E_{8} instantons on type-A ALE spaces and supersymmetric field theories

Noppadol Mekareeya, ${ }^{a}$ Kantaro Ohmori, ${ }^{b}$ Yuji Tachikawa ${ }^{c}$ and Gabi Zafrir ${ }^{c}$
${ }^{a}$ Dipartimento di Fisica, Università di Milano-Bicocca, and INFN, sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
${ }^{b}$ School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, U.S.A.
${ }^{c}$ Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8583, Japan
E-mail: n.mekareeya@gmail.com, kantaro@ias.edu, yuji.tachikawa@ipmu.jp, gabi.zafrir@ipmu.jp

AbStract: We consider the 6d superconformal field theory realized on M5-branes probing the E_{8} end-of-the-world brane on the deformed and resolved $\mathbb{C}^{2} / \mathbb{Z}_{k}$ singularity. We give an explicit algorithm which determines, for arbitrary holonomy at infinity, the 6 d quiver gauge theory on the tensor branch, the type-A class S description of the T^{2} compactification, and the star-shaped quiver obtained as the mirror of the T^{3} compactification.

Keywords: Supersymmetry and Duality, Field Theories in Higher Dimensions, Field Theories in Lower Dimensions

ARXIV EPRINT: 1707.04370

Contents

1 Introduction and summary 1
2 Geometric preliminaries 4
2.1 Topological data of the instanton configuration 4
2.2 Dimension of the instanton moduli space 5
3 Six-dimensional description 7
3.1 The general structure of the quiver 7
3.2 The algorithm 8
3.3 A subtlety concerning the $6 \mathrm{~d} \theta$ angle 9
3.4 Anomalies and the inflow 10
4 Lower dimensional incarnations 12
4.1 Five-dimensional brane-web description 12
4.2 Four-dimensional class S description 14
4.3 Three-dimensional star-shaped quiver description 15
5 Examples 17
5.1 The case of $k=2$ 17
5.2 Enhanced flavor symmetries from 3d quivers 20
5.3 The case of $k=4$ 23
5.4 Theories differing by the $6 d \theta$ angle 27
5.5 Massive E-string theories 28
5.6 Higgsing the $\mathrm{SU}(k)$ flavour symmetry 29

1 Introduction and summary

One of the many surprises during the second superstring revolution was the realization that the construction of $\mathrm{SU}(N)$ instantons on \mathbb{R}^{4} by Aityah-Drinfeld-Hitchin-Manin [1] and on asymptotically locally Euclidean (ALE) spaces by Kronheimer-Nakajima [2, 3] have a physical realization in terms of $\mathrm{D} p$-branes probing $\mathrm{D}(p+4)$-brane on \mathbb{R}^{4} [4] and/or ALE spaces [5]. There, we have a gauge theory with eight supercharges on $\mathrm{D} p$-branes such that its Higgs branch is given by the corresponding instanton moduli spaces: the equations of the ADHM and Kronheimer-Nakajima construction are the F-term and D-term conditions of the supersymmetric gauge theory.

As a variation of this construction, we can consider M5-branes probing the E_{8} end-of-the-world brane of the M-theory, either on \mathbb{R}^{4} or on ALE spaces. The low-energy worldvolume theory on these M5-branes is a $6 \mathrm{~d} \mathcal{N}=1$ supersymmetric theory whose Higgs
branch is intimately related to the E_{8} instanton moduli spaces. These theories were studied already in the heyday of the second revolution, see e.g. [6], We did not, however, have many methods to understand the properties of these theories back then, since these theories are intrinsically strongly-coupled. Therefore we could not say anything new regarding the mathematics of the E_{8} instanton moduli spaces on \mathbb{R}^{4} or ALE spaces, for which no constructions analogous to ADHM or Kronheimer-Nakajima are known even today.

The situation has changed drastically since then, thanks to our improved understanding of strongly-coupled supersymmetric theories. Among others, we can count the class S construction in four dimensions initiated by [7], the determination of the chiral ring of the Coulomb branch in three dimensions starting with [8], and a new method to study $\mathcal{N}=1$ theories in six dimensions pioneered by [9]. Combining these developments, we believe there might be a chance that the physics might shed new lights on the mathematics of the structure of the E_{8} instanton moduli spaces on ALE spaces.

The main target of our study in this paper is the $6 \mathrm{~d} \mathcal{N}=1$ theory on M5-branes probing the $E_{8} 9$-brane on the A-type ALE singularity $\mathbb{C}^{2} / \mathbb{Z}_{k}$. Such a system can be labeled by the M5-brane charge Q and the asymptotic holonomy $\rho: \mathbb{Z}_{k} \rightarrow E_{8}$. For some simple choices of ρ, the structure of the 6 d theory on generic points on its tensor branch was already determined in $[10,11]$, which was further extended in [12-14].

Our first aim is to determine the tensor branch structure for an arbitrary choice of the asymptotic holonomy ρ. We give a complete algorithm determining the gauge group and the matter content in terms of ρ. Along the way, we encounter a subtle feature that there are two distinct ways to gauge $\mathfrak{s u}(2 n+8)$ symmetry of $\mathfrak{s o}(4 n+16)$ flavor symmetry of an $\mathfrak{u s p}(2 n)$ gauge theory with $N_{f}=2 n+8$ flavors, due to the fact that the outer automorphism of $\mathfrak{s o}(4 n+16)$ is not a symmetry of the latter gauge theory.

The Higgs branch $\mathcal{M}_{Q, \rho}$ of our theory $\mathcal{T}_{Q, \rho}^{6 \mathrm{~d}}$ is not directly the instanton moduli space. In particular, $\mathcal{M}_{Q, \rho}$ has an action of $\mathrm{SU}(k)$, which we do not expect for the instanton moduli space. Rather, by a small generalization of the argument in [15], we see that the E_{8} instanton moduli space $\mathcal{M}_{Q, \rho, \xi}^{\text {inst }}$ of charge Q and asymptotic holonomy ρ on the ALE space $\widetilde{\mathbb{C}^{2} / \mathbb{Z}_{k}}$ is given by

$$
\begin{equation*}
\mathcal{M}_{Q, \rho, \xi}^{\mathrm{inst}}=\left(\mathcal{M}_{Q, \rho} \times \mathcal{O}_{\xi}\right) / / / \mathrm{SU}(k) \tag{1.1}
\end{equation*}
$$

where $\xi=\left(\xi_{\mathbb{C}}, \xi_{\mathbb{R}}\right) \in \mathfrak{s u}(k) \otimes(\mathbb{C} \oplus \mathbb{R})$ is an element in the Cartan of $\mathfrak{s u}(k)$ tensored by \mathbb{R}^{3} specifying the hyperkähler deformation parameter of the ALE space, \mathcal{O}_{ξ} is the orbit of $\xi_{\mathbb{C}}$ in $\mathfrak{s u}(k)_{\mathbb{C}}$ with the hyperkähler metric specified by $\xi_{\mathbb{R}}$ as in [16], and the symbol /// denotes the hyperkähler quotient construction. This means that the space $\mathcal{M}_{Q, \rho}$ knows the structure of the instanton moduli on the ALE space for arbitrary deformation parameter ξ. The existence of such a generating space was conjectured by one of the authors in [17], based on a study of $\mathrm{SO}(8)$ instantons on the ALE spaces.

We then study the 4 d theory which arises from the T^{2} compactification of the 6 d theory as in [15]. We find that they always correspond to a class S theory of type A, given by a sphere with three punctures. The 3 d mirror of its S^{1} compactification is a star-shaped quiver, whose structure can be deduced from the class S description by the methods of [18]. We find that they have the form of an over-extended E_{8} quiver. In 3d,
the relation (1.1) can be physically implemented by realizing \mathcal{O}_{ξ} as the Coulomb branch of the $T[\mathrm{SU}(k)]$ theory. Using this, we will find that $\mathcal{M}_{Q, \rho, \xi}^{\mathrm{inst}}$ is the Higgs branch of an affine E_{8} quiver where ξ is now the mass parameter of an $\operatorname{SU}(k)$ flavor symmetry. For $\xi=0$ this was already conjectured by mathematicians [19, 20] and by physicists [21, 22].

Organization of the paper. The rest of the paper is organized as follows. We start by recalling the geometric data characterizing our system in section 2 . Then in section 3 , we provide the algorithm determining the 6 d quiver theory in terms of the asymptotic holonomy. In section 4 , we discuss its dimensional reduction to $5 \mathrm{~d}, 4 \mathrm{~d}$ and 3 d in turn. In 5 d and 4 d , we translate the Kac labels to the three Young diagrams characterizing the brane web and the class S description. In 3d, we give the star-shaped quiver. Finally in section 5 , we provide many examples illustrating our discussions.

Accompanying Mathematica file. The paper comes with a Mathematica file which implements the algorithm to produce the 6 d quiver given the asymptotic E_{8} holonomy. In addition, it allows the user to determine the 4 d class S theory, and compute the anomalies from three different methods, namely the 6 d field theory, the M-theoretic inflow, and the 4 d class S technique.

Summary of notations.

- The asymptotic holonomy $\rho: \mathbb{Z}_{k} \rightarrow E_{8}$ is given by an element $\boldsymbol{w} \in \mathfrak{e}_{8}$ in the Cartan subalgebra, or equivalently in terms of the Kac label

$$
\underline{n}:=\begin{gather*}
n_{3^{\prime}} \tag{1.2}\\
n_{1} n_{2} n_{3} n_{4} n_{5} n_{6} n_{4^{\prime}} n_{2^{\prime}}
\end{gather*},
$$

a set of non-negative integers arranged on the affine E_{8} Dynkin diagram. For more details, see section 2.1.

- We have closely related quantities $N_{\text {inst }}, N_{3}, N_{S}, N_{6}$, and Q, which are all essentially the number of M5-branes or equivalently the instanton charge on the ALE space. They all increase by one when we add one M5-brane to the system. Their constant parts are however different. We could have used just one out of them, but any choice would make at least one of the formulas quite unseemly. We therefore decided to keep them and provide a summary here.
- The integer $N_{\text {inst }}$ is defined in terms of the instanton number as

$$
\begin{equation*}
\int_{\widetilde{\mathbb{C}^{2} / \Gamma}} \operatorname{tr} F \wedge F \propto N_{\text {inst }}-\frac{\langle\boldsymbol{w}, \boldsymbol{w}\rangle}{2 k} . \tag{1.3}
\end{equation*}
$$

See (2.6) for details.

- Another integer N_{3} satisfies $N_{3}=N_{\text {inst }}-k$, see (3.14), (4.18). This is useful to parameterize the ranks of groups in the 3 d quiver, see (4.3).
- Another integer N_{S} defined by $N_{S}=N_{3}+n_{1}+\cdots+n_{6}$ is useful to parameterize the class S data, see (3.5).
- The integer N_{6} is the number of tensors of the 6 d quiver. The difference between N_{S} and N_{6} is determined by the Kac label and is described in the algorithm in section 3.2.
- A rational number Q is the M5-charge which appears in the inflow computation, and satisfies

$$
\begin{equation*}
Q=N_{\mathrm{inst}}-\frac{\langle\boldsymbol{w}, \boldsymbol{w}\rangle}{2 k}-\frac{1}{2}\left(k-\frac{1}{k}\right) \tag{1.4}
\end{equation*}
$$

see (3.12).

2 Geometric preliminaries

2.1 Topological data of the instanton configuration

Here we recall the topological data necessary to specify a G-instanton on \mathbb{C}^{2} / Γ or its resolution $\widetilde{\mathbb{C}^{2} / \Gamma}$, where $\Gamma \in \mathrm{SU}(2)$.

On \mathbb{C}^{2} / Γ, we first need to specify the holonomy at the origin and at the infinity. They determine the representation $\rho_{0, \infty}: \Gamma \rightarrow G$, which we consider as a linear action on the complexified adjoint representation \mathfrak{g}.

On $\widetilde{\mathbb{C}^{2} / \Gamma}$, we specify the holonomy at infinity ρ_{∞}. In addition, we need to specify the class in $H^{2}\left(\widetilde{\mathbb{C}^{2} / \Gamma}, \pi_{1}(G)\right)$. This is the first Chern class when $G=\mathrm{U}(N)$ and the second Stiefel-Whitney class when $G=\mathrm{SO}(N)$.

Finally we need to specify the instanton number, defined as the integral of $\operatorname{tr} F \wedge F$ over the ALE space. Unless otherwise mentioned, we normalize the trace so that the instanton on \mathbb{R}^{4} of the smallest positive instanton number satisfies

$$
\begin{equation*}
\int \operatorname{tr} F \wedge F=1 \tag{2.1}
\end{equation*}
$$

On the ALE space, the instanton number is in general fractional.
Our main interest lies in the case $G=E_{8}$ and $\Gamma=\mathbb{Z}_{k}$. Since $\pi_{1}\left(E_{8}\right)$ is trivial, we do not have to specify the class in H^{2}.

A holonomy $\rho: \mathbb{Z}_{k} \rightarrow E_{8}$ can be nicely encoded by its Kac label

$$
\begin{equation*}
\underline{n}:=\frac{n_{3^{\prime}}}{n_{1} n_{2} n_{3} n_{4} n_{5} n_{6} n_{4^{\prime}} n_{2^{\prime}}} \tag{2.2}
\end{equation*}
$$

introduced in $\S 8.6$ of Kac's textbook [23]. Let us quickly recall how it works. Let the image g of the generator of \mathbb{Z}_{k} in E_{8} be

$$
\begin{equation*}
g=e^{2 \pi i \boldsymbol{w} / k} \in E_{8} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{w}=\sum_{i \neq 0} n_{i} \boldsymbol{w}_{i} \in \mathfrak{e}_{8} \tag{2.4}
\end{equation*}
$$

where \boldsymbol{w}_{i} are the fundamental weights of E_{8}. Since g is of order k, n_{i} are integers. We define n_{0} so that $\sum d_{i} n_{i}=k$, where the Dynkin marks \underline{d} are given by

$$
\underline{d}=\begin{gather*}
3 \tag{2.5}\\
12345642
\end{gather*}
$$

It is known that by the Weyl reflections and the shifts, we can arrange $n_{i} \geq 0$ for all i and then the result is unique. This is the Kac label of the holonomy.

The subalgebra of \mathfrak{e}_{8} left unbroken by the holonomy ρ can be easily read off from its Kac label. Namely, it is given by the subalgebra corresponding to the nodes i of the Dynkin diagram where $n_{i}=0$, together with an Abelian subalgebra making the total rank 8.

On $\widetilde{\mathbb{C}^{2} / \mathbb{Z}_{k}}$, the instanton number modulo one is given by the classical Chern-Simons invariant evaluated on S^{3} / \mathbb{Z}_{k} at infinity. One way to compute it is to introduce coordinates on S^{3} / \mathbb{Z}_{k} using polar coordinates θ, ϕ on S^{2} and the angle ψ along the S^{1} fiber. The connection itself is $\propto \boldsymbol{w}(d \psi+\cdots)$. One finds that

$$
\begin{equation*}
\int \operatorname{tr} F \wedge F=N_{\text {inst }}-\frac{\langle\boldsymbol{w}, \boldsymbol{w}\rangle}{2 k} \tag{2.6}
\end{equation*}
$$

where $N_{\text {inst }}$ is an integer. The hyperkähler dimension of the moduli space is given by the formula

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{H}} \mathcal{M}_{\widetilde{\mathbb{C}^{2} / \Gamma}, \rho_{\infty}}=30 N_{\mathrm{inst}}-\langle\boldsymbol{w}, \boldsymbol{\rho}\rangle \tag{2.7}
\end{equation*}
$$

2.2 Dimension of the instanton moduli space

In this subsection we derive the formula (2.7) of the dimension of the moduli space. Those readers who trust the authors can skip this subsection. This computation is of course not new. It is provided here to make this paper more self-contained.

The basic tool is the Atiyah-Patodi-Singer index theorem. Its explicit form on the orbifold of \mathbb{C}^{2} was worked out e.g. in [24] for $\Gamma \subset U(2)$. Here we quote the form used in Kronheimer-Nakajima [2] for $\Gamma \subset \operatorname{SU}(2)$. The formula for the orbifold is:

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{H}} \mathcal{M}_{\mathbb{C}^{2} / \Gamma, \rho_{\infty}, \rho_{0}}=h^{\vee}(G)\left(\int \operatorname{tr} F \wedge F\right)+\frac{1}{2|\Gamma|} \sum_{\gamma \neq e} \frac{\chi_{\rho_{\infty}}(\gamma)}{2-\chi_{Q}(\gamma)}-\frac{1}{2|\Gamma|} \sum_{\gamma \neq e} \frac{\chi_{\rho_{0}}(\gamma)}{2-\chi_{Q}(\gamma)} \tag{2.8}
\end{equation*}
$$

Here, $h^{\vee}(G)$ is the dual Coxeter number of G, and the second and the third terms are the contributions from the η invariant of S^{3} / Γ at the asymptotic infinity and at the origin, respectively, and Q is the standard two-dimensional representation of Γ from the defining embedding $\Gamma \subset \mathrm{SU}(2)$,

On the ALE space $\widetilde{\mathbb{C}^{2} / \Gamma}$, we have:

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{H}} \mathcal{M}_{\widetilde{\mathbb{C}^{2} / \Gamma, \rho_{\infty}}}=h^{\vee}(G)\left(\int \operatorname{tr} F \wedge F\right)+\frac{1}{2|\Gamma|} \sum_{\gamma \neq e} \frac{\chi_{\rho_{\infty}}(\gamma)}{2-\chi_{Q}(\gamma)}-\frac{1}{24} \operatorname{dim} G \chi_{\Gamma} \tag{2.9}
\end{equation*}
$$

where the quantity

$$
\begin{equation*}
\chi_{\Gamma}:=r_{\Gamma}+1-\frac{1}{|\Gamma|} \tag{2.10}
\end{equation*}
$$

is the Euler number of $\widetilde{\mathbb{C}^{2} / \Gamma}$ as defined by the integral of the Pontrjagin density. Furthermore,

$$
\begin{equation*}
\frac{1}{24}\left(r_{\Gamma}+1-\frac{1}{|\Gamma|}\right)=\frac{1}{2|\Gamma|} \sum_{\gamma \neq e} \frac{1}{2-\chi_{Q}(\gamma)} \tag{2.11}
\end{equation*}
$$

reflecting the fact that if the holonomy at the origin of an instanton on \mathbb{C}^{2} / Γ is trivial, we can resolve/deform the instanton and the ALE at the same time to be on $\widetilde{\mathbb{C}^{2} / \Gamma}$. In the end, we find the formula

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{H}} \mathcal{M} \widetilde{\mathbb{C}^{2} / \Gamma, \rho_{\infty}}=h^{\vee}(G)\left(\int \operatorname{tr} F \wedge F\right)+\Delta \eta \tag{2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \eta:=\frac{1}{2|\Gamma|} \sum_{\gamma \neq e} \frac{\left(\chi_{\rho_{\infty}}(\gamma)-\operatorname{dim} \mathfrak{g}\right)}{2-\chi_{Q}(\gamma)} \tag{2.13}
\end{equation*}
$$

Let us evaluate this formula when $G=E_{8}$ with the holonomy ρ_{∞} specified by $g=$ $e^{2 \pi i \boldsymbol{w} / k}$ with the Kac label \underline{n}. The eta invariant is

$$
\begin{equation*}
\Delta \eta=\frac{1}{2|\Gamma|} \sum_{\gamma \neq e} \frac{\left(\chi_{\rho_{\infty}}(\gamma)-\operatorname{dim} \mathfrak{g}\right)}{2-\chi_{Q}(\gamma)}=\frac{1}{2 k} \sum_{\alpha: \text { all roots } \gamma \neq 1} \sum_{\gamma\langle\boldsymbol{w}, \boldsymbol{\alpha}\rangle}(\gamma)-1 \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\chi_{a}\left(g^{j}\right)=e^{2 \pi i a j / k}, \quad \chi_{Q}\left(g^{j}\right)=2 \cos 2 \pi j / k \tag{2.15}
\end{equation*}
$$

Now, we note

$$
\begin{equation*}
\frac{1}{2 k} \sum_{j=1}^{k-1} \frac{\chi_{a}\left(g^{j}\right)-1}{2-\chi_{Q}\left(g^{j}\right)}=-\frac{a(a-k)}{4 k} \tag{2.16}
\end{equation*}
$$

for $a=0,1, \ldots k$. Then

$$
\begin{equation*}
\Delta \eta=2 \sum_{\boldsymbol{\alpha}: \text { positive roots }}-\frac{\langle\boldsymbol{\alpha}, \boldsymbol{w}\rangle(\langle\boldsymbol{\alpha}, \boldsymbol{w}\rangle-k)}{4 k} \tag{2.17}
\end{equation*}
$$

since $0 \leq\langle\boldsymbol{\alpha}, \boldsymbol{w}\rangle \leq k$ for positive roots $\boldsymbol{\alpha}$. Now we use

$$
\begin{equation*}
\sum_{\alpha: \text { positive roots }} \boldsymbol{\alpha}=2 \rho, \quad \sum_{\boldsymbol{\alpha} \text { :positive roots }}\left\langle\boldsymbol{v}_{1}, \boldsymbol{\alpha}\right\rangle\left\langle\boldsymbol{\alpha}, \boldsymbol{v}_{2}\right\rangle=h^{\vee}\left\langle\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\rangle \tag{2.18}
\end{equation*}
$$

and find

$$
\begin{equation*}
\Delta \eta=\frac{h^{\vee}}{2 k}\langle\boldsymbol{w}, \boldsymbol{w}\rangle-\langle\boldsymbol{w}, \boldsymbol{\rho}\rangle \tag{2.19}
\end{equation*}
$$

To compute the dimension, we now plug in to (2.12) the formula for $\Delta \eta$ found just above and the formula for the instanton number (2.6). The term proportional to $\langle\boldsymbol{w}, \boldsymbol{w}\rangle$ cancels out, and we indeed have the desired result (2.7).

3 Six-dimensional description

After these geometrical preliminaries, we move on to the field theoretical analysis. We start with the six-dimensional quiver descriptions. As already mentioned in the introduction, for various simple choices of ρ, the six-dimensional quivers were already determined in [10-14]. By a series of trials and errors, and following the principle that the quiver should be determined in terms of the Kac label, the authors found the following algorithm.

3.1 The general structure of the quiver

Our 6d SCFT on the generic points on its tensor branch consists of a collection of N_{6} tensors, corresponding to a linear quiver of the form

$$
\begin{equation*}
G_{1} \times \mathrm{SU}\left(m_{2}\right) \times \mathrm{SU}\left(m_{3}\right) \times \cdots \times \mathrm{SU}\left(m_{N_{6}}\right) \times[\mathrm{SU}(k)] \tag{3.1}
\end{equation*}
$$

where G_{1} is on the -1 curve, the rest is on -2 curves, and the final $\operatorname{SU}(k)$ is a flavor symmetry. In the notation of [11], we have

$$
\begin{array}{ccccc}
G_{1} & \mathfrak{s u}\left(m_{2}\right) & \mathfrak{s u}\left(m_{3}\right) & \ldots & \tag{3.2}\\
1 & 2 & { }^{\mathfrak{s u}\left(m_{N_{6}}\right)} & {[\mathrm{SU}(k)] .}
\end{array}
$$

Below, we slightly abuse the notation and refer by G_{1} the combination of the group and the non-fundamental hypermultiplets on the -1 curve. The choices are:

- $G_{1}=\operatorname{USp}\left(m_{1}\right)$,
- $G_{1}=\operatorname{SU}\left(m_{1}\right)$ with an antisymmetric hyper, or
- $G_{1}=\mathrm{SU}\left(m_{1}=6\right)$ with a rank 3 antisymmetric half-hyper.

We consider the rank 1 E-string theory as $\operatorname{USp}(0)$, and furthermore, the rank 2 E-string theory is considered as a $\mathrm{USp}(0)$ connecting to an $\mathrm{SU}(1)$ group.

We have $m_{1} \leq m_{2} \leq \cdots \leq m_{N_{6}}$, and we define a_{1}, \ldots, a_{9} by

$$
\begin{equation*}
a_{s}=\#\left\{i \mid m_{i+1}-m_{i}=s\right\} . \tag{3.3}
\end{equation*}
$$

We can reconstruct the whole of m_{i} from m_{1}, N_{6} and $a_{1}, \ldots a_{9}$. For example, when the quiver is

$$
\begin{equation*}
\mathrm{SU}(3) \times \mathrm{SU}(9) \times \mathrm{SU}(13) \times \mathrm{SU}(17) \times \mathrm{SU}(18) \times \mathrm{SU}(19) \times \mathrm{SU}(20) \tag{3.4}
\end{equation*}
$$

we have $a_{8}=a_{7}=a_{5}=a_{3}=a_{2}=0, a_{6}=1, a_{4}=2, a_{1}=3$.
There are bifundamentals between two consecutive groups in the quiver, and finally fundamental hypers are added such that each group is anomaly free, that is:

- $N_{f}=2 N$ for $\operatorname{SU}(N)$,
- $N_{f}=N+8$ for $\operatorname{USp}(N)$ or $\operatorname{SU}(N)$ with an antisymmetric hyper, and
- $N_{f}=15$ for $\mathrm{SU}(6)$ with a rank 3 antisymmetric half-hyper.

3.2 The algorithm

Now we present the algorithm to determine the structure of the quiver given the Kac label \underline{n} and the number N_{6} of the groups. Along the way, we also define the quantity N_{S} which will be used in the following. We will also need the quantity

$$
\begin{equation*}
N_{3}=N_{S}-n_{1}-n_{2}-n_{3}-n_{4}-n_{5}-n_{6} \tag{3.5}
\end{equation*}
$$

The algorithm is implemented in the accompanying Mathematica file, so that the reader can easily try it around.

In general we have

$$
\begin{equation*}
a_{i}=n_{i} \quad \text { for } \quad i=1,2,3,4,5,6 \tag{3.6}
\end{equation*}
$$

To specify $a_{7,8,9}$, we need to consider various cases as summarized below:

$$
\begin{cases}n_{4}^{\prime} \geq n_{3}^{\prime} & \longrightarrow \begin{cases}n_{4}^{\prime}-n_{3}^{\prime}=\text { even } & \longrightarrow \text { Case 1, } \\
n_{4}^{\prime}-n_{3}^{\prime}=\text { odd } & \longrightarrow \text { Case } 2,\end{cases} \\
n_{3}^{\prime} \geq n_{4}^{\prime} & \longrightarrow \begin{cases}n_{2}^{\prime}<\left(n_{3}^{\prime}-n_{4}^{\prime}\right) / 2 & \longrightarrow \text { Case } 4, \\
n_{2}^{\prime} \geq\left(n_{3}^{\prime}-n_{4}^{\prime}\right) / 2 & \longrightarrow\left\{\begin{array}{l}
n_{3}^{\prime}-n_{4}^{\prime}=\text { odd } \\
n_{3}^{\prime}-n_{4}^{\prime}=\text { even }
\end{array} \longrightarrow \text { Case } 3,\right.\end{cases} \end{cases}
$$

For each case, the output of the algorithm is $\left(a_{7,8,9}, G_{1}, N_{S}\right)$ as shown below: ${ }^{1}$

1. $n_{4}^{\prime} \geq n_{3}^{\prime}, n_{4}^{\prime}-n_{3}^{\prime}=$ even:

- $a_{7}=n_{3}^{\prime}, a_{8}=\frac{n_{4}^{\prime}-n_{3}^{\prime}}{2}, a_{9}=0$.
- $G_{1}=\operatorname{USp}\left(2 n_{2}^{\prime}\right)$.
- $N_{S}=N_{6}-\frac{n_{4}^{\prime}+n_{3}^{\prime}}{2}$.

2. $n_{4}^{\prime} \geq n_{3}^{\prime}+1, n_{4}^{\prime}-n_{3}^{\prime}=$ odd:

- $a_{7}=n_{3}^{\prime}, a_{8}=\frac{n_{4}^{\prime}-n_{3}^{\prime}-1}{2}, a_{9}=0$.
- $G_{1}=\mathrm{SU}\left(2 n_{2}^{\prime}+4\right)$ group with an antisymmetric hyper.
- $N_{S}=N_{6}-\frac{n_{4}^{\prime}+n_{3}^{\prime}-1}{2}$.

3. $n_{3}^{\prime} \geq n_{4}^{\prime}+1, n_{3}^{\prime}-n_{4}^{\prime}=$ odd, $n_{2}^{\prime} \geq \frac{n_{3}^{\prime}-n_{4}^{\prime}-1}{2}$:

- $a_{7}=n_{4}^{\prime}, a_{8}=\frac{n_{3}^{\prime}-n_{4}^{\prime}-1}{2}, a_{9}=0$.
- $G_{1}=\mathrm{SU}\left(2 n_{2}^{\prime}+n_{4}^{\prime}-n_{3}^{\prime}+4\right)$ group with an antisymmetric hyper.
- $N_{S}=N_{6}-\frac{n_{4}^{\prime}+n_{3}^{\prime}-1}{2}$.

[^0]4. $n_{3}^{\prime}>n_{4}^{\prime}+2 n_{2}^{\prime}+\ell, n_{3}^{\prime}-n_{4}^{\prime}-2 n_{2}^{\prime}=3 x+\ell, x \in \mathbb{Z}, \ell=0,1,2$:

- $a_{7}=n_{4}^{\prime}, a_{8}=n_{2}^{\prime}, a_{9}=\frac{n_{3}^{\prime}-n_{4}^{\prime}-2 n_{2}^{\prime}-\ell}{3}$.
- G_{1} is
- empty for $\ell=0$, in which case this node corresponds to a rank- 1 E-string,
$-\mathrm{SU}(3)$ for $\ell=1$,
$-\mathrm{SU}(6)$ with a half-hyper in the rank 3 antisymmetric for $\ell=2$.
- $N_{S}=N_{6}-\frac{n_{3}^{\prime}+2 n_{4}^{\prime}+n_{2}^{\prime}-l}{3}$.

5. $n_{3}^{\prime} \geq n_{4}^{\prime}, n_{3}^{\prime}-n_{4}^{\prime}=$ even, $n_{2}^{\prime} \geq \frac{n_{3}^{\prime}-n_{4}^{\prime}}{2}$:

- $a_{7}=n_{4}^{\prime}, a_{8}=\frac{n_{3}^{\prime}-n_{4}^{\prime}}{2}, a_{9}=0$.
- $G_{1}=\mathrm{USp}\left(2 n_{2}^{\prime}+n_{4}^{\prime}-n_{3}^{\prime}\right)$.
- $N_{S}=N_{6}-\frac{n_{4}^{\prime}+n_{3}^{\prime}}{2}$.

3.3 A subtlety concerning the $6 \mathrm{~d} \theta$ angle

Note that the quivers produced in Case 5 are the same ones as the ones produced by Case 1, as far as the data we described so far are concerned. This is perfectly fine when $n_{4}^{\prime}=n_{3}^{\prime}$, since in this case we are just applying the different cases to the same Kac label. However, when $n_{4}^{\prime} \neq n_{3}^{\prime}$, or equivalently when $a_{8} \neq 0$, the resulting quivers should however be subtly different, since e.g. they reduce to different 4 d class S theories and 3 d star-shaped quivers. We argue that the difference between them is how one embeds the $\mathrm{SU}(2 N+8)$ group into the $\mathrm{SO}(4 N+16)$ global symmetry group of $\operatorname{USp}(2 N)$.

A relatively simple case is the following. Let us first consider the cases when $n_{4}^{\prime}=$ $2, n_{3}^{\prime}=0, n_{2}^{\prime}=0$ versus $n_{4}^{\prime}=0, n_{3}^{\prime}=2, n_{2}^{\prime}=1$, with the rest of labels being zero $n_{1, \ldots, 6}=0$. Both theories have the form of a long $\mathrm{SU}(8)$ quiver gauging an $\mathrm{SU}(8)$ subgroup of the rank $1 E_{8}$ theory. The two differ by the embedding of $\mathrm{SU}(8)$ inside E_{8} and in fact have different global symmetries. To see this, consider embedding $\mathrm{SU}(8)$ inside $\mathrm{SO}(16) \subset E_{8}$. The adjoint of E_{8} decomposes under its $S O(16)$ maximal subgroup as $\mathbf{2 4 8} \rightarrow \mathbf{1 2 0}+\mathbf{1 2 8}$. Now consider decomposing $\mathrm{SO}(16)$ to its $\mathrm{U}(1) \times \mathrm{SU}(8)$ maximal subgroup. Under this embedding the spinors of $\mathrm{SO}(16)$ decompose to the rank x antisymmetric tensors of $\mathrm{SU}(8)$ for $x=0,2,4,6,8$ for one spinor and $x=1,3,5,7$ for the other. However only one spinor appears in the adjoint of E_{8}, and therefore there are two different embedding of $\mathrm{SU}(8)$ inside E_{8}. In one of them the 128 contains gauge invariant contributions leading to the larger global symmetry.

The general case corresponds to the situation where $\mathrm{SU}(2 N+8)$ is embedded in $\mathrm{SO}(4 N+16)$. There is no distinction in the perturbative sector of the theory. However the theory possesses instanton strings. The ones for USp groups will be in a chiral spinor of the SO group and so will decompose differently depending on the embedding. This then leads to theories with distinct spectrum of string excitations. Also note that this only occurs if the entire SO symmetry is gauged leaving only a $\mathrm{U}(1)$ commutant. If
we gauge an $\mathrm{SU}(x) \subset \mathrm{SO}(2 x) \subset \mathrm{SO}(4 N+16)$ with $x<2 N+8$, then the chiral spinor of $\mathrm{SO}(4 N+16)$ decomposes to non-chiral spinors of $\mathrm{SO}(2 x)$ and therefore there is a single embedding. This agrees with the fact that the cases coincide when $a_{8}=0$.

We can understand this distinction from the existence of the discrete θ angle in 6 d , due to the fact that $\pi_{5}(\mathrm{USp}(2 N))_{5}=\mathbb{Z}_{2}$. Suppose now that the USp group has $2 n$ halfhypermultiplets in the fundamental. Classically it has an $\mathrm{O}(2 n)$ flavor symmetry, but the parity part flips the discrete theta angle. Therefore the flavor symmetry is actually $\mathfrak{s o}(2 n)$. The two embeddings of $\mathfrak{s u}(n)$ into $\mathfrak{s o}(2 n)$ are related exactly by the parity part of $\mathrm{O}(2 n)$, and therefore are inequivalent. The F-theoretical interpretation of these two inequivalent embeddings seems to be unknown. It would be interesting to work it out. ${ }^{2}$

Note that an analogous phenomenon exists in $5 d$, where given a pure USp group there are two distinct $5 d$ SCFTs associated with this theory differing by the instanton spectrum of the $5 d$ gauge theory. This is related to the existence of a \mathbb{Z}_{2} valued θ angle originating from the fact that $\pi_{4}(\operatorname{USp}(2 N))_{4}=\mathbb{Z}_{2}$.

3.4 Anomalies and the inflow

The anomaly of these 6 d SCFTs can be computed from their quiver description using the technique of $[25,26]$. We should be able to match it to the anomaly computed from the inflow using the M-theory description.

The inflow computations of M5-branes probing the E_{8} end-of-the-world brane and of M5-branes probing the $\mathbb{C}^{2} / \mathbb{Z}_{k}$ singularity was given in [27] and in an appendix of [25], respectively. We can combine the two computations into one and one finds the following contribution to the anomaly, excluding the most subtle contribution from the codimension5 singularity where the $\mathbb{C}^{2} / \mathbb{Z}_{k}$ singularity hits the end-of-the-world brane:

$$
\begin{align*}
I_{\text {inflow }}^{\text {naive }}(Q)= & \frac{Q^{3} k^{2}}{6} c_{2}(R)^{2}-\frac{Q^{2} k}{2} c_{2}(R) I_{4}+ \\
& Q\left(\frac{1}{2} I_{4}^{2}-I_{8}\right)+\left(I_{4}-Q k c_{2}(R)\right) J_{4}-\frac{1}{2} I^{\mathrm{vec}}(\mathrm{SU}(k)) \tag{3.7}
\end{align*}
$$

where Q is the M5-chage of the configuration,

$$
\begin{align*}
& I_{8}=\frac{1}{48}\left(p_{2}(N)+p_{2}(T)-\frac{1}{4}\left(p_{1}(N)-p_{1}(T)\right)^{2}\right), \tag{3.8}\\
& I_{4}=\frac{1}{4}\left(p_{1}(T)-2 c_{2}(R)\right), \tag{3.9}\\
& J_{4}=\frac{1}{48}\left(k-\frac{1}{k}\right)\left(4 c_{2}(R)+p_{1}(T)\right)+\frac{1}{4} \operatorname{tr} F_{\mathrm{SU}(k)}^{2} . \tag{3.10}
\end{align*}
$$

Here I_{8} comes from the M-theory interaction $\int C \wedge I_{8}, I_{4}$ appears in the boundary condition $G=I_{4}$ at the E_{8} wall, and J_{4} is the interaction on the $\mathbb{C}^{2} / \mathbb{Z}_{k}$ singular locus $\int C \wedge J_{4}$. In this section the normalization of tr is as in [27].

Let \underline{n} be the Kac label, and let $\boldsymbol{w}=\sum \boldsymbol{w}_{i} n_{i}$ be the corresponding weight vector. By performing computations for many choices of \underline{n}, we find that

$$
\begin{equation*}
I_{\text {quiver }}\left(\underline{n}, N_{3}\right)=I_{\text {inflow }}^{\text {naive }}(Q)+c(\underline{n}) \tag{3.11}
\end{equation*}
$$

[^1]where $c(\underline{n})$ is a constant depending on the Kac label \underline{n} but independent of N_{3} and
\[

$$
\begin{equation*}
Q=N_{3}+\frac{1}{2}\left(k+\frac{1}{k}-\frac{\langle\boldsymbol{w}, \boldsymbol{w}\rangle}{k}\right) . \tag{3.12}
\end{equation*}
$$

\]

Recall that the instanton number as defined by the integral of $\operatorname{tr} F \wedge F$ was given by

$$
\begin{equation*}
\int \operatorname{tr} F \wedge F=N_{\mathrm{inst}}-\frac{\langle\boldsymbol{w}, \boldsymbol{w}\rangle}{2 k} \tag{3.13}
\end{equation*}
$$

see (2.6), and that $k-1 / k$ is the Euler number of $\widetilde{\mathbb{C}^{2} / \Gamma}$, or equivalently of the integral of $-p_{1} / 4$ there, see (2.10). Then, assuming that

$$
\begin{equation*}
N_{\mathrm{inst}}=N_{3}+k, \tag{3.14}
\end{equation*}
$$

we can rewrite the effective M5-brane charge Q as

$$
\begin{equation*}
Q=\int \operatorname{tr} F \wedge F+\int_{\widetilde{\mathbb{C}^{2} / \mathbb{Z}_{k}}} \frac{p_{1}}{4} \tag{3.15}
\end{equation*}
$$

which is what we expect from the curvature coupling on the E8 end-of-the-world brane.
The authors made a guess of the formula for $c(\underline{n})$ by trial and error. It has the form

$$
\begin{equation*}
c(\underline{n})=\frac{1}{k}\left(P_{0}(\underline{n})+P_{2}(\underline{n})+P_{4}(\underline{n})+P_{6}(\underline{n})\right)+\frac{1}{2} I_{\text {free vector }} \tag{3.16}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{\text {free vector }}=\frac{1}{5760}\left(-240 c_{2}(R)^{2}-120 c_{2}(R) p_{1}(T)-7 p_{1}(T)^{2}+4 p_{2}(T)\right) \tag{3.17}
\end{equation*}
$$

is the anomaly polynomial of a free vector multiplet and $P_{i}(\underline{n})$ is a homogeneous polynomial of n_{i} 's of degree i. Those polynomials are identified as

$$
\begin{align*}
P_{0}= & \frac{1}{384}\left(-88 c_{2}(R)^{2}+32 c_{2}(R) p_{1}(T)-5 p_{1}(T)^{2}+4 p_{2}(T)\right) \tag{3.18}\\
P_{2}= & \frac{1}{11520} k^{2}\left(2512 c_{2}(R)^{2}-760 c_{2}(R) p_{1}(T)+157 p_{1}(T)^{2}-124 p_{2}(T)\right) \\
& +\frac{1}{5760}(15\langle\boldsymbol{w}, \boldsymbol{w}\rangle-k\langle\boldsymbol{w}, \boldsymbol{\rho}\rangle)\left(112 c_{2}(R)^{2}-40 c_{2}(R) p_{1}(T)+7 p_{1}(T)^{2}-4 p_{2}(T)\right) \tag{3.19}\\
P_{4}= & -\frac{1}{288}\left(9\langle\boldsymbol{w}, \boldsymbol{w}\rangle^{2}+15 k^{2}\langle\boldsymbol{w}, \boldsymbol{w}\rangle-2 k^{4}-k \sum_{\boldsymbol{\alpha} \in \Delta^{+}}\langle\boldsymbol{w}, \boldsymbol{\alpha}\rangle^{3}\right)\left(4 c_{2}(R)^{2}-c_{2}(R) p_{1}(T)\right) \tag{3.20}
\end{align*}
$$

$P_{6}=\frac{1}{240}\left(5\langle\boldsymbol{w}, \boldsymbol{w}\rangle^{3}+15 k^{2}\langle\boldsymbol{w}, \boldsymbol{w}\rangle^{2}-5 k^{4}\langle\boldsymbol{w}, \boldsymbol{w}\rangle+k^{6}-k \sum_{\boldsymbol{\alpha} \in \Delta^{+}}\langle\boldsymbol{w}, \boldsymbol{\alpha}\rangle^{5}\right) c_{2}(R)^{2}$,
where Δ^{+}is the set of positive roots of E_{8}. The authors have not been able to determine how this formula come from the correct anomaly inflow calculation. It would be interesting to understand it.

4 Lower dimensional incarnations

4.1 Five-dimensional brane-web description

We can reduce the 6d theory on a circle to 5d. Roughly speaking, there are two different types of reductions. For example, starting from the E-string theory, one can obtain $\mathrm{SU}(2)$ theory with eight flavors in one way, or the 5 d SCFT with E_{8} flavor symmetry in the other way.

First reduction. Keeping the radius of the circle non-zero the low-energy 5d theory is sometimes a 5d gauge theory. Specifically, the class of 6 d theories we are considering can be realized by a brane construction involving a system of NS5-branes and D6-branes in the presence of an $\mathrm{O8}^{-}$-plane [28, 29]. Performing T-duality on this system results in a brane configuration involving NS5-branes and D6-branes in the presence of an $\mathrm{O8}^{-}$-plane. Alternatively, the system can also be described as D4-branes immersed in an $\mathrm{O8}^{-}$-plane and D8-branes, in the presence of a $\mathbb{C}^{2} / \mathbb{Z}_{k}$ singularity [30].

Either way, the system can sometimes be deformed so as to describe a 5 d gauge theory. Specifically, when compactifying we have a choice of the value of the radius as well as the freedom to turn on holonomies for the global symmetries. These then become mass parameters in the 5 d theory. In specific ranges of these parameters the 6 d theory may flow at low-energy to a 5 d quiver gauge theory with the coupling constants of the gauge theory identified with the mass deformations. In general, a given 6d SCFT may have several different low-energy 5 d gauge theory descriptions depending on the specific deformations used. Various 5 d descriptions of 6 d theories, including the type we are interested in, were studied in $[12,14,31,32]$. We will not consider this problem here.

Second reduction. Instead we shall take the limit of zero radius. In this case we argue that the 6d theory flows in the IR to a 5d SCFT. Furthermore, we claim that the 5d SCFT can be readily described in terms of the integer N and the Kac label \underline{n}. To find the 5 d theory, we first write down the 6 d quiver following the algorithm presented in the last section. ${ }^{3}$ We realize this 6d quiver in type IIA using O8-planes, D8-branes, D6-branes and NS5-branes as in $[28,29]$. We then compactify it on S^{1}, T-dualize it to type IIB, and manipulate the branes. We will detail the procedure in slightly more detail below.

The result can be conveniently represented by a brane web, which has a star shape form with a group of $(1,0),(0,1)$ and $(1,1) 5$-branes all intersecting at a point. The 5 branes end on the appropriate 7 -branes where some collection of 5 -branes end on the same 7 -brane. Specifying the configuration then is done by giving the distribution of 5 -branes on the 7 -branes. This is conveniently done by a Young diagram where each column represents a 7 -brane, and the number of boxes in it represents the number of 5 -branes ending on it.

[^2]The three Young diagrams for the SCFTs we are considering are given by:

$$
\begin{align*}
& Y_{1}=\left(N_{S}-n_{6},\right. \\
& N_{S}-n_{6}-n_{5}, \\
& N_{S}-n_{6}-n_{5}-n_{4}, \\
& N_{S}-n_{6}-n_{5}-n_{4}-n_{3}, \\
& N_{S}-n_{6}-n_{5}-n_{4}-n_{3}-n_{2}, \\
& N_{S}-n_{6}-n_{5}-n_{4}-n_{3}-n_{2}-n_{1}, \\
&\left.1^{k}\right), \tag{4.1}\\
& Y_{2}=\left(2 N_{S}+2 n_{4^{\prime}}+n_{2^{\prime}}+n_{3^{\prime}},\right. \\
& 2 N_{S}+n_{4^{\prime}}+n_{2^{\prime}}+n_{3^{\prime}}, \\
&\left.2 N_{S}+n_{4^{\prime}}+n_{3^{\prime}}\right) \\
& Y_{3}=\left(3 N_{S}+2 n_{4^{\prime}}+n_{2^{\prime}}+2 n_{3^{\prime}},\right. \\
& 3 N_{S}+2 n_{4^{\prime}}+n_{2^{\prime}}+n_{3^{\prime}}^{\prime} .
\end{align*}
$$

More detail of the second reduction. For cases 1, 2 and 3, these results can be derived using the standard techniques. But there are some issues for cases 4 and 5. Case 4 naively does not have a brane construction of the type considered in [29] so this procedure appears to be inapplicable in this case. However, a conjecture for the 5d theories that lift to these types of 6 d SCFTs was given in $[12,14]$, and we can use this conjecture to fill in this step for case 4.

This leaves case 5 . We can ask how does the $6 \mathrm{~d} \theta$ angle appears in the brane construction. In fact a similar issue arises in the analogue 5 d system: D5-branes suspended between NS5-branes in the presence of an O^{-}-plane. In that case it was observed by [33] that accounting for the $5 \mathrm{~d} \theta$ angle seems to necessitate the introduction of two variants of the O^{-}-plane, where one is an $\mathrm{SL}(2, \mathbb{Z})$ T-transform of the other. This in particular means that they differ by their decomposition into a pair of 7 -branes. Note that the distinction between the two cases vanishes when there are D7-branes on the O7--plane. This becomes clear after we decompose the O^{-}-plane into 7 -branes which can be moved through the monodromy lines of the 7 -branes which will change them by a T-transformation. This of course agrees with the unphysical nature of the $5 \mathrm{~d} \theta$ angle once flavors are present. There should be a similar distinction for the $\mathrm{O8}^{-}$-plane, and so can account for the apparent 6 d θ angle we observe. We will not pursue this here.

However once we perform T-duality we end with a system with two O7--planes, and we expect that we can accommodate this in the observed difference in O^{-}-planes. We have a discrete choice for each O^{-}-plane leading to four possibilities. However we are free to perform a global T-transformation. Since all the external branes are D7-branes, this will lead us to the same system, save for changing the types of both orientifolds. Thus we conclude that there are only two distinct choices: the same or differing types. These cases are expected to differ only when there are no 7 -branes on the O^{-}-planes, and thus no D8-brane on the original O^{-}-plane. This exactly agrees with the two cases, which
coincide once $a_{8}=0$. We indeed find different 5 d theories for these two choices, where the former is identified with case 1 while the latter with case 5 . In this manner we can apply this procedure also to case 5 .

4.2 Four-dimensional class S description

We can compactify on an additional circle to 4 d . Using the results of [34], it is straightforward to write the 4 d theory. It is just an A type class S theory given by the same set of Young diagrams as the 5 d description, given above in (4.1).

In fact it is also possible to motivate this class S description with the Young diagrams (4.1) directly from the 4 d description, and then use the preceding discussion to connect the 6 d quiver data to the Kac labels. We start from the observation that the class S theory whose Young diagrams are (4.1) can be thought of as generated by modifying the Young diagrams of the rank $N E_{8}$ theory, which is given by a class S theory of type $\mathrm{SU}(6 N)$ with Young diagrams $Y_{1}=\left(N^{6}\right), Y_{2}=\left(2 N^{3}\right), Y_{3}=\left(3 N^{2}\right)$.

First the 4 d theory needs to have the $\mathrm{SU}(k)$ global symmetry, coming from the $\mathbb{C}^{2} / \mathbb{Z}_{k}$ singularity. This is given by the k boxes attached to the Young diagram Y_{1} of the E_{8} theory. That this is the correct way to account for it can be seen by comparing anomalies. For the type of 6 d theories we are considering, there is a result due to [15] that allows for the computations of the central charges of the 4 d result of the compactification of the 6 d theory from the anomaly polynomial of the latter. Furthermore the anomaly polynomial of the 6 d theories of the type we considered was studied in [12]. When applied to our case we find that $k_{\mathrm{SU}(k)}^{4 \mathrm{~d}}=2 k+12$ independent of the details of the Kac label. This agrees with the anomaly of the class S theory.

In addition to the $\mathrm{SU}(k)$ we also have the commutant of the orbifold in E_{8} as a global symmetry, which depends on the Kac labels. The E_{8} global symmetry is accommodated by the Young diagram structure of the starting E_{8} SCFT so it is natural to expect that modifying this will give the required global symmetry and take into account the Kac labels. The global symmetry which is manifest in the class S construction is $\mathrm{SU}(2) \times \mathrm{SU}(3) \times \mathrm{SU}(6)$ which can be identified with the three legs of the affine Dynkin diagram. This becomes more apparent once we compactify to 3 d and consider the mirror dual, which we consider more extensively in the next subsection.

The point is that we can associate a node in the legs of the affine E_{8} Dynkin diagram roughly with the difference between neighboring columns. The central node can be associated with the difference between the sum of the first columns of the three Young diagrams and the the total number of boxes in any of them. When that difference is zero, we get the E_{8} theory. It is now natural to associate that difference to the Kac label of the corresponding node. By the Kac prescription, this ensures that we get the correct global symmetry. This leads to the conjectured form. There is one ambiguity in determining the total number of boxes which is related to the rank of the initial E_{8} theory. This should be related to the number of tensors in 6 d , but we need to determine the exact mapping. For this we use the relation outlined in the previous sections between the 6 d and 4 d theories.

We can perform various consistency checks of this proposal. One check is to compare anomalies. We already mentioned that these can be computed from the 6 d anomaly poly-
nomial, and compare the $\mathrm{SU}(k)$ central charge. We can also compare the central charges a and c, and the dimension of the Coulomb branch. These can then be calculated from the 6 d quiver on one side, and from the class S theory on the other, in terms of the Kac labels and N_{S}. For the computations on the class S side, we use the standard results of $[7,35]$ and reviewed e.g. in [36]. The results themselves are rather complicated and not very illuminating, but we do find that all three objects agree between the two calculations. Any interested reader can play around with the Mathematica file which comes with this paper to confirm this point.

4.3 Three-dimensional star-shaped quiver description

Let us now move on to the three dimensions. We translate the Young diagrams $Y_{1,2,3}$ given in (4.1) which specify the class S punctures to the 3 d mirror description using the results of [18]. We find that the resulting theory is given by the quiver gauge theory

$$
\begin{equation*}
\hat{X}:=\underset{1}{\bullet}-\underset{2}{\bullet}-\cdots-\stackrel{\bullet}{k}-\underset{\tilde{N}_{1}}{\bullet}-\underset{\tilde{N}_{2}}{\bullet}-\underset{\tilde{N}_{3}}{\bullet}-\underset{\tilde{N}_{4}}{\bullet}-\underset{\tilde{N}_{5}}{\bullet}-\stackrel{\stackrel{N}{N}_{6}}{\tilde{N}_{3^{\prime}}}-\underset{\tilde{N}_{4^{\prime}}}{\bullet}-\underset{\tilde{N}_{2^{\prime}}}{\bullet} . \tag{4.2}
\end{equation*}
$$

Here, all nodes are unitary with the diagonal $\mathrm{U}(1)$ removed, and the gray and the black blobs are used as a visual aid for the affine Dynkin part and the over-extended part. The ranks of the groups are specified by the vector

$$
\begin{equation*}
\underline{\tilde{N}}=N_{3} \underline{d}+\sum n_{i} \underline{q_{i}} \tag{4.3}
\end{equation*}
$$

where

$$
\begin{align*}
& \underline{q_{1}}=\begin{array}{c}
3 \\
12345642
\end{array}, \quad \underline{q_{2}}=\begin{array}{c}
3 \\
22345642
\end{array}, \quad \underline{q_{3}}=\begin{array}{c}
3 \\
33345642
\end{array}, \tag{4.4}\\
& \underline{q}_{4}=\begin{array}{c}
3 \\
44445642
\end{array}, \quad \underline{q_{5}}=\begin{array}{c}
3 \\
55555642
\end{array}, \quad \underline{q_{6}}=\begin{array}{c}
3 \\
66666642
\end{array}, \tag{4.5}\\
& \underline{q_{4^{\prime}}}=\begin{array}{c}
2 \\
44444421
\end{array}, \quad \underline{q_{2^{\prime}}}=\begin{array}{c}
1 \\
22222210
\end{array}, \quad \underline{q_{3^{\prime}}}=\begin{array}{c}
1 \\
33333321
\end{array} \tag{4.6}
\end{align*}
$$

which is in fact given by a uniform formula

$$
\begin{equation*}
\left(q_{i}\right)_{j}=d_{i} d_{j}-\left\langle\boldsymbol{w}_{i}, \boldsymbol{w}_{j}\right\rangle \tag{4.7}
\end{equation*}
$$

where \boldsymbol{w}_{i} is the weight vector for the node $i \neq 1$ and $\boldsymbol{w}_{1}=0$.
Another characterization of \underline{N} is

$$
\begin{equation*}
C \underline{\tilde{N}}=\underset{k 0000000}{0}+\underline{n} \tag{4.8}
\end{equation*}
$$

where C is the affine Cartan matrix of E_{8}. This determines $\underline{\tilde{N}} \bmod \underline{d}$, since \underline{d} is the only eigenvector of C of zero eigenvalue.

The dimension of the Coulomb branch $\hat{\mathcal{M}}$ is then

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{H}} \hat{\mathcal{M}}=30\left(N_{3}+k\right)-\langle\boldsymbol{w}, \boldsymbol{\rho}\rangle+\frac{k(k+1)}{2}-1 \tag{4.9}
\end{equation*}
$$

where $\boldsymbol{w}=\sum n_{i} \boldsymbol{w}_{i}$ is the Kac label as a weight vector and $\boldsymbol{\rho}=\sum_{i} \boldsymbol{w}_{i}$ is the Weyl vector.
The Coulomb branch $\hat{\mathcal{M}}$ of this system \hat{X} is closely related to the instanton moduli space $\mathcal{M}^{\text {inst }}$ on the ALE space $\widetilde{\mathbb{C}^{2} / \mathbb{Z}_{k}}$. To explain the relation, let us first recall that the resolution and deformation parameters of the ALE space can be specified by a parameter

$$
\begin{equation*}
\xi=\left(\xi_{\mathbb{C}}, \xi_{\mathbb{R}}\right) \in \mathfrak{s u}(k) \otimes(\mathbb{C} \oplus \mathbb{R}) \tag{4.10}
\end{equation*}
$$

which takes values in the Cartan of $\mathfrak{s u}(k)$ tensored by \mathbb{R}^{3}. We now need an auxiliary hyperkähler space \mathcal{O}_{ξ}, which is the $\mathrm{SU}(k)_{\mathbb{C}}$ orbit of $\xi_{\mathbb{C}}$ in $\mathfrak{s u}(k)$ with the hyperkähler metric specified by $\xi_{\mathbb{R}}$. Equivalently, \mathcal{O}_{ξ} is the Coulomb/Higgs branch of the $T[\operatorname{SU}(k)]$ theory whose quiver realization is given by
where the rightmost square node is a flavor symmetry and ξ is the $\mathrm{SU}(2)_{R}$ triplet of mass parameters associated to it.

We can now state the relation between $\hat{\mathcal{M}}$ and and $\mathcal{M}^{\text {inst }}$ by slightly modifying an argument given in [15]:

$$
\begin{equation*}
\mathcal{M}^{\text {inst }}=\left(\hat{\mathcal{M}} \times \mathcal{O}_{\xi}\right) / / / \operatorname{SU}(k) . \tag{4.12}
\end{equation*}
$$

This relation can be understood as follows. The resolution/deformation parameter ξ of the ALE space can be identified with the scalar vacuum expectation values of the 7d super $\operatorname{SU}(k)$ Yang-Mills theory supported on the M-theory singularity $\mathbb{C}^{2} / \mathbb{Z}_{k}$. The 6d SCFT on the M5-branes at the intersection of the E_{8} wall and the $\mathbb{C}^{2} / \mathbb{Z}_{k}$ singularity couples to this 7 d super Yang-Mills, via the standard coupling where the triplet moment map field of the 6 d theory is identified with the limiting value of the triplet of scalars of the 7d bulk. The resulting hyperkähler manifold is then given by the hyperkähler reduction as in (4.12).

Now, our system \hat{X} can also be written using the theory \tilde{X}

Indeed,

$$
\begin{equation*}
\hat{X}=(T[\operatorname{SU}(k)] \times \tilde{X}) / / / \operatorname{SU}(k) \tag{4.14}
\end{equation*}
$$

where the symbol $T / / / G$ means that we gauge the flavor symmetry G of the theory T.
So the theory X whose Coulomb branch is $\mathcal{M}^{\text {inst }}$ in (4.12) is given by

$$
\begin{equation*}
X=(T[\mathrm{SU}(k)] \times T[\mathrm{SU}(k)] \times \tilde{X}) / / /(\mathrm{SU}(k) \times \mathrm{SU}(k)) \tag{4.15}
\end{equation*}
$$

But two $T[\mathrm{SU}(k)]$ gauged by a diagonal $\mathrm{SU}(k)$ is known to disappear, since it is the domain wall of $4 \mathrm{~d} \mathcal{N}=4$ SYM implementing the S-duality [37]. So we have, in fact,

$$
\begin{equation*}
X=\tilde{X} \tag{4.16}
\end{equation*}
$$

and the ALE deformation parameter ξ is now the mass parameter of the $\mathrm{SU}(k)$ flavor symmetry. We have

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{H}} \mathcal{M}^{\text {inst }}=30\left(N_{3}+k\right)-\langle\boldsymbol{w}, \boldsymbol{\rho}\rangle . \tag{4.17}
\end{equation*}
$$

This nicely agrees with the computation from the geometry (2.7) by the identification

$$
\begin{equation*}
N_{\mathrm{inst}}=N_{3}+k . \tag{4.18}
\end{equation*}
$$

This relation between N_{3} and $N_{\text {inst }}$ is also consistent with what we found from the inflow, see (3.14).

We note that the theory $X=\tilde{X}$ is the theory whose Higgs branch is the $\mathrm{U}(k)$ instanton moduli on $\mathbb{C}^{2} / \Gamma_{E_{8}}[2,5]$. From this reason, the Coulomb branch, at least when the mass parameter is zero, has been conjectured to be the E_{8} instanton moduli space on the singular space $\mathbb{C}^{2} / \mathbb{Z}_{k}$ by various people. This follows, at least in a rough form, from the string duality: consider the theory on M2-branes on $\mathbb{C}^{2} / \mathbb{Z}_{k} \times \mathbb{C}^{2} / \Gamma_{E_{8}}$. It has two supersymmetric branches of vacua, one describing E_{8} instantons on $\mathbb{C}^{2} / \mathbb{Z}_{k}$ and another describing $\mathrm{U}(k)$ instantons on $\mathbb{C}^{2} / \Gamma_{E_{8}}$. If the former is the Coulomb branch, then the latter is the Higgs branch.

Note that we arrived at the quiver gauge theory $X=\tilde{X}$ from a totally different method, by first studying the 6 d quiver and then by reducing on successively on circles. Therefore, this agreement can be thought of as an overall consistency check of our construction.

Now, applying [2] and [5] in our case, we see that the $\mathrm{U}(k)$ holonomy at infinity of $\mathbb{C}^{2} / \Gamma_{E_{8}}$ is trivial, and the first Chern class c_{1} satisfies $\int_{E_{i}} c_{1}=n_{i}$ which can be read off from (4.8). It would be interesting to understand from M-theory point of view why the first Chern class on the $\mathbb{C}^{2} / \Gamma_{E_{8}}$ side is given by the asymptotic E_{8} holonomy on the $\mathbb{C}^{2} / \mathbb{Z}_{k}$. It seems important for the full story to consider a more general case where $\mathbb{C}^{2} / \mathbb{Z}_{k}$ is replaced by the multicenter Taub-NUT space, see e.g. [20, 38].

5 Examples

Let us demonstrate the above general statement in various examples. In this section, we take N to be the number of tensor multiplets in the $6 d$ theory, which was denoted by N_{6} in the other sections.

5.1 The case of $k=2$

There are three possibilities. We label the cases with the Kac label \underline{n} and the group $H \subset E_{8}$ left unbroken by the Kac label. The choice $k=2$ is somewhat special, since the ALE space $\widetilde{\mathbb{C}^{2} / \mathbb{Z}_{2}}$, also known as the Eguchi-Hanson space, has an exceptional isometry $\operatorname{SU}(2)$. Then the generic flavor symmetry of the 6 d SCFT should be $H \times \operatorname{SU}(2)^{2}$, where one $\mathrm{SU}(2)$ comes from the 7 d gauge field on the singularity and another $\mathrm{SU}(2)$ comes from the isometry.

1. The first case is

$$
\underline{n}=\begin{gather*}
0 \tag{5.1}\\
20000000
\end{gather*}, \quad H=E_{8} .
$$

The corresponding $6 d$ theory is

The T^{3} reduction of this theory gives the following $3 d \mathcal{N}=4$ theory:

$$
\begin{equation*}
\stackrel{\bullet}{1}-\stackrel{\bullet}{2}-\stackrel{\bullet}{N}-\stackrel{\bullet}{2 N}-\stackrel{\bullet}{3 N}-\stackrel{\bullet}{4 N}-\stackrel{\bullet}{5 N}-\frac{\bullet}{6 N}-\stackrel{\bullet}{4 N}-\stackrel{\bullet}{2 N} . \tag{5.3}
\end{equation*}
$$

2. The second case is

$$
\underline{n}=\begin{gather*}
0 \tag{5.4}\\
01000000
\end{gather*}, \quad H=E_{7} \times \mathrm{SU}(2)
$$

The corresponding $6 d$ theory is
where the number of $\mathfrak{s u}(2)$ gauge groups in the quiver is $N-1$. The Higgs branch dimension of the UV fixed point of this theory is $29 N+4+4(N-1)-3(N-1)=$ $30 N+3$. The mirror of the T^{3} compactification of this theory is

$$
\begin{equation*}
\stackrel{\bullet}{1}-\stackrel{\bullet}{2}-\underset{N+1}{\bullet}-\stackrel{\bullet}{2 N}-\stackrel{\bullet}{3 N}-\stackrel{\bullet}{4 N}-\stackrel{\bullet}{5 N}-\stackrel{\bullet}{!} \stackrel{3 N}{6 N}-\stackrel{\bullet}{4 N}-\stackrel{\bullet}{2 N}, \tag{5.6}
\end{equation*}
$$

The Coulomb branch dimension, which is the sum of the rank of the gauge groups minus one, is indeed $30 N+3$.
3. The third case is

$$
\underline{n}=\begin{gather*}
0 \tag{5.7}\\
00000001
\end{gather*}, \quad H=\mathrm{SO}(16)
$$

The corresponding $6 d$ theory is
where the number of $\mathrm{SU}(2)$ gauge groups associated with the (-2) curves is $N-1$. The Higgs branch dimension of the UV fixed point of this theory is $29 N+16+4+$ $4(N-1)-3-3(N-1)=30 N+16$. The mirror of the T^{3} compactification of this theory is

$$
\begin{equation*}
\stackrel{\bullet}{1}-\stackrel{\bullet}{2}-\underset{N+2}{\bullet}-\underset{2 N+2}{\bullet}-\underset{3 N+2}{\bullet}-\underset{4 N+2}{\bullet}-\underset{5 N+2}{\bullet}-\stackrel{\bullet}{\bullet}_{6 N+2}^{3 N+1}-\underset{4 N+1}{\bullet}-\underset{2 N}{\bullet} \tag{5.9}
\end{equation*}
$$

The Coulomb branch dimension, which is the sum of the rank of the gauge groups minus one, is indeed $30 N+16$. This is consistent with figure 45 of [12], namely the T^{2} compactification of (5.8) yields the class \mathcal{S} theory whose Gaiotto curve is a sphere with punctures:

$$
\begin{equation*}
\left[(3 N+1)^{2}\right], \quad\left[(2 N+1)^{2}, 2 N\right], \quad\left[N^{6}, 1^{2}\right] \tag{5.10}
\end{equation*}
$$

Now let us comment on the flavor symmetry from the point of view of the 6 d quiver. Since an $\operatorname{SU}(2)-\mathrm{SU}(2)$ bifundamental has an $\mathrm{SU}(2)$ flavor symmetry, the three 6 d quivers presented above have order N copies of $\operatorname{SU}(2)$ symmetries on the generic points of the tensor branch. In fact the same issue already appears in the case of N M5-branes probing the $\mathbb{C}^{2} / \mathbb{Z}_{2}$ singularity, which has the quiver

$$
[\mathrm{SU}(2)] \underbrace{\begin{array}{lll}
\mathfrak{s u}(2) & \ldots & \mathrm{su}^{\mathrm{su}}(2) \tag{5.11}\\
2 & \ldots
\end{array}}_{N}[\mathrm{SU}(2)]
$$

which naively has too many $\mathrm{SU}(2)$ flavor symmetries.
The issue can be resolved by recalling the fact derived in appendix A of [39] that the basic 6d SCFT whose quiver on the tensor branch is given by $\operatorname{SU}(2)$ with $N_{f}=4$ with a naive $\mathrm{SO}(8)$ symmetry, only has an $\mathrm{SO}(7)$ symmetry under which the flavors transform in the spin representation. In the quiver representation of the same theory as

$$
\begin{equation*}
\left[\mathrm{SU}(2)_{1}\right] \stackrel{\operatorname{sul}_{2}(2)}{2} \quad\left[\mathrm{SU}(2)_{2}\right], \tag{5.12}
\end{equation*}
$$

this means the following: regard the bifundamental hypermultiplets on the left and on the right of the gauge group as the trifundamental half-hypermultiplets. At the quiver level there are therefore the flavor symmetry $\mathrm{SU}(2)_{1} \times \mathrm{SU}(2)_{1}^{\prime} \times \mathrm{SU}(2)_{2} \times \mathrm{SU}(2)_{2}^{\prime} \subset \mathrm{SO}(8)$. Under the $\mathrm{SO}(7)$ symmetry which is the flavor symmetry of the SCFT, only the diagonal subgroup of $\mathrm{SU}(2)_{1}^{\prime}$ and $\mathrm{SU}(2)_{2}^{\prime}$ survives. Applying this argument at every $\mathfrak{s u}(2)$ node in (5.2), (5.5), (5.8), and (5.12), we see that the number of $\operatorname{SU}(2)$ flavor symmetries is reduced appropriately.

There are also some interesting special cases with enhanced flavour symmetries when N is small:

1. $N=2, H=E_{8}$. In this case the quiver (5.2) degenerates to

$$
\left[E_{8}\right] \quad 1 \stackrel{\mathfrak{s u}(1)}{2} \quad \begin{gather*}
 \tag{5.13}\\
\\
\end{gather*}
$$

which is just the rank-2 E-string theory with three decoupled hypermultiplets. The 3d quiver in this case is (5.3) for $N=2$:

Its Coulomb branch is

$$
\begin{equation*}
\mathbb{H}^{3} \times\left(\text { the reduced moduli space of } 2 E_{8} \text { instantons on } \mathbb{C}^{2}\right) \tag{5.15}
\end{equation*}
$$

and we indeed see the same decoupled structure. The explanation from the perspective of the Coulomb branch operators will be described below.
2. $N=3$ with $H=E_{8}$. The 6 d quiver is

The 3d quiver is

The flavour symmetry is enhanced to $G_{2} \times E_{8}$. The explanation from the perspective of the Coulomb branch operators will also be described below.
3. $N=2, H=E_{7} \times \mathrm{SU}(2)$. The 6 d quiver for this case reduces to

On the tensor branch, there is an $\mathrm{SO}(8)$ symmetry acting on the four flavors of $\mathrm{SU}(2)$ gauge group. In the SCFT it is known that there is only $\mathrm{SO}(7)$. The total symmetry is then $\mathrm{SO}(7) \times E_{7}$. In fact this 6 d theory is the $\left(E_{7}, \mathrm{SO}(7)\right)$ minimal conformal matter [10], which describes "half M5-branes" on the E_{7} singularity.
The 3d quiver in this case is (5.6) for $N=2$:

$$
\begin{equation*}
\stackrel{\bullet}{i}-\stackrel{\bullet}{2}-\underset{3}{\bullet}-\underset{4}{\bullet}-\underset{6}{\bullet}-\underset{8}{\bullet}-\stackrel{!_{10}^{6}}{!_{12}}-\stackrel{\bullet}{8}-\underset{4}{\bullet} . \tag{5.19}
\end{equation*}
$$

This theory is the mirror of the S^{1} reduction of the class \mathcal{S} theory whose Gaiotto curve is a sphere with punctures

$$
\begin{equation*}
\left[2^{4}, 1^{4}\right], \quad\left[6^{2}\right], \quad\left[4^{3}\right] . \tag{5.20}
\end{equation*}
$$

In $[12,15]$ the T^{2} compactification was also identified with a class \mathcal{S} theory of the E_{6} type associated with the sphere with punctures $0,2 A_{1}$ and $E_{6}\left(a_{1}\right)$. For consistency, these two class S theories should in fact be the same. Let us compute the central charges of (5.20). We find that the effective numbers of vector multiplets and hypermultiplets are $n_{H}=112$ and $n_{V}=49$, respectively. Thus,

$$
\begin{equation*}
a=\frac{1}{24}\left(5 n_{V}+n_{H}\right)=\frac{119}{8}, \quad c=\frac{1}{12}\left(2 n_{V}+n_{H}\right)=\frac{35}{2} . \tag{5.21}
\end{equation*}
$$

This agrees with a and c of the aforementioned class \mathcal{S} theory of the E_{6} type; see (7.1) of [15].

5.2 Enhanced flavor symmetries from 3d quivers

In fact the symmetry enhancement of each of the three cases above can be generalized to other over-extended Dynkin quivers in 3d, namely:

1. For the quiver consisting of a tail $\bullet-\underset{2}{\bullet}$ attached to the affine Dynkin diagram of type \mathfrak{g} with gauge groups being unitary groups of the ranks given by 2 times the dual Coxeter labels, the Coulomb branch moduli space is $\mathbb{H}^{3} \times \widetilde{\mathcal{M}}_{2, \mathfrak{g}}$, where $\widetilde{\mathcal{M}}_{2, \mathfrak{g}}$ denotes the reduced two-instanton moduli space of group \mathfrak{g} on \mathbb{C}^{2}. For example, the Coulomb branch of the quiver

$$
\begin{equation*}
\stackrel{\bullet}{1}-\stackrel{\bullet}{\bullet}-\stackrel{\bullet}{2}=\stackrel{\bullet}{2} \tag{5.22}
\end{equation*}
$$

is $\mathbb{H}^{3} \times \widetilde{\mathcal{M}}_{2, \mathfrak{s u}(2)}$, and the Coulomb branch of the quiver

is $\mathbb{H}^{3} \times \widetilde{\mathcal{M}}_{2, \mathfrak{s o}(8)}$.
2. For the quiver consisting of a tail $\stackrel{-}{\bullet}$ attached to the affine Dynkin diagram of type \mathfrak{g} with gauge groups being unitary groups of the ranks given by 3 times the dual Coxeter labels, the Coulomb branch moduli space has a symmetry $G_{2} \times \mathfrak{g}$. For example, the Coulomb branch of the quiver

$$
\begin{equation*}
\stackrel{\bullet}{1}-\stackrel{\bullet}{2}-\stackrel{\bullet}{3}=\stackrel{\bullet}{3} \tag{5.24}
\end{equation*}
$$

has a symmetry $G_{2} \times \mathrm{SU}(2)$, and the Coulomb branch of the quiver

has a symmetry $G_{2} \times \mathrm{SO}(8)$.
3. For the quiver consisting of a tail $\stackrel{\bullet}{\bullet}$ attached to the affine Dynkin diagram of type \mathfrak{g} with the affine node being $U(3)$ and other gauge groups being unitary groups of the ranks given by 2 times the dual Coxeter labels, the Coulomb branch has a symmetry $\mathrm{SO}(7) \times \tilde{\mathfrak{g}}$, where $\tilde{\mathfrak{g}}$ is the commutant of $\mathfrak{s u}(2)$ in \mathfrak{g}. For example, the Coulomb branch of the following quiver

$$
\begin{equation*}
\stackrel{\bullet}{0}-\bullet_{2}-\oplus_{3}^{2}-\bullet_{4}^{2}-\oplus_{6}^{4}-\bullet_{4}-\bullet_{2} \tag{5.26}
\end{equation*}
$$

has a symmetry $\mathrm{SO}(7) \times \mathrm{SU}(6)$, where $\mathrm{SU}(6)$ is the commutant of $\mathrm{SU}(2)$ in E_{6}.
In each of the above examples, the quiver contains of a balanced affine Dynkin quiver diagram as a subquiver. If we consider only this subquiver, the R-charges of the monopole operators in this theory vanish, and hence this subquiver is indeed a bad theory. By attaching a quiver tail $\underset{1}{\bullet}-\underset{2}{\bullet}-\cdots-\bullet_{k}$ to such a subquiver, the total quiver becomes good
or ugly. ${ }^{4}$ We would like to consider the contribution of this quiver tail to the Coulomb branch of the total quiver.

1. For this case, the node ${ }_{2}^{\bullet}$, which is the affine node in the affine Dynkin diagram, is over-balanced in the sense of [37]. Following [37], we can split the quiver into two parts, namely $\underset{1}{\bullet}-\underset{2}{\bullet}-\underset{2}{\bullet}$ and the rest of the Dynkin diagram. The R-charge of the monopole operators from the subquiver $\underset{1}{\bullet}-\underset{2}{\bullet}-\underset{2}{\bullet}$ receives the contribution from the hypermultiplets and vector multiplets in the way described in [37], except that there is no contribution from the vector multiplet of the rightmost node ${ }_{2}^{\circ}$, since this was cancelled inside the affine Dynkin quiver. The contribution from the subquiver is therefore the same as that of the quiver $\underset{1}{\bullet}-\underset{2}{\bullet}-\frac{\cap}{2}$, where \cap denotes an adjoint hypermultiplet of the $\mathrm{U}(2)$ rightmost node. The Coulomb branch of $\boldsymbol{\bullet}-\underset{2}{\bullet}-\underbrace{\cap}_{2}$ contains 3 free hypermultiplets, which can be seen from the monopole operators with $\operatorname{SU}(2)_{R^{-}}$ $\operatorname{spin} 1 / 2$. This explains the \mathbb{H}^{3} factor in (5.15). The reduced moduli space of two E_{8} instantons on \mathbb{C}^{2} can be realised as in [21].
2. Similarly, for this case, the total quiver can be split into $\underset{1}{\bullet}-\stackrel{\bullet}{2}-\frac{\bullet}{3}$ and the rest of the Dynkin diagram. The contribution to the R-charge of the monopole operators from the subquiver $\underset{1}{\bullet}-\underset{2}{\bullet}-\underset{3}{\bullet}$ can be realised from the quiver $\underset{1}{\bullet}-\underset{2}{\bullet}-\underset{\mathbf{3}}{\mathbf{0}}$, where \cap denotes an adjoint hypermultiplet of the $\mathrm{U}(3)$ rightmost node. ${ }^{5}$ Indeed, it was pointed out in section 3.3 .2 of [41] that the Coulomb branch of the latter model has a G_{2} symmetry. (Note that the corresponding $4 d$ class S theory had been studied in [40]. The G_{2} symmetry on the Higgs branch of such a theory had also been pointed out in that reference.) This therefore explains the G_{2} symmetry in case 3 . The E_{8} symmetry follows from the Dynkin subquiver.
3. Finally, for this case, ${ }_{4}$ is the unbalanced node in the quiver. There are two contributions to the Coulomb branch operators with $\operatorname{SU}(2)_{R}$-spin 1 . One contribution can be realised using the quiver $\underset{1}{\bullet}-\underset{2}{\bullet}-\underset{4}{\bullet}-\bigcap_{4}^{n}$ in a similar fashion to the above discussion. This quiver has a Coulomb branch symmetry $\operatorname{SU}(4)$ and thus gives 15 operators with $\mathrm{SU}(2)_{R}$-spin 1 in the adjoint representation of $\mathrm{SU}(4)$. The other contribution can be seen as follows. Since the node ${ }_{3}^{\bullet}$, which was originally a part of the affine Dynkin subquiver, now belongs to the tail $\underset{1}{\bullet-} \underset{2}{\bullet-}-\underset{4}{\bullet}$, we also need to take into account the contribution that arises from the removal of this node from such an affine Dynkin diagram. The second contribution thus comes from considering $\boldsymbol{\bullet}-\underset{2}{\bullet}-\underset{4}{0}$. There are 6 Coulomb branch operators with $\mathrm{SU}(2)_{R}$-spin 1 in the latter. Therefore, we have in total $15+6=21$ operators with $\mathrm{SU}(2)_{R}$-spin 1 ; this explains the enhancement to the $\mathrm{SO}(7)$ symmetry. The remaining symmetry is thus the commutant of $\mathrm{SU}(2)$, which arises from node ${ }_{3}^{\bullet}$, in the original symmetry associated with the affine Dynkin diagram.
[^3]
5.3 The case of $k=4$

There are ten possibilities. The F-theory quiver for the $6 d$ theories are listed on page 73 of [11]. Here are the mirrors of the T^{3} compactification of them.

1. The first case is

$$
\underline{n}=\begin{gather*}
0 \tag{5.27}\\
40000000
\end{gather*}, \quad H=E_{8}
$$

The 6 d quiver is

$$
\left.\left[E_{8}\right] 1 \begin{array}{cccccc}
\mathfrak{s u}(1) & 2 & 2 \mathfrak{s u}(2) & 2 \mathfrak{s u}^{2}(3) & \overbrace{\substack{\mathfrak{s u}(4) \\
\left[N_{f}=1\right]}}^{2} \ldots & 2 \tag{5.28}
\end{array}\right][\mathrm{SU}(4)]
$$

and the 3d quiver is

2. The second case is

$$
\underline{n}=\begin{gather*}
0 \tag{5.30}\\
21000000
\end{gather*}, \quad H=E_{7} \times \mathrm{U}(1)
$$

with the 6 d quiver

The dimension of the SCFT Higgs branch is

$$
\begin{equation*}
29 N+2+6+12+4+16(N-3)-3-8-15(N-3)=30 N+10 \tag{5.32}
\end{equation*}
$$

The 3d quiver is

and the dimension of the Coulomb branch is $30 N+10$.
3. The third case is

$$
\underline{n}=\begin{gather*}
0 \tag{5.34}\\
20000001
\end{gather*}, \quad H=\mathrm{SO}(14) \times \mathrm{U}(1)
$$

with the 6 d quiver

The dimension of the SCFT Higgs branch is

$$
\begin{equation*}
29 N+14+6+12+4+16(N-2)-3-8-15(N-2)=30 N+23 \tag{5.36}
\end{equation*}
$$

The 3 d quiver is

$$
\begin{equation*}
\stackrel{\bullet}{1}-\underset{2}{\bullet}-\stackrel{\bullet}{3}-\stackrel{\bullet}{4}-\underset{N+2}{\bullet}-\underset{2 N+2}{\bullet}-\underset{3 N+2}{\bullet}-\underset{4 N+2}{\bullet}-\underset{5 N+2}{\bullet}-\stackrel{\stackrel{\bullet}{0}^{3 N+1}}{6 N+2}-\underset{4 N+1}{\bullet}-\stackrel{\bullet}{2 N} \tag{5.37}
\end{equation*}
$$

and the Coulomb branch dimension is $30 N+23$.
4. The fourth case is

$$
\underline{n}=\begin{gather*}
0 \tag{5.38}\\
02000000
\end{gather*}, \quad H=E_{7} \times \mathrm{SU}(2)
$$

with the 6 d quiver

The dimension of the SCFT Higgs branch is

$$
\begin{equation*}
29 N+8+8+16(N-2)-3-15(N-2)=30 N+11 \tag{5.40}
\end{equation*}
$$

The 3d mirror is

$$
\begin{equation*}
\stackrel{\bullet}{1}-\stackrel{\bullet}{2}-\stackrel{\bullet}{3}-\stackrel{\bullet}{4}-\underset{N+2}{\bullet}-\underset{2 N}{\bullet}-\underset{3 N}{\bullet}-\underset{4 N}{\bullet}-\underset{5 N}{\bullet}-\stackrel{\bullet}{6 N}-\underset{4 N}{\bullet}-\underset{2 N}{\bullet} \tag{5.41}
\end{equation*}
$$

The Coulomb branch dimension is $30 N+11$.
5. The fifth case is

$$
\underline{n}=\begin{gather*}
0 \tag{5.42}\\
00000002
\end{gather*}, \quad H=\mathrm{SO}(16)
$$

with the 6d quiver

$$
\begin{equation*}
[\mathrm{SO}(16)]_{1}^{\mathfrak{s p}(2)} \overbrace{2^{\mathfrak{s u}(4)}}^{2^{2}} \ldots \mathrm{~K}^{\mathfrak{s u}(4)} 2^{N-1}[\mathrm{SU}(4)] \tag{5.43}
\end{equation*}
$$

The dimension of the SCFT Higgs branch is

$$
\begin{equation*}
29 N+32+16+16(N-1)-10-15(N-1)=30 N+37 \tag{5.44}
\end{equation*}
$$

The 3 d quiver is

$$
\begin{equation*}
\stackrel{\bullet}{1}-\stackrel{\bullet}{2}-\underset{3}{\bullet}-\stackrel{\bullet}{4}-\underset{N+4}{\bullet}-\underset{2 N+4}{\bullet}-\underset{3 N+4}{\bullet}-\underset{4 N+4}{\bullet}-\underset{5 N+4}{\bullet}-\underset{6 N+4}{\stackrel{\bullet}{\bullet}}-\underset{4 N+2}{\bullet}-\stackrel{\bullet}{2 N} \tag{5.45}
\end{equation*}
$$

and the Coulomb branch dimension is $30 N+37$.
6. The sixth case is

$$
\underline{n}=\begin{gather*}
0 \tag{5.46}\\
01000001
\end{gather*}, \quad H=\mathrm{SO}(12) \times \mathrm{SU}(2) \times \mathrm{U}(1)
$$

with the 6 d quiver

$$
\begin{equation*}
[\mathrm{SO}(12)] \stackrel{\mathfrak{s p}(1)}{1} \overbrace{\substack{\mathfrak{s u}(4) \\ 2 \\[\mathrm{SU}(2)]}}^{\mathrm{L}} \ldots \mathrm{c}^{\mathfrak{s u}(4)} 2^{N-1}[\mathrm{SU}(4)] \tag{5.47}
\end{equation*}
$$

The dimension of the SCFT Higgs branch is

$$
\begin{equation*}
29 N+12+8+8+16(N-1)-3-15(N-1)=30 N+24 \tag{5.48}
\end{equation*}
$$

The 3d quiver is

The Coulomb branch dimension is $30 N+24$.
7. The seventh case is

$$
\underline{n}=\begin{gather*}
0 \tag{5.50}\\
10100000
\end{gather*}, \quad H=E_{6} \times \mathrm{SU}(2) \times \mathrm{U}(1)
$$

with the 6 d quiver

The dimension of the SCFT Higgs branch is

$$
\begin{equation*}
29 N+6+12+4+16(N-2)-8-15(N-2)=30 N+12 \tag{5.52}
\end{equation*}
$$

The 3d mirror is

$$
\begin{equation*}
\stackrel{\bullet}{1}-\stackrel{\bullet}{2}-\stackrel{\bullet}{3}-\stackrel{\bullet}{4}-\underset{N+2}{\bullet}-\underset{2 N+1}{\bullet}-\underset{3 N}{\bullet}-\underset{4 N}{\bullet}-\underset{5 N}{\bullet}-\stackrel{\bullet}{6 N}_{\bullet 3 N}^{6 N}-\stackrel{\bullet}{4 N}-\stackrel{\bullet}{2 N} \tag{5.53}
\end{equation*}
$$

and the Coulomb branch dimension is $30 N+12$.
8. The eighth case is

$$
\underline{n}=\begin{gather*}
1 \tag{5.54}\\
10000000
\end{gather*}, \quad H=\mathrm{SU}(8) \times \mathrm{U}(1)
$$

with the 6d quiver

The dimension of the SCFT Higgs branch is

$$
\begin{equation*}
29 N+24+12+4+16(N-1)-8-15(N-1)=30 N+31 \tag{5.56}
\end{equation*}
$$

The 3d quiver is

$$
\begin{equation*}
\stackrel{\bullet}{\mathbf{\bullet}}-\underset{2}{\bullet}-\underset{3}{\bullet}-\underset{4}{\bullet}-\underset{N+3}{\bullet}-\underset{2 N+3}{\bullet}-\underset{3 N+3}{\bullet}-\underset{4 N+3}{\bullet}-\underset{5 N+3}{\bullet}-\underset{6 N+3}{\stackrel{\bullet}{\bullet}}{ }^{3 N+1}-\underset{4 N+2}{\bullet}-\underset{2 N+1}{\bullet} \tag{5.57}
\end{equation*}
$$

and the Coulomb branch dimension is $30 N+31$.
9. The ninth case is

$$
\underline{n}=\begin{gather*}
0 \tag{5.58}\\
00010000
\end{gather*}, \quad H=\mathrm{SO}(10) \times \mathrm{SU}(4)
$$

with the 6 d quiver

The dimension of the SCFT Higgs branch is

$$
\begin{equation*}
29 N+16+16(N-1)-15(N-1)=30+15 \tag{5.60}
\end{equation*}
$$

The 3d quiver is

and the dimension of the Coulomb branch is $30 N+15$.
10. The final tenth case is

$$
\underline{n}=\begin{gather*}
0 \tag{5.62}\\
00000010
\end{gather*}, \quad H=\operatorname{SU}(8) \times \operatorname{SU}(2),
$$

with the 6 d quiver

The dimension of the SCFT Higgs branch is

$$
\begin{equation*}
29 N+32+6+16 N-15 N=30 N+38 \tag{5.64}
\end{equation*}
$$

The 3d quiver is

$$
\begin{equation*}
\stackrel{\bullet}{\mathbf{1}}-\underset{2}{\bullet}-\underset{3}{\bullet}-\underset{4}{\bullet}-\underset{N+4}{\bullet}-\underset{2 N+4}{\bullet}-\underset{3 N+4}{\bullet}-{ }_{4 N+4}^{\bullet}-\underset{5 N+4}{\bullet}-\stackrel{\bullet}{\bullet}_{6 N+4}^{3 N+2}-{ }_{4 N+2}^{\bullet}-{ }_{2 N+1}^{\bullet} \tag{5.65}
\end{equation*}
$$

and the dimension of the Coulomb branch is $30 N+38$.

5.4 Theories differing by the $6 d \theta$ angle

In this subsection we look at the $4 d$ and $3 d$ theories generated from $6 d$ SCFTs differing by the choice of $6 d \theta$ angle. The first case where this possibility occurs is for $k=8$, where the two choices are given by Kac labels $n_{3}^{\prime}=2, n_{2}^{\prime}=1$ for one and $n_{4}^{\prime}=2$ for the other with the rest zero. These can be generalized to $k=2 l+8$ with Kac labels $n_{3}^{\prime}=2, n_{2}^{\prime}=1+l$ for one and $n_{4}^{\prime}=2, n_{2}^{\prime}=l$ for the other with the rest zero. The $6 d$ quiver in both cases is given by:
where we identify the case $n_{4}^{\prime}=2, n_{2}^{\prime}=l$ with $\theta=0$ and $n_{3}^{\prime}=2, n_{2}^{\prime}=1+l$ with $\theta=\pi$.
The associated $4 d$ theories are different for the two cases. In the $\theta=0$ case we associate the class S theory given by:

$$
\begin{equation*}
\left[(N-1)^{6}, 1^{2 l+8}\right], \quad[2 N+l+2,2 N+l, 2 N], \quad\left[(3 N+l+1)^{2}\right] \tag{5.67}
\end{equation*}
$$

while the $\theta=\pi$ case is associated with:

$$
\begin{equation*}
\left[(N-1)^{6}, 1^{2 l+8}\right], \quad\left[(2 N+l+1)^{2}, 2 N\right], \quad[3 N+l+2,3 N+l] \tag{5.68}
\end{equation*}
$$

The $3 d$ quivers are:

for the $\theta=0$ case, and

for the $\theta=\pi$ case.
We can now inquire as to how these theories differ from one another. In the $l=0$ case they differ already at the level of the global symmetry, where the $\theta=0$ case has an $\mathrm{SU}(8)^{2} \times \mathrm{SU}(2) \times \mathrm{U}(1)$ global symmetry while the $\theta=\pi$ case has an $\mathrm{SU}(8)^{2} \times \mathrm{U}(1)^{2}$ global symmetry. In this case we have an $\mathrm{SU}(8)$ gauging of E_{8} and the two choices differ by their commutant inside E_{8}. We note that this difference is in accordance with the symmetry expected from the Kac labels. When $l>0$ the symmetries of the two theories agree.

We can calculate the $4 d$ anomalies of the two theories and find that all of them agree between the two theories. Again this is consistent with our interpretation as the $4 d$ anomalies can be computed from their $6 d$ counterparts, which in turn are independent of the θ angle. From our $6 d$ interpretation we expect the two to differ slightly in their operator spectrum. Particularly the θ angle should affect the USp gauge group instanton strings changing their charges under the global and gauge symmetries. Upon compactification to lower dimensions these should map to local operators.

We can observe this from the $3 d$ quivers. We get a tower of monopole operators from every node. The basic monopole operator from the balanced nodes leads to enhancement of symmetry. We also have a basic monopole operator from the unbalanced nodes. These provide operators with higher R-charges, and we can read of their R-charges and nonabelian global symmetry charges from the quiver.

We have three unbalanced nodes. Two of them give the same contribution in both theories: one operator of $\mathrm{SU}(2)_{R}$ spin $\frac{N}{2}$ in the bifundamental of the $\mathrm{SU}(2 l+8) \times \mathrm{SU}(8)$ global symmetry, and one operator of $\mathrm{SU}(2)_{R}$ spin 2 in the $\mathbf{2 8}$ of the $\mathrm{SU}(8)$ global symmetry. These can be readily identified with gauge invariants in the $6 d$ quiver, where the former is the one made from $N-2 \mathrm{SU}(2 l+8) \times \mathrm{SU}(2 l+8)$ bifundamentals and the flavors, and the later is made from two $\mathrm{SU}(8)$ flavors and the $\mathrm{USp}(2 l) \times \mathrm{SU}(2 l+8)$ bifundamental. The last one differ slightly between the two theories.

In the $\theta=0$ case it is a flavor singlet with $\mathrm{SU}(2)_{R} \operatorname{spin} \frac{l+2}{2}$. Particularly for $l=0$ this gives the conserved current enhancing the $\mathrm{U}(1)$ to $\mathrm{SU}(2)$. In the $\theta=\pi$ case, however, it is in the $\mathbf{8}$ of $\mathrm{SU}(8)$ with $\operatorname{SU}(2)_{R}$ spin $\frac{l+3}{2}$. We can interpret these states as coming from the USp gauge group instanton strings wrapped on the circle. These are in the spinor of $\mathrm{SO}(4 l+16)$, and depending on the θ angle decompose to all the even or odd rank antisymmetric tensor representations of the gauge $\operatorname{SU}(2 l+8)$ connected to the USp gauge group. In the $\theta=0$ case we get the even rank representations, which contain a gauge invariant part which is a flavor symmetry singlet. In the $\theta=\pi$ case we get the odd rank representations, which do not contain any gauge invariants. However we can combine it with one of the $\operatorname{SU}(2 l+8)$ flavors to form an invariant. This should contribute a state in the $\mathbf{8}$ of $\operatorname{SU}(8)$ with $\mathrm{SU}(2)_{R}$ spin which is greater by $\frac{1}{2}$ from that of the singlet. This agrees with what we observe. It might be interesting to study more accurately the spectrum, particularly, the Higgs branch chiral ring, and compare against the $6 d$ expectations. We will not pursue this here.

5.5 Massive E-string theories

In this subsection, we consider the following $6 d$ theory

These theories were studied in $[10,12,13,42]$. They can be called the "massive E-string theories" as in the last reference, since they correspond to NS5-branes probing the O8-D8 combination in the presence of the Romans mass.

The mirror of the T^{3} compactification of (5.71) is

$$
\begin{equation*}
\stackrel{\bullet}{\mathrm{\bullet}}-\stackrel{\bullet}{2}^{\bullet}-\cdots-\underset{\varpi m_{0}}{\bullet}-\underset{N+r_{1}}{\bullet}-\underset{2 N+r_{2}}{\bullet}-\underset{3 N+r_{3}}{\bullet}-\underset{4 N+r_{4}}{\bullet}-\underset{5 N+r_{5}}{\bullet}-\underset{6 N+r_{6}}{\stackrel{\bullet}{\bullet}-{ }_{4 N+r_{3}}}-\underset{4 N+r_{4^{\prime}}}{\bullet}-\underset{2 N+r_{2^{\prime}}}{\bullet} \tag{5.72}
\end{equation*}
$$

where the values of r_{i} and the Kac labels for each m_{0} are given in table 1 . Note that

$$
\begin{equation*}
\sum_{i} r_{i}=\frac{1}{2} \varpi m_{0}\left(m_{0}-1\right) . \tag{5.73}
\end{equation*}
$$

m_{0}	$E_{9-m_{0}}$	Kac label \underline{n} / ϖ	r_{i} / ϖ
1	E_{8}	0	0
2	E_{7}	00000000	00000000
3	E_{6}	000000	10000000
4	$\mathrm{SO}(10)$	0	0
		00010000	32100000
5	$\mathrm{SU}(5)$	0	0
6	$\mathrm{SU}(3) \times \mathrm{SU}(2)$	00000100	54321000
7	$\mathrm{SU}(2) \times \mathrm{U}(1)$	00000010	65432100
8	$\mathrm{SU}(2)$	0	1
	00000020	76543200	

Table 1. The values of r_{i} in (5.72) and the Kac label for each m_{0}.

The SCFT Higgs branch dimension of (5.71) is

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{H}}^{\mathrm{SCFT}} \text { Higgs of } \mathcal{T}_{E}^{6 d}\left(\varpi, m_{0}, N\right)=30 N+\frac{1}{2} \varpi m_{0}^{2}(\varpi+1)-1 ; \tag{5.74}
\end{equation*}
$$

this is equal to the Coulomb branch dimension of (5.72).

5.6 Higgsing the $\mathrm{SU}(k)$ flavour symmetry

In the theories we have discussed so far, there is always an $\mathrm{SU}(k)$ flavour symmetry which came from the gauge symmetry on the $\mathbb{C}^{2} / \mathbb{Z}_{k}$ singularity. From the $3 d$ quiver perspective, this symmetry arises from the topological symmetry associated with the nodes in the tail

We can obtain another class of models by on nilpotent VEVs that Higgs the flavour symmetry $\operatorname{SU}(k) .{ }^{6}$ Suppose that such VEVs are in the nilpotent orbit of $\mathrm{SU}(k)$ given by $\bigoplus_{i} J_{s_{i}}$ where J_{s} is a $s \times s$ Jordan block so that $Y=\left[s_{1}, s_{2}, \ldots, s_{\ell}\right]$ is a corresponding partition of k.

Assuming that the 6 d quiver theory before the Higgsing has a sufficiently long plateau of $\operatorname{SU}(k)$ gauge groups, this Higgsing can be performed exactly as in $4 d$ class S theory e.g. as described in section 12.5 of [43]. Its effect in 6 d quiver was studied in [44, 45]. In the end, we see that the tail on the right-hand side of the quiver to have the form

$$
\left.\begin{array}{cccccc}
& & & \mathfrak{s u}(k) & \mathfrak{s u}(k) & \mathfrak{s u}\left(k-u_{\ell^{\prime}}\right) \tag{5.75}\\
& 2 & 2 & & \mathfrak{s u}\left(u_{2}+u_{1}\right) & \mathfrak{s u}\left(u_{1}\right) \\
& & {\left[N_{f}=u_{\ell^{\prime}}\right]} & {\left[N_{f}=\left(u_{\ell^{\prime}-1}-u_{\ell^{\prime}}\right)\right]} & & {\left[N_{f}=\left(u_{2}-u_{3}\right)\right]}
\end{array}\right]\left[N_{f}=\left(u_{1}-u_{2}\right)\right],
$$

[^4]where u_{i} are the elements of the transpose $Y^{T}=\left[u_{1}, u_{2}, \ldots, u_{\ell^{\prime}}\right]$, and we define $u_{i}=0$ for $i>\ell^{\prime}$.

The SCFT Higgs branch dimension of (5.75) is

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{H}}^{S C F T} \text { Higgs of }(5.75)=\left[30\left(N_{3}+k\right)-\langle\boldsymbol{w}, \boldsymbol{\rho}\rangle+\frac{1}{2} k(k+1)-1\right]-\operatorname{dim}_{\mathbb{H}} \mathcal{O}_{Y} \tag{5.76}
\end{equation*}
$$

where \mathcal{O}_{Y} is the nilpotent orbit labeled by Y.
The mirror of the T^{3} compactification of (5.75) is

In other words, we simply replace the tail $\underset{1}{\bullet}-\underset{2}{\bullet}-\cdots-\boldsymbol{\square}_{k}$ for the theories discussed in the preceding sections by $T_{Y}(\mathrm{SU}(k))$, where the latter is defined as in [37]. The Coulomb branch dimension of (5.77) is
$\operatorname{dim}_{\mathbb{H}}$ Coulomb of (5.77)

$$
\begin{align*}
& =\left[30\left(N_{3}+k\right)-\langle\boldsymbol{w}, \boldsymbol{\rho}\rangle\right]+\left[\frac{1}{2}\left\{\left(k^{2}-1\right)-(k-1)\right\}-\operatorname{dim}_{\mathbb{H}} \mathcal{O}_{Y}\right]+(k-1) \tag{5.78}\\
& =30\left(N_{3}+k\right)+\frac{1}{2} k(k+1)-1-\operatorname{dim}_{\mathbb{H}} \mathcal{O}_{Y}-\langle\boldsymbol{w}, \boldsymbol{\rho}\rangle
\end{align*}
$$

where the terms in the second square brackets in the second line denote the Coulomb branch dimension of $T_{Y}(\mathrm{SU}(k))$. This result is indeed in agreement with (5.76).

As an example, let us consider $\mathcal{T}_{E}^{6 d}\left(k, m_{0}=1, N\right)$ of the previous section and perform the Higgsing with $Y=[k-1,1]$. The resulting $6 d$ theory is
where the number of tensor multiplets is N. This theory is similar to that discussed in (36) of [6], (5.2) of [29], except that we have only one (-1)-curve in the quiver, instead of two. The mirror of the T^{3} compactification of this theory is

$$
\begin{equation*}
\stackrel{\bullet}{1}-\stackrel{\bullet}{k}-\stackrel{\bullet}{N}-\stackrel{\bullet}{2 N}-\stackrel{\bullet}{3 N}-\stackrel{\bullet}{4 N}-\stackrel{\bullet}{5 N}-\frac{\bullet_{6}^{3 N}}{6 N}-\stackrel{\bullet}{4 N}-\stackrel{\bullet}{2 N}, \tag{5.80}
\end{equation*}
$$

This quiver is a "good" theory in the sense of [37] if $N+1 \geq 2 k$ and $k \geq 2$. In this case, this quiver is the $3 d$ mirror theory of the S^{1} reduction of the class \mathcal{S} theory of type $\mathrm{SU}(6 N)$ associated a sphere with the punctures

$$
\begin{equation*}
\left[N^{5}, N-k, k-1,1\right], \quad\left[(3 N)^{2}\right], \quad\left[(2 N)^{3}\right] . \tag{5.81}
\end{equation*}
$$

Acknowledgments

The authors thank Hiroyuki Shimizu for the collaboration at the early stages. NM sincerely thanks Stefano Cremonesi, Amihay Hanany and Alessandro Tomasiello for a close collaboration, invaluable insights, and several useful discussions. He also grateful to the hospitality of the organisers of the Pollica Summer Workshop 2017, including Fernando Alday, Philip Argyres, Madalena Lemos and Mario Martone. He is supported in part by the INFN, the ERC Starting Grant 637844-HBQFTNCER, as well as the ERC STG grant 306260 through the Pollica Summer Workshop. KO gratefully acknowledges support from the Institute for Advanced Study. YT is partially supported in part byJSPS KAKENHI Grant-in-Aid (Wakate-A), No.17H04837 and JSPS KAKENHI Grant-in-Aid (Kiban-S), No.16H06335. YT and GZ are partially supported by WPI Initiative, MEXT, Japan at IPMU, the University of Tokyo.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] M.F. Atiyah, N.J. Hitchin, V.G. Drinfeld and Yu. I. Manin, Construction of Instantons, Phys. Lett. A 65 (1978) 185 [inSPIRE].
[2] P.B. Kronheimer and H. Nakajima, Yang-Mills instantons on ALE gravitational instantons, Math. Ann. 288 (1990) 263.
[3] M. Bianchi, F. Fucito, G. Rossi and M. Martellini, Explicit construction of Yang-Mills instantons on ALE spaces, Nucl. Phys. B 473 (1996) 367 [hep-th/9601162] [INSPIRE].
[4] E. Witten, Small instantons in string theory, Nucl. Phys. B 460 (1996) 541 [hep-th/9511030] [INSPIRE].
[5] M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [INSPIRE].
[6] P.S. Aspinwall and D.R. Morrison, Point-like instantons on K3 orbifolds, Nucl. Phys. B 503 (1997) 533 [hep-th/9705104] [INSPIRE].
[7] D. Gaiotto, $\mathcal{N}=2$ dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [inSPIRE].
[8] S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb branches of $3 d \mathcal{N}=4$ gauge theories, JHEP 01 (2014) 005 [arXiv:1309.2657] [InSPIRE].
[9] J.J. Heckman, D.R. Morrison and C. Vafa, On the Classification of 6D SCFTs and Generalized ADE Orbifolds, JHEP 05 (2014) 028 [Erratum ibid. 1506 (2015) 017] [arXiv:1312.5746] [INSPIRE].
[10] M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d Conformal Matter, JHEP 02 (2015) 054 [arXiv:1407.6359] [inSPIRE].
[11] J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic Classification of $6 D$ SCFTs, Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [inSPIRE].
[12] G. Zafrir, Brane webs, 5d gauge theories and $6 d \mathcal{N}=(1,0)$ SCFT's, JHEP 12 (2015) 157 [arXiv:1509.02016] [INSPIRE].
[13] K. Ohmori and H. Shimizu, S^{1} / T^{2} compactifications of $6 d \mathcal{N}=(1,0)$ theories and brane webs, JHEP 03 (2016) 024 [arXiv:1509.03195] [inSPIRE].
[14] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, 6d SCFTs, $5 d$ Dualities and Tao Web Diagrams, arXiv:1509.03300 [inSPIRE].
[15] K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, $6 d \mathcal{N}=(1,0)$ theories on T^{2} and class S theories: Part I, JHEP 07 (2015) 014 [arXiv:1503.06217] [INSPIRE].
[16] P.B. Kronheimer, Instantons and the geometry of the nilpotent variety, J. Diff. Geom. 32 (1990) 473 [INSPIRE].
[17] Y. Tachikawa, Moduli spaces of $\mathrm{SO}(8)$ instantons on smooth ALE spaces as Higgs branches of $4 d N=2$ supersymmetric theories, JHEP 06 (2014) 056 [arXiv:1402.4200] [INSPIRE].
[18] F. Benini, Y. Tachikawa and D. Xie, Mirrors of 3d Sicilian theories, JHEP 09 (2010) 063 [arXiv:1007.0992] [inSPIRE].
[19] H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional $\mathcal{N}=4$ gauge theories, I, Adv. Theor. Math. Phys. 20 (2016) 595 [arXiv:1503.03676] [inSPIRE].
[20] H. Nakajima, Questions on provisional Coulomb branches of 3-dimensional $\mathcal{N}=4$ gauge theories, arXiv:1510. 03908 [INSPIRE].
[21] S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Coulomb Branch and The Moduli Space of Instantons, JHEP 12 (2014) 103 [arXiv:1408.6835] [INSPIRE].
[22] N. Mekareeya, The moduli space of instantons on an ALE space from $3 d \mathcal{N}=4$ field theories, JHEP 12 (2015) 174 [arXiv:1508.06813] [inSPIRE].
[23] V.G. Kac, Infinite Dimensional Lie Algebras, Cambridge University Press, Cambridge U.K. (1994).
[24] H. Nakajima, Moduli spaces of anti-self-dual connections on ALE gravitational instantons, Invent. Math. 102 (1990) 267.
[25] K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, Anomaly polynomial of general $6 d$ SCFTs, PTEP 2014 (2014) 103B07 [arXiv:1408.5572] [INSPIRE].
[26] K. Intriligator, $6 d, \mathcal{N}=(1,0)$ Coulomb branch anomaly matching, JHEP 10 (2014) 162 [arXiv:1408.6745] [INSPIRE].
[27] K. Ohmori, H. Shimizu and Y. Tachikawa, Anomaly polynomial of E-string theories, JHEP 08 (2014) 002 [arXiv:1404.3887] [inSPIRE].
[28] I. Brunner and A. Karch, Branes at orbifolds versus Hanany Witten in six-dimensions, JHEP 03 (1998) 003 [hep-th/9712143] [INSPIRE].
[29] A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories, Nucl. Phys. B 529 (1998) 180 [hep-th/9712145] [inSPIRE].
[30] O. Bergman and D. Rodriguez-Gomez, $5 d$ quivers and their $A d S_{6}$ duals, JHEP 07 (2012) 171 [arXiv:1206.3503] [inSPIRE].
[31] H. Hayashi, S.-S. Kim, K. Lee, M. Taki and F. Yagi, A new $5 d$ description of $6 d$ D-type minimal conformal matter, JHEP 08 (2015) 097 [arXiv:1505.04439] [INSPIRE].
[32] H. Hayashi, S.-S. Kim, K. Lee, M. Taki and F. Yagi, More on $5 d$ descriptions of $6 d$ SCFTs, JHEP 10 (2016) 126 [arXiv:1512.08239] [inSPIRE].
[33] O. Bergman and G. Zafrir, 5d fixed points from brane webs and O7-planes, JHEP 12 (2015) 163 [arXiv:1507.03860] [inSPIRE].
[34] F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and $N=2$ superconformal field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].
[35] O. Chacaltana and J. Distler, Tinkertoys for Gaiotto Duality, JHEP 11 (2010) 099 [arXiv:1008.5203] [INSPIRE].
[36] Y. Tachikawa, A review of the T_{N} theory and its cousins, PTEP 2015 (2015) 11B102 [arXiv:1504.01481] [INSPIRE].
[37] D. Gaiotto and E. Witten, S-duality of Boundary Conditions In $N=4$ Super Yang-Mills Theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [inSPIRE].
[38] M. Bullimore, T. Dimofte and D. Gaiotto, The Coulomb Branch of $3 d \mathcal{N}=4$ Theories, Commun. Math. Phys. 354 (2017) 671 [arXiv:1503.04817] [INSPIRE].
[39] K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, $6 d \mathcal{N}=(1,0)$ theories on S^{1} / T^{2} and class S theories: part II, JHEP 12 (2015) 131 [arXiv:1508.00915] [INSPIRE].
[40] D. Gaiotto and S.S. Razamat, Exceptional Indices, JHEP 05 (2012) 145 [arXiv:1203.5517] [INSPIRE].
[41] S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, Coulomb branch Hilbert series and Three Dimensional Sicilian Theories, JHEP 09 (2014) 185 [arXiv:1403.2384] [INSPIRE].
[42] I. Bah, A. Passias and A. Tomasiello, AdS5 compactifications with punctures in massive IIA supergravity, arXiv:1704.07389 [inSPIRE].
[43] Y. Tachikawa, $\mathcal{N}=2$ Supersymmetric Dynamics for Pedestrians, Lect. Notes Phys. 890 (2013) 2014 [arXiv:1312.2684] [INSPIRE].
[44] J.J. Heckman, T. Rudelius and A. Tomasiello, $6 D$ RG Flows and Nilpotent Hierarchies, JHEP 07 (2016) 082 [arXiv:1601.04078] [inSPIRE].
[45] N. Mekareeya, T. Rudelius and A. Tomasiello, T-branes, Anomalies and Moduli Spaces in 6D SCFTs, arXiv:1612.06399 [inSPIRE].

[^0]: ${ }^{1}$ When more than two cases apply to the same Kac label, they produce the same quiver.

[^1]: ${ }^{2}$ The authors thank D. R. Morrison for the correspondence on this point.

[^2]: ${ }^{3}$ Purely field theoretically, the 6d quiver only contains the information on the low energy limit on the generic points on the tensor branch of a given 6 d SCFT. Therefore further manipulations of the quiver such as dimensional reductions are not guaranteed to tell every detail of the original 6d SCFT. What we do is, instead, to realize the quiver using branes, and apply string dualities. This way we can keep all the ultraviolet information required in the process.

[^3]: ${ }^{4}$ See also [40] for a related consideration from the $4 d$ point of view.
 ${ }^{5}$ The authors thank S. Cremonesi for this argument.

[^4]: ${ }^{6}$ The authors thank Alessandro Tomasiello for the discussion about this class of theories.

