium clearance is linked to epilep-

sy [195]. The incidence of epilepsy in DMD patients can

convincingly be tied to dystrophin expression and the ab-

sence of Dp71 in particular. This has been reviewed in

[196]. For example, Dp71 is preferentially expressed in

the amygdala and hippocampus, two areas associated with

epileptogenesis and the functions of Dp71 in the clustering

of potassium channels and maintaining BBB integrity are

also strongly linked to epilepsy.
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An altered prevalence of AQP4 and Dp71 is observed in

the neurodegenerative disease idiopathic normal pressure hy-

drocephalus (iNPH) and their dysfunction is associated with

slowly evolving neurodegeneration in this condition [197].

Neurodegeneration as a concept has not been explored in

Duchenne since there is a presumption that the neuropsychi-

atric phenotype as a whole is not progressive. Pairing recent

insights into the function and involvement of Dp71 in the

neuropathophysiology of DMDwith original autopsy findings

of cerebral heterotopia, neuronal loss, gliosis and Purkinje cell

loss [66] is worth exploring.

Conclusion

The high risk of neuropsychiatric syndromes in DMD patients

warrants early intervention to achieve the best possible quality

of life. We have entered an unprecedented era in DMD re-

search with new drugs entering the market that can restore

dystrophin expression in the muscle. These include antisense

oligonucleotide–based therapies targeting hotspot DMD mu-

tations between exons 45 and 53 (e.g. Exondys51, eteplirsen)

and Translarna (Ataluren) which targets nonsense mutations

[198, 199]. Unravelling the function and pathophysiological

significance of dystrophin in the brain has become a high

research priority in order to treat every element of

Duchenne. A clear role for Dp71 in the neuropathogenesis

of DMD is described. Further studies are required to elucidate

exact mechanisms in humans, particularly regarding

neurodevelopmental defects. To this end, the emergence of

iPSC and organoid models will be important as well as the

availability of donated human Duchenne brain tissue. Future

research should also explore the interplay between Dp140 and

Dp71 given the apparent neurodevelopmental origin of some

DMD brain comorbidities.

RNA processing critically regulates the localisation and

function(s) of Dp71 in the brain, yet we understand very little

about how theDMD gene is regulated in this way and whether

there are disruptions in Duchenne. Indeed, aberrant RNA pro-

cessing is a common mechanism of disease for neurological

disorders [200] and studies on the neuronal RNA processing

of DMD may help inform ongoing drug development.

Evidence shows current DMD gene therapy approaches can

be used to treat the DMD brain with most studies using exon

skipping to restore the reading frame and production of an

internally truncated dystrophin protein [201]. For example,

an AAV exon skipping vector has been delivered to the mdx

brain resulting in improvements in hippocampal function

[202]. In another study, the abnormal freezing response of

mdx mice was rescued by intracerebroventricular delivery of

an antisense oligonucleotide designed forDMD exon skipping

[42]. Continuing improvements in the chemistry of oligonu-

cleotides are resulting in better brain targeting, for example

tricyclo-DNA antisense oligonucleotides can cross the BBB

[203]. Thus whole body treatment for Duchenne is a realistic

possibility, although it must be stated that distal DMD muta-

tions affecting the expression of Dp71 are rare and mutation-

specific treatments may have limited benefit for Duchenne

patients when taken as a whole.

In summary, Dp71 is a ubiquitous and functionally diverse

protein implicated in the neuropathophysiology of DMD.

Advances in our understanding of its role(s) in the CNS may

also have wider implications such as for cancer, neurodegen-

eration and neurodevelopmental and neuropsychiatric

disorders.
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