organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-2-[4-(Dimethylamino)phenyliminomethyl]-6-methylphenol

Zarife Sibel Gül,^a* Ferda Erşahin,^b Erbil Ağar^b and Şamil Isık^a

^aDepartment of Physics, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey, and ^bDepartment of Chemistry, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey Correspondence e-mail: sgul@omu.edu.tr

Received 19 April 2007; accepted 8 May 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.044; wR factor = 0.112; data-to-parameter ratio = 15.7.

The title compound, C₁₆H₁₈N₂O, a Schiff base, crystallizes in the phenol-imine tautomeric form, with a strong intramolecular $O-H \cdots N$ hydrogen bond which forms an almost planar ring.

Related literature

Schiff base compounds can be classified by their photochromic and thermochromic characteristics (Cohen et al., 1964; Hadjoudis et al., 1987).

For related literature, see: Bernstein et al. (1995); Gül et al. (2007); Garnovskii et al. (1993); Karadayı et al. (2003); Lozier et al. (1975); Williams (1972); Xu et al. (1994); Yüce et al. (2004).

Experimental

Crystal data

C16H18N2O M = 254.32Monoclinic, $P2_1/c$ a = 8.3899 (9) Å b = 6.0651 (4) Å c = 28.305 (3) Å $\beta = 100.502 \ (9)^{\circ}$

V = 1416.2 (2) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^-$ T = 296 K $0.80 \times 0.42 \times 0.04~\text{mm}$

Data collection

Stoe IPDS II diffractometer Absorption correction: integration from crystal shape (X-RED32; Stoe & Cie, 2002) $T_{\min} = 0.952, T_{\max} = 0.996$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	H atoms treated by a mixture of
$wR(F^2) = 0.112$	independent and constrained
S = 0.82	refinement
2784 reflections	$\Delta \rho_{\rm max} = 0.10 \ {\rm e} \ {\rm \AA}^{-3}$
177 parameters	$\Delta \rho_{\rm min} = -0.10 \text{ e } \text{\AA}^{-3}$

13978 measured reflections

 $R_{\rm int} = 0.085$

2784 independent reflections

1105 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1-H1···N1	0.99 (4)	1.62 (4)	2.574 (3)	159 (3)

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA: data reduction: X-RED32 (Stoe & Cie, 2002): program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2009).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.
- Gül, Z. S., Erşahin, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2854.
- Hadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.
- Karadayı, N., Gözüyeşil, S., Güzel, B. & Büyükgüngör, O. (2003). Acta Cryst. E59, o161-o163.

Lozier, R., Bogomolni, R. A. & Stoekenius, W. (1975). Biophys. J. 15, 955-962.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany. Williams, D. R. (1972). Chem. Rev. 72, 203-213.

- Xu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. & Liu, H.-X. (1994). Acta Cryst. C50, 1169-1171.
- Yüce, S., Özek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2004). Acta Cryst. E60, 0718-0719.

supplementary materials

Acta Cryst. (2007). E63, o2902 [doi:10.1107/81600536807022556]

(E)-2-[4-(Dimethylamino)phenyliminomethyl]-6-methylphenol

Z. S. Gül, F. Ersahin, E. Agar and S. Isik

Comment

Most Schiff bases have antibacterial, anticancer, antiinflammatory and antitoxic properties (Williams, 1972). In addition, Schiff bases are important in diverse fields of chemistry and biochemistry owing to their biological activites (Lozier *et al.*, 1975; Garnovskii *et al.*, 1993). Photochromism and thermochromism are also characteristics of these materials and arise *via* H-atom transfer from the hydroxy O atom to the N atom (Hadjoudis *et al.*, 1987; Xu *et al.*, 1994). These are two types of intra molecular hydrogen bonds in Schiff bases, in keto-amine (N—H…O) and phenol-imine (N…H—O) tautomeric forms. The present X-ray investigation shows that the title compound, (I), exists in the phenol-imine form (Fig.1).

Our investigations show that all bond lengths and angles are normal. The C8—N1 and C1—C7 bond lengths are 1.412 (2) and 1.441 (3) Å, respectively and agree with the corresponding distances in 1-{4-[(2-hydroxy-benzylidene)amino] phenyl}ethanone [1.4138 (17) and 1.4428 (18) Å; Yüce *et al.*, 2004]. The N1=C7 bond length of 1.280 (2) Å is typical of a double bond, similar to the corresponding bond length in *N*-[3,5-Bis(trifluoromethyl)phenyl]salicylaldimine [1.276 (4) Å; Karadayı *et al.*, 2003]. The O1—C6 distance of 1.350 (3) Å is close to the value of 1.352 (3) Å in (*E*)-2-[(3-trifluoromethylphenylimino)methyl]-4-methylphenol (Gül *et al.*, 2007). The dihedral angle between the rings formed by atoms C1—C6 and C8—C13 is 7.86 (13)°. Fig.1 also shows a strong intramolecular hydrogen bond (O1—H1…N1) can be described as an S(6) motif (Bernstein *et al.*, 1995). The O1—N1 distance of 2.574 (3) Å is comparable to those observed for analogous hydrogen bonds in 1-{4-[(2-hydroxy-benzylidene)amino]phenyl}ethanone [2.5941 (15) Å; Yüce *et al.*, 2004].

Experimental

The compound (*E*)-2-[(4-*N*,*N*-dimethylaminophenylimino)methyl] -6-methylphenol was prepared by reflux a mixture of a solution containing 3-methylsalicylaldehyde (0.1 ml 0.82 mmol) in 20 ml e thanol and a solution containing 4-*N*,*N*-dimethylphenylendiamin (0.14 g 0.82 mmol) in 20 ml e thanol. The reaction mixture was stirred for 1 h under reflux. The crystals of (*E*)-2-[(4-*N*,*N*-dimethylaminophenylimino)methyl]-6-methylphenol suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield % 38; m.p. 378–379 K).

Refinement

The H1 atom was located in a difference map and refined freely. All other H atoms were placed in calculated positions and constrained to ride on their parents atoms, with C—H = 0.93–0.96 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 40% probability level for non-H atoms.

$({\it E}) \hbox{-} 2-[4-(Dimethylamino) phenyliminomethyl] \hbox{-} 6-methylphenol$

Crystal data	
$C_{16}H_{18}N_2O$	$F_{000} = 544$
$M_r = 254.32$	$D_{\rm x} = 1.193 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 6157 reflections
a = 8.3899 (9) Å	$\theta = 2.2 - 29.1^{\circ}$
b = 6.0651 (4) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 28.305 (3) Å	T = 296 K
$\beta = 100.502 \ (9)^{\circ}$	Prism, yellow
V = 1416.2 (2) Å ³	$0.80\times0.42\times0.04~mm$
Z = 4	

Data collection

Stoe IPDS II diffractometer	2784 independent reflections
Radiation source: fine-focus sealed tube	1105 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.085$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{\text{max}} = 26.0^{\circ}$
T = 296 K	$\theta_{\min} = 2.5^{\circ}$
ω scans	$h = -10 \rightarrow 10$
Absorption correction: integration from crystal shape (X-RED32; Stoe & Cie, 2002)	$k = -7 \rightarrow 7$
$T_{\min} = 0.952, T_{\max} = 0.996$	$l = -34 \rightarrow 34$

13978 measured reflections

Refinement

Refinement on F^2	H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0468P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.044$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.112$	$\Delta \rho_{max} = 0.10 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 0.82	$\Delta \rho_{\rm min} = -0.10 \text{ e } \text{\AA}^{-3}$
2784 reflections	Extinction correction: none
177 parameters	
Primary atom site location: structure-invariant direct methods	
Secondary atom site location: difference Fourier map	

Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y C1 0.6175 (2) 0.88499 (8) 0.0785 (6) 0.6277 (4) C2 0.7394(3)0.7759 (5) 0.90267 (10) 0.1035 (8) 0.124* H2 0.7608 0.8932 0.8836 C3 0.8291 (3) 0.7513 (6) 0.94819 (12) 0.1255 (11) H3 0.9114 0.8504 0.9598 0.151* C4 0.7955 (4) 0.1163 (11) 0.5784(7)0.97624 (10) 0.140* H4 0.8567 0.5629 1.0069 C5 0.6757 (3) 0.4286 (5) 0.96084 (9) 0.1018 (9) C6 0.5880(3)0.4526 (5) 0.91436 (8) 0.0836(7)C7 0.5235(2) 0.6566 (4) 0.83744 (8) 0.0783 (6) 0.094* H70.5445 0.7773 0.8192 C8 0.3122(2)0.5455 (4) 0.77405 (7) 0.0651 (5) C9 0.3143 (3) 0.7199 (4) 0.74297 (8) 0.0810(6) H9 0.3916 0.097* 0.8301 0.7508 C10 0.2044(3)0.7343 (4) 0.70062 (8) 0.0805 (6) H10 0.2094 0.8538 0.6804 0.097* C11 0.0858 (2) 0.5740(3) 0.68735(7) 0.0659 (5) C12 0.0882(2)0.3937 (3) 0.71795 (7) 0.0716(6) H12 0.0146 0.2793 0.7098 0.086* 0.1987 (2) C13 0.0734 (6) 0.3840 (3) 0.76009 (8) H13 0.1966 0.2627 0.7801 0.088* C14 -0.0300(3)0.7795 (4) 0.61455 (9) 0.1074 (9) H14A -0.11770.7648 0.5877 0.161* H14B 0.0708 0.7862 0.6031 0.161* H14C -0.04410.9121 0.6318 0.161* C15 -0.1539(3)0.4305 (4) 0.63341 (9) 0.0966 (7) H15A -0.22200.4710 0.6036 0.145* H15B -0.21780.4229 0.6583 0.145* H15C -0.10570.2893 0.6300 0.145* C16 0.6370 (4) 0.2447 (6) 0.99256 (10) 0.1431 (13) H16A 0.7109 0.2496 1.0227 0.215* H16B 0.1057 0.9772 0.215* 0.6473 0.9980 H16C 0.5280 0.2615 0.215*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

N1	0.41195 (19)	0.5207 (3)	0.81961 (6)	0.0732 (5)
N2	-0.0287 (2)	0.5925 (3)	0.64594 (6)	0.0781 (5)
01	0.4702 (2)	0.3038 (3)	0.89906 (8)	0.1108 (6)
H1	0.439 (4)	0.354 (5)	0.8653 (14)	0.169 (13)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0598 (13)	0.1073 (18)	0.0686 (15)	0.0066 (13)	0.0119 (11)	-0.0091 (14)
C2	0.0801 (17)	0.140 (2)	0.087 (2)	-0.0121 (16)	0.0073 (15)	-0.0164 (16)
C3	0.090 (2)	0.182 (3)	0.095 (2)	-0.002 (2)	-0.0073 (18)	-0.040 (2)
C4	0.087 (2)	0.184 (3)	0.0726 (18)	0.039 (2)	-0.0004 (16)	-0.026 (2)
C5	0.0864 (17)	0.144 (3)	0.0718 (18)	0.0399 (18)	0.0065 (14)	-0.0058 (18)
C6	0.0676 (14)	0.111 (2)	0.0711 (16)	0.0220 (14)	0.0087 (12)	-0.0001 (15)
C7	0.0625 (13)	0.1002 (17)	0.0728 (16)	0.0053 (13)	0.0140 (12)	0.0016 (12)
C8	0.0571 (11)	0.0760 (14)	0.0612 (13)	0.0012 (11)	0.0084 (10)	0.0033 (11)
C9	0.0691 (14)	0.0878 (16)	0.0826 (16)	-0.0151 (11)	0.0044 (12)	0.0120 (13)
C10	0.0778 (14)	0.0846 (15)	0.0757 (15)	-0.0138 (13)	0.0048 (12)	0.0241 (13)
C11	0.0644 (12)	0.0735 (14)	0.0592 (12)	0.0009 (11)	0.0101 (10)	0.0012 (11)
C12	0.0739 (13)	0.0657 (13)	0.0717 (14)	-0.0097 (11)	0.0044 (11)	0.0089 (12)
C13	0.0774 (13)	0.0722 (14)	0.0672 (13)	-0.0004 (12)	0.0039 (11)	0.0151 (11)
C14	0.1044 (19)	0.115 (2)	0.0925 (19)	-0.0050 (15)	-0.0103 (15)	0.0396 (16)
C15	0.0992 (16)	0.0915 (16)	0.0869 (17)	-0.0078 (15)	-0.0150 (13)	-0.0023 (14)
C16	0.165 (3)	0.183 (3)	0.078 (2)	0.061 (2)	0.014 (2)	0.032 (2)
N1	0.0570 (9)	0.0914 (13)	0.0684 (11)	0.0052 (10)	0.0045 (9)	0.0014 (10)
N2	0.0798 (11)	0.0818 (12)	0.0674 (11)	-0.0053 (10)	-0.0008 (9)	0.0096 (10)
01	0.1058 (14)	0.1237 (15)	0.0945 (14)	-0.0067 (11)	-0.0040 (11)	0.0253 (12)

Geometric parameters (Å, °)

C1—C7	1.441 (3)	C10—C11	1.393 (3)
C6—O1	1.350 (3)	С10—Н10	0.9300
C7—N1	1.280 (2)	C11—N2	1.378 (2)
C8—N1	1.412 (2)	C11—C12	1.393 (3)
C1—C2	1.385 (3)	C12—C13	1.372 (3)
C1—C6	1.398 (3)	C12—H12	0.9300
C2—C3	1.376 (4)	С13—Н13	0.9300
С2—Н2	0.9300	C14—N2	1.439 (3)
C3—C4	1.375 (4)	C14—H14A	0.9600
С3—Н3	0.9300	C14—H14B	0.9600
C4—C5	1.365 (4)	C14—H14C	0.9600
C4—H4	0.9300	C15—N2	1.435 (3)
C5—C6	1.393 (3)	C15—H15A	0.9600
C5—C16	1.504 (4)	C15—H15B	0.9600
С7—Н7	0.9300	C15—H15C	0.9600
C8—C13	1.373 (3)	C16—H16A	0.9600
C8—C9	1.378 (3)	C16—H16B	0.9600
C9—C10	1.375 (3)	C16—H16C	0.9600
С9—Н9	0.9300	O1—H1	0.99 (4)

C2—C1—C6	118.5 (2)	N2-C11-C10	121.7 (2)
C2C1C7	120.0 (3)	C12-C11-C10	116.83 (19)
C6—C1—C7	121.4 (2)	C13—C12—C11	120.4 (2)
C3—C2—C1	120.6 (3)	C13—C12—H12	119.8
C3—C2—H2	119.7	C11—C12—H12	119.8
C1—C2—H2	119.7	C12—C13—C8	122.9 (2)
C4—C3—C2	119.2 (3)	C12—C13—H13	118.6
С4—С3—Н3	120.4	C8—C13—H13	118.6
С2—С3—Н3	120.4	N2—C14—H14A	109.5
C5—C4—C3	122.6 (3)	N2—C14—H14B	109.5
C5—C4—H4	118.7	H14A—C14—H14B	109.5
C3—C4—H4	118.7	N2—C14—H14C	109.5
C4—C5—C6	117.6 (3)	H14A—C14—H14C	109.5
C4C5C16	122.0(3)	H14B-C14-H14C	109.5
C_{6} C_{5} C_{16}	120.4(3)	N2_C15_H15A	109.5
01 - 6 - 5	1176(3)	N2C15H15B	109.5
01 - 6 - 61	1211(2)	H15A_C15_H15B	109.5
01001	121.1(2) 121.3(3)	N2_C15_H15C	109.5
N1-C7-C1	121.5(3)	$H_{15} - C_{15} - H_{15} C_{15}$	109.5
N1_C7_H7	121.7 (2)	H15P C15 H15C	109.5
$N_1 - C_7 - H_7$	119.1	C5 C16 H16A	109.5
$C_1 - C_1 - C_1$	119.1	C5 C16 H16P	109.5
$C_{13} = C_{0} = C_{9}$	110.9(2)		109.5
C_{13} C_{6} N_{1}	110.8(2) 126.2(2)		109.5
C9—C8—NI	120.2 (2)		109.5
	121.4 (2)	H16A—C16—H16C	109.5
C10-C9-H9	119.3	H16B—C16—H16C	109.5
C8—C9—H9	119.3	C/NIC8	124.1 (2)
C9—C10—C11	121.5 (2)	C11—N2—C15	121.32 (19)
С9—С10—Н10	119.2	C11—N2—C14	121.0 (2)
С11—С10—Н10	119.2	C15—N2—C14	117.7 (2)
N2-C11-C12	121.5 (2)	С6—О1—Н1	98.8 (19)
C6—C1—C2—C3	-0.1 (3)	N1—C8—C9—C10	-175.8 (2)
C7—C1—C2—C3	179.4 (2)	C8—C9—C10—C11	0.3 (3)
C1—C2—C3—C4	-0.6 (4)	C9—C10—C11—N2	177.2 (2)
C2—C3—C4—C5	-0.1 (4)	C9—C10—C11—C12	-2.8 (3)
C3—C4—C5—C6	1.4 (4)	N2-C11-C12-C13	-176.96 (19)
C3—C4—C5—C16	-178.0 (3)	C10-C11-C12-C13	3.0 (3)
C4—C5—C6—O1	179.6 (2)	C11—C12—C13—C8	-0.9 (3)
C16—C5—C6—O1	-1.0 (3)	C9—C8—C13—C12	-1.6 (3)
C4—C5—C6—C1	-2.0 (3)	N1-C8-C13-C12	176.32 (18)
C16—C5—C6—C1	177.3 (2)	C1—C7—N1—C8	177.48 (18)
C2-C1-C6-O1	179.7 (2)	C13—C8—N1—C7	179.63 (18)
C7—C1—C6—O1	0.2 (3)	C9—C8—N1—C7	-2.7 (3)
C2—C1—C6—C5	1.5 (3)	C12—C11—N2—C15	2.2 (3)
C7—C1—C6—C5	-178.1 (2)	C10-C11-N2-C15	-177.8 (2)
C2-C1-C7-N1	178.7 (2)	C12—C11—N2—C14	-179.94 (19)
C6—C1—C7—N1	-1.8 (3)	C10-C11-N2-C14	0.1 (3)
C13—C8—C9—C10	1.9 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
O1—H1…N1	0.99 (4)	1.62 (4)	2.574 (3)	159 (3)

