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E8, THE MOST EXCEPTIONAL GROUP

SKIP GARIBALDI

Abstract. The five exceptional simple Lie algebras over the complex number

are included one within the other as g2 ⊂ f4 ⊂ e6 ⊂ e7 ⊂ e8. The biggest one,
e8, is in many ways the most mysterious. This article surveys what is known
about it, including many recent results, and it focuses on the point of view of
Lie algebras and algebraic groups over fields.
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1. Introduction

The Lie algebra e8 or Lie group E8 was first sighted by a human being sometime
in summer or early fall of 1887 by Wilhelm Killing as part of his program to
classify the semisimple finite-dimensional Lie algebras over the complex numbers
[95, pp. 162–163]. Since then, it has been a source of fascination for mathematicians
and others in its role as the largest of the exceptional Lie algebras. (It appears,
for example, as part of the fictional Beard–Einstein Conflation in the prize-winning
novel Solar [121].) Killing’s classification is now considered the core of a typical
graduate course on Lie algebras, and the paper containing the key ideas [105] has
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even been called “the greatest mathematical paper of all time”;1 see [35] and [97].
Killing showed that the simple Lie algebras make up four infinite families together
with just five2 others, called exceptional. They are ordered by inclusion and e8
is the largest of them. When someone says “E8” today, they might be referring
to the simple Lie algebra e8, an algebraic group or Lie group, a specific rank 8
lattice, or a collection of 240 points in R8 (the root system E8). This article gives
an introduction to these objects as well as a survey of some of the many results on
E8 that have been discovered since the millennium and indications of the current
frontiers.

There are many reasons to be interested in E8. Here is a pragmatic one. The
famous Hasse–Minkowski Principle for quadratic forms and the Albert–Brauer–
Hasse–Noether Theorem for division algebras over number fields can be viewed as
special cases of the more general Hasse Principle for semisimple algebraic groups
described and proved in [129, Ch. 6]. This is a powerful theorem, which subsumes
not just those famous results but also local-global statements for objects that do
not have ready descriptions in elementary language. Its proof involves case-by-case
considerations, with the case of E8 being the most difficult and which was eventually
proved by Chernousov in [27], building on work by Harder in [92] and [93]. That E8

was the most difficult is typical. In the words of van Leeuwen [161]: “Exceptional
groups, and in particular E8, appear to have a more dense and complicated structure
than classical ones, making computational problems more challenging for them. . . .
Thus E8 serves as a ‘gold standard’: to judge the effectiveness of the implementation
of a general algorithm, one looks to how it performs for E8.”

I have heard this sentiment expressed more strongly as: We understand semisim-
ple algebraic groups only as far as we understand E8. If we know some statement
for all groups except E8, then we do not really know it.

Here is a more whimsical reason to be interested in E8: readers who in their
youth found quaternions and octonions interesting will naturally gravitate to the
exceptional Lie algebras and among them the largest one, e8. Indeed, one might call
E8 the Monster of Lie theory, because it is the largest of the exceptional groups,
just as the Monster is the largest of the sporadic finite simple groups. Another take
on this is that “E8 is the most noncommutative of all simple Lie groups” [117].

Remarks on exceptional Lie algebras. The exceptional3 Lie algebras men-
tioned above form a chain g2 ⊂ f4 ⊂ e6 ⊂ e7 ⊂ e8. There are various surveys and

1Any such declaration is obviously made with an intent to provoke. One objection I have
heard to this particular nomination is that Killing made a serious mathematical error—made
famous by Cartan’s quote “Malheureusement les recherches de M. Killing manquent de rigueur, et
notamment, en ce qui concerne les groupes qui ne sont pas simples, il fait constamment usage d’un
théorème qu’il ne démontre pas dans sa généralité” [23, p. 9]—but this error is from a different
paper and is irrelevant to the current discussion. See [95] for details.

2Since Killing’s paper contains so many new and important ideas and was produced by someone
working in near isolation, it feels churlish to mention that it actually claims that there are six
exceptional ones. Killing failed to notice that two of the ones in his list were isomorphic.

3We are following the usual definition of “exceptional”, but there are alternatives that are
appealing. For example, [42] considers a longer chain of inclusions

sl2 ⊂ sl3 ⊂ g2 ⊂ so8 ⊂ f4 ⊂ e6 ⊂ e7 ⊂ e8

such that, at the level of simply connected Lie groups, all of the inclusions are unique up to
conjugacy. One could alternatively define all the Lie algebras appearing in that chain to be
exceptional.
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E8, THE MOST EXCEPTIONAL GROUP 645

references focusing on some or all of these, such as [8], [56], [1], [100], [107], [63], and
[148]. Certainly, the greatest amount of material is available for g2, corresponding
to the octonions, where one can find discussions as accessible as [49]. Moving up
the chain, less is available and what exists is somewhat less accessible. This note
takes the approach of jumping all the way to e8 at the end, because it is the case
with the least existing exposition, or, to say the same thing differently, the most
opportunity.

Another feature of exceptional groups is that, by necessity, various ad hoc con-
structions are often employed in order to study one group or another. These can
appear inexplicable at first blush. As much as we can, we will explain how these
peculiar constructions arise naturally from the general theory of semisimple Lie
algebras and groups. See §4 for an illustration of this.

2. What is E8?

To explain what Killing was doing, suppose you want to classify Lie groups,
meaning (for the purpose of this section) a smooth complex manifold G that is also
a group, and the two structures are compatible in the sense that multiplication
G × G → G and inversion G → G are smooth maps. The tangent space to G at
the identity g is a vector space on which G acts by conjugation, and this action
gives a bilinear map g × g → g denoted (x, y) �→ [x, y] such that [x, x] = 0 and
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ g. The vector space g endowed
with this “bracket” operation is called the Lie algebra of G. Certainly, if two Lie
groups are isomorphic, then so are their Lie algebras; the converse, or something
like it, also holds and is known as Lie’s third theorem.

Consequently, for understanding Lie groups, it is natural to classify the finite-
dimensional Lie algebras over the complex numbers, which was Killing’s goal.
Suppose L is such a thing. Then, among the ideals I such that the sequence
I ⊇ [I, I] ⊇ [[I, I], [I, I]] ⊇ · · · eventually reaches zero, there is a unique maximal
one, called the radical of L and denoted radL. The possible such ideals radL are
unclassifiable if dim(radL) is large enough (see [11]) so we ignore it; replacing L
by L/ radL we may assume that radL = 0. Then L is a direct sum of simple Lie
algebras, which we now describe how to analyze.

The root system. To classify the simple Lie algebras, Killing observed that we
can extract from a simple L a piece of finite combinatorial data called a root system,
and he classified the possible root systems. The simple root system called E8 is a
240-element subset R of R8, whose elements are called roots. It consists of the short
vectors in the lattice Q generated by the simple roots

α1 =
1

2
(e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8), α2 = e1 + e2, α3 = −e1 + e2,

α4 = −e2 + e3, α5 = −e3 + e4, α6 = −e4 + e5,

α7 = −e5 + e6, α8 = −e6 + e7,

where ei denotes the ith element of an orthonormal basis of R8. This information
is encoded in the graph

(2.1)
� � � � �

�

� �
α1 α3 α4 α5 α6 α7 α8

α2

,
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Figure 1. Dynkin diagram of E8 obtained by deleting five edges
from a cube in R3

where vertices correspond to simple roots, a single bond joining αi to αj indicates
that αi · αj = −1, and no bond indicates that αi · αj = 0. Such a graph is called
a Dynkin diagram, and the root system is commonly described in this language
today, but they were not invented for more than 50 years after Killing’s paper. The
graph determines the root system up to isomorphism. Evidently, the particular
embedding of R in R8 and the labeling of the simple roots is not at all unique; here
we have followed [19]. One could equally well draw it as suggested in [117], with
the edges lying on along the edges of a cube as in Figure 1.

We can draw a picture of the full set R by projecting R8 onto a well-chosen
plane;4 see Figure 2. In the picture, the 240 roots are the black dots, which lie on

Figure 2. E8’s “publicity photo”

4Precisely: take a Coxeter element w in the Weyl group of R. It is unique up to conjugacy and
its minimal polynomial has a simple factor x2 − 2 cos(2π/h) + 1, for h = 30, the Coxeter number
for the root system E8. That is, there is a unique plane in R8 on which the projection of w has
that minimal polynomial, so that w acts on the plane by rotations by 2π/h.
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E8, THE MOST EXCEPTIONAL GROUP 647

eight concentric circles of 30 dots each—this much follows from general theory as
in [19, VI.1.11, Prob. 33(iv)]. The edges in the picture join the images of roots that
are nearest neighbors in R8. The color of an edge indicates its length in R2.

The E8 lattice. The lattice Q together with the quadratic form v �→ 1
2‖v‖

2 is the
unique positive-definite, even, unimodular lattice of rank 8. It has been known for a
long time that it is the lattice with the densest sphere packing in R8, and the sphere
packing with the highest kissing number [38]. Recently, Viazovska showed that it
gives the densest sphere packing in R8, among all possible packings both lattice
and nonlattice [163]. At the time of her work, the densest packing was unknown in
Rn for all n ≥ 4!

The roots R—the short vectors in Q—are a 7-design on the unit sphere in R8,
i.e., every polynomial on R8 of total degree at most 7 has the same average on
R as on the entire sphere, with the minimal number of elements [9]; such a thing

is very rare. The theta-series for this lattice, θ(q) =
∑

v∈Q q‖v‖
2/2, is the fourth

Eisenstein series, which provides a connection with the j-invariant via the formula
j(q) = θ(q)3/η(q)24, where η denotes Dedekind’s eta-function.5 For more on this
lattice and how it fits into the rest of mathematics, see [38] or [52].

Another view on the lattice is that it is a maximal order in the (real) octonions,
as described in [39]. In particular, this turns Q into a nonassociative ring with 240
units, namely the roots R.

From the root system to the Lie algebra. Starting from R ⊂ R8, one can write
down a basis and multiplication table for the Lie algebra e8 over C as in [118] or [78].
(This is a recent development. The old way to do this is via the Chevalley relations
as in, for example, [20, §VIII.4.3]. Some signs have to be chosen (see [156], [25],
or [60, §2.3]), but the isomorphism class of the resulting algebra does not depend
on the choices made. Explicit multiplication tables are written in [24, p. 328] and
[162].) In this way, one can make the Lie algebra from the root system.

3. E8 as an automorphism group

To study e8, then, we can view it as a specific example of a simple Lie algebra
described by generators and relations given by the root system. We will exploit
this view below. However, that is not what is commonly done for other simple Lie
algebras and groups! It is typical to describe the “classical” (meaning not excep-
tional) Lie algebras and groups not in terms of their root systems, but rather as,
for example, SLn, the n-by-n determinant 1 matrices; SOn, the n-by-n orthogonal
matrices of determinant 1; and Sp2n, the 2n-by-2n symplectic matrices. Killing
explicitly asked in his 1889 paper for similar descriptions of the exceptional Lie
algebras and groups.

Looking back at the descriptions of the classical groups in the previous para-
graph, each of them arises from a faithful irreducible representation G →֒ GL(V )
where dimV is smaller than dimG. Using now the classification of irreducible rep-
resentations of simple Lie algebras, the Weyl dimension formula and other general-
purpose tools described entirely in terms of root systems (and which post-date
Killing and can be found in standard textbooks, such as [99]), we find that the
smallest faithful irreducible representations of g2, f4, e6, and e7 (alternatively, the

5For connections of the coefficients of j(q)1/3 with dimensions of irreducible representations of
E8,C, see [96, esp. §4.1].
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simply connected Lie groups G2, F4, E6, and E7) have dimensions 7, 26, 27, and
56, which are much smaller than the dimensions 14, 52, 78, and 133 of the corre-
sponding algebra. In the years since Killing posed his problem, all of these algebras
have found descriptions using the corresponding representation, as we now relate.

The smallest nontrivial representation V of the group G2 has dimension 7. Cal-
culating with weights, one finds that V has G2-invariant linear maps b : V ⊗V → C

(a bilinear form, which is symmetric) and × : V ⊗ V → V (a product, which is
skew-symmetric6), which are unique up to multiplication by an element of C×. To
see this, we decompose the G2-modules V ∗ ⊗ V ∗ and V ∗ ⊗ V ∗ ⊗ V into direct
sums of irreducible representations and note that in each case there is a unique
1-dimensional summand. The subgroup of GL(V ) preserving these two structures
is G2. Alternatively, we can define a G2-invariant bilinear form t and product on
C⊕ V by setting

t((x, c), (x′, c′)) := xx′ + b(c, c′) and

(x, c) • (x′, c′) := (xx′ + b(c, c′), xc′ + x′c+ c× c′).

With these definitions and scaling × so that b(u × v, u × v) = b(u, u)b(v, v) −
b(u, v)2, C ⊕ V is isomorphic to the complex octonions, a nonassociative algebra
(see [49, §10.3] for details) and G2 is the automorphism group of that algebra;
compare [148, §2.3] or [107, 26.19]. Equivalently, g2 is the Lie algebra of C-linear
derivations of C⊕ V .

In a similar way, the smallest nontrivial representation of F4, call it V , has
unique F4-invariant linear maps b : V ⊗ V → C (a symmetric bilinear form) and
× : V ⊗V → V (a product, which is symmetric). Extending in a similar manner, we
find that C⊕V has the structure of an Albert algebra (a type of Jordan algebra) and
F4 is the automorphism group of that algebra; see [32], [148, §7.2], or [107, 26.18].

The smallest nontrivial representation of E6, call it V , has an E6-invariant cubic
polynomial f : V → C that is unique up to multiplication by an element of C×.
The isometry group of f , i.e., the subgroup of g ∈ GL(V ) such that f ◦ g = f , is
E6. This was pointed out in [23], but see [148, §7.3] for a proof.

For E7, the smallest nontrivial representation has an E7-invariant quartic poly-
nomial whose isometry group is generated by E7 and the group

〈

eπi/2
〉

of fourth
roots of unity [61]. That is, it has two connected components, and the connected
component of the identity is E7.

Answers for E8. The same approach, applied to E8, is problematic. The smallest
nontrivial representation of E8 has dimension 248; it is the action on its Lie algebra
e8. In this context E8 is the automorphism group of the Lie algebra7 e8. This is
not specific to E8—it is a typical property of semisimple Lie algebras (see [149]
for a precise statement)—and only serves to recast problems about the algebras as
problems about the group and vice versa.

However, there is a general result that, in the case of E8, says that for each faith-
ful irreducible representation V , there is a homogeneous, E8-invariant polynomial
f such that E8 is the identity component of the stabilizer of f in GL(V ).

6The product can be viewed as a 7-dimensional analogue of the usual cross-product in R3;
compare for example [49, §10.3].

7Or, which is the same, the group of linear transformations preserving both the Killing form

κ : e8 × e8 → C and the alternating trilinear form
∧3

e8 → C given by the formula x ∧ y ∧ z �→

κ(x, [y, z]).
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E8, THE MOST EXCEPTIONAL GROUP 649

In the case of the smallest faithful irreducible representation, there is a degree
8 homogeneous polynomial on the Lie algebra e8 whose automorphism group is
generated by E8 and the eighth roots of unity

〈

eπi/4
〉

. (For experts: one takes a
degree 8 generator for the Weyl-group-invariant polynomials on a Cartan subalgebra
and pulls it back to obtain an E8-invariant polynomial on all of e8. The paper [26]
gives a formula for it in terms of invariants of the D8 subgroup of E8.)

The second smallest faithful irreducible representation V has dimension 3875.
Combinatorial calculations with weights of the representation show that it has a
nonzero, E8-invariant symmetric bilinear form b and trilinear form t, both of which
are unique up to scaling by an element of C×. These give a commutative and E8-
invariant product, i.e., a bilinear map, • : V×V → V defined by t(x, y, z) = b(x, y•z).
(Close readers of Chevalley will recognize this method of constructing a product
from a cubic form from [31, §4.2].) The automorphism group of (V, •) is E8; see
[71].

These results are recent and have not yet been seriously exploited.

As the automorphism group of a variety. As with other semisimple groups,
one can view E8 as the group of automorphisms of a projective variety on which it
acts transitively—a flag variety ; see [43] for the general statement. In the case of
E8, the smallest such variety has dimension 57 (and can be obtained by quotienting
out by the maximal parabolic subgroup determined by the highest root [23, p. 152]);
see [90] for an alternative treatment.

4. Constructing the Lie algebra via gradings

Earlier, we described constructing the Lie algebra e8 by generators and relations
using a Chevalley basis. There are various refinements on this that we now discuss.
This situation is quite general and is often applied to study other exceptional groups,
so we write in a slightly more general context. Consider an irreducible root system
R with set Δ of simple roots, and let g be the Lie algebra generated from this using
a Chevalley basis. (See [99] or [19] for background on root systems.)

Suppose that g has a grading by an abelian group Γ, meaning that as a vector
space g is a direct sum of subspaces gγ for γ ∈ Γ and that [gγ , gγ′ ] ∈ gγ+γ′ for
γ, γ′ ∈ Γ. Then g0 is a Lie subalgebra of g and each gγ is a g0-module. Roughly
speaking, one can typically write down a formula for the bracket on g in terms
of the action of g0 on the gγ ; see [1, Ch. 6] or [64, §22.4] for discussion. The
literature contains a profusion of such constructions, which are sometimes called
a “g0 construction of g”. (We give some references below, but it is hopeless to
attempt to be comprehensive.)

To produce such a construction of g, we should look for gradings of g. These
are controlled by subgroups of Aut(g) in the following sense. If F = C and g has a
Z/n grading, then the map

∑

γ yγ �→
∑

e2πiγ/nyγ exhibits the nth roots of unity

μn(C) =
〈

e2πi/n
〉

as a subgroup of Aut(g) and conversely every homomorphism
μn → Aut(g) gives a Z/n grading on g by the same formula. We generalize this
example somewhat to the language of diagonalizable group schemes as in [44] or
[168]. Write ΓD for the Cartier dual of Γ, the (concrete) group of homomorphisms
from Γ to Gm, the algebraic group with K-points K× for every field K. In that
notation, we have the following folklore classification of gradings:
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Proposition 4.1. Let S be a commutative ring, and let g be a finitely generated Lie

algebra over S. Then for each finitely generated abelian group Γ, there is a natural

bijection between the set of Γ-gradings on g and the set of morphisms ΓD → Aut(g)
of group schemes over S.

Sketch of proof. The group Γ is naturally identified with the dual Hom(ΓD,Gm),
so given a Γ-grading on g, setting t · y = γ(t)y for y ∈ gγ and t ∈ ΓD defines a
homomorphism ΓD → Aut(g). Conversely, a homomorphism ΓD → Aut(g) gives g
the structure of a comodule under the coordinate ring of ΓD, i.e., the group ring
S[Γ], which amounts to an S-linear map ρ : A → A⊗ S[Γ] that is compatible with
the Hopf algebra structure on S[Γ]. One checks that gγ := {y ∈ g | ρ(y) = y ⊗ γ}
gives a Γ-grading on g. �

As is clear from the proof, the hypothesis that g is a Lie algebra is not necessary,
and the result applies equally well to other sorts of algebraic structures over S. One
could also replace S by a base scheme.

Examples: gradings by free abelian groups. By Proposition 4.1, a grading
of g by a free abelian group Zr corresponds to a homomorphism of a rank r torus
Gr

m → Aut(g). The image is connected, so it lies in the identity component of
Aut(g), which is the adjoint group, call it Gad, with Lie algebra g. Up to conjugacy,
all homomorphisms Gr

m → Gad have an image in a given maximal torus T , and
we conclude that all gradings of g by Zr are obtained from rank r sublattices of
Hom(Gm, T ), i.e., the weight lattice for the root system dual to R. (For E8 this
lattice is the same as Q.)

A natural grading of this sort is obtained by choosing some r-element subset Δ′

of Δ and defining the degree of a root vector xβ to be the coefficients cδ of elements
of Δ′ in the expression β =

∑

δ∈∆ cδδ. Basic facts concerning this kind of grading
can be found in [6] or [134]; most importantly, the gγ are irreducible representations
of g0 with an open orbit. This sort of grading on e8 (and e7 and e6) with r = 2 was
used in [15] to reconstruct the quadrangular algebras studied in [169] for studying
the corresponding Moufang polygons.

The simplest example of a grading as in the previous paragraph is to take Δ′ to be
a singleton {δ′}, in which case one finds a Z-grading of g with support {−n, . . . , n},
where n is the coefficient of δ′ in the highest root. Famously, in the case n = 1, one
finds a 3-term grading in which the ±1 components make up a Jordan pair, and
one can use the Jordan pair to recover the bracket on g; see, for example, [126].
But that case does not occur for E8, because its highest root is

(4.2) ω8 = e7 + e8 = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8,

where the smallest coefficient is 2 for δ′ = α1 or α8. Those δ
′ give a 5-term grading,

where the ±1 components are structurable algebras as in [4] or [3, Th. 4] or a Kantor
pair as in [2], depending on your point of view. Starting with a structurable algebra,
one can also recover the bracket on g, as was done for e8 in [3, §8].

Examples: Z/n gradings. By the proposition, a Z/n grading on g is given by a
homomorphism μn → Aut(g). The ones with image in Gad (as is necessarily true
for E8, because Aut(g) = Gad in that case) are classified by their Kac coordinates;
see [103] or [146], or see [112] for an expository treatment. Therefore in principle
one has a list of all of the corresponding gradings.
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E8, THE MOST EXCEPTIONAL GROUP 651

A popular choice for such a grading is to start by picking a simple root δ′ ∈ Δ,
thus obtaining as in the preceding subsection an inclusion ι : Gm → Gad such that,
for δ ∈ Δ, the composition δι : Gm → Gm is the identity for δ = δ′ and is trivial
otherwise. The desired Z/n grading is obtained by composing ι with the natural
inclusion μn →֒ Gm for n the coefficient of δ′ in the highest root. One finds again in
this case that each gγ is an irreducible representation of g0; see [164]. The identity
component of the centralizer of CGad(μn) is semisimple and its Dynkin diagram is
obtained by taking the so-called extended Dynkin diagram of R, which is obtained
by adding the negative of the highest root as a new vertex, and deleting the vertex
δ′ and all edges connected to it. (This is the first step in the iterative procedure
described in [16] for calculating the maximal-rank semisimple subgroups of Gad.
See [19, Ch. VI, §4, Exercise 4] or [112] for treatments in the language of root
systems or group schemes, respectively.)

For example, doing this for R the root system of type G2 and δ′ the simple
root that is orthogonal to the highest root, one finds n = 3, CGad(μ3) has identity
component SL3, and the ±1-components of g2 are the tautological representation
and its dual. The action of G2 on the octonions, restricted to this μ3 subgroup, gives
the direct sum decomposition of the octonions known as the Zorn vector matrix
construction as in [135].

Example 4.3 (D8 ⊂ E8). Doing this with E8 and δ′ = α1, we find n = 2 by
(4.2), CE8

(μ2) has identity component Spin16 /μ2, and the 1-component of e8 is the
half-spin representation. This grading was surely known to Cartan, and it is the
method used to construct e8 in [1] and [58].

Example 4.4 (A8 ⊂ E8). Doing this with E8 and δ′ = α2, we find n = 3, CE8
(μ3)

has identity component SL9 /μ3, and we have

e8 ∼= sl9 ⊕ (

3
∧

C9)⊕ (

3
∧

C9)∗

as modules under sl9. One can use this operation to define the Lie bracket on all
of e8; see for example [62], [64, Exercise 22.21], and [55].

Example 4.5 (A4 × A4 ⊂ E8). Taking δ′ = α5, we find n = 5, and CE8
(μ5) is

isomorphic to (SL5 × SL5)/μ5. See [66, §14] or [83, §6] for concrete descriptions of
the embedding, or [144, 1.4.2] for how it provides a nontoral elementary abelian
subgroup of order 53.

Dynkin [48, Table 11] lists 75 different subsystems of E8 constructed in this way,
and each of these gives a way to construct the Lie algebra E8 from a smaller one.
Here is such an example:

Example 4.6 (D4 × D4 ⊂ E8). There is a subgroup μ2 × μ2 of E8 such that
each of the three involutions has centralizer Spin16 /μ2 as in Example 4.3, and the
centralizer of μ2 × μ2 is the quotient of Spin8 × Spin8 by a diagonally embedded
copy of μ2 × μ2. This gives a grading of e8 by the Klein four-group, with (e8)0 =
so8 × so8 and the other three homogeneous components being tensor products of
an 8-dimensional representation of each of the copies of so8. The corresponding
construction of E8 is the one described in [167, Ch. IV], [114], or [111].

We have described some large families of gradings, but there are of course others;
see, for example, [51]. One can also construct e8 without using a grading. The
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famous Tits construction of E8 is of this type, and we will describe it in detail in
§7 below.

5. E8 over the real numbers

A Lie algebra L over the real numbers, i.e., a vector space over R with a bracket
that satisfies the axioms of a Lie algebra, is said to be of type E8 if L ⊗R C is
isomorphic to the Lie C-algebra e8 studied by Killing. (The notation L⊗RC is easy
to understand concretely. Fix a basis ℓ1, . . . , ℓn for the real vector space L. Then
L⊗R C is a complex vector space with basis ℓ1, . . . , ℓn and the bracket on L⊗R C

is defined by [
∑

i ziℓi,
∑

j z
′
jℓj ] =

∑

i

∑

j ziz
′
j [ℓi, ℓj ] for zi, z

′
j ∈ C.)

Cartan proved in [24] that there are exactly three Lie R-algebras of type E8.
One can reduce the problem of determining the isomorphism class of such alge-
bras to determining the orbits under the Weyl group of elements of order 2 in a
maximal torus in the compact real form of E8; see [145, §III.4.5]. Given such an
involution and the description of E8 in terms of the Chevalley relations, one can
do calculations, so this is an effective construction. Two of the three E8’s over R

have names, split and compact, where the automorphism group of the compact Lie
algebra is a real Lie group that is compact. The third one does not have a standard
name; we call it intermediate following [143], but others say quaternionic. This is
summarized in Table A.

Table A. Real forms of E8

Tits index signature of
or Satake diagram name Killing form

� � � � �

�

� � compact −248

� � � � �

�

� �✐ ✐ ✐ ✐intermediate −24

� � � � �

�

� �

✐

✐ ✐ ✐ ✐ ✐ ✐ ✐ split 8

Remarks on the Tits index. The first column of Table A indicates the Tits
index of the group as defined in [155, 2.3], which is the Dynkin diagram as in (2.1)
— the same for all groups of type E8 — with the possible addition of circles around
some vertices.8 At this point in the survey we are only concerned with the field
R, in which special case the Tits index is sometimes called a Satake diagram and
one can close the discussion by saying that the circles are drawn around the non-
compact simple roots. But the theory surrounding the Tits index of a semisimple
algebraic group G over an arbitrary field F is much richer, and we will use the more
general notion later, so let us take a moment to talk about it now. A split torus

is a product of copies of Gm, the algebraic group with K-points K× for every field

8More precisely, the Tits index of a group also includes the action of the absolute Galois group
on the Dynkin diagram, but the diagram for E8 has only the identity automorphism, so this action
is trivial.
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K. All maximal split tori in G are conjugate over F , and the circles in the Tits
index amount to precise formulas for the embedding of such a torus in G via the
theory in [17, §6]. One coarse fact is that the dimension of a maximal split torus
in G equals the number of circles in the Tits index.

A basic fact connected with the Tits index is Tits’ Witt-type theorem from [155,
2.7] or [147, 16.4.2], which gives a concrete description of the structure of G in
terms of the Tits index and a subgroup corresponding to the uncircled vertices in
the diagram. This theorem includes as special cases Wedderburn’s theorem that
each central simple k-algebra can be written uniquely as Mr(D) for D a central
division k-algebra and r ≥ 1, and Witt’s theorem that a nondegenerate quadratic
form is an orthogonal sum of a uniquely determined anisotropic nondegenerate
quadratic form and a sum of hyperbolic planes. That is, the Witt-type theorem
generalizes and unifies both of those classical results in the same way as the Hasse
Principle mentioned in the Introduction generalized and unified the Albert–Brauer–
Hasse–Noether Theorem and the Hasse–Minkowski Principle.

Physics. Returning now to the discussion of real groups of type E8, various such
groups play a role in physics. For example, the compact real E8 appears in string
theory (see [88], [45], and [46]) and the split real form appears in supergravity [120].

On the other hand, E8 does not play any role in the Grand Unified Theories of
the kind described in [7] because every finite-dimensional representation of every
real form of E8 is real orthogonal and not unitary. And at least one well-publicized
approach to unification based on E8 does not work, as explained in [47].

A magnet detects E8 symmetry? A few years ago, experimental physicsts re-
ported finding “evidence for E8 symmetry” in a laboratory experiment [34]. (You
may have seen descriptions aimed at mathematicians in [108] or [18].) This is yet
a different role for E8 than those mentioned before. The context is as follows.
A 1-dimensional magnet subjected to an external magnetic field can be described
with a quantum 1-dimensional Ising model—this is standard—and, in the previous
millennium and not using E8, [171] and [41] made numerical predictions regarding
what would happen if the magnet were subjected to a second, orthogonal magnetic
field. Some difficulties had to be overcome in order to experimentally test these
predictions, namely, producing a large enough crystal with the correct properties
(such as containing relatively isolated 1-dimensional chains of ions) and producing
a magnetic field that was large enough (five tesla) and tunable. In the interven-
ing years, these obstacles have been overcome, and the paper [34] reports on the
resulting experiment.

The measurements were as predicted, and therefore the experiment can be viewed
as providing evidence for the theory underlying the predictions.9 Which raises the
question: How does E8 appear in these predictions? Indeed, looking at the original
papers, one finds no use of E8 in making the predictions (although Zamolodchikov
did remark already in [171] that numerological coincidences strongly suggest that
E8 should play a role). Those papers, however, in addition to a handful of unobjec-
tionable nontriviality assumptions, rest on a serious assumption that the perturbed

9Some skeptics aver that the evidence is weak, in that the confirmed predictions amount to
somewhat noisy measurements of two numbers, namely the ratio of the masses of the two heaviest
quasi-particles and the ratio of the corresponding intensities. In Bayesian language, the skeptics’
estimate of the (probability of) correctness of the underlying theory was only somewhat increased
by learning of the experimental results.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



654 SKIP GARIBALDI

conformal field theory would be an integrable theory. It was later discovered that
if one views the original conformal field theory as arising from a compact real Lie
algebra via the coset construction, then the perturbed theory is given by the cor-
responding affine Toda field theory; see [54], [98], and [50]. In this way, invoking
the compact real form of E8 simplifies the theory by removing an assumption,
and therefore any evidence for the theory as a whole—such as that provided by the

experiment in [34]—may be viewed as “evidence for E8 symmetry”.
For those wanting further checks on the theory, another experiment to try would

be to test the predictions for a thermal perturbation of the tricritical Ising model,
for which the role of E8 is played instead by E7. The unperturbed version has
already been realized [152].

6. E8 over an arbitrary field

It makes sense to speak of Lie algebras or groups “of type E8” over any field.
Starting with the E8 root system, we define a bracket on Z248 as in §2, and we
denote the resulting Lie algebra by e8,Z. In this way we obtain, for every field F , a
Lie F -algebra e8,F := e8,Z ⊗ F called the split e8 over F . Its automorphism group
E8,F is an algebraic group over F known as the split group of type E8 over F .10

Finite fields. For example, if F is a finite field with q elements, then the F -points
E8,F (F ) are a finite simple group, normally denoted E8(q). These are enormous
groups whose order is a polynomial in q with leading term q248. The smallest such
group is E8(2), which has more than 3 × 1074 elements, about 1020 times the size
of the Monster [37, p. 242]. A special case of the Inverse Galois Problem is to ask:
Does E8(q) occur as a Galois group over Q? It is known when q is a prime larger
than 5 by [91] and [170].

Groups of type E8. More generally, a Lie algebra L over a field F is said to
have type E8 or be an F -form of E8 if there is a field K ⊇ F such that L⊗F K is
isomorphic to e8,Z ⊗Z K. A similar definition applies for algebraic groups.

An algebraic group G of type E8 over F is split if it is isomorphic to E8,F . It
is isotropic if it contains a copy of Gm (equivalently, if Lie(G) has a nontrivial
Z-grading) and is anisotropic otherwise—the anisotropic groups are the ones with
no vertices circled in their Tits index. For F = R, there is a unique anisotropic
form of E8, the compact form, but for other fields F there may be many; see the
examples in §8.

Fields over which the split E8 is the only E8. Over some fields F , the split
group E8,F is the only group of type E8. This is true for algebraically closed fields
(trivially by [44]). It is also true for finite fields, fields of transcendence degree 1
over an algebraically closed field, and more generally for fields of cohomological
dimension at most 1 [150]. Classically it is also known for p-adic fields, and it is
also true for every field that is complete with respect to a discrete valuation with
residue field of cohomological dimension ≤ 1 [21]. It is also true for global fields of
prime characteristic, i.e., finite extensions of Fp(t) for some p [94].

10Meaning it is a smooth variety such that the functor {field extensions of F} → Sets given
by sending K �→ E8,F (K) factors through the category of groups.
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It is also true if every finite separable extension of F has degree a power of some
prime11 p ≥ 7. This is argued in an elementary way in [157], but can be viewed
alternatively as a special case of older and more general arguments underlying the
proof of the Hasse Principle, specifically Propositions 6.19, 6.21 on pp. 339, 375 of
[129]. (Either way, only the case p = 7 is nontrivial, because 7 is the largest prime
dividing the order of the Weyl group of E8.) The analogous statements for p = 2, 3,
and 5 are false; see Example 8.1 and Theorem 9.1.

Serre’s “Conjecture II”. A bold conjecture of Serre’s from 1962 [138] says that,
for every field F of cohomological dimension ≤ 2,12 and G a simply connected
semisimple algebraic group over F , H1(F,G) = 0. As E8,F = Aut(E8,F ), by
descent H1(F,E8,F ) is identified with the pointed set of groups of type E8 over
F (with distinguished element E8,F itself). In this case, Serre’s conjecture says:
the split group E8,F is the only form of E8 over F . What made this conjecture
bold is that it includes totally imaginary number fields and finite extensions of
Fp(t) as special cases, and the conjecture was not proved in these special cases
until the 1980s [27] and 1970s [94], respectively. Furthermore, the hypothesis on
cohomological dimension is very difficult to make use of; a key breakthrough in
its application was the Merkurjev–Suslin Theorem from the 1980s [151, Th. 24.8],
which connects the hypothesis with surjectivity of the reduced norm of a central
simple associative algebra.

Despite lots of progress during the past 20 years, as in [10] and [79], the conjecture
remains open; see [82] for a recent survey. It is known to hold for E8 if:

• every finite extension of k has degree a power of p for some fixed p by
[79, §III.2] for p = 2, 3 and by [28] for p = 5 (or see Theorem 9.1 for
p = 3, 5). The p = 2 case can also be deduced from properties of Semenov’s
invariant (see Theorem 9.2) if charF = 0.

• k is the function field of a surface over an algebraically closed field, see [40]
and [82].

Forms of E8 over Z. One can equally well consider Z-forms of E8 as in [86] or
[36]. We do not go into this here, but note that E8 is unusual in this context in that
the number of Z-forms of the “compact” real E8 is at least 104, in stark contrast
to at most 4 for other simple groups of rank ≤ 8; see [86, Prop. 5.3].

7. Tits’ construction

Tits gave an explicit construction of Lie algebras which produces e8 as a possible
output [154]. Viewing the Lie algebra e8 as constructed from the root system E8

as in §2, one can see that it contains g2 × f4 as a subalgebra. It corresponds to an
inclusion of groups G2 × F4 →֒ E8. Applying Galois cohomology H1(F, ∗), we find
a map of pointed sets

(7.1) H1(F,G2)×H1(F, F4) → H1(F,E8)

11This sort of field arises naturally when trying to disentangle phenomena related to distinct
primes. See for example the discussion in [130, §5].

12Here cohomological dimension means the supremeum of the cohomological p-dimension as
p varies over all primes. Cohomological p-dimension is defined via Galois cohomology as in [145]
for p �= charF and via Milne–Kato cohomology if p = charF . Furthermore, the conjecture only
demands this for a finite list of primes depending on the Killing–Cartan type of G; see [141] or
[82] for precise statements. In the case of E8, the hypothesis only concerns the primes 2, 3, and 5.
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that is functorial in F ; we call this Tits’ construction. To interpret this, we note
that E8 is its own automorphism group and similarly for F4 and G2. Again, descent
tells us that H1(F,E8) is naturally identified with the set of isomorphism classes
of algebraic groups (or Lie algebras) of type E8 over F , with distinguished element
the split group E8. The same holds for F4 and G2. Thus the function (7.1) can be
viewed as a construction that takes as inputs a group of type G2 and a group of
type F4 and gives output a group (or Lie algebra) of type E8.

Alternatively, viewing G2 and F4 as automorphism groups of an octonion and
an Albert algebra, respectively, Galois descent identifies H1(F,G2) and H1(F, F4)
with the sets of isomorphism classes of octonion F -algebras and Albert F -algebras
respectively; cf. [107] or [145, §III.1.3]. From this perspective, the construction
takes as input two algebras.

Tits expressed his construction as an explicit description of a Lie algebra L made
from an octonion F -algebra and an Albert F -algebra; see [154] or [100] for formulas.

Example 7.2. Let G be a group of type E8 obtained from an octonion algebra C
and Albert algebra A via Tits’ construction; we give the formula for the isomor-
phism class of its Killing form. The algebra C is specified by a 3-Pfister quadratic
form γ3 and A has i-Pfister quadratic forms φi for i = 3, 5; see [73]. Formulas for
the Killing forms on the subgroups Aut(C) and Aut(A) are given in [73, 27.20],
and plugging these into the calculation in [100, p. 117, (144)] gives that the Killing
form on G is

〈60〉[8− (4γ3 + 4φ3 + 〈2〉γ3(φ5 − φ3))]

in the Witt ring of k, exploiting the notation for elements of the Witt ring from
[53].

In case F = R, we know that there are two groups of type G2 or octonion
algebras, the compact form (corresponding to the octonion division algebra) and
the split form (the split algebra). There are three real groups of type F4 or Albert
R-algebras, the compact form (the Albert algebra with no nilpotents), the split
form (the split algebra), and a third form we will call “intermediate” (the Albert
algebra with nilpotents but not split). Given a choice of inputs, the formula in
the preceding example gives the Killing form on the output group of type E8, and
thereby determines the isomorphism class of the E8 by Table A. We summarize
which inputs produce which outputs in Table B; compare [100, p. 121].

Table B. Real forms of E8: cohomological invariants and Tits’ construction

Rost Semenov inputs to Tits’ construction
Form of E8 invariant invariant G2 F4

compact 0 1 compact compact
intermediate 1 NA split intermediate or compact

compact split
split 0 0 split split

compact intermediate

For other fields F , one could ask for a description of the Tits index of the E8

produced by (7.1) in terms of the the inputs, e.g., to know whether and how the
output group is isotropic. In one direction, the answer is easy: the groups of
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type G2 and F4 used as inputs to the construction are subgroups of the output,
and therefore isotropic inputs give isotropic outputs. However, in the analogous
question for Tits’ construction of groups of type F4 or E6, anisotropic inputs can
produce isotropic outputs; see, for example, [74].

Example 7.3 (Number fields). If G is a group of type E8 over a number field F ,
then the natural map

H1(F,G) →
∏

real closures R of F

H1(R,G)

is bijective. (This is true more generally for every semisimple simply connected
group G [129, p. 286]. It is the Hasse Principle mentioned in the Introduction.)
In particular, if F has r real embeddings, then there are 3r isomorphism classes
of groups of type E8 over F , all of which are obtained from Tits’ construction.
Two groups of type E8 over F are isomorphic if and only if their Killing forms are
isomorphic, because this is so when F = R.

8. Cohomological invariants; the Rost invariant

At this point in the survey, we have assembled only a few tools for determining
whether or not two groups or Lie algebras of type E8 over a field F are isomorphic,
or whether they can be obtained as outputs from Tits’ construction. Indeed, the
only tools we have so far for this are the Tits index and the Killing form. In [157],
Tits showed that a “generic”13 group G of type E8 has no reductive subgroups
other than rank 8 tori (which necessarily exist); such a group cannot arise from
Tits’ construction because those groups all have a subgroup of type G2 × F4. This
brings us to the state of knowledge in 1990, as captured in [139].

To address this gap, we will use various invariants in the sense of [73]. Let G
be an algebraic group over a field F . Let A be a functor from the category of
fields containing F to abelian groups. An A-invariant f of G is a morphism of
functors f : H1(∗, G) → A(∗); i.e., for each field K containing F , there is a function
fK : H1(K,G) → A(K) and for each morphism α : K → K ′ the diagram

H1(K,G)
fK

−−−−→ A(K)

H1(α)

⏐

⏐

�

⏐

⏐

�

A(α)

H1(K ′, G)
f
K′

−−−−→ A(K ′)

commutes. One goal of the the theory of cohomological invariants is to describe
all the A-invariants of G, for various choices of G and A. Some classical exam-
ples of invariants in this sense are the Brauer class of central simple algebras (an
H2(∗,Gm)-invariant of PGLn) and the Stiefel–Whitney classes or Hasse–Witt in-
variant of a quadratic form when charF �= 2 (H•(∗,Z/2)-invariants of an orthogonal
group On).

The addition in A(K) for each K gives the structure of an abelian group to the
collection of A-invariants of G. Every element a ∈ A(F ) gives a constant invariant
fa that sends every element of H1(K,G) to the image of a in A(K), for every K.
An invariant is normalized if the distinguished element of the pointed set H1(F,G)

13Meaning a versal form as defined in [73]. By definition, one can obtain from a given versal
form of E8 every group of type E8 over every extension of F by specialization.
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is sent to the zero element of A(F ). Evidently every A-invariant can be written
uniquely as (constant) + (normalized).

The Rost invariant. Considering the case where A is Galois cohomology with
torsion coefficients and G is a simple and simply connected group, one finds that
the group of normalized invariants H1(∗, G) → Hd(∗,Q/Z(d− 1)) is zero for d = 1
(because G is connected [107, 31.15]) and for d = 2 (because G is simply connected,
see [12, Th. 2.4]). For d = 3, Markus Rost proved that the group is cyclic with a
canonical generator rG, now known as the Rost invariant, whose basic properties
are developed in [73]. (Rost’s theorem has recently been extended to include the
case where G is split reductive; see [123] and [109].) For G = G2, F4, E8, rG has
order 2, 6, 60, respectively.

Example 8.1. Let G be a versal form of E8, defined over some field K. Then
rE8

(G) has the largest possible order, 60, by [73, p. 150]. For a prime p, let L be
the separable algebraic extension of K fixed by a p-Sylow subgroup of the absolute
Galois group of K, so every finite separable extension of L has degree a power
of p. If p ≥ 7, then as in §6, the base change GL of G to L is split. But if
p < 7, then p divides 60, and rE8

(GL) is not zero, so GL is not split. (To see that
rE8

(GL) �= 0, note that H3(L,Q/Z(2)) is the colimit lim
−→

H3(L0,Q/Z(2)) as L0

runs over finite extensions of K contained in L. But if any such L0 killed rE8
(G),

a restriction/corestriction argument as in [145, §I.2.4, Prop. 9] would show that
rE8

(G) has order dividing [L0 : K], a contradiction.)

Example 8.2. The composition

(8.3) H1(F,G2)×H1(F, F4)
Tits
−−→ H1(F,E8)

rE8−−→ H3(F,Q/Z(2))

is rG2
+ rF4

, by an argument analogous to that in the proof of [76, Lemma 5.8].
This reduces the computation of the Rost invariant for E8’s arising from Tits’
construction to the (known, calculable) Rost invariants rG2

and rF4
, and therefore

gives a formula for all forms of E8 over R or over a number field. We have included
these values in Table B.

For arbitrary F , the image of the composition (8.3) belongs to the 6-torsion
subgroup, H3(F,Z/6(2)). This is another way to see that a versal group of type
E8 does not arise from Tits’ construction.

Example 8.4. Considering the Z/5-grading on e8 from Example 4.5, we find a
subgroup (SL5 × SL5)/μ5 of E8, which in turn contains a subgroup μ5 × μ5 × Z/5.
Applying cohomology gives a map

(8.5) H1(F, μ5)×H1(F, μ5)×H1(F,Z/5) → H1(F,E8).

Composing this with rE8
, we obtain a map

H1(F, μ5)×H1(F, μ5)×H1(F,Z/5) → H3(F,Z/5(2))

that is, up to sign, the cup product [83]. Therefore, if H3(F,Z/5(2)) is not zero,
it contains a nonzero symbol s, and from this one can construct a group G of type
E8 with rE8

(G) = s. This group G is anisotropic [66, 15.6] and cannot arise from
Tits’ construction.

We remark that (8.5) is surjective in the special case where every finite extension
of F has degree a power of 5.
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Example 8.6. We can focus our attention on the 3-torsion part of the image of
rE8

by considering 20rE8
, which has image in H3(∗,Z/3(2)). What is its image?

Given a nonzero symbol s in H3(F,Z/3(2)), there is an Albert division algebra A
constructed by the first Tits’ construction such that rF4

(A) = s. The inclusions
F4 ⊂ E6 ⊂ E8 induce a map H1(F, F4) → H1(F,E8) such that the image G of A
has Tits index

(8.7) � � � � �

�

� �✐ ✐

and rE8
(G) = rF4

(A) = s. (Indeed, the uncircled vertices in the Tits index indicate
a subgroup of type E6 that is the group of isometries of the norm on A.) Conversely,
given an F -form G of E8 over any field F such that 20rE8

(G) is a symbol in
H3(F,Z/3(2)), [75] shows that there is a finite extension K of F of degree not
divisible by 3 such that G×K has Tits index (8.7).

Example 8.8. There exists a field F and an F -form G of E8 such that 20rE8
(G) is

not a symbol inH3(F,Z/3(2)) nor does it become a symbol over any finite extension
of F of degree not divisible by 3. (In particular, such a group does not arise from
Tits’ construction.) To see this, one appeals to the theory of the J-invariant from
[128] that there exists such a G with J3(G) = (1, 1); [75, Lemma 10.23] shows that
such a group has the desired property.

In contrast to the case of 3 and 5 torsion as in the preceding two examples,
the 2-primary part of rE8

(G) may have a longer symbol length and a more subtle
relationship with the isotropy of G. As in Table B, the compact real form has Rost
invariant 0, yet is anisotropic. In the other direction, Appendix A.6 of [66] gives an
example of an isotropic group G of type E8 over a field F such that rE8

(G) belongs
to H3(F,Z/2(2)), and rE8

(G) is not a sum of fewer than three symbols.
Underlying the results used in Examples 8.6 and 8.8 are analyses of the possible

decompositions of the Chow motives with Fp-coefficients of the flag varieties for a
group of type E8. This is a way to study the geometry of these varieties despite
their lack of rational points in cases of interest, and it has been widely exploited
over the last decade for analyzing semisimple groups over general fields; see for
example the book [53] for applications to quadratic form theory.

Example 8.9. Suppose G is a group of type E8 such that rE8
(G) has order divis-

ible by 15. (For example, if G is versal as in Example 8.1.) Then G has no proper
reductive subgroups other than rank 8 tori by the argument for [69, Th. 9.6]. Es-
sentially, employing the Rost invariant simplifies Tits’ proof of the fact about versal
groups mentioned at the beginning of this section.

9. The kernel of the Rost invariant; Semenov’s invariant

The examples in the previous section show that the Rost invariant can be used
to distinguish groups of type E8 from each other and for stating some results about
such groups. But it remains a coarse tool. For example: Given a field F , what are

the groups of type E8 that are in the kernel of the Rost invariant? These should be
the easiest E8’s to understand.

One way to approach this question is to simplify it by making an assumption
about the arithmetic of F . For example, in §6 we listed several kinds of fields F
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over which every E8 is split; in these cases the answer to the question is trivial. To
that list we add the following.

Theorem 9.1 (Chernousov). Suppose that every finite extension of F has degree a

power of p for p = 3 or 5. Then the kernel of the Rost invariant rE8
: H1(F,E8) →

H3(F,Q/Z(2)) is zero.

Proof. This combines the main results of [28] and [29]. (Those papers make some
hypothesis on charF , but such an assumption is harmless in view of [75, Prop. 9.3].)
For alternative proofs, see [66, Prop. 15.5] for p = 5 and [75, Prop. 10.22] for
p = 3. �

As the case p ≥ 7 was treated in §6, only p = 2 remains. The conclusion of
Theorem 9.1 is false in that case, as can be seen already from Table B, where we
see that the compact E8 has Rost invariant zero. For context, this phenomenon
is different from that of other exceptional groups; if one considers not E8 but any
other split simply connected group G of exceptional type, then the Rost invariant
H1(F,G) → H3(F,Q/Z(2)) has zero kernel [65].

Recently in [137], Semenov produced a newer, finer invariant that can be used
to probe the kernel of the Rost invariant. Put H1(F,E8)15 for the kernel of 15rE8

,
a subset of H1(F,E8).

Theorem 9.2 (Semenov). If charF = 0, there exists a nonzero invariant

sE8
: H1(∗, E8)15 → H5(∗,Z/2)

such that sE8
(G) = 0 if and only if G is split by an odd-degree extension of F .

For the case F = R, sE8
is defined only for the split and compact real forms,

and it is nonzero on the compact form.
This style of invariant, which is defined only on a kernel of another invari-

ant, is what one finds for example in quadratic form theory. The Rost invariant
H1(∗, Spinn) → H3(F,Z/2) amounts to the so-called Arason invariant e3 of qua-
dratic forms. There is an invariant e4 defined on the kernel of e3 with values in
H4(F,Z/2), an invariant e5 defined on the kernel of e4 with values in H5(F,Z/2),
and so on; see [53, §16].

Example 9.3. Let G be a group of type E8 arising from Tits’ construction as in
Example 7.2. Then 15rE8

(G) = 0 if and only if φ3 = γ3 in the notation of that
example. In that case, sE8

(G) is the class e5(φ5) ∈ H5(F,Z/2); see [77, Th. 3.10].

It is natural to wonder what other cohomological invariants of E8 may exist.

Question 9.4 ([132, p. 1047]). Do there exist nonzero invariants mappingH1(∗, E8)
into H5(∗,Z/3) and H9(∗,Z/2)?

The parameters in the question were suggested by the existence of certain non-
toral elementary abelian subgroups in E8(C). (Such subgroups are described in
[84].)

10. Witt invariants

We introduced the notion of A-invariant as a tool for distinguishing groups of
type E8. In the previous two sections we discussed the case where A was a Galois
cohomology group, but following [73] one could equally well take A to be the functor
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W that sends a field F to its Witt group of nondegenerate quadratic forms W (F )
as defined in, for example, [53] or [110]. (If one is interested in phenomena related
to the prime 2, one might imagine that W is more sensitive than its associated
graded ring, H•(∗,Z/2).) In this section, for ease of exposition, we assume that
charF �= 2. In particular, W (F ) is naturally a ring via the tensor product.

Killing form. For G an algebraic group, put κ(G) for the Killing form on the Lie
algebra of G. (If char k divides 60, then the Killing form is identically zero, and
in that case one should define κ(G) to be the reduced Killing quadratic form as
defined in [68]. We elide the details here.) The function G �→ κ(G) is a morphism
of functors H1(∗, E8) → W (∗), and we define

f : H1(∗, E8) → W (∗) via G �→ κ(G)− κ(E8)

to obtain a W -invariant that sends the distinguished class to 0.
The Witt ring has a natural filtration by powers of the “fundamental” ideal I

generated by even-dimensional quadratic forms. It is natural to ask: What is the

largest n such that f(G) belongs to In?

Example 10.1. In case G arises by Tits’ construction, the formula in Example 7.2
shows that f(G) ∈ I5. Concretely, we can see this over the real numbers, where
the signature defines an isomorphism W (R) ∼= Z that identifies I5 with 32Z, and
Table A shows that f(G) ∈ {0,−32,−248}.

The action of the split group E8 on its Lie algebra e8 is by Lie algebra au-
tomorphisms, so it preserves the Killing form κ(E8), giving a homomorphism
E8 → O(κ(E8)). As E8 is simply connected, this lifts to a homomorphism E8 →
Spin(κ(E8)). By Galois descent, it is clear that the image of a group G under the
map H1(F,E8) → H1(F,O(κ(E8)) is κ(G), whence f(G) necessarily belongs to I3

because the map factors through H1(F, Spin(κ(E8))) [107, p. 437].
In fact, we cannot do better than the exponent in the previous paragraph, be-

cause f(G) belongs to I4 iff 30rE8
(G) = 0. To see this, we observe on the one hand

that f(G) belongs to I4 if and only if f(G) is in the kernel of the Arason invari-
ant e3 : I

3(∗) → H3(∗,Z/2) by [124] or [133], i.e., the Rost invariant rSpin(κ(E8))

vanishes on the image of G. On the other hand, the map E8 → Spin(κ(E8)) has
Dynkin index 30, so composing it with rSpin(κ(E8)) gives 30rE8

by [73, p. 122]. This
completes the proof of the claim. A versal group G of type E8 has 30rE8

(G) �= 0,
so f(G) ∈ I3 \ I4.

Inspired by [140], we may still ask: If rE8
(G) has odd order, is it necessarily

true that f(G) ∈ I8? If the answer is yes and charF = 0, one can ask for more:
Does Semenov’s invariant s(G) ∈ H5(F,Z/2) divide e8(f(G)) ∈ H8(F,Z/2)? The
answer to both of these questions is “yes” for groups arising from Tits’ construction,
by Example 7.2. See [67] for more discussion.

Witt invariants in general. For every field K containing F , the ring W (K) is
a W (F )-algebra with identity element q0, and W (∗) is a functor to the category of
W (F )-algebras. Therefore, the collection of invariants H1(∗, E8) → W (∗) is itself
a W (F )-algebra.

Question 10.2. What are the invariants H1(∗, E8) → W (∗)?

Here is a natural way to construct such invariants. For each dominant weight λ
of E8, there is a Weyl module V (λ) with highest weight λ defined for e8,Z, as in [102],
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that has an indivisible, E8,Z-invariant quadratic form qZ on it, uniquely determined
up to sign. Base change to a field P gives a quadratic form qZ ⊗ P on V (λ) ⊗ P
that has a radical, namely the unique maximal proper submodule of V (λ) ⊗ P ,
hence we find a quadratic form on the irreducible quotient of V (λ)⊗P , and we call
the form qλ,P . Applying H1, we obtain a function H1(P,E8) → H1(P,O(qλ,P )),
and therefore for every group G of type E8 over P , we obtain a corresponding
quadratic form we denote by qλ(G). For example, the “constant” invariant that
sends every G to the 1-dimensional quadratic form x �→ x2 can be viewed as q0,
and the invariant κ can be viewed as qω8

for ω8 the highest root as in (4.2). Do the

qλ, as λ varies over the dominant weights, generate the W (F )-algebra of invariants

H1(∗, E8) → W (∗)?

11. Connection with division algebras

Groups of type E8 are closely related to the smallest open cases of two of the
main outstanding problems in the study of (associative) division algebras. To recall
the terminology, the center of a division ring D is a field, call it F . We say that
D is a division algebra if dimF D is finite, in which case dimF D is a square, and
its square root is called the degree of D. Hamilton’s quaternions are an example of
such a D with F = R and degD = 2.

One knows that, among all fields K such that F ⊂ K ⊂ D, the maximal ones
always have dimF K = degD. In case there exists a maximal K that is Galois
over F (resp., Galois over F with cyclic Galois group), one says that D is a crossed

product (resp., is cyclic). For a crossed product, one can write down a basis and
multiplication rules in a relatively compact way, and the description is even simpler
if D is cyclic.

Every division algebra D with degD = 2 or 3 is known to be cyclic, and the
principal open problem in the theory of division algebras is: If degD = p for a

prime p ≥ 5, must D be cyclic? (See [5] for context and discussion.) Philippe Gille
showed that this question, for the case p = 5, can be rephrased as a statement
about groups of type E8; see [80].

Along with the dimension, another property of a division algebra D is its period,
which is the smallest number p such that a tensor product of p copies of D is
isomorphic to a matrix algebra over F . (It is a basic fact that p divides degD and
that the two numbers have the same prime factors.) Another open problem about
division algebras is: Determine whether every division algebra F of period p and

degree p2 is a crossed product. For period 2 and degree 22, the answer is “yes”
and is due to Adrian Albert. (It is also “yes” for period 2 and degree 23 by Louis
Rowen [101].) The smallest open case, then, is where p = 3, and this is where E8

may play a role. As in [165], using the Z/3-grading on e8 from Example 4.4, we

find that SL9 /μ3 acts transitively on certain 4-dimensional subspaces of
∧3

(F 9).

This gives a surjection in Galois cohomology H1(F,N) → H1(F, SL9 /μ3) for some
subgroup N of SL9 /μ3, and one can hope that analyzing this surjection would give
insight into whether algebras of degree 9 and period 3 are crossed products. See
[115] for more discussion of this general setup and [66] for examples where similar
surjections are exploited.
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12. Other recent results on E8

Torsion index. Grothendieck [89] defined an invariant of a compact Lie group G
called the torsion index, which has interpretations for the Chow groups and motivic
cohomology of the classifying space of BG as well as for the étale cohomology of
torsors under analogues of G over arbitrary fields; see [160] for precise statements.
Jacques Tits’ brief paper [157] contained a proof that the torsion index for the
compact E8 is divisible by 60 = 2 · 3 · 5 and divides 29 · 32 · 5, and wrote that one
could hope (“hypothése optimiste !”) that the correct answer is 60. In [158] and
[159], Burt Totaro proved that it is 26 · 32 · 5.

Kazhdan–Lusztig–Vogan polynomials. Some readers will remember a flurry of
news coverage in 2007 about a “calculation the size of Manhattan”. This referred to
the calculation of the Kazhdan–Lusztig–Vogan polynomials for the split real forms
of simple Lie algebras, where the final step was for e8,R. For more on this see [166]
and [161]. We have also omitted the related topic of infinite-dimensional unitary
representations of E8, for constructions of which see, for example, [104], [87], and
[22].

Finite simple subgroups. We now know which finite simple groups embed in the
(infinite) simple group E8(C), or more generally E8(k) for k algebraically closed; see
[144], [85], and [33] for surveys. One would like to know also how many conjugacy
classes there are for each of these finite subgroups, for which the interesting case of
the alternating group on five symbols was resolved in [116]. These questions can be
viewed as a case of a natural generalization of the classification of the finite simple
subgroups of SO(3), which amounts to a classification of the Platonic solids as in
[106, Chap. I]. Specifically, the Platonic solids correspond to the embeddings of the
alternating group on four or five letters, PSL(2, 3) or PSL(2, 5), and the symmetric
group on five letters, PGL(2, 3), in SO(3), and these embeddings are part of a series
of embeddings of such subgroups in simple Lie groups, including the case of E8(k);
see [142] and [144].

Vanishing of trace forms. For a representation ρ : e8,F → gl(V ) for some V , the
map bρ : (x, y) �→ Tr(ρ(x)ρ(y)) defines an e8,F -invariant symmetric bilinear form on
e8,F . (When ρ is the adjoint representation, bρ is the Killing form.) In the 1960s,
motivated by then-current approaches to studying Lie algebras over fields of prime
characteristic, it was an open problem to determine whether bρ is identically zero
for all ρ when charF = 5; see [136, p. 48], [13, p. 554], or [14, p. 544]. It is indeed
always zero, and for charF = 2, 3 as well; see [68].

Essential dimension. The essential dimension ed(G) of an algebraic group G is
a nonnegative integer that declares, roughly speaking, the number of parameters
needed to specify a G-torsor; see [131], [130], or [122] for a formal definition and
survey of what is known. In the case of E8, this equals the number of parameters
needed to specify a group of type E8. So far, we only know bounds on ed(E8) and
the bounds we know are quite weak. Specifically, over C we have

9 ≤ ed(E8) ≤ 231,

where the lower bound is from [132] or [30] and the upper bound is from [113] or
[70]. The distance between the upper and lower bounds is remarkable. In contrast,
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for the other simply connected exceptional groups over C, one knows by [119] and
[115] that

ed(G2) = 3, 5 ≤ ed(F4) ≤ 7, 4 ≤ ed(E6) ≤ 8, and 7 ≤ ed(E7) ≤ 11,

which are all much closer. Determining ed(E8) will require new techniques.

Yet more topics. We have furthermore omitted any discussion of the following.

• Relations with vertex operator algebras as in [57] and [59].
• The adjoint representation of E8 is in some sense unique among irreducible
representations of simple algebraic groups, in that it is the only non-
minuscule standard module that is irreducible in all characteristics; see
[72].

• The Kneser–Tits Problem as described in [81]. One of the remaining open
cases for E8 was recently settled in [127], and another was settled in some
special cases in [153].

• Affine buildings with residues of type E8 as in [125].
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