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1 Introduction and summary

One of the many surprises during the second superstring revolution was the realization

that the construction of SU(N) instantons on R4 by Aityah-Drinfeld-Hitchin-Manin [1] and

on asymptotically locally Euclidean (ALE) spaces by Kronheimer-Nakajima [2, 3] have a

physical realization in terms of Dp-branes probing D(p+4)-brane on R4 [4] and/or ALE

spaces [5]. There, we have a gauge theory with eight supercharges on Dp-branes such that

its Higgs branch is given by the corresponding instanton moduli spaces: the equations of

the ADHM and Kronheimer-Nakajima construction are the F-term and D-term conditions

of the supersymmetric gauge theory.

As a variation of this construction, we can consider M5-branes probing the E8 end-

of-the-world brane of the M-theory, either on R4 or on ALE spaces. The low-energy

worldvolume theory on these M5-branes is a 6d N=1 supersymmetric theory whose Higgs
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branch is intimately related to the E8 instanton moduli spaces. These theories were studied

already in the heyday of the second revolution, see e.g. [6], We did not, however, have many

methods to understand the properties of these theories back then, since these theories

are intrinsically strongly-coupled. Therefore we could not say anything new regarding

the mathematics of the E8 instanton moduli spaces on R4 or ALE spaces, for which no

constructions analogous to ADHM or Kronheimer-Nakajima are known even today.

The situation has changed drastically since then, thanks to our improved understanding

of strongly-coupled supersymmetric theories. Among others, we can count the class S

construction in four dimensions initiated by [7], the determination of the chiral ring of the

Coulomb branch in three dimensions starting with [8], and a new method to study N=1

theories in six dimensions pioneered by [9]. Combining these developments, we believe

there might be a chance that the physics might shed new lights on the mathematics of the

structure of the E8 instanton moduli spaces on ALE spaces.

The main target of our study in this paper is the 6d N=1 theory on M5-branes probing

the E8 9-brane on the A-type ALE singularity C2/Zk. Such a system can be labeled by the

M5-brane charge Q and the asymptotic holonomy ρ : Zk → E8. For some simple choices

of ρ, the structure of the 6d theory on generic points on its tensor branch was already

determined in [10, 11], which was further extended in [12–14].

Our first aim is to determine the tensor branch structure for an arbitrary choice of the

asymptotic holonomy ρ. We give a complete algorithm determining the gauge group and

the matter content in terms of ρ. Along the way, we encounter a subtle feature that there

are two distinct ways to gauge su(2n+ 8) symmetry of so(4n+ 16) flavor symmetry of an

usp(2n) gauge theory with Nf = 2n+8 flavors, due to the fact that the outer automorphism

of so(4n+ 16) is not a symmetry of the latter gauge theory.

The Higgs branch MQ,ρ of our theory T 6d
Q,ρ is not directly the instanton moduli space.

In particular, MQ,ρ has an action of SU(k), which we do not expect for the instanton

moduli space. Rather, by a small generalization of the argument in [15], we see that the

E8 instanton moduli space Minst
Q,ρ,ξ of charge Q and asymptotic holonomy ρ on the ALE

space C̃2/Zk is given by

Minst
Q,ρ,ξ = (MQ,ρ ×Oξ)///SU(k) (1.1)

where ξ = (ξC, ξR) ∈ su(k) ⊗ (C ⊕ R) is an element in the Cartan of su(k) tensored by

R3 specifying the hyperkähler deformation parameter of the ALE space, Oξ is the orbit

of ξC in su(k)C with the hyperkähler metric specified by ξR as in [16], and the symbol ///

denotes the hyperkähler quotient construction. This means that the space MQ,ρ knows the

structure of the instanton moduli on the ALE space for arbitrary deformation parameter

ξ. The existence of such a generating space was conjectured by one of the authors in [17],

based on a study of SO(8) instantons on the ALE spaces.

We then study the 4d theory which arises from the T 2 compactification of the 6d

theory as in [15]. We find that they always correspond to a class S theory of type A,

given by a sphere with three punctures. The 3d mirror of its S1 compactification is a

star-shaped quiver, whose structure can be deduced from the class S description by the

methods of [18]. We find that they have the form of an over-extended E8 quiver. In 3d,
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the relation (1.1) can be physically implemented by realizing Oξ as the Coulomb branch of

the T [SU(k)] theory. Using this, we will find that Minst
Q,ρ,ξ is the Higgs branch of an affine

E8 quiver where ξ is now the mass parameter of an SU(k) flavor symmetry. For ξ = 0 this

was already conjectured by mathematicians [19, 20] and by physicists [21, 22].

Organization of the paper. The rest of the paper is organized as follows. We start

by recalling the geometric data characterizing our system in section 2. Then in section 3,

we provide the algorithm determining the 6d quiver theory in terms of the asymptotic

holonomy. In section 4, we discuss its dimensional reduction to 5d, 4d and 3d in turn.

In 5d and 4d, we translate the Kac labels to the three Young diagrams characterizing the

brane web and the class S description. In 3d, we give the star-shaped quiver. Finally in

section 5, we provide many examples illustrating our discussions.

Accompanying Mathematica file. The paper comes with a Mathematica file which

implements the algorithm to produce the 6d quiver given the asymptotic E8 holonomy. In

addition, it allows the user to determine the 4d class S theory, and compute the anomalies

from three different methods, namely the 6d field theory, the M-theoretic inflow, and the

4d class S technique.

Summary of notations.

• The asymptotic holonomy ρ : Zk → E8 is given by an element w ∈ e8 in the Cartan

subalgebra, or equivalently in terms of the Kac label

n :=
n3′

n1 n2 n3 n4 n5 n6 n4′ n2′
, (1.2)

a set of non-negative integers arranged on the affine E8 Dynkin diagram. For more

details, see section 2.1.

• We have closely related quantities Ninst, N3, NS , N6, and Q, which are all essentially

the number of M5-branes or equivalently the instanton charge on the ALE space.

They all increase by one when we add one M5-brane to the system. Their constant

parts are however different. We could have used just one out of them, but any choice

would make at least one of the formulas quite unseemly. We therefore decided to

keep them and provide a summary here.

– The integer Ninst is defined in terms of the instanton number as

∫

C̃2/Γ
trF ∧ F ∝ Ninst −

〈w,w〉

2k
. (1.3)

See (2.6) for details.

– Another integer N3 satisfies N3 = Ninst − k, see (3.14), (4.18). This is useful to

parameterize the ranks of groups in the 3d quiver, see (4.3).

– Another integer NS defined by NS = N3+n1+ · · ·+n6 is useful to parameterize

the class S data, see (3.5).
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– The integer N6 is the number of tensors of the 6d quiver. The difference between

NS and N6 is determined by the Kac label and is described in the algorithm in

section 3.2.

– A rational number Q is the M5-charge which appears in the inflow computation,

and satisfies

Q = Ninst −
〈w,w〉

2k
−

1

2

(
k −

1

k

)
, (1.4)

see (3.12).

2 Geometric preliminaries

2.1 Topological data of the instanton configuration

Here we recall the topological data necessary to specify a G-instanton on C2/Γ or its

resolution C̃2/Γ, where Γ ∈ SU(2).

On C2/Γ, we first need to specify the holonomy at the origin and at the infinity. They

determine the representation ρ0,∞ : Γ → G, which we consider as a linear action on the

complexified adjoint representation g.

On C̃2/Γ, we specify the holonomy at infinity ρ∞. In addition, we need to specify the

class in H2(C̃2/Γ, π1(G)). This is the first Chern class when G = U(N) and the second

Stiefel-Whitney class when G = SO(N).

Finally we need to specify the instanton number, defined as the integral of trF ∧F over

the ALE space. Unless otherwise mentioned, we normalize the trace so that the instanton

on R4 of the smallest positive instanton number satisfies

∫
trF ∧ F = 1. (2.1)

On the ALE space, the instanton number is in general fractional.

Our main interest lies in the case G = E8 and Γ = Zk. Since π1(E8) is trivial, we do

not have to specify the class in H2.

A holonomy ρ : Zk → E8 can be nicely encoded by its Kac label

n :=
n3′

n1 n2 n3 n4 n5 n6 n4′ n2′
. (2.2)

introduced in §8.6 of Kac’s textbook [23]. Let us quickly recall how it works. Let the image

g of the generator of Zk in E8 be

g = e2πiw/k ∈ E8 (2.3)

where

w =
∑

i 6=0

niwi ∈ e8. (2.4)
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where wi are the fundamental weights of E8. Since g is of order k, ni are integers. We

define n0 so that
∑

dini = k, where the Dynkin marks d are given by

d =
3

1 2 3 4 5 6 4 2
. (2.5)

It is known that by the Weyl reflections and the shifts, we can arrange ni ≥ 0 for all i and

then the result is unique. This is the Kac label of the holonomy.

The subalgebra of e8 left unbroken by the holonomy ρ can be easily read off from its

Kac label. Namely, it is given by the subalgebra corresponding to the nodes i of the Dynkin

diagram where ni = 0, together with an Abelian subalgebra making the total rank 8.

On C̃2/Zk, the instanton number modulo one is given by the classical Chern-Simons

invariant evaluated on S3/Zk at infinity. One way to compute it is to introduce coordinates

on S3/Zk using polar coordinates θ, φ on S2 and the angle ψ along the S1 fiber. The

connection itself is ∝ w(dψ + · · · ). One finds that

∫
trF ∧ F = Ninst −

〈w,w〉

2k
(2.6)

where Ninst is an integer. The hyperkähler dimension of the moduli space is given by the

formula

dimHM
C̃2/Γ,ρ∞

= 30Ninst − 〈w,ρ〉. (2.7)

2.2 Dimension of the instanton moduli space

In this subsection we derive the formula (2.7) of the dimension of the moduli space. Those

readers who trust the authors can skip this subsection. This computation is of course not

new. It is provided here to make this paper more self-contained.

The basic tool is the Atiyah-Patodi-Singer index theorem. Its explicit form on the

orbifold of C2 was worked out e.g. in [24] for Γ ⊂ U(2). Here we quote the form used in

Kronheimer-Nakajima [2] for Γ ⊂ SU(2). The formula for the orbifold is:

dimHMC2/Γ,ρ∞,ρ0 = h∨(G)

(∫
trF ∧F

)
+

1

2|Γ|

∑

γ 6=e

χρ∞(γ)

2− χQ(γ)
−

1

2|Γ|

∑

γ 6=e

χρ0(γ)

2− χQ(γ)
.

(2.8)

Here, h∨(G) is the dual Coxeter number of G, and the second and the third terms are the

contributions from the η invariant of S3/Γ at the asymptotic infinity and at the origin,

respectively, and Q is the standard two-dimensional representation of Γ from the defining

embedding Γ ⊂ SU(2),

On the ALE space C̃2/Γ, we have:

dimHM
C̃2/Γ,ρ∞

= h∨(G)

(∫
trF ∧ F

)
+

1

2|Γ|

∑

γ 6=e

χρ∞(γ)

2− χQ(γ)
−

1

24
dimGχΓ (2.9)
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where the quantity

χΓ := rΓ + 1−
1

|Γ|
(2.10)

is the Euler number of C̃2/Γ as defined by the integral of the Pontrjagin density.

Furthermore,
1

24

(
rΓ + 1−

1

|Γ|

)
=

1

2|Γ|

∑

γ 6=e

1

2− χQ(γ)
, (2.11)

reflecting the fact that if the holonomy at the origin of an instanton on C2/Γ is trivial, we

can resolve/deform the instanton and the ALE at the same time to be on C̃2/Γ. In the

end, we find the formula

dimHM
C̃2/Γ,ρ∞

= h∨(G)

(∫
trF ∧ F

)
+∆η, (2.12)

where

∆η :=
1

2|Γ|

∑

γ 6=e

(χρ∞(γ)− dim g)

2− χQ(γ)
(2.13)

Let us evaluate this formula when G = E8 with the holonomy ρ∞ specified by g =

e2πiw/k with the Kac label n. The eta invariant is

∆η =
1

2|Γ|

∑

γ 6=e

(χρ∞(γ)− dim g)

2− χQ(γ)
=

1

2k

∑

α:all roots

∑

γ 6=1

χ〈w,α〉(γ)− 1

2− χQ(γ)
(2.14)

where

χa(g
j) = e2πiaj/k, χQ(g

j) = 2 cos 2πj/k. (2.15)

Now, we note

1

2k

k−1∑

j=1

χa(g
j)− 1

2− χQ(gj)
= −

a(a− k)

4k
(2.16)

for a = 0, 1, . . . k. Then

∆η = 2
∑

α:positive roots

−
〈α,w〉(〈α,w〉 − k)

4k
(2.17)

since 0 ≤ 〈α,w〉 ≤ k for positive roots α. Now we use

∑

α:positive roots

α = 2ρ,
∑

α:positive roots

〈v1,α〉〈α,v2〉 = h∨〈v1,v2〉 (2.18)

and find

∆η =
h∨

2k
〈w,w〉 − 〈w,ρ〉. (2.19)

To compute the dimension, we now plug in to (2.12) the formula for ∆η found just

above and the formula for the instanton number (2.6). The term proportional to 〈w,w〉

cancels out, and we indeed have the desired result (2.7).
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3 Six-dimensional description

After these geometrical preliminaries, we move on to the field theoretical analysis. We start

with the six-dimensional quiver descriptions. As already mentioned in the introduction, for

various simple choices of ρ, the six-dimensional quivers were already determined in [10–14].

By a series of trials and errors, and following the principle that the quiver should be

determined in terms of the Kac label, the authors found the following algorithm.

3.1 The general structure of the quiver

Our 6d SCFT on the generic points on its tensor branch consists of a collection of N6

tensors, corresponding to a linear quiver of the form

G1 × SU(m2)× SU(m3)× · · · × SU(mN6)× [SU(k)] (3.1)

where G1 is on the −1 curve, the rest is on −2 curves, and the final SU(k) is a flavor

symmetry. In the notation of [11], we have

G1

1
su(m2)

2
su(m3)

2 · · ·
su(mN6

)

2 [SU(k)]. (3.2)

Below, we slightly abuse the notation and refer by G1 the combination of the group

and the non-fundamental hypermultiplets on the −1 curve. The choices are:

• G1 = USp(m1),

• G1 = SU(m1) with an antisymmetric hyper, or

• G1 = SU(m1 = 6) with a rank 3 antisymmetric half-hyper.

We consider the rank 1 E-string theory as USp(0), and furthermore, the rank 2 E-string

theory is considered as a USp(0) connecting to an SU(1) group.

We have m1 ≤ m2 ≤ · · · ≤ mN6 , and we define a1, . . . , a9 by

as = #{i | mi+1 −mi = s}. (3.3)

We can reconstruct the whole of mi from m1, N6 and a1, . . . a9. For example, when the

quiver is

SU(3)× SU(9)× SU(13)× SU(17)× SU(18)× SU(19)× SU(20) (3.4)

we have a8 = a7 = a5 = a3 = a2 = 0, a6 = 1, a4 = 2, a1 = 3.

There are bifundamentals between two consecutive groups in the quiver, and finally

fundamental hypers are added such that each group is anomaly free, that is:

• Nf = 2N for SU(N),

• Nf = N + 8 for USp(N) or SU(N) with an antisymmetric hyper, and

• Nf = 15 for SU(6) with a rank 3 antisymmetric half-hyper.

– 7 –
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3.2 The algorithm

Now we present the algorithm to determine the structure of the quiver given the Kac label

n and the number N6 of the groups. Along the way, we also define the quantity NS which

will be used in the following. We will also need the quantity

N3 = NS − n1 − n2 − n3 − n4 − n5 − n6. (3.5)

The algorithm is implemented in the accompanying Mathematica file, so that the reader

can easily try it around.

In general we have

ai = ni for i = 1, 2, 3, 4, 5, 6. (3.6)

To specify a7,8,9, we need to consider various cases as summarized below:





n′
4 ≥ n′

3 −→

{
n′
4 − n′

3 = even −→ Case 1,

n′
4 − n′

3 = odd −→ Case 2,

n′
3 ≥ n′

4 −→





n′
2 < (n′

3 − n′
4)/2 −→ Case 4,

n′
2 ≥ (n′

3 − n′
4)/2 −→

{
n′
3 − n′

4 = odd −→ Case 3,

n′
3 − n′

4 = even −→ Case 5.

For each case, the output of the algorithm is (a7,8,9, G1, NS) as shown below:1

1. n′
4 ≥ n′

3, n
′
4 − n′

3 = even:

• a7 = n′
3, a8 =

n′

4−n′

3
2 , a9 = 0.

• G1 = USp(2n′
2).

• NS = N6 −
n′

4+n′

3
2 .

2. n′
4 ≥ n′

3 + 1, n′
4 − n′

3 = odd:

• a7 = n′
3, a8 =

n′

4−n′

3−1
2 , a9 = 0.

• G1 = SU(2n′
2 + 4) group with an antisymmetric hyper.

• NS = N6 −
n′

4+n′

3−1
2 .

3. n′
3 ≥ n′

4 + 1, n′
3 − n′

4 = odd, n′
2 ≥

n′

3−n′

4−1
2 :

• a7 = n′
4, a8 =

n′

3−n′

4−1
2 , a9 = 0.

• G1 = SU(2n′
2 + n′

4 − n′
3 + 4) group with an antisymmetric hyper.

• NS = N6 −
n′

4+n′

3−1
2 .

1When more than two cases apply to the same Kac label, they produce the same quiver.
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4. n′
3 > n′

4 + 2n′
2 + ℓ, n′

3 − n′
4 − 2n′

2 = 3x+ ℓ, x ∈ Z, ℓ = 0, 1, 2:

• a7 = n′
4, a8 = n′

2, a9 =
n′

3−n′

4−2n′

2−ℓ
3 .

• G1 is

– empty for ℓ = 0, in which case this node corresponds to a rank-1 E-string,

– SU(3) for ℓ = 1,

– SU(6) with a half-hyper in the rank 3 antisymmetric for ℓ = 2.

• NS = N6 −
n′

3+2n′

4+n′

2−l
3 .

5. n′
3 ≥ n′

4, n
′
3 − n′

4 = even, n′
2 ≥

n′

3−n′

4
2 :

• a7 = n′
4, a8 =

n′

3−n′

4
2 , a9 = 0.

• G1 = USp(2n′
2 + n′

4 − n′
3).

• NS = N6 −
n′

4+n′

3
2 .

3.3 A subtlety concerning the 6d θ angle

Note that the quivers produced in Case 5 are the same ones as the ones produced by Case 1,

as far as the data we described so far are concerned. This is perfectly fine when n′
4 = n′

3,

since in this case we are just applying the different cases to the same Kac label. However,

when n′
4 6= n′

3, or equivalently when a8 6= 0, the resulting quivers should however be subtly

different, since e.g. they reduce to different 4d class S theories and 3d star-shaped quivers.

We argue that the difference between them is how one embeds the SU(2N + 8) group into

the SO(4N + 16) global symmetry group of USp(2N).

A relatively simple case is the following. Let us first consider the cases when n′
4 =

2, n′
3 = 0, n′

2 = 0 versus n′
4 = 0, n′

3 = 2, n′
2 = 1, with the rest of labels being zero n1,...,6 = 0.

Both theories have the form of a long SU(8) quiver gauging an SU(8) subgroup of the

rank 1 E8 theory. The two differ by the embedding of SU(8) inside E8 and in fact have

different global symmetries. To see this, consider embedding SU(8) inside SO(16) ⊂ E8.

The adjoint of E8 decomposes under its SO(16) maximal subgroup as 248 → 120+ 128.

Now consider decomposing SO(16) to its U(1) × SU(8) maximal subgroup. Under this

embedding the spinors of SO(16) decompose to the rank x antisymmetric tensors of SU(8)

for x = 0, 2, 4, 6, 8 for one spinor and x = 1, 3, 5, 7 for the other. However only one spinor

appears in the adjoint of E8, and therefore there are two different embedding of SU(8)

inside E8. In one of them the 128 contains gauge invariant contributions leading to the

larger global symmetry.

The general case corresponds to the situation where SU(2N + 8) is embedded in

SO(4N + 16). There is no distinction in the perturbative sector of the theory. How-

ever the theory possesses instanton strings. The ones for USp groups will be in a chiral

spinor of the SO group and so will decompose differently depending on the embedding.

This then leads to theories with distinct spectrum of string excitations. Also note that

this only occurs if the entire SO symmetry is gauged leaving only a U(1) commutant. If

– 9 –
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we gauge an SU(x) ⊂ SO(2x) ⊂ SO(4N + 16) with x < 2N + 8, then the chiral spinor of

SO(4N + 16) decomposes to non-chiral spinors of SO(2x) and therefore there is a single

embedding. This agrees with the fact that the cases coincide when a8 = 0.

We can understand this distinction from the existence of the discrete θ angle in 6d,

due to the fact that π5(USp(2N))5 = Z2. Suppose now that the USp group has 2n half-

hypermultiplets in the fundamental. Classically it has an O(2n) flavor symmetry, but the

parity part flips the discrete theta angle. Therefore the flavor symmetry is actually so(2n).

The two embeddings of su(n) into so(2n) are related exactly by the parity part of O(2n),

and therefore are inequivalent. The F-theoretical interpretation of these two inequivalent

embeddings seems to be unknown. It would be interesting to work it out.2

Note that an analogous phenomenon exists in 5d, where given a pure USp group there

are two distinct 5d SCFTs associated with this theory differing by the instanton spectrum

of the 5d gauge theory. This is related to the existence of a Z2 valued θ angle originating

from the fact that π4(USp(2N))4 = Z2.

3.4 Anomalies and the inflow

The anomaly of these 6d SCFTs can be computed from their quiver description using the

technique of [25, 26]. We should be able to match it to the anomaly computed from the

inflow using the M-theory description.

The inflow computations of M5-branes probing the E8 end-of-the-world brane and of

M5-branes probing the C2/Zk singularity was given in [27] and in an appendix of [25],

respectively. We can combine the two computations into one and one finds the following

contribution to the anomaly, excluding the most subtle contribution from the codimension-

5 singularity where the C2/Zk singularity hits the end-of-the-world brane:

Inaiveinflow(Q) =
Q3k2

6
c2(R)2 −

Q2k

2
c2(R)I4+

Q

(
1

2
I24 − I8

)
+ (I4 −Qkc2(R))J4 −

1

2
Ivec(SU(k)) (3.7)

where Q is the M5-chage of the configuration,

I8 =
1

48
(p2(N) + p2(T )−

1

4
(p1(N)− p1(T ))

2), (3.8)

I4 =
1

4
(p1(T )− 2c2(R)), (3.9)

J4 =
1

48
(k −

1

k
)(4c2(R) + p1(T )) +

1

4
trF 2

SU(k). (3.10)

Here I8 comes from the M-theory interaction
∫
C∧I8, I4 appears in the boundary condition

G = I4 at the E8 wall, and J4 is the interaction on the C2/Zk singular locus
∫
C ∧ J4. In

this section the normalization of tr is as in [27].

Let n be the Kac label, and let w =
∑

wini be the corresponding weight vector. By

performing computations for many choices of n, we find that

Iquiver(n,N3) = Inaiveinflow(Q) + c(n) (3.11)

2The authors thank D. R. Morrison for the correspondence on this point.
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where c(n) is a constant depending on the Kac label n but independent of N3 and

Q = N3 +
1

2

(
k +

1

k
−

〈w,w〉

k

)
. (3.12)

Recall that the instanton number as defined by the integral of trF ∧ F was given by

∫
trF ∧ F = Ninst −

〈w,w〉

2k
, (3.13)

see (2.6), and that k − 1/k is the Euler number of C̃2/Γ, or equivalently of the integral of

−p1/4 there, see (2.10). Then, assuming that

Ninst = N3 + k, (3.14)

we can rewrite the effective M5-brane charge Q as

Q =

∫
trF ∧ F +

∫

C̃2/Zk

p1
4

(3.15)

which is what we expect from the curvature coupling on the E8 end-of-the-world brane.

The authors made a guess of the formula for c(n) by trial and error. It has the form

c(n) =
1

k
(P0(n) + P2(n) + P4(n) + P6(n)) +

1

2
Ifree vector (3.16)

where

Ifree vector =
1

5760
(−240c2(R)2 − 120c2(R)p1(T )− 7p1(T )

2 + 4p2(T )) (3.17)

is the anomaly polynomial of a free vector multiplet and Pi(n) is a homogeneous polynomial

of ni’s of degree i. Those polynomials are identified as

P0 =
1

384
(−88c2(R)2 + 32c2(R)p1(T )− 5p1(T )

2 + 4p2(T )) (3.18)

P2 =
1

11520
k2

(
2512c2(R)2 − 760c2(R)p1(T ) + 157p1(T )

2 − 124p2(T )
)

+
1

5760
(15〈w,w〉 − k〈w,ρ〉)

(
112c2(R)2 − 40c2(R)p1(T ) + 7p1(T )

2 − 4p2(T )
) (3.19)

P4 =−
1

288

(
9〈w,w〉2 + 15k2〈w,w〉 − 2k4 − k

∑

α∈∆+

〈w,α〉3
)(

4c2(R)2 − c2(R)p1(T )
)

(3.20)

P6 =
1

240

(
5〈w,w〉3 + 15k2〈w,w〉2 − 5k4〈w,w〉+ k6 − k

∑

α∈∆+

〈w,α〉5
)
c2(R)2, (3.21)

where ∆+ is the set of positive roots of E8. The authors have not been able to determine

how this formula come from the correct anomaly inflow calculation. It would be interesting

to understand it.
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4 Lower dimensional incarnations

4.1 Five-dimensional brane-web description

We can reduce the 6d theory on a circle to 5d. Roughly speaking, there are two different

types of reductions. For example, starting from the E-string theory, one can obtain SU(2)

theory with eight flavors in one way, or the 5d SCFT with E8 flavor symmetry in the

other way.

First reduction. Keeping the radius of the circle non-zero the low-energy 5d theory is

sometimes a 5d gauge theory. Specifically, the class of 6d theories we are considering can

be realized by a brane construction involving a system of NS5-branes and D6-branes in

the presence of an O8−-plane [28, 29]. Performing T-duality on this system results in a

brane configuration involving NS5-branes and D6-branes in the presence of an O8−-plane.

Alternatively, the system can also be described as D4-branes immersed in an O8−-plane

and D8-branes, in the presence of a C2/Zk singularity [30].

Either way, the system can sometimes be deformed so as to describe a 5d gauge theory.

Specifically, when compactifying we have a choice of the value of the radius as well as

the freedom to turn on holonomies for the global symmetries. These then become mass

parameters in the 5d theory. In specific ranges of these parameters the 6d theory may flow

at low-energy to a 5d quiver gauge theory with the coupling constants of the gauge theory

identified with the mass deformations. In general, a given 6d SCFT may have several

different low-energy 5d gauge theory descriptions depending on the specific deformations

used. Various 5d descriptions of 6d theories, including the type we are interested in, were

studied in [12, 14, 31, 32]. We will not consider this problem here.

Second reduction. Instead we shall take the limit of zero radius. In this case we argue

that the 6d theory flows in the IR to a 5d SCFT. Furthermore, we claim that the 5d SCFT

can be readily described in terms of the integer N and the Kac label n. To find the 5d

theory, we first write down the 6d quiver following the algorithm presented in the last

section.3 We realize this 6d quiver in type IIA using O8-planes, D8-branes, D6-branes and

NS5-branes as in [28, 29]. We then compactify it on S1, T-dualize it to type IIB, and

manipulate the branes. We will detail the procedure in slightly more detail below.

The result can be conveniently represented by a brane web, which has a star shape

form with a group of (1, 0), (0, 1) and (1, 1) 5-branes all intersecting at a point. The 5-

branes end on the appropriate 7-branes where some collection of 5-branes end on the same

7-brane. Specifying the configuration then is done by giving the distribution of 5-branes on

the 7-branes. This is conveniently done by a Young diagram where each column represents

a 7-brane, and the number of boxes in it represents the number of 5-branes ending on it.

3Purely field theoretically, the 6d quiver only contains the information on the low energy limit on the

generic points on the tensor branch of a given 6d SCFT. Therefore further manipulations of the quiver

such as dimensional reductions are not guaranteed to tell every detail of the original 6d SCFT. What we

do is, instead, to realize the quiver using branes, and apply string dualities. This way we can keep all the

ultraviolet information required in the process.
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The three Young diagrams for the SCFTs we are considering are given by:

Y1 = (NS − n6,

NS − n6 − n5,

NS − n6 − n5 − n4,

NS − n6 − n5 − n4 − n3,

NS − n6 − n5 − n4 − n3 − n2,

NS − n6 − n5 − n4 − n3 − n2 − n1,

1k),

Y2 = (2NS + 2n4′ + n2′ + n3′ ,

2NS + n4′ + n2′ + n3′ ,

2NS + n4′ + n3′),

Y3 = (3NS + 2n4′ + n2′ + 2n3′ ,

3NS + 2n4′ + n2′ + n3′).

(4.1)

More detail of the second reduction. For cases 1, 2 and 3, these results can be

derived using the standard techniques. But there are some issues for cases 4 and 5. Case 4

naively does not have a brane construction of the type considered in [29] so this procedure

appears to be inapplicable in this case. However, a conjecture for the 5d theories that lift

to these types of 6d SCFTs was given in [12, 14], and we can use this conjecture to fill in

this step for case 4.

This leaves case 5. We can ask how does the 6d θ angle appears in the brane con-

struction. In fact a similar issue arises in the analogue 5d system: D5-branes suspended

between NS5-branes in the presence of an O7−-plane. In that case it was observed by [33]

that accounting for the 5d θ angle seems to necessitate the introduction of two variants of

the O7−-plane, where one is an SL(2,Z) T-transform of the other. This in particular means

that they differ by their decomposition into a pair of 7-branes. Note that the distinction

between the two cases vanishes when there are D7-branes on the O7−-plane. This becomes

clear after we decompose the O7−-plane into 7-branes which can be moved through the

monodromy lines of the 7-branes which will change them by a T-transformation. This of

course agrees with the unphysical nature of the 5d θ angle once flavors are present. There

should be a similar distinction for the O8−-plane, and so can account for the apparent 6d

θ angle we observe. We will not pursue this here.

However once we perform T-duality we end with a system with two O7−-planes, and

we expect that we can accommodate this in the observed difference in O7−-planes. We

have a discrete choice for each O7−-plane leading to four possibilities. However we are free

to perform a global T-transformation. Since all the external branes are D7-branes, this

will lead us to the same system, save for changing the types of both orientifolds. Thus

we conclude that there are only two distinct choices: the same or differing types. These

cases are expected to differ only when there are no 7-branes on the O7−-planes, and thus

no D8-brane on the original O8−-plane. This exactly agrees with the two cases, which
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coincide once a8 = 0. We indeed find different 5d theories for these two choices, where the

former is identified with case 1 while the latter with case 5. In this manner we can apply

this procedure also to case 5.

4.2 Four-dimensional class S description

We can compactify on an additional circle to 4d. Using the results of [34], it is straightfor-

ward to write the 4d theory. It is just an A type class S theory given by the same set of

Young diagrams as the 5d description, given above in (4.1).

In fact it is also possible to motivate this class S description with the Young dia-

grams (4.1) directly from the 4d description, and then use the preceding discussion to

connect the 6d quiver data to the Kac labels. We start from the observation that the class

S theory whose Young diagrams are (4.1) can be thought of as generated by modifying

the Young diagrams of the rank N E8 theory, which is given by a class S theory of type

SU(6N) with Young diagrams Y1 = (N6), Y2 = (2N3), Y3 = (3N2).

First the 4d theory needs to have the SU(k) global symmetry, coming from the C2/Zk

singularity. This is given by the k boxes attached to the Young diagram Y1 of the E8

theory. That this is the correct way to account for it can be seen by comparing anomalies.

For the type of 6d theories we are considering, there is a result due to [15] that allows for

the computations of the central charges of the 4d result of the compactification of the 6d

theory from the anomaly polynomial of the latter. Furthermore the anomaly polynomial

of the 6d theories of the type we considered was studied in [12]. When applied to our case

we find that k4dSU(k) = 2k+12 independent of the details of the Kac label. This agrees with

the anomaly of the class S theory.

In addition to the SU(k) we also have the commutant of the orbifold in E8 as a global

symmetry, which depends on the Kac labels. The E8 global symmetry is accommodated

by the Young diagram structure of the starting E8 SCFT so it is natural to expect that

modifying this will give the required global symmetry and take into account the Kac labels.

The global symmetry which is manifest in the class S construction is SU(2)×SU(3)×SU(6)

which can be identified with the three legs of the affine Dynkin diagram. This becomes

more apparent once we compactify to 3d and consider the mirror dual, which we consider

more extensively in the next subsection.

The point is that we can associate a node in the legs of the affine E8 Dynkin dia-

gram roughly with the difference between neighboring columns. The central node can be

associated with the difference between the sum of the first columns of the three Young

diagrams and the the total number of boxes in any of them. When that difference is zero,

we get the E8 theory. It is now natural to associate that difference to the Kac label of the

corresponding node. By the Kac prescription, this ensures that we get the correct global

symmetry. This leads to the conjectured form. There is one ambiguity in determining the

total number of boxes which is related to the rank of the initial E8 theory. This should be

related to the number of tensors in 6d, but we need to determine the exact mapping. For

this we use the relation outlined in the previous sections between the 6d and 4d theories.

We can perform various consistency checks of this proposal. One check is to compare

anomalies. We already mentioned that these can be computed from the 6d anomaly poly-
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nomial, and compare the SU(k) central charge. We can also compare the central charges a

and c, and the dimension of the Coulomb branch. These can then be calculated from the

6d quiver on one side, and from the class S theory on the other, in terms of the Kac labels

and NS . For the computations on the class S side, we use the standard results of [7, 35]

and reviewed e.g. in [36]. The results themselves are rather complicated and not very il-

luminating, but we do find that all three objects agree between the two calculations. Any

interested reader can play around with the Mathematica file which comes with this paper

to confirm this point.

4.3 Three-dimensional star-shaped quiver description

Let us now move on to the three dimensions. We translate the Young diagrams Y1,2,3 given

in (4.1) which specify the class S punctures to the 3d mirror description using the results

of [18]. We find that the resulting theory is given by the quiver gauge theory

X̂ := •
1
− •

2
− · · · − •

k
− •

Ñ1

− •
Ñ2

− •
Ñ3

− •
Ñ4

− •
Ñ5

−

•Ñ3′

|
•
Ñ6

− •
Ñ4′

− •
Ñ2′

. (4.2)

Here, all nodes are unitary with the diagonal U(1) removed, and the gray and the black

blobs are used as a visual aid for the affine Dynkin part and the over-extended part. The

ranks of the groups are specified by the vector

Ñ = N3d+
∑

niqi (4.3)

where

q1 =
3

1 2 3 4 5 6 4 2
, q2 =

3

2 2 3 4 5 6 4 2
, q3 =

3

3 3 3 4 5 6 4 2
, (4.4)

q4 =
3

4 4 4 4 5 6 4 2
, q5 =

3

5 5 5 5 5 6 4 2
, q6 =

3

6 6 6 6 6 6 4 2
, (4.5)

q4′ =
2

4 4 4 4 4 4 2 1
, q2′ =

1

2 2 2 2 2 2 1 0
, q3′ =

1

3 3 3 3 3 3 2 1
(4.6)

which is in fact given by a uniform formula

(qi)j = didj − 〈wi,wj〉 (4.7)

where wi is the weight vector for the node i 6= 1 and w1 = 0.

Another characterization of Ñ is

CÑ =
0

k 0 0 0 0 0 0 0
+ n (4.8)

where C is the affine Cartan matrix of E8. This determines Ñ mod d, since d is the only

eigenvector of C of zero eigenvalue.
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The dimension of the Coulomb branch M̂ is then

dimH M̂ = 30(N3 + k)− 〈w,ρ〉+
k(k + 1)

2
− 1 (4.9)

where w =
∑

niwi is the Kac label as a weight vector and ρ =
∑

iwi is the Weyl vector.

The Coulomb branch M̂ of this system X̂ is closely related to the instanton moduli

space Minst on the ALE space C̃2/Zk. To explain the relation, let us first recall that the

resolution and deformation parameters of the ALE space can be specified by a parameter

ξ = (ξC, ξR) ∈ su(k)⊗ (C⊕ R) (4.10)

which takes values in the Cartan of su(k) tensored by R3. We now need an auxiliary

hyperkähler space Oξ, which is the SU(k)C orbit of ξC in su(k) with the hyperkähler

metric specified by ξR. Equivalently, Oξ is the Coulomb/Higgs branch of the T [SU(k)]

theory whose quiver realization is given by

T [SU(k)] = •
1
− •

2
− · · · − •

k−1
−�

k
(4.11)

where the rightmost square node is a flavor symmetry and ξ is the SU(2)R triplet of mass

parameters associated to it.

We can now state the relation between M̂ and and Minst by slightly modifying an

argument given in [15]:

Minst = (M̂ × Oξ)///SU(k). (4.12)

This relation can be understood as follows. The resolution/deformation parameter ξ of the

ALE space can be identified with the scalar vacuum expectation values of the 7d super

SU(k) Yang-Mills theory supported on the M-theory singularity C2/Zk. The 6d SCFT on

the M5-branes at the intersection of the E8 wall and the C2/Zk singularity couples to this

7d super Yang-Mills, via the standard coupling where the triplet moment map field of the

6d theory is identified with the limiting value of the triplet of scalars of the 7d bulk. The

resulting hyperkähler manifold is then given by the hyperkähler reduction as in (4.12).

Now, our system X̂ can also be written using the theory X̃

X̃ := �
k
− •

Ñ1

− •
Ñ2

− •
Ñ3

− •
Ñ4

− •
Ñ5

−

•Ñ3′

|
•
Ñ6

− •
Ñ4′

− •
Ñ2′

. (4.13)

Indeed,

X̂ = (T [SU(k)]× X̃)///SU(k) (4.14)

where the symbol T///G means that we gauge the flavor symmetry G of the theory T .

So the theory X whose Coulomb branch is Minst in (4.12) is given by

X = (T [SU(k)]× T [SU(k)]× X̃)///(SU(k)× SU(k)) (4.15)

But two T [SU(k)] gauged by a diagonal SU(k) is known to disappear, since it is the domain

wall of 4d N=4 SYM implementing the S-duality [37]. So we have, in fact,

X = X̃ (4.16)
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and the ALE deformation parameter ξ is now the mass parameter of the SU(k) flavor

symmetry. We have

dimHMinst = 30(N3 + k)− 〈w,ρ〉. (4.17)

This nicely agrees with the computation from the geometry (2.7) by the identification

Ninst = N3 + k. (4.18)

This relation between N3 and Ninst is also consistent with what we found from the inflow,

see (3.14).

We note that the theory X = X̃ is the theory whose Higgs branch is the U(k) instan-

ton moduli on C2/ΓE8 [2, 5]. From this reason, the Coulomb branch, at least when the

mass parameter is zero, has been conjectured to be the E8 instanton moduli space on the

singular space C2/Zk by various people. This follows, at least in a rough form, from the

string duality: consider the theory on M2-branes on C2/Zk×C2/ΓE8 . It has two supersym-

metric branches of vacua, one describing E8 instantons on C2/Zk and another describing

U(k) instantons on C2/ΓE8 . If the former is the Coulomb branch, then the latter is the

Higgs branch.

Note that we arrived at the quiver gauge theoryX = X̃ from a totally different method,

by first studying the 6d quiver and then by reducing on successively on circles. Therefore,

this agreement can be thought of as an overall consistency check of our construction.

Now, applying [2] and [5] in our case, we see that the U(k) holonomy at infinity of

C2/ΓE8 is trivial, and the first Chern class c1 satisfies
∫
Ei

c1 = ni which can be read off

from (4.8). It would be interesting to understand from M-theory point of view why the first

Chern class on the C2/ΓE8 side is given by the asymptotic E8 holonomy on the C2/Zk. It

seems important for the full story to consider a more general case where C2/Zk is replaced

by the multicenter Taub-NUT space, see e.g. [20, 38].

5 Examples

Let us demonstrate the above general statement in various examples. In this section, we

take N to be the number of tensor multiplets in the 6d theory, which was denoted by N6

in the other sections.

5.1 The case of k = 2

There are three possibilities. We label the cases with the Kac label n and the group H ⊂ E8

left unbroken by the Kac label. The choice k = 2 is somewhat special, since the ALE space

C̃2/Z2, also known as the Eguchi-Hanson space, has an exceptional isometry SU(2). Then

the generic flavor symmetry of the 6d SCFT should be H×SU(2)2, where one SU(2) comes

from the 7d gauge field on the singularity and another SU(2) comes from the isometry.

1. The first case is

n =
0

2 0 0 0 0 0 0 0
, H = E8. (5.1)
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The corresponding 6d theory is

[E8] 1
su(1)

2
su(2)

2
[Nf=1]

su(2)

2 · · ·
su(2)

2︸ ︷︷ ︸
N−3

[SU(2)]. (5.2)

The T 3 reduction of this theory gives the following 3d N = 4 theory:

•
1
− •

2
− •

N
− •

2N
− •

3N
− •

4N
− •

5N
−

•3N
|
•
6N

− •
4N

− •
2N

. (5.3)

2. The second case is

n =
0

0 1 0 0 0 0 0 0
, H = E7 × SU(2). (5.4)

The corresponding 6d theory is

[E7] 1
su(2)

2
[Nf=2]

su(2)

2 · · ·
su(2)

2︸ ︷︷ ︸
N−2

[SU(2)] (5.5)

where the number of su(2) gauge groups in the quiver is N − 1. The Higgs branch

dimension of the UV fixed point of this theory is 29N + 4 + 4(N − 1)− 3(N − 1) =

30N + 3. The mirror of the T 3 compactification of this theory is

•
1
− •

2
− •

N+1
− •

2N
− •

3N
− •

4N
− •

5N
−

•3N
|
•
6N

− •
4N

− •
2N

, (5.6)

The Coulomb branch dimension, which is the sum of the rank of the gauge groups

minus one, is indeed 30N + 3.

3. The third case is

n =
0

0 0 0 0 0 0 0 1
, H = SO(16). (5.7)

The corresponding 6d theory is

[SO(16)]
sp(1)

1
su(2)

2
su(2)

2 · · ·
su(2)

2︸ ︷︷ ︸
N−1

[SU(2)] (5.8)

where the number of SU(2) gauge groups associated with the (−2) curves is N − 1.

The Higgs branch dimension of the UV fixed point of this theory is 29N + 16 + 4 +

4(N − 1)− 3− 3(N − 1) = 30N + 16. The mirror of the T 3 compactification of this

theory is

•
1
− •

2
− •

N+2
− •

2N+2
− •

3N+2
− •

4N+2
− •

5N+2
−

•3N+1
|
•

6N+2
− •

4N+1
− •

2N
. (5.9)

The Coulomb branch dimension, which is the sum of the rank of the gauge groups

minus one, is indeed 30N + 16. This is consistent with figure 45 of [12], namely the

T 2 compactification of (5.8) yields the class S theory whose Gaiotto curve is a sphere

with punctures:

[(3N + 1)2], [(2N + 1)2, 2N ], [N6, 12] . (5.10)
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Now let us comment on the flavor symmetry from the point of view of the 6d quiver.

Since an SU(2)-SU(2) bifundamental has an SU(2) flavor symmetry, the three 6d quivers

presented above have order N copies of SU(2) symmetries on the generic points of the

tensor branch. In fact the same issue already appears in the case of N M5-branes probing

the C2/Z2 singularity, which has the quiver

[SU(2)]
su(2)

2 · · ·
su(2)

2︸ ︷︷ ︸
N

[SU(2)] (5.11)

which naively has too many SU(2) flavor symmetries.

The issue can be resolved by recalling the fact derived in appendix A of [39] that the

basic 6d SCFT whose quiver on the tensor branch is given by SU(2) with Nf = 4 with a

naive SO(8) symmetry, only has an SO(7) symmetry under which the flavors transform in

the spin representation. In the quiver representation of the same theory as

[SU(2)1]
su(2)

2 [SU(2)2], (5.12)

this means the following: regard the bifundamental hypermultiplets on the left and on

the right of the gauge group as the trifundamental half-hypermultiplets. At the quiver

level there are therefore the flavor symmetry SU(2)1× SU(2)′1× SU(2)2× SU(2)′2 ⊂ SO(8).

Under the SO(7) symmetry which is the flavor symmetry of the SCFT, only the diagonal

subgroup of SU(2)′1 and SU(2)′2 survives. Applying this argument at every su(2) node

in (5.2), (5.5), (5.8), and (5.12), we see that the number of SU(2) flavor symmetries is

reduced appropriately.

There are also some interesting special cases with enhanced flavour symmetries when

N is small:

1. N = 2, H = E8. In this case the quiver (5.2) degenerates to

[E8] 1
su(1)

2 [SU(2)]
[Nf=1]

(5.13)

which is just the rank-2 E-string theory with three decoupled hypermultiplets. The

3d quiver in this case is (5.3) for N = 2:

•
1
− •

2
− •

2
− •

4
− •

6
− •

8
− •

10
−

•6
|
•
12
− •

8
− •

4
. (5.14)

Its Coulomb branch is

H3 × (the reduced moduli space of 2 E8 instantons on C2) (5.15)

and we indeed see the same decoupled structure. The explanation from the perspec-

tive of the Coulomb branch operators will be described below.
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2. N = 3 with H = E8. The 6d quiver is

[E8] 1
su(1)

2
su(2)

2
[Nf=1]

[SU(2)]. (5.16)

The 3d quiver is

•
1
− •

2
− •

3
− •

6
− •

9
− •

12
− •

15
−

•9
|
•
18
− •

12
− •

6
(5.17)

The flavour symmetry is enhanced to G2×E8. The explanation from the perspective

of the Coulomb branch operators will also be described below.

3. N = 2, H = E7 × SU(2). The 6d quiver for this case reduces to

[E7] 1
su(2)

2
[Nf=2]

[SU(2)]. (5.18)

On the tensor branch, there is an SO(8) symmetry acting on the four flavors of SU(2)

gauge group. In the SCFT it is known that there is only SO(7). The total symmetry

is then SO(7) × E7. In fact this 6d theory is the (E7, SO(7)) minimal conformal

matter [10], which describes “half M5-branes” on the E7 singularity.

The 3d quiver in this case is (5.6) for N = 2:

•
1
− •

2
− •

3
− •

4
− •

6
− •

8
− •

10
−

•6
|
•
12
− •

8
− •

4
. (5.19)

This theory is the mirror of the S1 reduction of the class S theory whose Gaiotto

curve is a sphere with punctures

[24, 14], [62], [43] . (5.20)

In [12, 15] the T 2 compactification was also identified with a class S theory of the

E6 type associated with the sphere with punctures 0, 2A1 and E6(a1). For consis-

tency, these two class S theories should in fact be the same. Let us compute the

central charges of (5.20). We find that the effective numbers of vector multiplets and

hypermultiplets are nH = 112 and nV = 49, respectively. Thus,

a =
1

24
(5nV + nH) =

119

8
, c =

1

12
(2nV + nH) =

35

2
. (5.21)

This agrees with a and c of the aforementioned class S theory of the E6 type; see (7.1)

of [15].

5.2 Enhanced flavor symmetries from 3d quivers

In fact the symmetry enhancement of each of the three cases above can be generalized to

other over-extended Dynkin quivers in 3d, namely:
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1. For the quiver consisting of a tail •
1
− •

2
attached to the affine Dynkin diagram of

type g with gauge groups being unitary groups of the ranks given by 2 times the dual

Coxeter labels, the Coulomb branch moduli space is H3 ×M̃2,g, where M̃2,g denotes

the reduced two-instanton moduli space of group g on C2. For example, the Coulomb

branch of the quiver

•
1
− •

2
− •

2
= •

2
(5.22)

is H3 × M̃2, su(2), and the Coulomb branch of the quiver

•
1
− •

2
− •

2
−

•2
|
•
4
|
•2

− •
2

(5.23)

is H3 × M̃2, so(8).

2. For the quiver consisting of a tail •
1
− •

2
attached to the affine Dynkin diagram of

type g with gauge groups being unitary groups of the ranks given by 3 times the

dual Coxeter labels, the Coulomb branch moduli space has a symmetry G2 × g. For

example, the Coulomb branch of the quiver

•
1
− •

2
− •

3
= •

3
(5.24)

has a symmetry G2 × SU(2), and the Coulomb branch of the quiver

•
1
− •

2
− •

3
−

•3
|
•
6
|
•3

− •
3

(5.25)

has a symmetry G2 × SO(8).

3. For the quiver consisting of a tail •
1
−•

2
attached to the affine Dynkin diagram of type

g with the affine node being U(3) and other gauge groups being unitary groups of the

ranks given by 2 times the dual Coxeter labels, the Coulomb branch has a symmetry

SO(7)× g̃, where g̃ is the commutant of su(2) in g. For example, the Coulomb branch

of the following quiver

•
1
− •

2
− •

3
− •

4
−

•2
|
•4
|
•
6
− •

4
− •

2
(5.26)

has a symmetry SO(7)× SU(6), where SU(6) is the commutant of SU(2) in E6.

In each of the above examples, the quiver contains of a balanced affine Dynkin quiver

diagram as a subquiver. If we consider only this subquiver, the R-charges of the monopole

operators in this theory vanish, and hence this subquiver is indeed a bad theory. By

attaching a quiver tail •
1
− •

2
− · · · − •

k
to such a subquiver, the total quiver becomes good
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or ugly.4 We would like to consider the contribution of this quiver tail to the Coulomb

branch of the total quiver.

1. For this case, the node •
2
, which is the affine node in the affine Dynkin diagram,

is over-balanced in the sense of [37]. Following [37], we can split the quiver into

two parts, namely •
1
− •

2
− •

2
and the rest of the Dynkin diagram. The R-charge of

the monopole operators from the subquiver •
1
− •

2
− •

2
receives the contribution from

the hypermultiplets and vector multiplets in the way described in [37], except that

there is no contribution from the vector multiplet of the rightmost node •
2
, since this

was cancelled inside the affine Dynkin quiver. The contribution from the subquiver

is therefore the same as that of the quiver •
1
− •

2
−

⋂

•
2
, where ∩ denotes an adjoint

hypermultiplet of the U(2) rightmost node. The Coulomb branch of •
1
−•

2
−

⋂

•
2
contains

3 free hypermultiplets, which can be seen from the monopole operators with SU(2)R-

spin 1/2. This explains the H3 factor in (5.15). The reduced moduli space of two E8

instantons on C2 can be realised as in [21].

2. Similarly, for this case, the total quiver can be split into •
1
−•

2
−•

3
and the rest of the

Dynkin diagram. The contribution to the R-charge of the monopole operators from

the subquiver •
1
− •

2
− •

3
can be realised from the quiver •

1
− •

2
−

⋂

•
3
, where ∩ denotes

an adjoint hypermultiplet of the U(3) rightmost node.5 Indeed, it was pointed out in

section 3.3.2 of [41] that the Coulomb branch of the latter model has a G2 symmetry.

(Note that the corresponding 4d class S theory had been studied in [40]. The G2

symmetry on the Higgs branch of such a theory had also been pointed out in that

reference.) This therefore explains the G2 symmetry in case 3. The E8 symmetry

follows from the Dynkin subquiver.

3. Finally, for this case, •
4

is the unbalanced node in the quiver. There are two contri-

butions to the Coulomb branch operators with SU(2)R-spin 1. One contribution can

be realised using the quiver •
1
−•

2
−•

3
−

⋂

•
4
in a similar fashion to the above discussion.

This quiver has a Coulomb branch symmetry SU(4) and thus gives 15 operators with

SU(2)R-spin 1 in the adjoint representation of SU(4). The other contribution can be

seen as follows. Since the node •
3
, which was originally a part of the affine Dynkin sub-

quiver, now belongs to the tail •
1
−•

2
−•

3
−•

4
, we also need to take into account the contri-

bution that arises from the removal of this node from such an affine Dynkin diagram.

The second contribution thus comes from considering •
1
−•

2
−

⋂

•
4
. There are 6 Coulomb

branch operators with SU(2)R-spin 1 in the latter. Therefore, we have in total

15+6 = 21 operators with SU(2)R-spin 1; this explains the enhancement to the SO(7)

symmetry. The remaining symmetry is thus the commutant of SU(2), which arises

from node •
3
, in the original symmetry associated with the affine Dynkin diagram.

4See also [40] for a related consideration from the 4d point of view.
5The authors thank S. Cremonesi for this argument.
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5.3 The case of k = 4

There are ten possibilities. The F-theory quiver for the 6d theories are listed on page 73

of [11]. Here are the mirrors of the T 3 compactification of them.

1. The first case is

n =
0

4 0 0 0 0 0 0 0
, H = E8. (5.27)

The 6d quiver is

[E8] 1
su(1)

2
su(2)

2
su(3)

2

N−4︷ ︸︸ ︷
su(4)

2
[Nf=1]

· · ·
su(4)

2 [SU(4)] (5.28)

and the 3d quiver is

•
1
− •

2
− •

3
− •

4
− •

N
− •

2N
− •

3N
− •

4N
− •

5N
−

•3N
|
•
6N

− •
4N

− •
2N

. (5.29)

2. The second case is

n =
0

2 1 0 0 0 0 0 0
, H = E7 ×U(1) (5.30)

with the 6d quiver

[E7] 1
su(2)

2
[Nf=1]

su(3)

2

N−3︷ ︸︸ ︷
su(4)

2
[Nf=1]

. . .
su(4)

2 [SU(4)]. (5.31)

The dimension of the SCFT Higgs branch is

29N + 2 + 6 + 12 + 4 + 16(N − 3)− 3− 8− 15(N − 3) = 30N + 10 . (5.32)

The 3d quiver is

•
1
− •

2
− •

3
− •

4
− •

N+1
− •

2N
− •

3N
− •

4N
− •

5N
−

•3N
|
•
6N

− •
4N

− •
2N

(5.33)

and the dimension of the Coulomb branch is 30N + 10.

3. The third case is

n =
0

2 0 0 0 0 0 0 1
, H = SO(14)×U(1) (5.34)

with the 6d quiver

[SO(14)]
sp(1)

1
su(3)

2

N−2︷ ︸︸ ︷
su(4)

2
[Nf=1]

. . .
su(4)

2 [SU(4)]. (5.35)

– 23 –



J
H
E
P
0
9
(
2
0
1
7
)
1
4
4

The dimension of the SCFT Higgs branch is

29N + 14 + 6 + 12 + 4 + 16(N − 2)− 3− 8− 15(N − 2) = 30N + 23 . (5.36)

The 3d quiver is

•
1
− •

2
− •

3
− •

4
− •

N+2
− •

2N+2
− •

3N+2
− •

4N+2
− •

5N+2
−

•3N+1
|
•

6N+2
− •

4N+1
− •

2N
(5.37)

and the Coulomb branch dimension is 30N + 23.

4. The fourth case is

n =
0

0 2 0 0 0 0 0 0
, H = E7 × SU(2). (5.38)

with the 6d quiver

[E7] 1
su(2)

2

N−2︷ ︸︸ ︷
su(4)

2
[SU(2)]

. . .
su(4)

2 [SU(4)]. (5.39)

The dimension of the SCFT Higgs branch is

29N + 8 + 8 + 16(N − 2)− 3− 15(N − 2) = 30N + 11 . (5.40)

The 3d mirror is

•
1
− •

2
− •

3
− •

4
− •

N+2
− •

2N
− •

3N
− •

4N
− •

5N
−

•3N
|
•
6N

− •
4N

− •
2N

(5.41)

The Coulomb branch dimension is 30N + 11.

5. The fifth case is

n =
0

0 0 0 0 0 0 0 2
, H = SO(16) (5.42)

with the 6d quiver

[SO(16)]
sp(2)

1

N−1︷ ︸︸ ︷
su(4)

2 . . .
su(4)

2 [SU(4)] (5.43)

The dimension of the SCFT Higgs branch is

29N + 32 + 16 + 16(N − 1)− 10− 15(N − 1) = 30N + 37 . (5.44)

The 3d quiver is

•
1
− •

2
− •

3
− •

4
− •

N+4
− •

2N+4
− •

3N+4
− •

4N+4
− •

5N+4
−

•3N+2
|
•

6N+4
− •

4N+2
− •

2N
(5.45)

and the Coulomb branch dimension is 30N + 37.
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6. The sixth case is

n =
0

0 1 0 0 0 0 0 1
, H = SO(12)× SU(2)×U(1) (5.46)

with the 6d quiver

[SO(12)]
sp(1)

1

N−1︷ ︸︸ ︷
su(4)

2
[SU(2)]

. . .
su(4)

2 [SU(4)] (5.47)

The dimension of the SCFT Higgs branch is

29N + 12 + 8 + 8 + 16(N − 1)− 3− 15(N − 1) = 30N + 24 . (5.48)

The 3d quiver is

•
1
− •

2
− •

3
− •

4
− •

N+3
− •

2N+2
− •

3N+2
− •

4N+2
− •

5N+2
−

•3N+1
|
•

6N+2
− •

4N+1
− •

2N
(5.49)

The Coulomb branch dimension is 30N + 24.

7. The seventh case is

n =
0

1 0 1 0 0 0 0 0
, H = E6 × SU(2)×U(1). (5.50)

with the 6d quiver

[E6] 1
su(3)

2
[SU(2)]

N−2︷ ︸︸ ︷
su(4)

2
[Nf=1]

. . .
su(4)

2 [SU(4)]. (5.51)

The dimension of the SCFT Higgs branch is

29N + 6 + 12 + 4 + 16(N − 2)− 8− 15(N − 2) = 30N + 12 . (5.52)

The 3d mirror is

•
1
− •

2
− •

3
− •

4
− •

N+2
− •

2N+1
− •

3N
− •

4N
− •

5N
−

•3N
|
•
6N

− •
4N

− •
2N

(5.53)

and the Coulomb branch dimension is 30N + 12.

8. The eighth case is

n =
1

1 0 0 0 0 0 0 0
, H = SU(8)×U(1) (5.54)

with the 6d quiver

[SU(8)]
su(3)

1

N−1︷ ︸︸ ︷
su(4)

2
[Nf=1]

. . .
su(4)

2 [SU(4)]. (5.55)
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The dimension of the SCFT Higgs branch is

29N + 24 + 12 + 4 + 16(N − 1)− 8− 15(N − 1) = 30N + 31 . (5.56)

The 3d quiver is

•
1
− •

2
− •

3
− •

4
− •

N+3
− •

2N+3
− •

3N+3
− •

4N+3
− •

5N+3
−

•3N+1
|
•

6N+3
− •

4N+2
− •

2N+1
(5.57)

and the Coulomb branch dimension is 30N + 31.

9. The ninth case is

n =
0

0 0 0 1 0 0 0 0
, H = SO(10)× SU(4) (5.58)

with the 6d quiver

[SO(10)] 1

N−1︷ ︸︸ ︷
su(4)

2
[SU(4)]

. . .
su(4)

2 [SU(4)]. (5.59)

The dimension of the SCFT Higgs branch is

29N + 16 + 16(N − 1)− 15(N − 1) = 30 + 15 . (5.60)

The 3d quiver is

•
1
− •

2
− •

3
− •

4
− •

N+3
− •

2N+2
− •

3N+1
− •

4N
− •

5N
−

•3N
|
•
6N

− •
4N

− •
2N

(5.61)

and the dimension of the Coulomb branch is 30N + 15.

10. The final tenth case is

n =
0

0 0 0 0 0 0 1 0
, H = SU(8)× SU(2), (5.62)

with the 6d quiver

[SU(8)]
su(4)

1
[antisym]

N−1︷ ︸︸ ︷
su(4)

2 . . .
su(4)

2 [SU(4)] (5.63)

The dimension of the SCFT Higgs branch is

29N + 32 + 6 + 16N − 15N = 30N + 38 . (5.64)

The 3d quiver is

•
1
− •

2
− •

3
− •

4
− •

N+4
− •

2N+4
− •

3N+4
− •

4N+4
− •

5N+4
−

•3N+2
|
•

6N+4
− •

4N+2
− •

2N+1
(5.65)

and the dimension of the Coulomb branch is 30N + 38.
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5.4 Theories differing by the 6d θ angle

In this subsection we look at the 4d and 3d theories generated from 6d SCFTs differing by

the choice of 6d θ angle. The first case where this possibility occurs is for k = 8, where the

two choices are given by Kac labels n′
3 = 2, n′

2 = 1 for one and n′
4 = 2 for the other with

the rest zero. These can be generalized to k = 2l + 8 with Kac labels n′
3 = 2, n′

2 = 1 + l

for one and n′
4 = 2, n′

2 = l for the other with the rest zero. The 6d quiver in both cases is

given by:

usp(2l)

1

N−1︷ ︸︸ ︷
su(2l+8)

2
[SU(8)]

. . .
su(2l+8)

2 [SU(2l + 8)] (5.66)

where we identify the case n′
4 = 2, n′

2 = l with θ = 0 and n′
3 = 2, n′

2 = 1 + l with θ = π.

The associated 4d theories are different for the two cases. In the θ = 0 case we associate

the class S theory given by:

[(N − 1)6, 12l+8], [2N + l + 2, 2N + l, 2N ], [(3N + l + 1)2] , (5.67)

while the θ = π case is associated with:

[(N − 1)6, 12l+8], [(2N + l + 1)2, 2N ], [3N + l + 2, 3N + l] . (5.68)

The 3d quivers are:

•
1
−•

2
−. . .− •

2l+7
− •

2l+8
− •

N+2l+7
− •

2N+2l+6
− •

3N+2l+5
− •

4N+2l+4
− •

5N+2l+3
−

•3N+l+1
|
•

6N+2l+2
− •

4N+l
− •

2N
,

(5.69)

for the θ = 0 case, and

•
1
−•

2
−. . .− •

2l+7
− •

2l+8
− •

N+2l+7
− •

2N+2l+6
− •

3N+2l+5
− •

4N+2l+4
− •

5N+2l+3
−

•3N+l
|
•

6N+2l+2
− •

4N+l+1
− •

2N
,

(5.70)

for the θ = π case.

We can now inquire as to how these theories differ from one another. In the l = 0

case they differ already at the level of the global symmetry, where the θ = 0 case has an

SU(8)2×SU(2)×U(1) global symmetry while the θ = π case has an SU(8)2×U(1)2 global

symmetry. In this case we have an SU(8) gauging of E8 and the two choices differ by their

commutant inside E8. We note that this difference is in accordance with the symmetry

expected from the Kac labels. When l > 0 the symmetries of the two theories agree.

We can calculate the 4d anomalies of the two theories and find that all of them agree

between the two theories. Again this is consistent with our interpretation as the 4d anoma-

lies can be computed from their 6d counterparts, which in turn are independent of the θ

angle. From our 6d interpretation we expect the two to differ slightly in their operator

spectrum. Particularly the θ angle should affect the USp gauge group instanton strings

changing their charges under the global and gauge symmetries. Upon compactification to

lower dimensions these should map to local operators.
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We can observe this from the 3d quivers. We get a tower of monopole operators from

every node. The basic monopole operator from the balanced nodes leads to enhancement

of symmetry. We also have a basic monopole operator from the unbalanced nodes. These

provide operators with higher R-charges, and we can read of their R-charges and non-

abelian global symmetry charges from the quiver.

We have three unbalanced nodes. Two of them give the same contribution in both

theories: one operator of SU(2)R spin N
2 in the bifundamental of the SU(2l + 8) × SU(8)

global symmetry, and one operator of SU(2)R spin 2 in the 28 of the SU(8) global symmetry.

These can be readily identified with gauge invariants in the 6d quiver, where the former is

the one made from N − 2 SU(2l+8)× SU(2l+8) bifundamentals and the flavors, and the

later is made from two SU(8) flavors and the USp(2l) × SU(2l + 8) bifundamental. The

last one differ slightly between the two theories.

In the θ = 0 case it is a flavor singlet with SU(2)R spin l+2
2 . Particularly for l = 0 this

gives the conserved current enhancing the U(1) to SU(2). In the θ = π case, however, it is in

the 8 of SU(8) with SU(2)R spin l+3
2 . We can interpret these states as coming from the USp

gauge group instanton strings wrapped on the circle. These are in the spinor of SO(4l+16),

and depending on the θ angle decompose to all the even or odd rank antisymmetric tensor

representations of the gauge SU(2l + 8) connected to the USp gauge group. In the θ = 0

case we get the even rank representations, which contain a gauge invariant part which is a

flavor symmetry singlet. In the θ = π case we get the odd rank representations, which do

not contain any gauge invariants. However we can combine it with one of the SU(2l + 8)

flavors to form an invariant. This should contribute a state in the 8 of SU(8) with SU(2)R
spin which is greater by 1

2 from that of the singlet. This agrees with what we observe. It

might be interesting to study more accurately the spectrum, particularly, the Higgs branch

chiral ring, and compare against the 6d expectations. We will not pursue this here.

5.5 Massive E-string theories

In this subsection, we consider the following 6d theory

T 6d
E (̟,m0, N) : [E9−m0 ] 1

sum0

2
su2m0

2 . . .
su(̟−1)m0

2
su̟m0

2
[Nf=m0]

su̟m0

2 · · · ,
su̟m0

2︸ ︷︷ ︸
N−̟−1

[SU(̟m0)].

(5.71)

These theories were studied in [10, 12, 13, 42]. They can be called the “massive E-string

theories” as in the last reference, since they correspond to NS5-branes probing the O8-D8

combination in the presence of the Romans mass.

The mirror of the T 3 compactification of (5.71) is

•
1
−•

2
− · · · − •

̟m0

− •
N+r1

− •
2N+r2

− •
3N+r3

− •
4N+r4

− •
5N+r5

−

•3N+r3′
|
•

6N+r6
− •

4N+r4′
− •

2N+r2′
(5.72)

where the values of ri and the Kac labels for each m0 are given in table 1. Note that

∑

i

ri =
1

2
̟m0(m0 − 1) . (5.73)
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m0 E9−m0 Kac label n/̟ ri/̟

1 E8
0

1 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0

2 E7
0

0 1 0 0 0 0 0 0

0

1 0 0 0 0 0 0 0

3 E6
0

0 0 1 0 0 0 0 0

0

2 1 0 0 0 0 0 0

4 SO(10)
0

0 0 0 1 0 0 0 0

0

3 2 1 0 0 0 0 0

5 SU(5)
0

0 0 0 0 1 0 0 0

0

4 3 2 1 0 0 0 0

6 SU(3)× SU(2)
0

0 0 0 0 0 1 0 0

0

5 4 3 2 1 0 0 0

7 SU(2)×U(1)
1

0 0 0 0 0 0 1 0

0

6 5 4 3 2 1 0 0

8 SU(2)
0

0 0 0 0 0 0 2 0

1

7 6 5 4 3 2 0 0

Table 1. The values of ri in (5.72) and the Kac label for each m0.

The SCFT Higgs branch dimension of (5.71) is

dimSCFT
H Higgs of T 6d

E (̟,m0, N) = 30N +
1

2
̟m2

0(̟ + 1)− 1 ; (5.74)

this is equal to the Coulomb branch dimension of (5.72).

5.6 Higgsing the SU(k) flavour symmetry

In the theories we have discussed so far, there is always an SU(k) flavour symmetry which

came from the gauge symmetry on the C2/Zk singularity. From the 3d quiver perspective,

this symmetry arises from the topological symmetry associated with the nodes in the tail

•
1
− •

2
− · · · − •

k
.

We can obtain another class of models by on nilpotent VEVs that Higgs the flavour

symmetry SU(k).6 Suppose that such VEVs are in the nilpotent orbit of SU(k) given by⊕
i Jsi where Js is a s × s Jordan block so that Y = [s1, s2, . . . , sℓ] is a corresponding

partition of k.

Assuming that the 6d quiver theory before the Higgsing has a sufficiently long plateau

of SU(k) gauge groups, this Higgsing can be performed exactly as in 4d class S theory

e.g. as described in section 12.5 of [43]. Its effect in 6d quiver was studied in [44, 45]. In

the end, we see that the tail on the right-hand side of the quiver to have the form

· · ·
su(k)

2
su(k)

2
[Nf=uℓ′ ]

su(k−uℓ′ )

2
[Nf=(uℓ′−1−uℓ′ )]

· · ·
su(u2+u1)

2
[Nf=(u2−u3)]

su(u1)

2
[Nf=(u1−u2)]

, (5.75)

6The authors thank Alessandro Tomasiello for the discussion about this class of theories.
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where ui are the elements of the transpose Y T = [u1, u2, . . . , uℓ′ ], and we define ui = 0

for i > ℓ′.

The SCFT Higgs branch dimension of (5.75) is

dimSCFT
H Higgs of (5.75) =

[
30(N3 + k)− 〈w,ρ〉+

1

2
k(k + 1)− 1

]
− dimHOY (5.76)

where OY is the nilpotent orbit labeled by Y .

The mirror of the T 3 compactification of (5.75) is

TY (SU(k)) × �
k
− •

Ñ1

− •
Ñ2

− •
Ñ3

− •
Ñ4

− •
Ñ5

−

•Ñ3′

|
•
Ñ6

− •
Ñ4′

− •
Ñ2′

U(k)/U(1)
. (5.77)

In other words, we simply replace the tail •
1
− •

2
− · · · − �

k
for the theories discussed in

the preceding sections by TY (SU(k)), where the latter is defined as in [37]. The Coulomb

branch dimension of (5.77) is

dimHCoulomb of (5.77)

= [30(N3 + k)− 〈w,ρ〉] +

[
1

2
{(k2 − 1)− (k − 1)} − dimHOY

]
+ (k − 1)

= 30(N3 + k) +
1

2
k(k + 1)− 1− dimHOY − 〈w,ρ〉 ,

(5.78)

where the terms in the second square brackets in the second line denote the Coulomb

branch dimension of TY (SU(k)). This result is indeed in agreement with (5.76).

As an example, let us consider T 6d
E (k,m0 = 1, N) of the previous section and perform

the Higgsing with Y = [k − 1, 1]. The resulting 6d theory is

[E8] 1
su(1)

2
su(2)

2 . . .
su(k−1)

2
su(k)

2
[Nf=1]

su(k)N−2k

2
su(k)

2
[Nf=1]

su(k−1)

2 . . .
su(2)

2
su(1)

2 , (5.79)

where the number of tensor multiplets is N . This theory is similar to that discussed in

(36) of [6], (5.2) of [29], except that we have only one (−1)-curve in the quiver, instead of

two. The mirror of the T 3 compactification of this theory is

•
1
− •

k
− •

N
− •

2N
− •

3N
− •

4N
− •

5N
−

•3N
|
•
6N

− •
4N

− •
2N

, (5.80)

This quiver is a “good” theory in the sense of [37] if N + 1 ≥ 2k and k ≥ 2. In this case,

this quiver is the 3d mirror theory of the S1 reduction of the class S theory of type SU(6N)

associated a sphere with the punctures

[N5, N − k, k − 1, 1], [(3N)2], [(2N)3] . (5.81)

– 30 –



J
H
E
P
0
9
(
2
0
1
7
)
1
4
4

Acknowledgments

The authors thank Hiroyuki Shimizu for the collaboration at the early stages. NM sin-

cerely thanks Stefano Cremonesi, Amihay Hanany and Alessandro Tomasiello for a close

collaboration, invaluable insights, and several useful discussions. He also grateful to the

hospitality of the organisers of the Pollica Summer Workshop 2017, including Fernando

Alday, Philip Argyres, Madalena Lemos and Mario Martone. He is supported in part by

the INFN, the ERC Starting Grant 637844-HBQFTNCER, as well as the ERC STG grant

306260 through the Pollica Summer Workshop. KO gratefully acknowledges support from

the Institute for Advanced Study. YT is partially supported in part byJSPS KAKENHI

Grant-in-Aid (Wakate-A), No.17H04837 and JSPS KAKENHI Grant-in-Aid (Kiban-S),

No.16H06335. YT and GZ are partially supported by WPI Initiative, MEXT, Japan at

IPMU, the University of Tokyo.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] M.F. Atiyah, N.J. Hitchin, V.G. Drinfeld and Yu. I. Manin, Construction of Instantons,

Phys. Lett. A 65 (1978) 185 [INSPIRE].

[2] P.B. Kronheimer and H. Nakajima, Yang-Mills instantons on ALE gravitational instantons,

Math. Ann. 288 (1990) 263.

[3] M. Bianchi, F. Fucito, G. Rossi and M. Martellini, Explicit construction of Yang-Mills

instantons on ALE spaces, Nucl. Phys. B 473 (1996) 367 [hep-th/9601162] [INSPIRE].

[4] E. Witten, Small instantons in string theory, Nucl. Phys. B 460 (1996) 541

[hep-th/9511030] [INSPIRE].

[5] M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167

[INSPIRE].

[6] P.S. Aspinwall and D.R. Morrison, Point-like instantons on K3 orbifolds,

Nucl. Phys. B 503 (1997) 533 [hep-th/9705104] [INSPIRE].

[7] D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

[8] S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb

branches of 3d N = 4 gauge theories, JHEP 01 (2014) 005 [arXiv:1309.2657] [INSPIRE].

[9] J.J. Heckman, D.R. Morrison and C. Vafa, On the Classification of 6D SCFTs and

Generalized ADE Orbifolds, JHEP 05 (2014) 028 [Erratum ibid. 1506 (2015) 017]

[arXiv:1312.5746] [INSPIRE].

[10] M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d Conformal Matter,

JHEP 02 (2015) 054 [arXiv:1407.6359] [INSPIRE].

[11] J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic Classification of 6D SCFTs,

Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [INSPIRE].

– 31 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0375-9601(78)90141-X
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,A65,185%22
http://dx.doi.org/10.1007/BF01444534
https://doi.org/10.1016/0550-3213(96)00240-4
https://arxiv.org/abs/hep-th/9601162
https://inspirehep.net/search?p=find+EPRINT+hep-th/9601162
https://doi.org/10.1016/0550-3213(95)00625-7
https://arxiv.org/abs/hep-th/9511030
https://inspirehep.net/search?p=find+EPRINT+hep-th/9511030
https://arxiv.org/abs/hep-th/9603167
https://inspirehep.net/search?p=find+EPRINT+hep-th/9603167
https://doi.org/10.1016/S0550-3213(97)00516-6
https://arxiv.org/abs/hep-th/9705104
https://inspirehep.net/search?p=find+EPRINT+hep-th/9705104
https://doi.org/10.1007/JHEP08(2012)034
https://arxiv.org/abs/0904.2715
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.2715
https://doi.org/10.1007/JHEP01(2014)005
https://arxiv.org/abs/1309.2657
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.2657
https://doi.org/10.1007/JHEP05(2014)028
https://arxiv.org/abs/1312.5746
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.5746
https://doi.org/10.1007/JHEP02(2015)054
https://arxiv.org/abs/1407.6359
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.6359
https://doi.org/10.1002/prop.201500024
https://arxiv.org/abs/1502.05405
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.05405


J
H
E
P
0
9
(
2
0
1
7
)
1
4
4

[12] G. Zafrir, Brane webs, 5d gauge theories and 6d N = (1, 0) SCFT’s, JHEP 12 (2015) 157

[arXiv:1509.02016] [INSPIRE].

[13] K. Ohmori and H. Shimizu, S1/T 2 compactifications of 6d N = (1, 0) theories and brane

webs, JHEP 03 (2016) 024 [arXiv:1509.03195] [INSPIRE].

[14] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, 6d SCFTs, 5d Dualities and Tao Web Diagrams,

arXiv:1509.03300 [INSPIRE].

[15] K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, 6d N = (1, 0) theories on T 2 and

class S theories: Part I, JHEP 07 (2015) 014 [arXiv:1503.06217] [INSPIRE].

[16] P.B. Kronheimer, Instantons and the geometry of the nilpotent variety, J. Diff. Geom. 32

(1990) 473 [INSPIRE].

[17] Y. Tachikawa, Moduli spaces of SO(8) instantons on smooth ALE spaces as Higgs branches

of 4d N = 2 supersymmetric theories, JHEP 06 (2014) 056 [arXiv:1402.4200] [INSPIRE].

[18] F. Benini, Y. Tachikawa and D. Xie, Mirrors of 3d Sicilian theories, JHEP 09 (2010) 063

[arXiv:1007.0992] [INSPIRE].

[19] H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional

N = 4 gauge theories, I, Adv. Theor. Math. Phys. 20 (2016) 595 [arXiv:1503.03676]

[INSPIRE].

[20] H. Nakajima, Questions on provisional Coulomb branches of 3-dimensional N = 4 gauge

theories, arXiv:1510.03908 [INSPIRE].

[21] S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Coulomb Branch and The Moduli

Space of Instantons, JHEP 12 (2014) 103 [arXiv:1408.6835] [INSPIRE].

[22] N. Mekareeya, The moduli space of instantons on an ALE space from 3d N = 4 field

theories, JHEP 12 (2015) 174 [arXiv:1508.06813] [INSPIRE].

[23] V.G. Kac, Infinite Dimensional Lie Algebras, Cambridge University Press, Cambridge U.K.

(1994).

[24] H. Nakajima, Moduli spaces of anti-self-dual connections on ALE gravitational instantons,

Invent. Math. 102 (1990) 267.

[25] K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, Anomaly polynomial of general 6d

SCFTs, PTEP 2014 (2014) 103B07 [arXiv:1408.5572] [INSPIRE].

[26] K. Intriligator, 6d, N = (1, 0) Coulomb branch anomaly matching, JHEP 10 (2014) 162

[arXiv:1408.6745] [INSPIRE].

[27] K. Ohmori, H. Shimizu and Y. Tachikawa, Anomaly polynomial of E-string theories,

JHEP 08 (2014) 002 [arXiv:1404.3887] [INSPIRE].

[28] I. Brunner and A. Karch, Branes at orbifolds versus Hanany Witten in six-dimensions,

JHEP 03 (1998) 003 [hep-th/9712143] [INSPIRE].

[29] A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories,

Nucl. Phys. B 529 (1998) 180 [hep-th/9712145] [INSPIRE].

[30] O. Bergman and D. Rodriguez-Gomez, 5d quivers and their AdS6 duals,

JHEP 07 (2012) 171 [arXiv:1206.3503] [INSPIRE].

[31] H. Hayashi, S.-S. Kim, K. Lee, M. Taki and F. Yagi, A new 5d description of 6d D-type

minimal conformal matter, JHEP 08 (2015) 097 [arXiv:1505.04439] [INSPIRE].

– 32 –

https://doi.org/10.1007/JHEP12(2015)157
https://arxiv.org/abs/1509.02016
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.02016
https://doi.org/10.1007/JHEP03(2016)024
https://arxiv.org/abs/1509.03195
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.03195
https://arxiv.org/abs/1509.03300
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.03300
https://doi.org/10.1007/JHEP07(2015)014
https://arxiv.org/abs/1503.06217
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.06217
https://inspirehep.net/search?p=find+J+%22JDGEA,32,473%22
https://doi.org/10.1007/JHEP06(2014)056
https://arxiv.org/abs/1402.4200
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.4200
https://doi.org/10.1007/JHEP09(2010)063
https://arxiv.org/abs/1007.0992
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.0992
https://doi.org/10.4310/ATMP.2016.v20.n3.a4
https://arxiv.org/abs/1503.03676
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.03676
https://arxiv.org/abs/1510.03908
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.03908
https://doi.org/10.1007/JHEP12(2014)103
https://arxiv.org/abs/1408.6835
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.6835
https://doi.org/10.1007/JHEP12(2015)174
https://arxiv.org/abs/1508.06813
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.06813
http://dx.doi.org/10.1007/BF01233429
https://doi.org/10.1093/ptep/ptu140
https://arxiv.org/abs/1408.5572
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.5572
https://doi.org/10.1007/JHEP10(2014)162
https://arxiv.org/abs/1408.6745
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.6745
https://doi.org/10.1007/JHEP08(2014)002
https://arxiv.org/abs/1404.3887
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.3887
https://doi.org/10.1088/1126-6708/1998/03/003
https://arxiv.org/abs/hep-th/9712143
https://inspirehep.net/search?p=find+EPRINT+hep-th/9712143
https://doi.org/10.1016/S0550-3213(98)00355-1
https://arxiv.org/abs/hep-th/9712145
https://inspirehep.net/search?p=find+EPRINT+hep-th/9712145
https://doi.org/10.1007/JHEP07(2012)171
https://arxiv.org/abs/1206.3503
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.3503
https://doi.org/10.1007/JHEP08(2015)097
https://arxiv.org/abs/1505.04439
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.04439


J
H
E
P
0
9
(
2
0
1
7
)
1
4
4

[32] H. Hayashi, S.-S. Kim, K. Lee, M. Taki and F. Yagi, More on 5d descriptions of 6d SCFTs,

JHEP 10 (2016) 126 [arXiv:1512.08239] [INSPIRE].

[33] O. Bergman and G. Zafrir, 5d fixed points from brane webs and O7-planes,

JHEP 12 (2015) 163 [arXiv:1507.03860] [INSPIRE].

[34] F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal

field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].

[35] O. Chacaltana and J. Distler, Tinkertoys for Gaiotto Duality, JHEP 11 (2010) 099

[arXiv:1008.5203] [INSPIRE].

[36] Y. Tachikawa, A review of the TN theory and its cousins, PTEP 2015 (2015) 11B102

[arXiv:1504.01481] [INSPIRE].

[37] D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills

Theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].

[38] M. Bullimore, T. Dimofte and D. Gaiotto, The Coulomb Branch of 3d N = 4 Theories,

Commun. Math. Phys. 354 (2017) 671 [arXiv:1503.04817] [INSPIRE].

[39] K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, 6d N = (1, 0) theories on S1/T 2

and class S theories: part II, JHEP 12 (2015) 131 [arXiv:1508.00915] [INSPIRE].

[40] D. Gaiotto and S.S. Razamat, Exceptional Indices, JHEP 05 (2012) 145 [arXiv:1203.5517]

[INSPIRE].

[41] S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, Coulomb branch Hilbert series and

Three Dimensional Sicilian Theories, JHEP 09 (2014) 185 [arXiv:1403.2384] [INSPIRE].

[42] I. Bah, A. Passias and A. Tomasiello, AdS5 compactifications with punctures in massive IIA

supergravity, arXiv:1704.07389 [INSPIRE].

[43] Y. Tachikawa, N = 2 Supersymmetric Dynamics for Pedestrians,

Lect. Notes Phys. 890 (2013) 2014 [arXiv:1312.2684] [INSPIRE].

[44] J.J. Heckman, T. Rudelius and A. Tomasiello, 6D RG Flows and Nilpotent Hierarchies,

JHEP 07 (2016) 082 [arXiv:1601.04078] [INSPIRE].

[45] N. Mekareeya, T. Rudelius and A. Tomasiello, T-branes, Anomalies and Moduli Spaces in

6D SCFTs, arXiv:1612.06399 [INSPIRE].

– 33 –

https://doi.org/10.1007/JHEP10(2016)126
https://arxiv.org/abs/1512.08239
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.08239
https://doi.org/10.1007/JHEP12(2015)163
https://arxiv.org/abs/1507.03860
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.03860
https://doi.org/10.1088/1126-6708/2009/09/052
https://arxiv.org/abs/0906.0359
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.0359
https://doi.org/10.1007/JHEP11(2010)099
https://arxiv.org/abs/1008.5203
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.5203
https://doi.org/10.1093/ptep/ptv098
https://arxiv.org/abs/1504.01481
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.01481
https://doi.org/10.4310/ATMP.2009.v13.n3.a5
https://arxiv.org/abs/0807.3720
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3720
https://doi.org/10.1007/s00220-017-2903-0
https://arxiv.org/abs/1503.04817
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.04817
https://doi.org/10.1007/JHEP12(2015)131
https://arxiv.org/abs/1508.00915
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.00915
https://doi.org/10.1007/JHEP05(2012)145
https://arxiv.org/abs/1203.5517
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.5517
https://doi.org/10.1007/JHEP09(2014)185
https://arxiv.org/abs/1403.2384
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.2384
https://arxiv.org/abs/1704.07389
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.07389
http://dx.doi.org/10.1007/978-3-319-08822-8
https://arxiv.org/abs/1312.2684
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.2684
https://doi.org/10.1007/JHEP07(2016)082
https://arxiv.org/abs/1601.04078
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.04078
https://arxiv.org/abs/1612.06399
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.06399

	Introduction and summary
	Geometric preliminaries
	Topological data of the instanton configuration
	Dimension of the instanton moduli space

	Six-dimensional description
	The general structure of the quiver
	The algorithm
	A subtlety concerning the 6d theta angle
	Anomalies and the inflow

	Lower dimensional incarnations
	Five-dimensional brane-web description
	Four-dimensional class S description
	Three-dimensional star-shaped quiver description

	Examples
	The case of k=2
	Enhanced flavor symmetries from 3d quivers
	The case of k=4
	Theories differing by the 6d theta angle
	Massive E-string theories
	Higgsing the SU(k) flavour symmetry


