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1 Introduction

Exceptional geometry is a way of unifying the local symmetries of supergravity theories

by combining geometric diffeomorphisms with matter gauge transformations into a single

so-called generalised Lie derivative [1–14]. This generalised Lie derivative generates gen-

eralised diffeomorphisms acting on the fields of the theory and requires the introduction

of an extended space beyond the usual space-time geometry of gravity. The generalised

Lie derivative forms a closed gauge algebra only when the so-called section condition is

imposed on the fields, restricting their dependence on the extended space. Upon solving

the section constraint explicitly one recovers the standard supergravity theories. However,

exceptional geometry also offers the possibility of describing more complicated (local or

global) situations that have been named non-geometric backgrounds.

The symmetry groups of maximal supergravities in D = 11 − n dimensions belong

to the (split real) exceptional series En [15–19]. For each exceptional symmetry group

En one can construct an extended space that is described locally by a set of coordinates

Y M where M labels a representation of En [7]. Adjoining to these coordinates the ‘ex-

ternal’ D-dimensional space with coordinates xµ and an appropriate notion of external

diffeomorphisms one obtains a total space with coordinates (xµ, Y M ). Taking the fields

from D-dimensional maximal supergravity, as prescribed by the tensor hierarchy [20, 21],

one may try to construct an action invariant under generalised and external diffeomor-

phisms. As it turns out, closure of the gauge algebra of p-forms and invariance of the

action require the introduction of additional p-forms of rank p ≥ D − 2 beyond those of

D-dimensional supergravity. These extra p-forms are covariantly constrained in the sense

that they obey algebraic constraints analogous to those satisfied by the internal partial

derivatives ∂M = ∂
∂Y M by virtue of the section constraint. Moreover, these fields do not

constitute additional degrees of freedom, but are related by first order equations to the

propagating fields of the theory. Combining all these ingredients leads to a unique theory

called En exceptional field theory and that has been explicitly constructed for En with

n ≤ 8 [22–24]. Imposing a solution to the section condition relates exceptional field theory

to maximal supergravity in eleven space-time dimensions, to type IIB supergravity or to

their dimensional reductions depending on the choice of solution to the section condition.

The invariant ‘actions’ of exceptional field theories combine various terms. They carry

an Einstein-Hilbert-type term, kinetic terms for the various matter fields including a non-

linear sigma model for the scalars, a topological term for the p-forms, and a ‘potential’ term

for the scalar fields. The scalar fields belong to the coset space En/K(En), where K(En)

denotes the maximal compact subgroup of En, and may be parameterised by a symmetric

matrix MMN which determines the internal generalised metric on the extended space. The

‘potential’ V (M) is bilinear in the internal derivatives ∂M with respect to the extended

coordinates but does not carry derivatives ∂µ with respect to the ‘external’ coordinates.

Under generalised Scherk-Schwarz reduction [25–29] in the extended space, it is V (M)

that generates the scalar potential term of gauged supergravity. From the point of view of

exceptional geometry, V (M) is invariant under generalised diffeomorphisms up to a total

derivative and plays to some extent the role of the curvature scalar on the extended space.
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Its structure has been worked out up to and including E8 and it is tied to the remaining

terms in the exceptional field theory Lagrangian by external diffeomorphisms.

The first infinite-dimensional group in the En series is the affine symmetry group E9

that is known to be a rigid symmetry of D = 2 ungauged maximal supergravity [30].

The associated exceptional field theory has not yet been constructed and the aim of the

present paper is to begin filling this gap. The E9 generalised Lie derivative was recently

introduced in [13] and it acts on fields that depend on infinitely many coordinates Y M .

The latter transform under E9 in the basic lowest weight representation. Closure of the

algebra requires a section constraint of the generic form

Y MN
PQ ∂M ⊗ ∂N = 0 (1.1)

with the internal derivatives acting on any pair of fields. Here, Y MN
PQ is a specific E9

invariant tensor that can be expressed most easily in terms of quadratic combinations of

the E9 generators as we shall review in section 3.2.1.

The purpose of the present article is to construct the potential V for E9 exceptional

field theory. In D = 2, the scalar fields appearing in maximal supergravity parameterise

the coset space
Ê8 ⋊

(

R
+
d
⋉RL−1

)

K(E9)
, (1.2)

where Ê8 denotes the centrally extended loop group over E8. Its quotient by the maximal

‘compact’ subgroup1 K(E9) = K(Ê8) contains the infinite tower of dual scalar fields from

D = 2 maximal supergravity together with the conformal factor of the external metric.

The factor R+
d
⋉ RL−1 is parameterised by two more scalar fields {ρ, ρ̃} which, in D = 2

ungauged supergravity, are related by a free duality equation. The generator d associated

with the dilaton ρ enhances Ê8 to

E9 = Ê8 ⋊R
+
d
, (1.3)

while the (Virasoro) generator L−1 associated with the axion ρ̃ acts as a translation gen-

erator on the loop parameter of the loop group Ê8. The generator L−1 also appears in the

E9 generalised Lie derivative [13].

A novel feature of E9 exceptional field theory, compared to En for n ≤ 8, is that

the scalar sector (1.2) of maximal supergravity is not sufficient to define the theory. This

can be seen by extrapolating the generic field content of exceptional field theories down

to two external dimensions and noting that the covariantly constrained additional p-forms

mentioned above already start from p = 0 forms for D = 2 external dimensions. Therefore

one has to enhance the scalar sector (1.2) by additional constrained fields χM transforming

under E9 and generalised diffeomorphisms. Specifically, these additional scalar fields obey

the constraints

Y MN
PQ χM ⊗ ∂N = Y MN

PQ χM ⊗ χN = 0 , (1.4)

1More precisely, K(E9) is the maximal E9 subgroup acting unitarily on the representation of the extended

space coordinates. We shall henceforth refer to it as the maximal unitary subgroup.
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with the tensor Y MN
PQ from (1.1), and similar relations with other constrained objects.

For the M-theory solution of the section constraint which makes all fields independent

of all but nine of the extended directions Y M , the field χM thus has at most nine truly

independent components.

As is already the case for E8 [24], the closure of the algebra of generalised diffeomor-

phisms requires to not only consider the generalised Lie derivative along a gauge parameter

ΛM in the basic representation, but to also include an additional set of gauge transforma-

tions with a covariantly constrained parameter ΣM
N [13]. The Lie derivative along the

generalised vector ΛM only involves E9, while the constrained parameter also induces a

gauging of the RL−1 symmetry when ΣM
M 6= 0.

Our construction of the E9 potential is guided by the following requirements. Firstly,

the different terms must transform as scalar densities under rigid E9 and rigid RL−1 trans-

formations. Secondly, the combination of these terms must be such that the potential is

invariant under generalised diffeomorphisms, up to a total derivative. Finally, the poten-

tial must reproduce parts of the known Lagrangian of E8 exceptional field theory upon

truncation to a suitable subset of coordinates. These requirements allow us to uniquely

pinpoint the E9 potential.

The RL−1 gauge transformations mentioned above can be gauge-fixed by setting ρ̃ = 0

without breaking the rest of the generalised diffeomorphisms (i.e. those satisfying ΣM
M =

0). This choice also breaks the rigid RL−1 invariance. For simplicity, we now present the

resulting potential for ρ̃ = 0 such that MMN is valued in E9,

V (M, χ) =
1

4
ρ−1 ηαβ MMN JM,α JN,β − 1

2
ρ−1MPQ (JM )NP (JN )MQ (1.5)

+
1

2
ρMPQ (J −

M )NP (J −
N )MQ + ρ−2 ∂Mρ ∂NMMN .

The scalar current JM is defined as

MPS∂MMSQ = (JM ) PQ = JM,α (T
α)PQ , (1.6)

in terms of the generators Tα of e9 written in the representation R(Λ0)0 that we define

below. The (inverse) invariant bilinear form on e9 is denoted ηαβ , and the shifted current

J −
M is defined as

J −
M = S−1 (JM ) + χM K , (1.7)

where the operator S−1 defined in (2.18) shifts the mode number of the Ê8 loop generators

and the Virasoro generators. The additional scalar field χM appears as the component along

the e9 central element K, and is necessary to ensure covariance of the shifted current under

rigid E9 transformations. The first two terms in (1.5) are the E9 version of the generic

terms that appear in the potential of all exceptional field theories [14]. The third term

contains the new constrained scalar field χM via (1.7) and generalises a structure which

has so far only occurred in the potential of the E8 exceptional field theory [24]. Each term

in (1.5) is separately invariant under rigid Ê8 and scales with the same weight under rigid

R
+
d
, which is analogous to the homogeneous scaling of higher-dimensional exceptional field
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theory Lagrangians under the trombone symmetry. The relative coefficients of the various

terms in (1.5) are fixed by generalised diffeomorphism invariance.

In the bulk of the paper we shall also derive the potential away from ρ̃ = 0 and

in this way restore the full invariance under generalised diffeomorphisms and rigid RL−1

transformations. All the terms in (1.5) then become functions of ρ̃ and its derivatives, such

that they are invariant under rigid Ê8 ⋊ (R+
d
⋉RL−1) transformations up to homogeneous

scaling under R+
d
. Moreover, the same relative combination as in (1.5) becomes invariant

under all generalised diffeomorphisms as we shall demonstrate in detail.

The construction of E9 exceptional field theory is interesting for several reasons. To

begin with, it yields the first example of an exceptional field theory based on an infinite-

dimensional duality group with fields and coordinates transforming in infinite-dimensional

representations. As an immediate application, the E9 potential can provide a prediction for

the yet elusive scalar potential of gauged maximal D = 2 supergravity [31] by performing a

generalised Scherk-Schwarz reduction. TheD = 2 potential seems at present inaccessible by

standard supersymmetry considerations because of the intricacies of K(E9) representation

theory. As two-dimensional gauged supergravities generically involve a gauging of the RL−1

symmetry [31], it is crucial to construct the E9 potential at ρ̃ 6= 0, which is invariant under

all generalised diffeomorphisms. Another possible application is the study of non-geometric

backgrounds [1, 2, 6, 8]. Moreover, D = 2 supergravity is the arena for exotic branes of

co-dimension two (or lower) [32, 33] for which E9 exceptional field theory may provide the

appropriate framework [34–36].

Our construction does not depend on the details of the group E8 and in fact the expres-

sions we give will be valid for any simple group G and its affine extension Ĝ. This provides

the potential for extended field theories with coordinates in the basic representation of Ĝ

that are invariant under rigid Ĝ⋊ (R+
d
⋉RL−1) and Ĝ generalised diffeomorphisms.

The rest of this paper is organised as follows. In section 2 we review some basic facts

and properties of the exceptional algebra e9 and its representations. Section 3 introduces

the building blocks for E9 exceptional field theory by reviewing the field content of D = 2

maximal supergravity and the E9 generalised Lie derivative from [13]. We furthermore

introduce the covariantly constrained scalar fields χM . Section 4 presents the main result

of this paper, the construction of the E9 potential V (M, χ) invariant under generalised

diffeomorphisms. Finally, in section 5 we consider the branching under E8 and show that

the E9 potential reproduces all the terms of the E8 exceptional field theory that do not

depend on the two-dimensional external derivatives. This shows that after solving the sec-

tion condition, the E9 potential V (M, χ) reproduces D = 11 and type IIB supergravity

for field configurations constant along the two-dimensional external spacetime. We fin-

ish with conclusions in section 6 and two appendices that contain some technical details

and identities.

2 E9 basic representation and Virasoro algebra

In this section, we introduce some notions we require from E9 along with our notation to

be used throughout the paper.
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2.1 E9 preliminaries

At the Lie algebra level, E9 is an infinite-dimensional Kac-Moody algebra that we call e9.

The core part of e9 is the centrally extended loop algebra ê8 over the Lie algebra e8 and we

only work with the split real forms. The Lie algebra e8 has dimension 248 and we denote

its generators by TA with A = 1, . . . , 248 and e8 structure constants

e8 :
[

TA, TB
]

= fAB
CT

C . (2.1)

The e8-invariant and non-degenerate metric is ηAB with inverse ηAB. The loop generators

of ê8 are denoted by TA
m with mode number m ∈ Z and commutation relations

[

TA
m, TB

n

]

= fAB
CT

C
m+n +mηABδm,−nK , (2.2)

where K denotes the central extension of the loop algebra with
[

K, TA
m

]

= 0. In order to

define the affine algebra e9 one also has to adjoin the derivation operator d that satisfies

[

d, TA
m

]

= −mTA
m , [d,K] = 0 . (2.3)

As a vector space, e9 = ê8 ⊕ 〈d〉. There is an isomorphic copy of e8 embedded in e9

by considering the generators TA
0 at mode number zero. In terms of a loop parameter

w, the loop generators can be realised in the adjoint representation as TA
m ∼ wmTA,

d ∼ −w∂w [37].

The above defines the adjoint representation of e9 and we will also require other rep-

resentations. Irreducible highest or lowest weight representations can be constructed in a

Fock space manner as reviewed for example in [13, 37]. Here, we focus on the so-called

basic representation that starts from an e8 invariant ground state and we shall employ a

Fock space notation. The ground state |0〉 satisfies

TA
0 |0〉 = 0 , K|0〉 = |0〉 , d|0〉 = h|0〉 (2.4)

and TA
n |0〉 = 0 for n > 0 .

While the eigenvalue of K is fixed to one by unitarity, the eigenvalue of d is a priori not

determined. There is a one-parameter family of basic representations labelled by h that

appears in d|0〉 = h|0〉, and we shall denote these representations by R(Λ0)h.
2 In general,

the eigenvalue of the central element K on an irreducible module is an integer called the

affine level.

Note that e9 is not simple as K is central and d never appears on the right-hand side

of any commutator. Thus e9 admits a one-dimensional representation ρh on which ê8 acts

trivially and d acts with eigenvalue −h/2. The module R(Λ0)h can therefore be defined as

the product representation R(Λ0)h = ρ−2hR(Λ0)0.

General elements in the basic representation will be denoted by ket-vectors |V 〉 and

can be expanded as

|V 〉 =
(

V 0 +

∞
∑

n=1

VA1 ... An T
A1
−1 · · ·TAn

−1

)

|0〉 . (2.5)

2We have changed conventions with respect to [13], where such representations were denoted R(Λ0)−h.
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This representation of e9 is made irreducible by removing all singular vectors (submodules)

that arise when acting on |0〉. As a consequence, each coefficient VA1 ... An is constrained

to live in the subset of irreducible e8 representations contained in ⊗n248 according to the

graded decomposition of R(Λ0)h under e8

R(Λ0)h = 1h ⊕ 248h+1 ⊕ (1⊕ 248⊕ 3875)h+2 ⊕ . . . (2.6)

The subscript on the e8 representations denotes their d eigenvalue. This representation

of the Lie algebra e9 is integrable and can be lifted to a representation of the affine Kac-

Moody group E9 = Ê8 ⋊R
+
d
. Subtleties in defining this infinite-dimensional group will be

discussed in section 4.3.

At some places we shall also utilise an index notation for elements of the basic repre-

sentation rather than a Fock space notation. Choosing an infinite countable basis of the

Fock space module |eM 〉 with M ∈ {0;A; . . .} a collection of e8 indices reproducing the

decomposition (2.6), equation (2.5) becomes

|V 〉 = V M |eM 〉 , (2.7)

so that components of vectors are V M and we will refer to M as a ‘fundamental index’.

We will use the bases |eM 〉 and indices M,N, . . . to label the components of R(Λ0)h for all

h, understanding that they characterise the Ê8 basic representation, whereas h labels the

representation under R+
d
. This convention is defined such that all the E9 group elements

g are understood to be defined in the R(Λ0)0 representation, and the additional factor of

ρ(g)−2h will be written explicitly. Note that for finite dimensional groups En with n < 9,

the symmetry of exceptional field theories is En ×R+, and one writes various En tensors

of different weight with respect to R+. For E9 the structure is very similar except that E9

is only a semi-product E9 = Ê8 ⋊R
+
d
.

We shall also require the representation R(Λ0)h conjugate to R(Λ0)h. Elements of the

conjugate representation will be denoted by bra-vectors. As we shall review below, coordi-

nates of the E9 exceptional geometry belong to the R(Λ0) representation and derivatives

to its conjugate. To describe objects in R(Λ0)h in index notation, we introduce a basis

〈eM | dual to |eM 〉 so that

〈W | = WM 〈eM | . (2.8)

Again, we use the same notation for any value of h, which will be specified separately.

2.2 Virasoro algebra

For the Fock space representation of the basic module (at affine level 1) we define, following

Sugawara [38], Virasoro generators in the enveloping algebra by

Lm =
1

2(1 + g∨)

∑

n∈Z

ηAB : TA
n TB

m−n : , (2.9)

– 6 –
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where the colon denotes normal ordering such that the positive modes appear on the right.

For e8 the dual Coxeter number g∨ = 30. The Virasoro generators (2.9) acting on the

lowest weight basic representation satisfy the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm,−nK (2.10)

with c = dim e8
1+g∨

= 8 and K = 1 is the identity operator. The central charge c = 8 comes from

the fact that the module R(Λ0)0 can be realised as the Hilbert space of the two-dimensional

conformal field theory of eight free chiral bosons parameterising the E8 torus on which ê8

acts as the current algebra.3 The Virasoro algebra is valid on R(Λ0)h for any h.

We will denote the span of all Virasoro generators by

vir = 〈Lm |m ∈ Z〉 . (2.11)

We note that this space is not closed under commutation (2.10) due to the central extension

that we identify with K and that is already contained in ê8. The maximal algebra that we

shall consider in this paper is

f = ê8 h vir , (2.12)

which is the loop algebra extended by K and all Virasoro generators Lm. The Virasoro

generators (2.9) act on any lowest weight e9 representation which therefore is automatically

a representation of ê8 h vir where the sum is semi-direct according to

[

Lm, TA
n

]

= −nTA
m+n , [Lm,K] = 0 . (2.13)

We shall use more generally the notation h to denote an indecomposable Ê8 (or E9)

representation X hY such that X and the quotient X hY/{X ∼ 0} are submodules of Ê8

but Y ⊂ X h Y is not, because TA
n Y * Y .

In terms of a loop parameter w, the loop generators can be realised in the adjoint

representation as Lm = −wm+1∂m.

From (2.13) we see that d acting on the module R(Λ0)h can be identified with L0 + h.

Both d and L0 satisfy therefore the same commutation relations with the loop algebra, but

L0|0〉 = 0 for any h. In the basic representation, e9 is the span of the generators {TA
M ,K}

of ê8 and L0 such that

e9 = 〈TA
m,K, d〉 = 〈TA

m,K, L0〉 . (2.14)

As is well-known, the Virasoro algebra (2.10) has an sl(2) subalgebra given by

〈L−1, L0, L1〉. The group generated by ê8 h 〈L−1, L0, L1〉 through the exponential map is

Ê8 ⋊ SL(2) . (2.15)

3For general extended loop groups Ĝ, c is the rank of the group G, corresponding to the fact that the

basic representation of ĝ can be realised as the Hilbert space of c chiral bosons on the torus Rc/Λg with Λg

the even lattice generated by the simple roots of the simply-laced Lie algebra g.

– 7 –
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This group was identified in [39] as a symmetry of ungauged maximal supergravity in two

dimensions. The symmetry group of the E9 exceptional field theory will turn out to be its

subgroup generated by e9 h 〈L−1〉,

Ê8 ⋊
(

R
+
d
⋉RL−1

)

. (2.16)

This group acts on f in an indecomposable representation.

We will denote collectively the generators of f in the basic representation R(Λ0)h by

〈Tα〉 = 〈TA
n ,K, Ln〉. By construction they do not depend on h, and K = 1 on the module,

although we choose to write it explicitly for clarity.

We can define a collection of Ê8 invariant symmetric bilinear forms ηm by

ηmαβT
α ⊗ T β =

∑

n∈Z

ηABT
A
n ⊗ TB

m−n − Lm ⊗ K− K⊗ Lm . (2.17)

For the value m = 0 the range of the generators Tα is restricted to 〈TA
n ,K, L0〉 and this form

defined in the basic representation R(Λ0)0 (for which d = L0) is the inverse of the standard

invariant Killing form ηαβ on e9. We shall also denote this form by just ηαβ ≡ η0αβ .

Similarly for ηm the range of the generators Tα is restricted to 〈TA
n ,K, Lm〉 (for all n ∈ Z

but only one m), which also defines an algebra for which ηm is an invariant non-degenerate

bilinear form.

It will be very convenient to also introduce shift operators Sm (for m ∈ Z), acting on

f = ê8 h vir according to

Sm(K) = δm,0 K , Sm(Ln) = Lm+n , Sm(TA
n ) = TA

m+n . (2.18)

S0 is the identity. Combining this definition with (2.17) we find a useful identity for m 6= 0

η(n+m)αβT
α ⊗ T β = ηnαβT

α ⊗ Sm(T β)− Ln+m ⊗ K . (2.19)

It follows that the shift operators are not invariant under Ê8. Their transformation prop-

erties are discussed in appendix A.

Finally, the Hermitian conjugate Tα† in the representation R(Λ0)h is defined as

L†
n = L−n , K

† = K , d = d
† , TA †

n = ηABT
B
−n . (2.20)

It acts on the shift operators as Sm(Tα)† = S−m(Tα †). We use the Hermitian conjugate

to also define the maximal unitary subgroup K(E9) ⊂ E9 which consists of those elements

k ∈ E9 satisfying k†k = kk† = 1 when acting on R(Λ0)h.
4

The representation of f on R(Λ0)h in terms of the generator Tα on the Hilbert space

of bra vectors can be realised equivalently in terms of the generators Tα† on the Hilbert

space of ket vectors, using
(

〈W |X
)†

= X†|W 〉 (2.21)

4For finite-dimensional groups, the notion of maximal unitary subgroup coincides with that of maximal

compact subgroup.
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where we will write 〈W |† = |W 〉 and it will be clear from the context that |W 〉 ∈ R(Λ0)h.

One consequence of this is that 〈W |d = 〈W |(L0 + h). Note that the representation of f on

R(Λ0)h in terms of the generator −Tα on the Hilbert space of ket vectors only agrees with

the conjugate representation for anti-Hermitian elements. In particular, the two modules

are isomorphic modules of the maximal unitary subgroup K(E9) ⊂ E9.

3 Building blocks of E9 exceptional field theory

Many of the variables of E9 exceptional field theory can be extracted from the knowledge

of D = 2 maximal supergravity, which we review first in a reduction from D = 3. Then we

discuss the additional structures that enter the exceptional field theory, in particular the

generalised Lie derivative, the section constraint and the presence of constrained fields.

3.1 D = 2 maximal supergravity fields

An affine symmetry of D = 2 gravity coupled to matter arises on-shell when it is obtained

by dimensional reduction of a D = 3 system with scalars taking values in a symmetric

space [16, 40–42]. In principle, all propagating bosonic fields in D = 3 can be dualized

to scalars coupled minimally to a non-dynamical three-dimensional metric. Assuming an

additional space-like isometry with Killing vector ∂3 ≡ ∂ϕ in the three-dimensional space-

time leads to a metric of the form

ds23 = e2σ(−dt2 + dx2) + ρ2(dϕ+A(3)
µ dxµ)2 , (3.1)

where coordinates have been chosen to make the two-dimensional metric conformally flat

with scale factor e2σ. The variable ρ measures the size of the Killing direction. The index

µ = 0, 1 labels the two coordinates t and x on which all the fields depend.

The field A(3)
µ is the Kaluza-Klein vector arising in the reduction from 3 to 2 dimensions.

Vector fields in D = 2 are not propagating and can be eliminated locally by a gauge

transformation. In the usual formulation of ungauged D = 2 supergravity with rigid

E9 symmetry (and its associated linear systems), this vector field is set to zero [17, 41].

However, the investigation of gauged supergravity in various dimensions has shown the

importance of the hierarchy of tensor fields including the non-propagating ones [20, 21].

In particular, the gauging of D = 2 supergravity requires the introduction of an infinity of

vector fields (including A(3)
µ ) transforming in the basic representation of E9 [31]. A similar

requirement is expected to hold in exceptional field theory, but our goal in the present

paper is to construct only the potential of E9 exceptional field theory, which does not

depend on vectors. Hence, we will postpone their analysis (and possibly that of higher

rank forms) to future work.

The propagating scalar fields descend from D = 3 and can be arranged in a repre-

sentative V0 of the coset space E8/(Spin(16)/Z2), where Spin(16)/Z2 is chosen to act on

V0 from the left, or alternatively in a Hermitian E8 matrix M0 = V †
0 V0 . Written in the

adjoint representation of E8, the matrix takes the form M0AB with A,B ∈ {1, . . . , 248} of

e8. The (bosonic) dynamics of the maximal D = 2 supergravity theory is entirely described

in terms of V0 together with the scalars σ and ρ arising from the metric (3.1).
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However, this does not make the infinite-dimensional affine symmetry and the asso-

ciated integrability of the D = 2 theory manifest. In order to exhibit this symmetry one

has to use an infinite set of dual scalar fields (a.k.a. cascade of dual potentials) that are

related to the original scalar fields by non-linear duality relations that are consistent with

the equations of motion. These are manifested in a so-called linear system for a generating

function of a spectral parameter w that should be identified with the loop parameter of

the loop algebra ê8 discussed in section 2.1.5

The dualisation of the scalar fields V0 leads to scalar fields that parameterise the

coset space Ê8/K(E9) where K(E9) denotes the maximal unitary subgroup of E9 [41, 43]

which agrees with the maximal unitary subgroup of Ê8 in the basic representation R(Λ0)0.

Expanding around w = ∞ we can parameterise a coset representative of the centrally

extended loop group Ê8 in the representation R(Λ0)0 as

V̂ = e−σKV0 exp
(

ηABY
A
1 TB

−1

)

exp
(

ηABY
A
2 TB

−2

)

· · · . (3.2)

V0 here is the E8/(Spin(16)/Z2) coset representative containing the original E8 scalars of

the D = 3 theory while the Y A
n are scalar fields corresponding to the ê8 generators TA

−n

for n > 0, and ηAB is the Cartan-Killing form over e8. The local group K(E9) acts on V̂

from the left while the rigid Ê8 acts from the right. In writing the coset representative of

the centrally extended loop group Ê8 we have fixed a Borel gauge, meaning that only the

negative mode loop generators TA
−n appear. This corresponds to fixing the action of K(E9).

The fields Y A
n are on-shell dual to the propagating E8 scalar fields parameterising V0.

The first duality relation is

∂µY
A
1 ηABT

B = ρ εµνV
−1
0 P νV0 , (3.3)

where the integrability of this equation is guaranteed by the equations of motion for V0.

In the above equation, P ν = 1
2(∂

νV0V
−1
0 + (∂νV0V

−1
0 )†) denotes the coset component of

the Maurer-Cartan form, i.e., the projection of ∂νV0V
−1
0 to the 128 non-compact genera-

tors of E8.

Equation (3.3) and similar equations for the other Y A
n are summarised in the linear

system of the D = 2 maximal supergravity [17] whose precise form we do not require here.

These infinitely many fields are required to realise the on-shell Ê8 symmetry.

According to (2.14), the full E9 symmetry also requires the inclusion of the generator d.

The scalar field ofD = 2 supergravity associated with this generator is the dilaton ρ [16, 39].

This scalar field satisfies the free Klein-Gordon equation and is dual to an axion ρ̃ via

∂µρ = εµν∂
ν ρ̃ . (3.4)

5We note that there are two spectral parameters that are relevant in gravity reduced to D = 2; one

that is called the ‘constant spectral parameter’ and that we denote by w and another one, often called

‘space-time dependent spectral parameter’ that also depends on the D = 2 coordinates and that we denote

by γ. The two are related by γ + γ−1 = 2(w + ρ̃)/ρ, so that γ is a double cover of w. The ‘axion’ ρ̃ in this

relation is defined in equation (3.4). One can define K(E9) groups with respect to both choices of spectral

parameter and the one that is commonly used in the linear system is γ. The one that we are using when

writing the representative (3.2) is the constant spectral parameter w.
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Unlike for the E8 scalars V0, this duality relation is linear and does not give rise to an

infinite sequence of dual scalar fields.

The dilaton ρ and the axion ρ̃ parameterise the group R
+
d
⋉RL−1 . The full coset space

of relevance is therefore
Ê8 ⋊

(

R
+
d
⋉RL−1

)

K(E9)
. (3.5)

In the R(Λ0)0 representation, where we can identify d with L0, we write the R
+
d
⋉ RL−1

group element as

v = ρ−L0e−ρ̃L−1 , (3.6)

and the full coset representative becomes

V = vV̂ . (3.7)

It transforms from the left under the denominator group K(E9) and from the right under

the rigid symmetry group Ê8 ⋊
(

R
+
d
⋉RL−1

)

, i.e. as V → kVg.
Using the fact that v can be embedded into the SL(2) group generated by L−1, L0 and

L+1, we can conveniently work with the Hermitian element

M = V†V = V̂ †mV̂ ∈ Ê8 ⋊ SL(2) (3.8)

with

m = v†v = e−ρ̃L1ρ−2L0e−ρ̃L−1 , (3.9)

so that M = M†. We shall also decompose M as follows

M = V̂ †mV̂ = mĝM = ĝ†Mm. (3.10)

Note that while m ∈ SL(2) satisfies m† = m, the Ê8 element ĝM does not. We stress that

M is defined as a group element in the R(Λ0)0 representation, in which d = L0.

In the fundamental representation 2 of SL(2), m can be written as the 2× 2 matrix

m2 = ρ−1

(

ρ2 − ρ̃2 −ρ̃

ρ̃ 1

)

. (3.11)

We note that the Hermitian conjugate (2.20) isolates a non-compact unitary SO(1, 1) sub-

group of SL(2). This implies that the finite-dimensional m2 cannot be a symmetric matrix

but rather satisfies m2 = σ3m
T
2σ3. Note that the whole SL(2) is an on-shell symmetry of

ungauged supergravity in two dimensions [39], but the exceptional field theory potential

will only exhibit the parabolic subgroup R
+
d
⋉RL−1 as symmetry.

The advantage of working with M instead of V is that it only transforms under the

rigid Ê8 ⋊
(

R
+
d
⋉RL−1

)

symmetry of the coset space as

M → g†Mg , g ∈ Ê8 ⋊
(

R
+
d
⋉RL−1

)

. (3.12)
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Formally, for ρ̃ = 0, the element v in (3.6) is simply a dilatation R
+
d
and M becomes an

element of the affine E9 group only. As we shall see many formulæ simplify for ρ̃ = 0. Even

though most of our derivations use M for simplicity, a proper evaluation of the potential

and definition of the dual scalar fields requires descending to V, a step we shall explain at

the end in section 4.3.

In summary, all scalar fields appearing in the D = 2 maximal supergravity theory

can be packaged into the operator M. It contains the 128 propagating fields in the

E8/(Spin(16)/Z2) coset representative V0 along with all their dual potentials Y A
n as well

as the dilaton ρ, the axion ρ̃ and the scale factor σ.

To give a more concrete idea of how the E8 scalar fields parameterising M0 and the dual

potentials Y A
n are embedded in M, we now display some components of the inverse matrix

MMN . One can give formal definitions of the index-notation coefficients MMN and MMN

using (2.7) and (2.8) as

M = MMN 〈eM |† ⊗ 〈eN | , M−1 = MMN |eM 〉 ⊗ |eN 〉† . (3.13)

Taking |e0〉 = |0〉, |eA〉 = T−1A|0〉, the first few matrix components of MMN are computed

from (3.8) in the parameterisation (3.2) and (3.9) as follows

M00 = 〈0|M−1|0〉 = e2σ , (3.14a)

M0A = 〈0|M−1TA †
1 |0〉 = −e2σY A

1 , (3.14b)

MAB = 〈0|TA
1 M−1TB †

1 |0〉 = e2σ
(

ρ2MAB
0 + Y A

1 Y B
1

)

, (3.14c)

with MAB
0 the matrix components of the inverse E8 matrix M−1

0 = V −1
0 (V †

0 )
−1. We have

also used M−1
0 (TA

m)†M0 = MAB
0 TmB and the fact that |0〉 is SL(2) invariant. The other

dual potentials Y A
m , m > 1, as well as ρ̃ start appearing at higher levels. Performing

a similar expansion for MMN would give infinite divergent series in Y A
m at each level

in the graded decomposition. However, the way M enters in the potential V (M, χ) is

such that the latter is well-defined for V in the Borel gauge (3.2) and only involves finite

combinations of terms, as we shall exhibit in section 4.3 and also in section 5 when we

discuss the reduction to E8.

3.2 Generalised diffeomorphisms and scalar fields

As usual in the construction of exceptional field theory, the supergravity fields are the basic

building blocks and are promoted to fields depending on both the ‘external coordinates’

and the ‘internal coordinates’ of the exceptional geometry. The E9 exceptional geometry

is characterised by its generalised diffeomorphisms that we shall review first.

3.2.1 Generalised Lie derivative

As shown in [13], the correct representation for coordinates and canonical generalised

vectors in E9 exceptional geometry is the basic representation R(Λ0)−1 discussed above.
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Writing |V 〉 for a vector field in this representation, the action of a generalised diffeomor-

phism reads

LΛ,Σ|V 〉 = 〈∂V |Λ〉|V 〉 − ηαβ〈∂Λ|Tα|Λ〉T β |V 〉 − 〈∂Λ|Λ〉|V 〉 − η−1αβ Tr(T
αΣ)T β |V 〉 .

(3.15)

This very compact expression uses the Fock space notation for e9 representations and the

bilinear forms (2.17). As the coordinates are valued in the R(Λ0)−1 representation just like

generalised vectors, derivatives are in the dual R(Λ0)−1 representation with d eigenvalue of

the vacuum state 〈0|d = (−1)〈0|. Derivatives are represented as bra-vectors 〈∂| with the

subscript indicating which object they act on.

The generalised Lie derivative (3.15) depends on two gauge parameters, Λ and Σ. The

first parameter Λ is the usual generalised diffeomorphism parameter and is also valued in

R(Λ0)−1. It is thus written as a ket vector. The second parameter Σ is an extra constrained

parameter that generalises a similar constrained parameter in the E8 exceptional field

theory [24]. For E9, Σ belongs to R(Λ0)0 ⊗ R(Λ0)−1 with a constrained ‘bra index’. This

constraint will be spelt out below. The trace Tr(TαΣ) is guaranteed to be finite due to the

constrained nature of Σ.

Since the Fock space notation in (3.15) is different from that used for finite-dimensional

symmetry groups, we provide a short translation into index notation using (2.7) and (2.8).

Vectors carry an upper fundamental index M and co-vectors have a lower fundamental

index. In this component notation, the gauge parameters have index structure ΛM and

ΣN
M . The generalised Lie derivative then takes the index form

LΛ,ΣV
M = ΛN∂NV M − ηαβ (T

α)PQ(T
β)MN ∂PΛ

Q V N − ∂NΛNV M

− η−1αβ (T
α)PQ(T

β)MNΣQ
P V N . (3.16)

More examples of translating between the Fock space notation and the index notation were

given in [13].

The definition (3.15) generalises to any field Φ admitting a well-defined action of e9 h

〈L−1〉, not necessarily in a highest/lowest weight representation

LΛ,ΣΦ = 〈∂Φ|Λ〉Φ+ ηαβ〈∂Λ|Tα|Λ〉δβΦ+ η−1αβTr(T
αΣ) δβΦ , (3.17)

where δαΦ is the variation of the field with respect to the global symmetry algebra e9 h

〈L−1〉. We stress that this includes the variation with respect to the derivation d and not

L0, thus reproducing the third term in (3.15) with d|V 〉 = (L0 − 1)|V 〉.
From the comparison of (3.16) with the common form of generalised Lie derivatives [7]

one can already anticipate the form of the section constraint to be

ηαβ〈∂1|Tα ⊗ 〈∂2|T β + 〈∂1| ⊗ 〈∂2| − 〈∂2| ⊗ 〈∂1| = 0 . (3.18a)

This constraint defines the tensor Y MN
PQ in (1.1) in the introduction. The above con-

straint has for consequence the additional constraints

η−nαβ〈∂1|Tα ⊗ 〈∂2|T β = 0 for all n > 0 , (3.18b)

η1αβ
(

〈∂1|Tα ⊗ 〈∂2|T β + 〈∂2|Tα ⊗ 〈∂1|T β
)

= 0 . (3.18c)
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The constraint on the gauge parameter Σ is more conveniently written using the notation

introduced in [13]

Σ = ΣM
N |eN 〉〈eM | = |Σ〉〈πΣ| . (3.19)

The section constraint (3.18) is then also imposed when one derivative is replaced by 〈πΣ|,
and when both derivatives are replaced with 〈πΣ1 |, 〈πΣ2 |, where Σ1, Σ2 can be the same

or two different gauge parameters. Notice that Σ generally does not factorize into a tensor

product of a bra-vector 〈πΣ| with a ket-vector |Σ〉.6
As was shown in [13], the generalised Lie derivative (3.15) provides a closed gauge

algebra when the section constraints are imposed, satisfying

[LΛ1,Σ1 , LΛ2,Σ2 ]Φ = LΛ12,Σ12Φ , (3.20)

with

Λ12=
1

2
(LΛ1Λ2−LΛ2Λ1) ,

Σ12=LΛ1Σ2+
1

2
η−1αβTr(T

αΣ1)T
βΣ2−

1

2
η1αβ〈∂Λ2 |Tα|Λ[1〉T β |Λ2]〉〈∂Λ2 |−(1↔ 2) . (3.21)

The parameter Σ12 depends nontrivially on Λ1 and Λ2 (as well as on Σ1 and Σ2), compen-

sating for the fact that the Λ part of E9 generalised diffeomorphisms does not close onto

itself. An observation that will be crucial in the following is that closure of the generalised

Lie derivative is ensured already by restricting to traceless Σ parameters, i.e. Σ12 is trace-

less if Σ1 and Σ2 are. As is clear from (3.15) and (2.17), the trace component Tr(Σ) is the

only one generating L−1 transformations. We can then gauge-fix the trace component of Σ

transformations acting on M by setting ρ̃ = 0 and then consistently restrict to arbitrary Λ

and traceless Σ transformations. No compensating gauge transformations are then needed

to keep ρ̃ = 0 and E9 covariance is preserved.

3.2.2 Unconstrained scalar fields and currents

The fields of the theory include the element M ∈ Ê8 ⋊ SL(2) introduced in (3.8) and it

depends on the coordinates of the exceptional geometry that take values in the R(Λ0)−1

representation. We reiterate that we always take M to be defined as a group element in

the representation R(Λ0)0. As a side-remark we note that this discrepancy between the

weight h of the coordinate representation and the representation of M means that the

‘generalised metric’ of E9 exceptional geometry is ρ2M.

From M in R(Λ0)0 we can, as usual, construct the current

JM = M−1∂MM (3.22)

which is valued in the Lie algebra ê8 h sl(2) and carries a constrained derivative index M

in the R(Λ0)−1 representation. In index notation and using the bases (2.7) and (2.8) this

6To write the constraint (3.18a) for the operator Σ itself one must introduce an additional arbitrary

vector |V 〉, such that for any |V 〉: ηαβΣT
α|V 〉〈∂|T β+Σ|V 〉〈∂|−Σ〈∂|V 〉 = 0 and ηαβΣ1T

α|V1〉⊗Σ2T
β |V2〉+

Σ1|V1〉 ⊗ Σ2|V2〉 − Σ1|V2〉 ⊗ Σ2|V1〉 = 0.
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reads

MPS∂MMSQ = (JM )PQ = JM,α(T
α)PQ , (3.23)

where Tα ∈ f but JM,α is only non-vanishing along ê8 h sl(2). It will be more convenient

to use the Fock space notation, in which the current is defined such that

〈∂M| ⊗M = 〈Jα| ⊗MTα . (3.24)

To see the equivalence of this formula with the definition (3.23) above one may reintroduce

indices as

∂MMPQ = JM,αMPS(T
α)SQ (3.25)

and multiply the equation with M−1. The current satisfies the following useful identity

〈Jα| ⊗M−1Tα †M = 〈Jα| ⊗ Tα , (3.26)

which follows from the Hermiticity of M. It will also be convenient to introduce the matrix

H(M)αβ defined by

M−1Tα †M = H(M)αβT
β , (3.27)

in terms of which the identity (3.26) reads

H(M)βα Jβ = Jα . (3.28)

We write out the Lie algebra valued current in its components more explicitly as follows

〈Jα| ⊗ Tα =
∑

n∈Z

〈J n
A | ⊗ TA

n +
∑

q = −1, 0, 1

〈Jq| ⊗ Lq + 〈JK| ⊗ K . (3.29)

The above expression stresses once again that, while our conventions are such that Tα are

the generators of f = ê8 h vir, the current has only components along ê8 h sl(2) since it is

constructed from an element M in the group Ê8 ⋉ SL(2) (3.8). In other words, we have

〈Jq| = 0 for |q| > 1.

We also note that the sl(2)-part of the current is identical to that constructed solely

out of the SL(2) element m defined in (3.9),

m−1∂Mm = JM,0L0 + JM,1L1 + JM,−1L−1 , (3.30)

where, due to the structure of m, one has in Fock space notation

〈J−1|+ ρ̃〈J0|+ (ρ̃2 − ρ2)〈J1| = 0 . (3.31)

This relation can be derived easily from the matrix representation (3.11) and can be used

to solve for 〈J−1| in terms of the other components.
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3.2.3 Constrained scalar fields and shifted currents

A crucial ingredient in exceptional field theory is the existence of constrained fields. For

E11−D exceptional field theory with a D-dimensional external spacetime, the constrained

fields appear starting from the (D − 2)-form sector. For instance, in the E8 exceptional

field theory, corresponding to D = 3, there are constrained vector fields that are crucial

in the construction of the theory [24]. In the present case of D = 2, the constrained fields

appear already in the scalar sector and therefore are essential for the scalar potential.

As was argued in [13], the constrained scalar fields carry an index labelling the

dual basic representation R(Λ0)−1 and we write them as χM or 〈χ|. The fact that

they are constrained means that they satisfy a condition analogous to the section con-

straint (3.18), namely

ηαβ〈χ|Tα ⊗ 〈∂|T β + 〈χ| ⊗ 〈∂| − 〈∂| ⊗ 〈χ| = 0 , (3.32a)

η−nαβ〈χ|Tα ⊗ 〈∂|T β = 0 for all n > 0 , (3.32b)

η1αβ
(

〈χ|Tα ⊗ 〈∂|T β + 〈∂|Tα ⊗ 〈χ|T β
)

= 0 , (3.32c)

and the same identities bilinear in 〈χ|. Here, 〈∂| can be any derivative, as for instance that

carried by the current 〈Jα|, or also the constrained index of the generalised diffeomorphism

parameter Σ.

As will become clearer when we discuss the transformation properties of the various

fields, it is useful to also define a shifted version of the current 〈Jα| defined in (3.24), by

making use of the shift operators defined in (2.18)

〈J −
α | ⊗ Tα =

∞
∑

k=0

ρ̃k〈Jα| ⊗ S−1−k(T
α) + 〈χ| ⊗ K . (3.33)

The constrained scalar field χ appears in the definition of the shifted current in order to

ensure covariance under the rigid symmetries, as we shall explain in detail below. Unlike

the unshifted current (3.29), the shifted current has also non-trivial components along the

Virasoro generators Lq for all q ≤ 1 because these are generated by the shift operators.

4 The potential

In this section, we present the E9 exceptional field theory potential, depending on M and

the constrained scalar field χ, written as a sum of four terms as

V (M,χ) =
1

4
L1 −

1

2
L2 +

1

2
L3 +

1

2
L4 . (4.1)

The four terms are independently invariant under rigid Ê8 and RL−1 transformations, and

transform with the expected homogeneous scaling under R+
d
. The symmetry R

+
d
is known

to be a symmetry of the equations of motion, whereas the potential itself is not invariant

but transforms homogeneously with weight one. The relative coefficients between the

four terms are fixed by requiring the potential to transform into a total derivative under

generalised diffeomorphisms.
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Let us briefly compare the general structure of the potential to that of other En

exceptional field theories with n ≤ 8. While the terms L1, L2 and L4 have direct analogues

in the other cases [14, 22–24], the term L3 is a vast generalisation of a term that only

appears in E8 exceptional field theory. The main new feature is that the E9 scalar fields

M and χ form an indecomposable representation, meaning that they cannot be separated

into a direct sum of irreducible E9 representations. The term L3 contains crucially the

shifted current (3.33) that comprises all these scalar fields. Another consequence of this

indecomposability of the scalar fields is that the four individual terms of the potential

are not all manifestly invariant under the rigid Ê8 ⋊ RL−1 transformations and we shall

therefore demonstrate this invariance explicitly.

For the sake of clarity of the presentation we shall first consider a partially gauge-

fixed version of the potential in which the axion ρ̃ = 0 and the rigid symmetry RL−1 is

broken. As mentioned in section 3.2.1, this gauge-fixing preserves the closed subalgebra

of generalised diffeomorphisms (3.15) with Tr (Σ) = 0. In this case, the four terms are

manifestly invariant under Ê8. The term L3 still retains the indecomposable structure but

now involves only the shift operator S−1 (instead of all Sn with n < 0). This shift operator

and the associated shifted bilinear form η−1 are also expected on the basis of the structure

of maximal gauged supergravity [31] where the embedding tensor couples through η−1.

In a second step, we reintroduce the ρ̃ dependence and consequently the full gener-

alised diffeomorphism invariance. Besides generalised diffeomorphism invariance, the full

potential presented in this section is invariant under rigid Ê8⋊RL−1 and these two require-

ments uniquely fix the combination of the four individual terms. In the following section 5,

we moreover demonstrate that our potential, upon choosing an appropriate solution to the

section condition, reproduces all the terms in the E8 exceptional field theory [24] that can

contribute to the E9 potential. This provides a final check on the E9 potential.

4.1 The potential at ρ̃ = 0

In this section we restrict ourselves to the case ρ̃ = 0 in which M, defined in (3.8), is an

element of E9 in the R(Λ0)0 representation. The construction of the potential is greatly

simplified in this setting as one simply requires its invariance under rigid Ê8 transformations

and Λ generalised diffeomorphisms. The various terms of the potential then read

L1 = ρ−1ηαβ〈Jα|M−1|Jβ〉 , (4.2a)

L2 = ρ−1〈Jα|T βM−1Tα †|Jβ〉 , (4.2b)

L3 = ρ 〈J −
α |T βM−1Tα †|J −

β 〉 , (4.2c)

L4 = ρ−1〈J0|TαM−1|Jα〉 . (4.2d)

Their expression in an index notation was already given in the introduction (1.5). The

currents 〈Jα| and 〈J −
α | were defined in (3.24) and (3.33), and since here M ∈ E9, their

only non-vanishing components are along e9 and ê8 h L−1, respectively. Since here ρ̃ = 0,

the current component along L0 is simply given by

〈J0| = −2 ρ−1〈∂ρ|ρ . (4.3)
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We also point out that, while writing some of the currents as kets in (4.2) might seem

confusing at first, our notation should be clear from the discussion at the end of section 2.2.

All the terms in (4.2) are manifestly Hermitian and, as we shall see below, invariant

under rigid Ê8 transformations. Moreover, note that in this case the new constrained scalar

field 〈χ| only appears in the third term. As previously mentioned, L3 generalises a term

that so far only appeared in the E8 potential, where it involved two E8 currents contracted

directly [24].

4.1.1 Rigid E9 symmetry

Under g ∈ E9, we have the following rigid transformations

M → g†Mg , (4.4)

〈∂| → ρ(g)2〈∂|g , (4.5)

|Y 〉 → ρ(g)−2g−1|Y 〉 , (4.6)

where here and in the following, g will always be a group element in the R(Λ0)0 represen-

tation. It acts on the derivative bra in the R(Λ0)−1 representation by multiplication with

g from the right and on the coordinate ket in the R(Λ0)−1 by multiplication with g−1 from

the left. The R+-valued function ρ(g) appearing in the transformation laws is the multi-

plicative character defined in (A.4). It occurs for instance in the above second variation to

account for the fact that the derivative transforms in the R(Λ0)−1 representation while g

is a group element in the R(Λ0)0 representation.7 In particular, we have ρ(M) = ρ.

The variation of the e9-valued current (3.24) then reads

〈Jα| ⊗ Tα → ρ(g)2〈Jα|g ⊗ g−1Tαg , (4.7)

while its components 〈Jα| transform as

〈Jα| → ρ(g)2R(g)βα〈Jβ |g , (4.8)

where R(g)αβ denotes the representation matrix of g acting by conjugation, which is de-

fined by

R(g)αβT
β = g−1Tαg . (4.9)

To further clarify our notation for the current written as a ket, we also provide explicitly

its transformation under E9,

Tα ⊗ |Jα〉 → g−1Tαg ⊗ g†|Jα〉 ρ(g)2 ,

|Jα〉 → g†|Jβ〉R(g)βα ρ(g)
2 , (4.10)

which follows from (2.21). The variation of the scalar ρ = ρ(M) is by definition

ρ → ρ(g)2 ρ . (4.11)

7We note that M as a group element is in R(Λ0)0 which naturally multiplies ket vectors in R(Λ0)−h

from the left and produces bra vectors in R(Λ0)+h. It thus acts as an intertwiner of representations.
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From (4.3), one then simply finds that 〈J0| → ρ(g)2〈J0|g. Using the above transformations

it is straightforward to verify the rigid Ê8 invariance of (4.2b) and (4.2d). The Ê8 invariance

of (4.2a) is ensured by the presence of the e9 invariant bilinear form ηαβ , which satisfies

R(g)αγR(g)βδ η
γδ = ηαβ .

The invariance of (4.2c) is a bit more subtle. Start by considering the variation of the

current which has been acted upon by the shift operator defined in (2.18),

〈Jα| ⊗ S−1(T
α) → ρ(g)2〈Jα|g ⊗

(

ρ(g)−2 g−1S−1(T
α) g − ωα

1 (g
−1)K

)

. (4.12)

This result follows directly from using the relation (A.13). It involves an R-valued function

ωα
1 (g), which is a group 1-cocycle defined in (A.13). As explained in detail in appendix A,

this cocycle and the character ρ(g) define an extension of the adjoint representation of E9

by the generator L−1. The new scalar field 〈χ| must be chosen to transform as part of the

dual of this extended representation (A.11), i.e. as

〈χ| → 〈χ|g + ρ(g)2 ωα
1 (g

−1)〈Jα|g , (4.13)

in order for the shifted current to transform covariantly under E9. Indeed, using (4.12)

and (4.13) we find that the shifted current (3.33) and its components transform as

〈J −
α | ⊗ Tα → 〈J −

α |g ⊗ g−1Tαg , (4.14)

〈J −
α | → R(g)βα〈J −

β |g . (4.15)

It is then straightforward to verify that the third term in the potential is invariant under

Ê8. Note that the appearance of fields transforming in indecomposable representations,

such as 〈χ| in (4.13), is a new feature in E9 exceptional field theory. In higher-dimensions,

all the fields have to transform individually in irreducible representations of the duality

group since En is then a finite-dimensional reductive group.

Let us finally remark that the potential scales uniformly under transformations gener-

ated by d,

V → ρ(g)2 V . (4.16)

As mentioned previously, the generator d is associated to a symmetry of the equations

of motion and not of the Lagrangian itself, as is the so-called trombone symmetry in

higher dimensions [44]. According to its original definition, the trombone symmetry in two

dimensions shifts the conformal factor σ of the metric and is the symmetry of the action

generated by the central charge K. It is instead the symmetry generated by d that rescales

the dilaton field ρ which is not a symmetry of the action.

4.1.2 Invariance under generalised diffeomorphisms

We denote an infinitesimal variation under generalised diffeomorphisms by δΛ,Σ. By defi-

nition it splits into

δΛ,Σ = LΛ,Σ +∆Λ,Σ , (4.17)
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where the action of the generalised Lie derivative LΛ,Σ on an arbitrary field was defined

in (3.17), and where ∆Λ,Σ explicitly collects all the non-covariant pieces in the variation.

The latter are those terms involving second derivatives of the gauge parameter Λ or a single

derivative of the gauge parameter Σ. In this section, we exclusively focus on variations

under Λ generalised diffeomorphisms, which are simply denoted by δΛ. The reason is that

in the expression of the generalised Lie derivative, the trace of Σ appears as the gauge

parameter of an infinitesimal RL−1 transformation, which can only be considered at ρ̃ 6= 0

when M ∈ Ê8 ⋊ SL(2) ⊃ RL−1 . While we could already consider traceless Σ variations in

this section, we postpone this discussion to section 4.2 where we will prove the invariance

of the full potential under arbitrary Σ variations.

We start with M which transforms covariantly under generalised diffeomorphisms,

i.e. as

δΛM = LΛM = 〈∂M|Λ〉M+ ηαβ〈∂Λ|Tα|Λ〉
(

MT β + T β †M
)

. (4.18)

The expression of the rotation term follows from the action (4.4) of E9 on M. In particular,

there is no density term as M transforms (from the right and the left) in the R(Λ0)0
representation and therefore carries no weight. According to (4.11), the field ρ is an E9

scalar density of weight one and thus transforms as a total derivative

δΛ ρ = LΛ ρ = 〈∂ρ|Λ〉ρ+ 〈∂Λ|Λ〉ρ = 〈∂|
(

|Λ〉ρ
)

. (4.19)

The variation of the current (3.24) follows from that of M and takes the form

δΛ〈Jα| ⊗ Tα = LΛ〈Jα| ⊗ Tα + ηαβ〈∂Λ|Tα|Λ〉〈∂Λ| ⊗ (T β +M−1T β †M
)

, (4.20)

where its Lie derivative is given by

LΛ〈Jα| ⊗ Tα =
(

〈∂J |Λ〉〈Jα|+ 〈Jα|Λ〉〈∂Λ|
)

⊗ Tα − ηαβ〈∂Λ|Tα|Λ〉〈Jγ | ⊗ [T β , T γ ] . (4.21)

The variation of the current components then reads

δΛ〈Jα| = LΛ〈Jα|+ ηαβ〈∂Λ|
(

T β +M−1T β†M
)

|Λ〉〈∂Λ| , (4.22)

with

LΛ〈Jα| = 〈∂J |Λ〉〈Jα|+ 〈Jα|Λ〉〈∂Λ| − ηγδ〈∂Λ|T γ |Λ〉 f δβ
α〈Jβ | , (4.23)

where fαβ
γ denotes the structure constants of f. To write the non-covariant terms we also

used the identity

η−nαβ M−1Tα †M⊗ T β = ρ−2nηnαβ T
α ⊗M−1T β †M (4.24)

which only holds here as M ∈ E9, and follows from the covariance of ηnαβ under E9. From

the non-covariant variation in (4.22), one gets in particular

∆Λ〈J0| = −2 〈∂Λ|Λ〉〈∂Λ| . (4.25)
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Let us now discuss the variation of the shifted current. Acting with the shift operator

S−1 on (4.20) gives

δΛ〈Jα| ⊗ S−1(T
α)

=
(

〈∂J |Λ〉〈Jα|+ 〈Jα|Λ〉〈∂Λ| − 〈∂Λ|Λ〉〈Jα|
)

⊗ S−1(T
α)

− ηαβ〈∂Λ|Tα|Λ〉〈Jγ | ⊗ [T β ,S−1(T
γ)]−

∑

n∈Z

(n− 1)〈∂Λ|TA
n−1|Λ〉〈J n

A | ⊗ K

+ ηαβ〈∂Λ|Tα|Λ〉〈∂Λ| ⊗ (ρ−2M−1S1(T
β)†M− ωβ

−1(M)K+ S−1(T
β)
)

. (4.26)

The density term and the term involving the explicit sum over the loop algebra are gener-

ated by pulling the shift operator inside of the commutator in the second term of the second

line, while the appearance of the cocycle is a consequence of using the identity (A.13). The

variation of the constrained field 〈χ| is chosen to be

δΛ〈χ| =LΛ〈χ| − 〈∂Λ|
(

L−1 + ρ−2L1 − ηαβ ω
α
−1(M)T β

)

|Λ〉〈∂Λ|

=LΛ〈χ| − 〈∂Λ|
(

L−1 +M−1L†
−1M)|Λ〉〈∂Λ| , (4.27)

with the Lie derivative

LΛ〈χ| = 〈∂χ|Λ〉〈χ|+ 〈χ|Λ〉〈∂Λ| − 〈∂Λ|Λ〉〈χ|+
∑

n∈Z

(n− 1)〈∂Λ|TA
n−1|Λ〉〈J n

A | . (4.28)

The Lie derivative is determined according to (3.17) and the linearisation of the E9 ac-

tion (4.13) on the field 〈χ|,

δX〈χ| ≡ Xα δ
α〈χ| = 〈χ|XαT

α + ηAB
∑

n∈Z

(n− 1)X1−n
A 〈J n

B | (X ∈ e9 only) , (4.29)

which follows from using the section constraint and the linearisation of the cocycle (A.14).

Note furthermore that the non-covariant variations in (4.27) are consistent with the prop-

erty that 〈χ| transforms as part of the dual of the extended representation (A.11) which

includes L−1. Combining (4.26) and (4.27) yields for the shifted current

δΛ〈J −
α | ⊗ Tα = LΛ〈J −

α | ⊗ Tα + 〈∂Λ|Tα|Λ〉〈∂Λ| ⊗
(

η−1αβ T
β + η1αβ ρ

−2M−1T β †M
)

,

δΛ〈J −
α | = LΛ〈J −

α |+ η−1αβ〈∂Λ|
(

T β +M−1T β †M
)

|Λ〉〈∂Λ| , (4.30)

where the non-covariant terms were recombined using (2.19) and (4.24) in the first and

second line, respectively. Due to the E9 covariance (4.14) of the shifted current, its Lie

derivative simply reads

LΛ〈J −
α | ⊗ Tα =

(

〈∂J |Λ〉〈J −
α |+ 〈J −

α |Λ〉〈∂Λ| − 〈∂Λ|Λ〉〈J −
α |
)

⊗ Tα

− ηαβ〈∂Λ|Tα|Λ〉〈J −
γ | ⊗ [T β , T γ ] , (4.31)

and matches that of the regular current up to a density term.
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Having established the necessary transformation rules of the various fields under gen-

eralised diffeomorphisms, we now move on to proving the invariance of the potential (4.1)

at ρ̃ = 0. Its variation takes the form

δΛV = LΛV +∆ΛV = 〈∂|
(

|Λ〉V
)

+∆ΛV . (4.32)

As was shown in (4.16), the potential is an E9 scalar of weight one. As a result, we

immediately deduce that the generalised Lie derivative of the potential is a total deriva-

tive. In the following we then exclusively focus on the non-covariant variations ∆ΛV .

From (4.20), (4.22) and (4.25) one computes that

∆ΛL1 =4 ρ−1〈∂Λ|Tα|Λ〉〈∂Λ|M−1|Jα〉 , (4.33)

∆ΛL4 =− 2 ρ−1〈∂Λ|Λ〉〈∂Λ|TαM−1|Jα〉

− ρ−1〈∂Λ|Λ〉〈J0|M−1|∂Λ〉+ ρ−1〈J0|Λ〉〈∂Λ|M−1|∂Λ〉 , (4.34)

where we used (3.26) in the variation of L1 and the section constraint (3.18a) in the

variation of L4. For the second term in the potential, we find

∆ΛL2 =2 ρ−1ηαβ〈∂Λ|Tα|Λ〉〈∂Λ|T γM−1
(

T β † +MT βM−1
)

|Jγ〉

=2 ρ−1〈Jα|Λ〉〈∂Λ|TαM−1|∂Λ〉 − 2ρ−1〈∂Λ|Λ〉〈∂Λ|TαM−1|Jα〉

+ 2 ρ−1ηαβ〈∂Λ|Tα|Λ〉〈∂Λ|[T γ , T β ]M−1|Jγ〉 . (4.35)

The section constraint (3.18a) was used on both terms to simplify the first line. Us-

ing (4.30), the variation of L3 reads

∆ΛL3 =2 ρ−1η1αβ〈∂Λ|Tα|Λ〉〈∂Λ|T γ T βM−1|J −
γ 〉

=2 ρ−1η1αβ〈∂Λ|Tα|Λ〉〈∂Λ|
[

T γ , T β
]

M−1|J −
γ 〉

=2 ρ−1ηαβ〈∂Λ|Tα|Λ〉〈∂Λ|
[

S−1(T
γ),S1(T

β)
]

M−1|Jγ〉

=2 ρ−1ηαβ〈∂Λ|Tα|Λ〉〈∂Λ|[T γ , T β ]M−1|Jγ〉

− 2 ρ−1〈∂Λ|Tα|Λ〉〈∂Λ|M−1|Jα〉+ 2 ρ−1〈∂Λ|Λ〉〈∂Λ|TαM−1|Jα〉 . (4.36)

The section constraints (3.18b) and (3.18c) were used in the first and second line, respec-

tively, and in the last line we used that for α and β restricted to e9 one has

[S−1(T
α),S1(T

β)] = [Tα, T β ]− ηαβK− δα0 T
β − δβ0T

α , (4.37)

with the Kronecker symbol defined such that δα0 〈Jα| = 〈J0|, as well as the section con-

straint (3.18a).

Combining the above non-covariant variations, we find

∆ΛV =
1

2
ρ−1 〈∂Λ|Λ〉〈∂Λ|

(

2TαM−1|Jα〉 −M−1|J0〉
)

− ρ−1 〈Jα|Λ〉〈∂Λ|TαM−1|∂Λ〉+
1

2
ρ−1〈J0|Λ〉〈∂Λ|M−1|∂Λ〉 (4.38)
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which, upon using (3.24) and (4.3), reduces to a total derivative

∆ΛV = 〈∂|
(

ρ−1|Λ〉〈∂Λ|M−1|∂Λ〉 − ρ−1M−1|∂Λ〉〈∂Λ|Λ〉
)

. (4.39)

This proves that the potential (4.1) is invariant, at ρ̃ = 0, under generalised diffeomor-

phisms up to total derivatives.

4.2 The potential at ρ̃ 6= 0

We shall now present the general expression of the potential (4.1) at ρ̃ 6= 0. In this case,

M ∈ Ê8 ⋊ SL(2) and the various terms read

L1 = ρ−1
∑

n∈Z

∞
∑

k=0

ρ̃k〈J k−n
A |M−1|J n

B 〉ηAB − 2 ρ−1〈J0 + 2 ρ̃ J1|M−1|JK〉

− 2 ρ−1〈J1|M−1|2 ρ2 χ− ρ2J1 +Ωα(M)Jα〉 , (4.40a)

L2 = ρ−1〈Jα|T βM−1Tα †|Jβ〉 , (4.40b)

L3 = ρ 〈J −
α |T βM−1Tα †|J −

β 〉 , (4.40c)

L4 = ρ−1〈J0 + 2 ρ̃ J1|TαM−1|Jα〉 . (4.40d)

The currents components 〈Jα| defined in (3.24) are now non-vanishing along e8 h sl(2),

while 〈J −
α | defined in (3.33) has non-vanishing components along all Virasoro generators

Ln with n ≤ 1 in f. The sl(2) components of the current are the same as for SL(2)/SO(1, 1)

〈J0| =− 2 ρ−1〈∂ρ|ρ+ 2 ρ−2 ρ̃〈∂ρ̃|ρ̃ , (4.41a)

〈J−1| =2 ρ−1 ρ̃〈∂ρ|ρ−
(

1 + ρ−2ρ̃2
)

〈∂ρ̃|ρ̃ , (4.41b)

〈J1| =− ρ−2〈∂ρ̃|ρ̃ . (4.41c)

It is straightforward to check that these components satisfy the identity (3.31). The func-

tion Ωα(M) defined in (A.28) is a combination of E9 group cocycles that reduces to the

cocycle ωα
1 (M) when ρ̃ is set to zero. In the following, we will show that each term is

invariant under rigid Ê8 ⋊RL−1 and scales with weight one under rigid R
+
d
. Then we will

show that the combination (4.1) is invariant under Λ and Σ generalised diffeomorphisms.

At this point, the most striking difference with the expression of the potential at ρ̃ = 0 is

perhaps the complexity of the expression of L1, and the fact that its rigid Ê8 invariance is

not manifest. This is due to the absence of an invariant bilinear form over ê8 h sl(2).

4.2.1 Rigid Ê8 ⋊ (R+

d ⋉ RL
−1

) symmetry

For clarity, we will treat separately the transformations under E9 and RL−1 . Under g ∈ E9,

the derivatives, M and the field ρ still transform as in (4.5), (4.4) and (4.8), respectively.

From the parameterisation of the coset element (3.7), one finds that

ρ̃ → ρ(g)2ρ̃ . (4.42)
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The transformation of the current and its components still take the same form as in the

ρ̃ = 0 case

〈Jα| ⊗ Tα → ρ(g)2〈Jα|g ⊗ g−1Tαg , (4.43)

〈Jα| → ρ(g)2R(g)βα〈Jβ |g , (4.44)

but now the current is e8 h sl(2)-valued. The adjoint representation matrix R(g)αβ is still

defined from the generators of f by (4.9). Note also that, using (4.41), the combination

appearing in L4 reads

〈J0 + 2 ρ̃ J1| = −2 ρ−1〈∂ρ|ρ , (4.45)

and therefore simply transforms as 〈J0 + 2 ρ̃ J1| → ρ(g)2〈J0 + 2 ρ̃ J1|g under E9.

The computation of the variation of the shifted current relies on a similar reasoning

as for ρ̃ = 0. We start with the infinite series of shift operators in the expression of the

shifted current (3.33), that transforms under E9 as

〈Jα|⊗
∞
∑

k=0

ρ̃kS−1−k(T
α)→ ρ(g)2〈Jα|g⊗

∞
∑

k=0

ρ̃k
(

ρ(g)−2 g−1S−1−k(T
α)g−ρ(g)2kωα

1+k(g
−1)K

)

,

(4.46)

where we used (A.13). Each cocycle ωα
k (g), together with the character ρ(g), defines an

extension of the adjoint representation of E9 by the generator L−k. Once again we choose

the variation of the field 〈χ| such that the shifted current transforms covariantly under E9,

〈χ| → 〈χ|g +
∞
∑

k=0

ρ̃k ρ(g)2k+2 ωα
1+k(g

−1)〈Jα|g . (4.47)

Indeed, it follows from (4.46) and (4.47) that the shifted current transforms as

〈J −
α | ⊗ Tα → 〈J −

α |g ⊗ g−1Tαg , (4.48)

and admits non-zero components along all Virasoro generators Ln for n ≤ 1. Using the

above results, it is straightforward to check that under E9, the terms L2, L3 and L4 only

scale by a factor ρ(g)2. The term L1 is more complicated, and we will only prove its

invariance under infinitesimal Ê8 ⋊ RL−1 transformations. We postpone this task to first

prove the invariance of L2, L3 and L4 under RL−1 and come back to L1 afterwards.

Under eX−L−1 ∈ RL−1 , we have the following transformations

M → eX−L1M eX−L−1 ,

〈∂| → 〈∂|eX−L−1 ,

ρ → ρ , (4.49)

ρ̃ → ρ̃−X−

〈χ| → 〈χ|eX−L−1 .
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This implies

〈Jα| ⊗ Tα →〈Jα|eX−L−1 ⊗ e−X−L−1 Tα eX−L−1 , (4.50a)

〈J −
α | ⊗ Tα →〈J −

α |eX−L−1 ⊗ e−X−L−1 Tα eX−L−1 . (4.50b)

The covariance of the term involving the infinite series of shift operators in the expression

of the shifted current 〈J −
α | can be verified using

〈Jα| ⊗
∞
∑

k=0

ρ̃kS−1−k(T
α) = 〈Jα| ⊗ eρ̃L−1S−1(e

−ρ̃L−1Tαeρ̃L−1)e−ρ̃L−1 . (4.51)

which follows from (A.30). The RL−1 invariance of L2, L3 and L4 is then a direct conse-

quence of (4.49), (4.50a) and (4.50b).

Let us finally consider the transformation of L1 under E9 and RL−1 . As mentioned

previously, this is more easily tackled by considering the infinitesimal variations of the

current components. Under the infinitesimal variation with parameter X

X = XK K+X0 d+
∑

n∈Z

Xn
A TA

n +X−L−1 , (4.52)

one has

δXM−1 = −XαT
αM−1 −M−1XαT

α† , δX〈∂| = 〈∂|(XαT
α −X0) , (4.53)

with by definition

XαT
α = XK K+X0 L0 +

∑

n∈Z

Xn
A TA

n +X−L−1 . (4.54)

One obtains for the current components

δX〈J n
A | =

∑

m∈Z

Xn−m
B 〈J m

C |fBC
A − nXn

A〈J0|+ (n− 1)X0〈J n
A |

− (n+ 1)Xn+1
A 〈J−1| − (n− 1)Xn−1

A 〈J1|+ (n+ 1)X−〈J n+1
A |+ 〈J n

A |XαT
α ,

δX〈JK| =
∑

m∈Z

mηABX−m
A 〈J m

B | −X0〈JK|+ 〈JK|XαT
α ,

δX〈J0| =−X0〈J0|+ 2X−〈J1|+ 〈J0|XαT
α ,

δX〈J−1| =− 2X0〈J−1|+X−〈J0|+ 〈J−1|XαT
α ,

δX〈J1| = 〈J1|XαT
α . (4.55)

The last term in XαT
α of each expression comes from the expansion of g ∈ E9 and eX−L−1

acting on the derivative bra of 〈Jα| in the R(Λ0)0 representation as in (4.44) and (4.50a).

These contributions trivially cancel the variation (4.53) of M−1. All the other terms follow

from the linearisation of the character ρ(g) and the adjoint representation matrix R(g)αβ
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defined in (A.22a) and (4.9), respectively. For the infinitesimal variation of the constrained

field 〈χ| under E9 and RL−1 , we obtain from (4.47) and (4.49),

δX〈χ| =
∑

n∈Z

∞
∑

k=0

ρ̃k(n− 1− k) ηABX1+k−n
A 〈Jn

B|+ 〈χ|XαT
α , (4.56)

using the linearisation (A.14) of the cocyles ωα
n(g). With (4.55), we find that the infinites-

imal variation of the first two terms of L1 gives

δX

(

ρ−1
∑

n∈Z

∞
∑

k=0

ρ̃k〈Jk−n
A |M−1|J n

B 〉ηAB − 2 ρ−1〈J0 + 2 ρ̃ J1|M−1|JK〉
)

=− 2 ρ−1
∑

n∈Z

(

∞
∑

k=0

ρ̃kρ2(k − n+ 1)Xk+1−n
A − (n+ 1)X−n−1

A + n ρ̃X−n
A

)

〈J n
B |M−1|J1〉ηAB

−X0

(

ρ−1
∑

n∈Z

∞
∑

k=0

ρ̃k〈Jk−n
A |M−1|J n

B 〉ηAB − 2 ρ−1〈J0 + 2 ρ̃ J1|M−1|JK〉
)

, (4.57)

where we used (3.31) to eliminate all the dependence on the components 〈J0| and 〈J−1| in
the second line. Note in particular the invariance of the above combination under RL−1 .

For the remaining term in L1, we need to consider the variation of Ωα(M)〈Jα|. We start

from the expression

Ωα(M) 〈Jα|⊗K = 〈Jα|⊗
(

ρ2M−1
∞
∑

k=0

ρ̃kS−1−k(T
α)†M+ ρ̃ Tα−S1(T

α)− ρ̃ δαKK
)

, (4.58)

which is obtain by using (A.28) and (3.26). With (4.51), one can show that the above

combination transforms as

Ωα(M)〈Jα| → Ωα(M)〈Jα|eX−L−1 , (4.59)

under RL−1 , while under g ∈ E9 one finds

Ωα(M)〈Jα| → ρ(g)4Ωα(M)〈Jα|g −
∞
∑

k=0

ρ̃kρ(g)2k+6 ωα
1+k(g

−1)〈Jα|g

+ ρ(g)2 ω−1(g
−1)〈Jα|g − ρ̃ ρ(g)4R(g)αK〈Jα|g , (4.60)

using (A.13). By linearising (4.59) and (4.60) using (A.14), we find the following infinites-

imal variation

δX

(

Ωα(M)〈Jα|
)

=−
∑

n∈Z

(

∞
∑

k=0

ρ̃kρ2(n−1−k)Xk+1−n
B −(n+1)X−n−1

B +nρ̃X−n
B

)

ηAB〈Jα|

−2X0Ω
α(M)〈Jα|+Ωα(M)〈Jα|XβT

β . (4.61)

With this result and (4.56), it is easy to verify that the last term of L1 is RL−1 invariant,

while its Ê8 variation cancels out that of the first two terms in (4.57). We are then

left with

δXL1 = −X0 L1 , (4.62)
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which is the action of d on L1. The full potential is then Ê8 ⋊ RL−1 invariant and, as

in the ρ̃ = 0 case (4.16), uniformly scales by a factor ρ(g)2 under finite transformations

generated by d.

4.2.2 Invariance under generalised diffeomorphisms

The fields M ∈ Ê8 ⋊ SL(2) and ρ still transform covariantly under generalised diffeomor-

phisms, i.e. as in (4.18) and (4.19), respectively. According to (4.42), the field ρ̃ is an E9

scalar density of weight one and thus transforms as a total derivative,

δΛ ρ̃ = LΛ ρ̃ = 〈∂|
(

|Λ〉ρ̃
)

. (4.63)

The ê8hsl(2)-valued current 〈Jα|⊗Tα still transforms as in (4.20) and (4.21). In particular,

its non-covariant variation still reads

∆Λ〈Jα| ⊗ Tα = ηαβ〈∂Λ|Tα|Λ〉〈∂Λ| ⊗ (T β +M−1T β †M
)

. (4.64)

However, the bilinear form ηαβ is not invariant under the extended group Ê8 ⋊ SL(2), so

that the non-covariant variation of the current components, according to (A.32), is then

∆Λ〈Jα|= 〈∂Λ|
(

ηαβT
β+

[

ρ̃

ρ2
η1αβ+

(

1−2
ρ̃2

ρ2

)

ηαβ−ρ̃

(

1− ρ̃2

ρ2

)

η−1αβ

]

M−1T β†M
)

|Λ〉〈∂Λ| .
(4.65)

The Lie derivative of the current components is still given by (4.23), although the structure

constant indices now take values over ê8 h sl(2).

Let us now turn to the variation of the shifted current. Using (2.19) and (4.65), one

obtains that the non-covariant variation of the shifted current 〈J −
α | defined in (3.33) for

α 6= K, transforms as

∆Λ〈J −
α |α 6=K=

∞
∑

k=0

ρ̃k〈∂Λ|
(

η−1−kαβ T
β (4.66)

+

[

ρ̃

ρ2
η−kαβ+

(

1−2
ρ̃2

ρ2

)

η−1−kαβ−ρ̃

(

1− ρ̃2

ρ2

)

η−2−kαβ

]

M−1T β†M
)

|Λ〉〈∂Λ|

= 〈∂Λ|
(

∞
∑

k=0

ρ̃kη−1−kαβT
β+
[

ρ̃

ρ2
ηαβ+

(

1− ρ̃2

ρ2

)

η−1αβ

]

M−1T β†M
)

|Λ〉〈∂Λ| .

It is therefore natural to define the non-covariant variation of 〈χ| such that this transfor-

mation rule also applies for α = K. We then choose

∆Λ〈χ|=−〈∂Λ|
(

∞
∑

k=0

ρ̃kL−1−k+M−1

[

ρ̃

ρ2
L0+

(

1− ρ̃2

ρ2

)

L1

]

M
)

|Λ〉〈∂Λ|−
ρ̃

ρ2
〈∂Λ|Λ〉〈∂Λ| .

(4.67)

The presence of the last term does not follow from the previous argument, but

we observe that it could be removed by redefining 〈χ| → 〈χ| − 〈J1|, since

∆Λ〈J1| = − ρ̃
ρ2
〈∂Λ|Λ〉〈∂Λ|. Such a redefinition would not modify the rigid transformation
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rule of 〈χ| under Ê8 ⋊ (R+
d
⋉RL−1), but would lead to a slightly less compact expression

for the potential. The Lie derivative of 〈χ| follows from its infinitesimal variation (4.56)

under E9 and reads

LΛ〈χ| = 〈∂χ|Λ〉〈χ|+〈χ|Λ〉〈∂Λ|−〈∂Λ|Λ〉〈χ|+
∑

n∈Z

∞
∑

k=0

(n−1−k)〈∂Λ|TA
n−1−k|Λ〉〈J n

A | . (4.68)

Combining (4.66) and (4.67) and using (A.32), one finds for the shifted current

∆Λ〈J −
α | =

∞
∑

k=0

ρ̃kη−1−k αβ〈∂Λ|T β |Λ〉〈∂Λ| − δKα
ρ̃

ρ2
〈∂Λ|Λ〉〈∂Λ|

+

(

ρ̃

ρ2
ηαβ +

(

1− ρ̃2

ρ2

)

η−1αβ

)

〈∂Λ|M−1T β†M|Λ〉〈∂Λ|

∆Λ〈J −
α | ⊗ Tα =

∞
∑

k=0

ρ̃k η−1−k αβ〈∂Λ|Tα|Λ〉〈∂Λ| ⊗ T β − ρ̃

ρ2
〈∂Λ|Λ〉〈∂Λ| ⊗ K

+
1

ρ2
(

η1αβ − ρ̃ ηαβ
)

〈∂Λ|T β |Λ〉〈∂Λ| ⊗M−1T β†M , (4.69)

while its Lie derivative is still given by the expression (4.31).

Let us now consider the variation of each term in the potential. Just as in the ρ̃ = 0

case, we will only focus on the non-covariant variations ∆ΛV as the Lie derivative of the

potential reduces to a total derivative. This is ensured by the fact that, as proved in

section 4.2.1, the potential transforms as an E9 scalar of weight one. For L2 and L4, the

computation is the same as in the ρ̃ = 0 case and one finds

∆ΛL2 =2 ρ−1〈Jα|Λ〉〈∂Λ|TαM−1|∂Λ〉 − 2ρ−1〈∂Λ|Λ〉〈∂Λ|TαM−1|Jα〉

+ 2 ρ−1〈∂Λ|Tα|Λ〉〈∂Λ|[T γ , T β ]M−1|Jγ〉 ηαβ , (4.70)

∆ΛL4 = − 2 ρ−1〈∂Λ|Λ〉〈∂Λ|TαM−1|Jα〉

− ρ−1〈∂Λ|Λ〉〈J0 + 2 ρ̃ J1|M−1|∂Λ〉+ ρ−1〈J0 + 2 ρ̃ J1|Λ〉〈∂Λ|M−1|∂Λ〉 . (4.71)

For L3, one obtains that the first infinite sum in (4.69) gives terms that all vanish according

to the section constraints, while the others give

∆ΛL3 =2 ρ−1〈∂Λ|Tα|Λ〉〈∂Λ|T γ T βM−1|J −
γ 〉(η1αβ − ρ̃ ηαβ)

− 2 ρ−1ρ̃ 〈∂Λ|Λ〉〈∂Λ|TαM−1|J −
α 〉

=2 ρ−1〈∂Λ|Tα|Λ〉〈∂Λ|[T γ , T β ]M−1|J −
γ 〉(η1αβ − ρ̃ ηαβ)

− 2ρ−1
∞
∑

k=1

ρ̃k 〈∂Λ|Λ〉〈∂Λ|S−k(T
α)M−1|Jα〉 − 2 ρ−1ρ̃ 〈∂Λ|Λ〉〈∂Λ|M−1|χ〉

=2 ρ−1〈∂Λ|Tα|Λ〉〈∂Λ|[T γ , T β ]M−1|Jγ〉 ηαβ

− 2 ρ−1
∞
∑

k=0

ρ̃k〈∂Λ|S−k(T
α)|Λ〉〈∂Λ|M−1|Jα〉

+ 2 ρ−1〈∂Λ|Λ〉〈∂Λ|TαM−1|Jα〉 − 2 ρ−1ρ̃ 〈∂Λ|Λ〉〈∂Λ|M−1|χ〉 , (4.72)
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where we used the following identity in the last step

∞
∑

k=0

ρ̃k〈∂Λ|Tα|Λ〉〈∂Λ|[S−1−k(T
γ), T β ]M−1|Jγ〉(η1αβ − ρ̃ ηαβ)

=

∞
∑

k=0

ρ̃k
(

〈∂Λ|Λ〉〈∂Λ|S−k(T
α)M−1|Jα〉 − 〈∂Λ|S−k(T

α)|Λ〉〈∂Λ|M−1|Jα〉
)

+ 〈∂Λ|Tα|Λ〉〈∂Λ|[T γ , T β ]M−1|Jγ〉ηαβ . (4.73)

Let us finally consider the variation of L1. Using (4.65) one computes that

∆Λ

∞
∑

k=0

ρ̃k〈J k−n
A | = ηAB〈∂Λ|

(

∞
∑

k=0

ρ̃k TB
n−k+

ρ̃

ρ2
M−1TB †

1+nM+
(

1− ρ̃2

ρ2

)

M−1TB †
n M

)

|Λ〉〈∂Λ| ,

(4.74)

which allows computing the variation of the first term in ρL1 as

∆Λ

(

∞
∑

k=0

ρ̃k〈Jk−n
A |M−1|Jn

B〉ηAB

)

= 2〈∂Λ|
(

∞
∑

k=0

ρ̃kS−k (T
α)+

ρ̃

ρ2
M−1S1 (T

α)† M+

(

1− ρ̃2

ρ2

)

M−1Tα†M
)

|Λ〉〈∂Λ|M−1|Jα〉

−2
∑

q=−1,0,1

〈∂Λ|
(

∞
∑

k=0

ρ̃kS−k (Lq)+
ρ̃

ρ2
M−1S1 (Lq)

† M+

(

1− ρ̃2

ρ2

)

M−1L†
qM

)

|Λ〉〈∂Λ|M−1|Jq〉

−2〈∂Λ|
(

2− ρ̃2

ρ2

)

|Λ〉〈∂Λ|M−1|JK〉

= 2〈∂Λ|
(

2

∞
∑

k=0

ρ̃kS−k (T
α)− ρ̃

ρ2
Ωα (M)

)

|Λ〉〈∂Λ|M−1|Jα〉−4〈∂Λ|Λ〉〈∂Λ|M−1|JK〉

−2
∑

q=−1,0,1

〈∂Λ|
(

∞
∑

k=0

ρ̃kLq−k+M−1

[

ρ̃

ρ2
L−1−q+

(

1− ρ̃2

ρ2

)

L−q

]

M
)

|Λ〉〈∂Λ|M−1|Jq〉 . (4.75)

In the first step, the loop valued currents were completed to the full ê8 h sl(2) currents

by adding and subtracting explicitly the missing components. In the second step, we

used (3.28) and substituted S1(T
α) by its expression following from (4.58). Using once

again (4.65), the variation of the second term in ρL1 gives

∆Λ

(

−2〈J0+2 ρ̃J1|M−1|JK〉
)

=2〈∂Λ|
(

L0+M−1

[

ρ̃

ρ2
L−1+

(

1−2
ρ̃2

ρ2

)

L0−ρ̃

(

1− ρ̃2

ρ2

)

L1

]

M
)

|Λ〉〈∂Λ|M−1|J0+2 ρ̃J1〉

+4〈∂Λ|Λ〉〈∂Λ|M−1|JK〉 . (4.76)

For the variation of the last term in L1, we need that

∆ΛΩ
α(M) = 0 , (4.77)

– 29 –



J
H
E
P
0
3
(
2
0
1
9
)
0
8
9

which follows from the fact Ωα(M) is a function of M and not of its derivative. Us-

ing (A.40), one can also show that (4.67) can be rewritten as

∆Λ〈χ| = −
∞
∑

k=0

ρ̃k〈∂Λ|L−1−k|Λ〉〈∂Λ|

− 1

ρ2
〈∂Λ|

(

L1 + ηαβ H(M)αγ
(

Ωγ(M) + ρ̃ δγ
K

)

T β + ρ̃K
)

|Λ〉〈∂Λ| . (4.78)

Together with (4.65), this yields

∆Λ

(

−2〈J1|M−1|2ρ2χ−ρ2J1+Ωα(M)Jα〉
)

=2
ρ̃

ρ2
〈∂Λ|Λ〉〈J1|M−1|2ρ2χ+Ωα(M)Jα〉

+2〈∂Λ|
(

2ρ2
∞
∑

k=0

ρ̃kL−1−k+2L1+ηαβT
β
(

H(M)αγΩ
γ(M)−Ωα(M)

)

)

|Λ〉〈∂Λ|M−1|J1〉

−4 ρ̃〈∂Λ|M−1

(

ρ̃

ρ2
L−1+

(

1−2
ρ̃2

ρ2

)

L0−ρ̃

(

1− ρ̃2

ρ2

)

L1

)

M|Λ〉〈∂Λ|M−1|J1〉 (4.79)

By combining the contributions (4.75), (4.76) and (4.79), and using the relation (3.31) to

eliminate 〈J0| and 〈J−1|, we find

∆Λ

(

ρL1

)

(4.80)

= 4〈∂Λ|
∞
∑

k=0

ρ̃kS−k(T
α)|Λ〉〈∂Λ|M−1|Jα〉+4 ρ̃〈∂Λ|Λ〉〈∂Λ|M−1|χ〉

+2〈∂Λ|
(

L1+ρ̃L0+ρ2
∞
∑

k=0

ρ̃kL−1−k+ηαβT
β
(

H(M)αγΩ
γ(M)−Ωα(M)

)

−M−1

[

ρ̃

ρ2
L−2+

(

1− ρ̃2

ρ2

)

L−1+ρ̃

(

1− ρ̃2

ρ2

)

L0+ρ2
(

1− ρ̃2

ρ2

)2

L1

]

M
)

|Λ〉〈∂Λ|M−1|J1〉

Writing M = mĝM, with ĝM ∈ Ê8 and m ∈ SL(2) as in (3.9), one computes that

M−1

(

ρ̃

ρ2
L−2 +

(

1− ρ̃2

ρ2

)

L−1 + ρ̃

(

1− ρ̃2

ρ2

)

L0 + ρ2
(

1− ρ̃2

ρ2

)2

L1

)

M

= ĝ−1
M

(

L1 + ρ̃ L0 + ρ2
∞
∑

k=0

ρ̃kL−1−k

)

ĝM . (4.81)

Together with the identities (A.35) and (A.37), this implies that the variation of L1 re-

duces to

∆ΛL1 =4 ρ−1〈∂Λ|
∞
∑

k=0

ρ̃kS−k(T
α)|Λ〉〈∂Λ|M−1|Jα〉+ 4

ρ̃

ρ
〈∂Λ|Λ〉〈∂Λ|M−1|χ〉 . (4.82)

With (4.70)–(4.72) and (4.82), one can easily check that just as in the ρ̃ = 0 case, the non-

covariant variations of (4.1) exactly recombine into the expression (4.38), such that the full

potential at ρ̃ 6= 0 is invariant under generalised diffeomorphisms up to total derivatives.
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4.2.3 Invariance under Σ transformations

We conclude our proof of the gauge invariance of the potential by considering its variation

under Σ generalised diffeomorphisms. We denote such variations simply by δΣ. The fields

M, ρ and ρ̃ transform covariantly

δΣM =LΣM = η−1αβTr(T
αΣ)

(

MT β + T β †M
)

, (4.83a)

δΣ ρ =LΣ ρ = 0 , (4.83b)

δΣ ρ̃ =LΣ ρ̃ = Tr(Σ) . (4.83c)

These expressions follow from the general definition (3.17) of the Lie derivative and the

transformation properties (4.49) of the fields under rigid RL−1 . We then deduce that

δΣ〈Jα| ⊗ Tα = LΣ〈Jα| ⊗ Tα + η−1αβ Tr(T
αΣ)〈∂Σ| ⊗

(

T β +M−1T β †M
)

, (4.84)

with

LΣ〈Jα| ⊗ Tα = −η−1αβ Tr(T
αΣ)〈Jγ | ⊗ [T β , T γ ] . (4.85)

This implies the following variation for the current components

δΣ〈Jα|=LΣ〈Jα|+
(

η−1αβTr(T
βΣ)+

1

ρ2
(

η1αβ−2ρ̃ηαβ+ρ̃2η−1αβ

)

Tr(M−1T β†MΣ)

)

〈∂Σ| ,
(4.86)

where we used the first identity in (A.32). Note that this implies ∆Σ〈J0 +2 ρ̃J1| = 0. The

Lie derivative simply reads

LΣ〈Jα| = −η−1 γδ Tr(T
γΣ) f δβ

α〈Jβ | . (4.87)

To derive the variation of the shifted current, we start by considering the Lie derivative

of the term involving the infinite series of shift operators

LΣ〈Jα| ⊗
∞
∑

k=0

ρ̃k S−1−k(T
α) = − η−1αβ Tr(T

αΣ)〈Jγ | ⊗
∞
∑

k=0

ρ̃k [T β ,S−1−k(T
γ)]

−
∑

n∈Z

∞
∑

k=0

ρ̃k(n− 1− k) Tr(TA
n−2−kΣ)〈J n

A | ⊗ K . (4.88)

The Lie derivative of the shifted current follows from its covariance (4.50b) under rigid

RL−1 transformations

LΣ〈J −
α | ⊗ Tα = −η−1αβ Tr(T

αΣ)〈J −
γ | ⊗ [T β , T γ ] . (4.89)

Together with (4.88), this implies that the Lie derivative of 〈χ| must be given by

LΣ〈χ| =
∑

n∈Z

∞
∑

k=0

ρ̃k (n− 1− k) Tr(TA
n−2−kΣ)〈J n

A | , (4.90)
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and which is indeed consistent with the infinitesimal action (4.56) of RL−1 on 〈χ|. In order

to determine the non-covariant variation of 〈χ| we proceed as in the preceding section, and

compute from (4.86) the non-covariant variation of the shifted current 〈J −
α | for α 6= K,

∆Σ〈J −
α |α 6=K =

∞
∑

k=0

ρ̃k η−2−k αβ Tr(T
βΣ)〈∂Σ|+

1

ρ2
(

ηαβ − ρ̃ η−1αβ

)

Tr(M−1T β†MΣ)〈∂Σ| .

(4.91)

We define the non-covariant variation of the field 〈χ| as

∆Σ〈χ| = − 1

ρ2

(

ρ2
∞
∑

k=0

ρ̃kTr(L−2−kΣ) + Tr
(

M−1(L0 − ρ̃ L1)MΣ
)

)

〈∂Σ| −
1

ρ2
〈∂Σ|Σ , (4.92)

such that the first two terms precisely reproduce the expression of the non-covariant vari-

ation (4.91), but for α = K. The last term turns out to be necessary for the closure of the

algebra of generalised diffeomorphisms on 〈χ|. Note that this expression is consistent with

the section constraint since the parameter Σ is covariantly constrained on its right. It is

important to mention, that by using (4.67) and (4.92), one can verify the closure of the

gauge algebra on 〈χ|. This is proven explicitly in appendix B. With the above results, we

find that the non-covariant variation of the shifted current reads

∆Σ〈J −
α | ⊗ Tα =

∞
∑

k=0

ρ̃k η−2−k αβ Tr(T
αΣ)〈∂Σ| ⊗ T β − 1

ρ2
〈∂Σ|Σ⊗ K

+
1

ρ2
(

ηαβ − ρ̃ η−1αβ

)

Tr(TαΣ)〈∂Σ| ⊗M−1T β †M , (4.93)

where we used (A.33) for the last term.

With the various transformation properties derived above, we are now equipped to

discuss the Σ variation of each term in the potential. The rigid Ê8 ⋊ RL−1 invariance of

the potential, proven in section 4.2.1, directly implies that the variation generated by the

Lie derivative vanishes, such that

δΣV = LΣV +∆ΣV = ∆ΣV . (4.94)

In the following we therefore exclusively focus on the non-covariant variations of the various

terms. For L2 and L4, we obtain

∆ΣL2 = 2 ρ−1 η−1αβ Tr(T
αΣ)〈∂Σ|[T γ , T β ]M−1|Jγ〉 , (4.95)

∆ΣL4 = 0 , (4.96)

using the section constraint (3.18b). For the variation of L3, we first compute that

ηαβTr(T
αΣ)〈Jγ | ⊗ [S−1−k(T

γ), T β ]

= η−1αβTr(T
αΣ)〈Jγ | ⊗ [S−k(T

γ), T β ]− Tr(S−1−k(T
α)Σ)〈Jα| ⊗ K

+Tr(Σ)〈Jα| ⊗ S−1−k(T
α)−

∑

q=−1,0,1

ηq−1−k αβTr(T
αΣ)〈Jq| ⊗ T β , (4.97)
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such that

ηαβTr(T
αΣ)〈J −

γ | ⊗ [T γ , T β ] (4.98)

= η−1αβTr(T
αΣ)〈Jγ | ⊗ [T γ , T β ] + ρ̃ η−1αβTr(T

αΣ)〈J −
γ | ⊗ [T γ , T β ]

−Tr(TαΣ)〈J −
α | ⊗ K+Tr(Σ)〈J −

α | ⊗ Tα −
∑

q=−1,0,1

∞
∑

k=0

ρ̃kηq−1−k αβTr(T
αΣ)〈Jq| ⊗ T β .

Using this formula one finds with (4.93),

∆ΣL3 =2 ρ−1
(

ηαβ − ρ̃ η−1αβ

)

Tr(TαΣ)〈∂Σ|[T γ , T β ]M−1|J −
γ 〉

− 2 ρ−1Tr(Σ)〈∂Σ|TαM−1|J −
α 〉

=2 ρ−1η−1αβ Tr(T
αΣ)〈∂Σ|[T γ , T β ]M−1|Jγ〉 − 2 ρ−1Tr(TαΣ)〈∂Σ|M−1|J −

α 〉

− 2 ρ−1〈∂Σ|ΣM−1|J1〉+ 2 ρ−1Tr(Σ)〈∂Σ|M−1|J1〉 , (4.99)

where we used the section constraint on Σ and in particular

ηαβTr(T
αΣ)〈∂Σ|T β = 〈∂Σ|Σ− Tr(Σ)〈∂Σ| . (4.100)

Let us finally consider the variation of ρL1. For its first term, we obtain

∆Σ

(

∞
∑

k=0

ρ̃k〈Jk−n
A |M−1|Jn

B〉ηAB
)

= 2

(

∞
∑

k=0

ρ̃kTr
(

S−1−k(T
α)Σ

)

+
1

ρ2
Tr
(

M−1
[

S1(T
α)†−ρ̃Tα†+ρ̃ δαK

]

MΣ
)

)

〈∂Σ|M−1|Jα〉

−2
∑

q=−1,0,1

(

∞
∑

k=0

ρ̃kTr
(

Lq−1−kΣ
)

+
1

ρ2
Tr
(

M−1
[

L−1−q−ρ̃L−q

]

M−1Σ
)

)

〈∂Σ|M−1|Jq〉

= 4Tr(TαΣ)〈∂Σ|M−1|J −
α 〉− 2

ρ2
〈∂Σ|M−1|2ρ2χ+Ωα(M)Jα〉

−2
∑

q=−1,0,1

(

∞
∑

k=0

ρ̃kTr
(

Lq−1−kΣ
)

+
1

ρ2
Tr
(

M−1
[

L−1−q−ρ̃L−q

]

MΣ
)

)

〈∂Σ|M−1|Jq〉 .

(4.101)

In the first step we used (4.86) and subsequently completed the loop valued currents to

their full ê8 h sl(2)-valued expressions. In the second step, we used (4.58) to eliminate the

term containing S1(T
α). Note that we wrote the result explicitly in terms of the shifted

current and that the 〈χ| contributions in fact cancel.

For the variation of the second term in ρL1, we get

∆Σ

(

− 2〈J0 + 2 ρ̃ J1|M−1|JK〉
)

(4.102)

= 2

(

Tr(L−1Σ) +
1

ρ2
Tr
(

M−1
[

L1 − 2 ρ̃ L0 + ρ̃2L1

]

MΣ
)

)

〈∂Σ|M−1|J0 + 2 ρ̃J1〉 ,
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using (4.86). For computing the variation of the last term in ρL1, we note that

∆ΣΩ
α(M) = 0 , (4.103)

since Ωα(M) does not depend on derivatives of M. Together with (4.92), this leads to

∆Σ

(

− 2〈J1|M−1|2 ρ2 χ− ρ2J1 +Ωα(M)Jα〉
)

=
2

ρ2
Tr(Σ)〈∂Σ|M−1|2 ρ2(χ− J1) + Ωα(M)Jα〉+ 4〈∂Σ|ΣM−1|J1〉

+ 4
(

ρ2
∞
∑

k=0

ρ̃kTr(L−2−kΣ) + Tr
(

M−1
[

L0 − ρ̃ L1

]

MΣ
)

)

〈∂Σ|M−1|J1〉

− 2 η−1αβ

(

Ωα(M) + Ωγ(M)H(M)αγ
)

Tr(T βΣ)〈∂Σ|M−1|J1〉 . (4.104)

Recombining the results (4.101), (4.102), (4.104) and eliminating the components 〈J0| and
〈J−1| using (3.31), we reach

∆Σ

(

ρL1) (4.105)

= 4Tr(TαΣ)〈∂Σ|M−1|J −
α 〉+ 4 〈∂Σ|ΣM−1|J1〉 − 4Tr(Σ)〈∂Σ|M−1|J1〉

− 2 η−1αβ

(

Ωα(M) + Ωγ(M)H(M)αγ
)

Tr(T βΣ)〈∂Σ|M−1|J1〉

+ 2Tr
([

ρ2
∞
∑

k=0

ρ̃kL−2−k + ρ̃ L−1 − L0

− 1

ρ2
M−1

(

L−2 − 3 ρ̃ L−1 −
(

ρ2 − 3 ρ̃2
)

L0 + ρ̃
(

ρ2 − ρ̃2
)

L1

)

M
]

Σ
)

〈∂Σ|M−1|J1〉 .

Using once again the decomposition M = mĝM, with m ∈ SL(2) as in (3.9), one finds the

following intermediary result

− 1

ρ2
M−1

(

L−2 − 3 ρ̃ L−1 −
(

ρ2 − 3 ρ̃2
)

L0 + ρ̃
(

ρ2 − ρ̃2
)

L1

)

M

= ĝ−1
M

(

L0 − ρ̃ L−1 − ρ2
∞
∑

k=0

ρ̃kL−2−k

)

ĝM ,

which, together with (A.41) and (A.42), allow reducing the expression (4.105) to

∆Σ L1 = 4 ρ−1
(

Tr(TαΣ)〈∂Σ|M−1|J −
α 〉+ 〈∂Σ|ΣM−1|J1〉 − Tr(Σ)〈∂Σ|M−1|J1〉

)

(4.106)

With the above result and the variations (4.95), (4.96) and (4.99), it is straightforward

to verify that the non-covariant variation of the potential (4.1) vanishes, thus proving its

invariance under Σ generalised diffeomorphisms.

4.3 The potential in the unendlichbein formalism

In contrast to finite-dimensional Lie groups, care has to be taken when defining the Lie

group from the algebra in the affine case. As the Lie algebra has infinitely many generators,
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the formal exponential of Lie algebra elements does not manifestly form a group or it may

introduce formal infinite sum expressions whose well-definedness needs to be established.

For instance, the current JM = M−1∂MM suffers from this problem as M depends on

an infinity of dual potentials Y A
n and applying Baker-Campbell-Hausdorff-type identities

for evaluating the algebra-valued JM leads naively to infinite sums within each component

along the loop algebra.

In this section, we explain how to make sense of this infinity and that our potential (4.1)

is well-defined. As a preliminary step, we recall different definitions of an affine Kac-Moody

group. The ‘minimal Kac-Moody group’ is defined as the closure of the group generated by

the one-parameter subgroups of the real roots [45] that can also be interpreted using the

Tits group functor [46]. This corresponds to the definition of the loop group Ê8 as the group

of rational functions in E8 of the spectral parameter w, that are meromorphic on P 1(C).

This group can be completed with respect to a topology of an associated building [47]. This

‘completed Kac-Moody group’ is then defined as the group of meromorphic functions in E8

of the spectral parameter w ∈ C. It corresponds to choosing one standard Borel subalgebra

(in our case the negative Borel associated with negative powers of w) and allowing infinite

analytic power series of w in that direction while keeping only a finite number of powers

for the other direction (for us positive powers of w).

One can then write a representative V̂ of the coset space Ê8/K(Ê8) for the completed

group Ê8 in Borel gauge, using the Iwasawa decomposition. Putting explicit coordinates

on the affine Borel group is subtle and is best done using building theory [48]. Here, we

will choose coordinates formally through exponentiation as we did in (3.2) and we can also

extend the coset representative to include the R+
d
⋉RL−1 part for the axio-dilaton to have

a group element V = vV̂ , which we consider in the R(Λ0)0 representation as usual. In this

way of writing V one can see that when acting on an element of a lowest weight module,

only finite expressions arise.

The Hermitian conjugation V† does not preserve the Kac-Moody group completed in

one direction as it interchanges the two standard Borel subgroups, so M = V†V is only well-

defined when V is in the minimal group. This is another way of seeing that the definition

of JM requires qualification.

The advantage of working in the Borel gauge (3.2) is that the Maurer-Cartan derivative

∂MVV−1 is well-defined as it requires only finitely many commutators to determine the

ê8 h sl(2) element at each (negative) power of the spectral parameter. Similarly, the coset

component of the Maurer-Cartan form

PM =
1

2

(

∂MVV−1 + (∂MVV−1)†
)

, (4.107)

is well-defined. By construction, one can write the ê8 h sl(2) current as

JM = 2V−1PMV , (4.108)

and this expression makes sense in the completed group. In the Fock space notation, this

definition of the current takes the form

〈Jα| ⊗ Tα = 2 〈Pα| ⊗ V−1TαV , 〈Jα| = 2R(V)βα〈Pβ | = 2R(v)βγ R(V̂ )γα〈Pβ | , (4.109)
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where we have define R(V)αβT β = V−1TαV in analogy with (A.7) in the appendix. In

particular one has

〈J0| = 2〈P0| − 4
ρ̃

ρ
〈P1| , 〈J1| = 2ρ−1〈P1| . (4.110)

For the shifted current, one computes that

〈Jα| ⊗
∞
∑

k=0

ρ̃kS−1−k(T
α) = 2 〈Pα| ⊗

∞
∑

k=0

ρ̃kS−1−k(V̂
−1v−1TαvV̂ )

= 2 〈Pα| ⊗
∞
∑

k=0

ρ̃kR(v)αβ
(

V̂ −1S−1−k(T
β)V̂ − ωβ

1+k(V̂
−1)K

)

= 2 〈Pα| ⊗
(

V̂ −1eρ̃L−1S−1(ρ
L0Tαρ−L0)e−ρ̃L−1 V̂ −

∞
∑

k=0

ρ̃kR(v)αβω
β
1+k(V̂

−1)K

)

= 2 〈Pα| ⊗
(

ρ−1V−1S−1(T
α)V −

(

ωα
1 (ρ

L0) +
∞
∑

k=0

ρ̃kR(v)αβω
β
1+k(V̂

−1)
)

K

)

, (4.111)

using (A.13) and (A.30). This motivates the change of variable

〈χ| = ρ−1〈χ̃|+ 2
(

ωα
1 (ρ

L0) +

∞
∑

k=0

ρ̃kR(v)αβω
β
1+k(V̂

−1)
)

〈Pα| . (4.112)

Note in particular that 〈χ̃| is a constrained field, since both 〈χ| and 〈Pα| are. Using this

formula one obtains by construction that

ρ 〈J −
α | ⊗ Tα = 2〈Pα| ⊗ V−1S−1(T

α)V + 〈χ̃| ⊗ K . (4.113)

With the above results, it becomes straightforward to re-express L2, L3 and L4 in terms

of the Maurer-Cartan form. We find

L2 = 4ρ−1〈Pα|V−1T βTαV−1†|Pβ〉 ,
L3 = 4ρ−1〈Pα|V−1S−1(T

β)S1(T
α)V−1†|Pβ〉+ 4〈Pα|V−1S1(T

α)V−1†|χ̃〉+ 〈χ̃|V−1V−1†|χ̃〉 ,
L4 = 4ρ−1〈P0|V−1TαV−1†|Pα〉 . (4.114)

Instead of working out explicitly the expression of L1 step by step, we argue what the result

should be based on the computation of the rigid Ê8 ⋊ (R+
d
⋉ RL−1) invariance of L1. To

this purpose, let us first observe that the changes of variable (4.109), (4.112) and (4.113)

essentially take the same form as the rigid transformations of the currents 〈Jα|, 〈J −
α | and

the field 〈χ| under Ê8 ⋊ (R+
d
⋉ RL−1) that were presented in section 4.2.1, but now with

V playing the rôle of the group element associated to the transformation. An important

point is that this comparison only holds if one disregards the constrained R(Λ0)−1 vector

index of the currents and 〈χ|, whose associated transformation cancels that of M−1 when

considering the variation of L1. The analogy drawn above and the rigid invariance of L1

imply that the explicit dependence on V, apart from the M−1 contracting the derivatives,

is eliminated by the substitution (4.109) and (4.112) that induces M → V−1†MV−1 = 1.

In the end, this change of variables simply amounts to cancel ρ̃ and Ωα(M) through
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Ωα(1) = 0, such that the new expression of L1 in terms of 〈Pα| and 〈χ̃| only depends

implicitly on ρ, ρ̃ and V̂ through 〈Pα| and the operator ρ−
1
2V−1

L1 = 4 ρ−1
∑

n∈Z

〈P −n
A |M−1|P n

B 〉ηAB−8 ρ−1〈P0|M−1|PK〉−8 ρ−1〈P1|M−1|χ̃−P1〉 . (4.115)

Combining the various terms one obtains the potential (4.1) in the following sim-

ple form

ρV = ηαβ〈Pα|V−1V−1†|Pβ〉+
1

2
〈χ̃− 2P1|V−1V−1†|χ̃− 2P1〉 − 2〈Pα|V−1T βTαV−1†|Pβ〉

+ 2〈Pα|V−1S−1(T
β)S1(T

α)V−1†|Pβ〉+ 2〈Pα|V−1S1(T
α)V−1†|χ̃〉

+ 2〈P0|V−1TαV−1†|Pα〉 . (4.116)

Any solution to the section constraint only has a finite number of non-trivial components

for the derivative 〈∂|. This means that 〈∂|V−1 only involves finite sums and is regular in

the Borel gauge. Moreover, all potentially infinite sums of the dual potentials Y A
n cancel in

the potential. This cancellation can be associated with the invariance under δΣ generalised

diffeomorphisms as these can be used to gauge away almost all Y A
n . We shall see these

facts more explicitly in the following section where we work out the potential in an E8

decomposition. In summary, using the completed Kac-Moody group and a Borel gauge

representative, the E9 exceptional field theory potential (4.1) is completely well-defined.

5 Reduction to E8 and consistency with supergravity

An inherent property of En exceptional field theories for n ≤ 8, is that they reduce to eleven-

dimensional supergravity or type IIB supergravity upon choosing the appropriate solution

to the section condition. In this section, we shall partially demonstrate this property for

the part of the E9 exceptional field theory dynamics encoded in the E9 scalar potential.

Our strategy will consist in proving that the E8 exceptional field theory with two external

isometries is embedded in the scalar potential of E9 exceptional field theory. In other words,

we will show explicitly that when the infinite number of E9 internal generalised coordinates

are truncated to those of E8 exceptional field theory, the potential (4.2) reproduces all the

terms of the E8 exceptional field theory Lagrangian for field configurations that do not

depend on the two external coordinates. As a corollary, this implies that our potential

encodes the dynamics of eleven-dimensional supergravity and type IIB supergravity with

two external isometries.

5.1 E8 section and exceptional field theory

In the present section, we are interested in relating the E9 exceptional field theory to E8

exceptional field theory [24] in 3+248 = 2+(1+248) dimensions where the 248 directions

are subject to an analogous E8 section constraint. As indicated in the decomposition, we

require 1 + 248 directions to emerge from the coordinates |Y 〉 in R(Λ0)−1 of E9. Similar
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to (2.5) we have a decomposition of the coordinates according to

|Y 〉 =
(

ϕ+ ηABy
ATB

−1 +
∞
∑

n=2

yA1...AnT
A1
−1 . . . T

An
−1

)

|0〉 . (5.1)

It was shown in [13] that for any hyperplane solution to the E9 section constraint (3.18)

there exists an E9 element that rotates this hyperplane to one lying completely along

the directions ϕ and yA, i.e., the lowest two pieces in the E8 graded decomposition of

R(Λ0)−1 corresponding to 1 + 248 directions. Moreover, the remnant of the E9 section

constraint (3.18) implies that fields depend on the 248 directions yA in such a way that

they satisfy the E8 section constraint [24, eq. (1.1)]. In practice, this solution to the section

constraint is implemented by restricting 〈∂| to be of the form

〈∂| = 〈0|(∂ϕ + TA
1 ∂A) , (5.2)

where ∂A = ∂
∂yA

satisfies the E8 section constraint.

The direction ϕ has an interpretation as the third external coordinate and yA as the

internal coordinates in the E8 exceptional field theory. In this section, we will show that

the potential (4.1) introduced in this paper is indeed consistent with the action of E8

exceptional field theory in that it reproduces all its terms with no external derivatives with

respect to the two directions xµ = (t, x). The Lagrangian of E8 exceptional field theory is

of the schematic form

LE8 =
√−gR̂+

1

240

√−g gmnηABJmAJnB −√−g V (M0, g) + LCS , (5.3)

where R̂ denotes the (improved) Ricci scalar of the 3 external directions with metric gmn,

where m = 0, 1, 2. M0 are the scalar fields parameterising E8 (see section 3.1) and JmA

are the components of the E8 covariant current Jm = M−1
0 DmM0 where the covariant

derivative Dm featuring in Jm and R̂ is covariantised with respect to the two gauge fields

AA
m and BmA of the theory, where A = 1, . . . , 248 labels the adjoint of E8, and the gauge

fields also appear in the Chern-Simons term LCS. The vector field BmA is constrained in its

E8 index. The potential term V (M0, g) can be expressed through the E8 internal current

M−1
0 ∂AM0 and is a combination of terms similar to (4.2). The exact form of the various

terms of (5.3) is given in [24].

As we shall show in detail in section 5.3, all terms except for the topological Chern-

Simons term give contributions when restricting to derivatives along ϕ and the 248 internal

coordinates yA according to (5.2). First we parameterise the E8 fields in a way that

facilitates the comparison. For the metric gmn on the three-dimensional external space we

shall consider the (static) ansatz

ds2 = e2σ(−dt2 + dx2) + ρ2dϕ2 . (5.4)

Compared to (3.1) there is no Kaluza-Klein vector A(3)
µ since we disregard all external form

fields in this paper. In other words, the only components of the two vector fields that will

appear are those along ϕ. For simplicity we shall write the remaining components of the

vector fields AA = AA
ϕ and BA = BϕA, without writing explicitly their ϕ index.
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5.2 Parameterising M and decomposition of the potential

We shall now decompose the potential (4.1) of E9 exceptional field theory in the E8 solu-

tion (5.2) to the section constraint. Moreover, we shall see explicitly that even though

R(Λ0)0 is an infinite-dimensional representation, the total potential only gives rise to

finitely many terms as we explained in section 4.3. In particular, we use the formula-

tion in terms of the coset representative V rather than M.

First, as explained earlier, we can work at ρ̃ = 0 without loss of generality by gauge-

fixing partially the invariance of the potential under Σ transformations and this simplifies

the analysis in this section as we only have to analyse (4.2). We now demonstrate this

gauge-fixing explicitly using (5.2) as a solution to the section condition. On (5.2), the

constrained parameter Σ ∼ |Σ〉〈πΣ| can be parameterised as

Σ =
(

σ0 − ηABΣA,B +
∞
∑

n=1

σA1...AnT
A1
−1 . . . T

An
−1

)

|0〉〈0| (5.5)

+
(

ΣA +ΣA,BT
B
−1 +

∞
∑

n=2

ΣA,A1...AnT
A1
−1 . . . T

An
−1

)

|0〉〈0|TA
1 ,

where the coefficients have to be projected to the irreducible representations appearing

at level n in (2.6). Moreover, it is clear from the structure of the generalised Lie deriva-

tive (3.15) that many of the components of Σ have a trivial action on M.

The trace of Σ is a finite expression and given by

TrΣ = σ0 . (5.6)

Considering for simplicity a Σ gauge transformation with parameter Σ = σ0|0〉〈0|, one

obtains according to (4.83a), (4.83c) and (4.92) the variations

δσ0 ρ̃ = σ0 ,

δσ0M = −σ0(ML−1 + L1M) , (5.7)

δσ0〈χ| = − 1

ρ2

(

1 + 〈0|M−1(L0 − ρ̃L1)M|0〉
)

〈0|(∂ϕ + TA
1 ∂A)σ0 .

The first transformation shows that we can shift the field ρ̃ by a gauge parameter when

exponentiated. Therefore, we can use a finite gauge transformation to set ρ̃ = 0. As

is evident from the other two equations, this will have a non-trivial effect on the dual

potentials and 〈χ|. Moreover, setting ρ̃ = 0 can be done while preserving a residual gauge

invariance under traceless Σ transformations satisfying σ0 = 0. By a similar reasoning

one can consider a more general class of Σ parameters and find that all the higher level

potentials Y A
n for n ≥ 2 are also pure gauge, as follows from η−1 in (4.83a), see also [13,

eq. (4.36)]. By contrast, Y A
1 cannot be completely gauged away but transforms as it should

in D = 3 under gauge transformations [24].
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For the rest of this section, we shall then work with the potential (4.2) at ρ̃ = 0. For

vanishing axion ρ̃, the matrix MMN belongs to E9 and can be parameterised by a suitable

E9/K(E9) coset space representative in the Borel gauge. The latter follows from (3.2),

and reads

V = ρ−L0e−σV0

∞
∏

n=1

exp(Y A
n ηABT

B
−n) . (5.8)

The potential at ρ̃ = 0 can be expressed in terms of the e9-valued Maurer-Cartan form

associated to the coset representative (5.8). This is most easily obtained by taking the

expression (4.116) and setting ρ̃ = 0. This gives

ρV (M, χ̃) = ηαβ〈Pα|V−1V−1†|Pβ〉 − 2〈Pα|V−1T βTαV−1†|Pβ〉

+ 2〈Pα|V−1S−1(T
β)S1(T

α)V−1†|Pβ〉+ 2〈Pα|V−1S1(T
α)V−1†|χ̃〉

+
1

2
〈χ̃|V−1V−1†|χ̃〉+ 2〈P0|V−1TαV−1†|Pα〉 , (5.9)

where 〈Pα| and 〈χ̃| are given by (4.107) and (4.112) for ρ̃ = 0, respectively. The (negative)

Borel gauge representative (5.8) was chosen such that 〈Pα|V−1 gives rise to a finite expan-

sion. To see this explicitly, we first note that the solution (5.2) of the section constraint

implies for PM that one has the decomposition 〈Pα| = 〈0|(Pϕ,α + PA,αT
A
1 ). Multiplying

then by V−1 from the right and using (5.8) one obtains the finite expression

〈Pα|V−1 = 〈0|(Pϕ,α + PA,αT
A
1 )

∞
∏

n=1

exp(−YnBT
B
−n)ρ

L0eσV −1
0

= 〈0|(Pϕ,α − ηABY1APB,α + PA,αT
A
1 )ρL0eσV −1

0

= eσ〈0|(Pϕ,α − ηABY1APB,α + ρPA,αV0T
A
1 V −1

0 ) . (5.10)

Similarly, the scalar field 〈χ̃| from (4.112) satisfies the section constraint and can thus be

parameterised as

〈χ̃| = 〈0|(χ̃ϕ + χ̃AT
A
1 ) . (5.11)

As another preparatory step we need to introduce indices for the local K(E8) =

Spin(16)/Z2 subgroup appearing in the coset space E8/K(E8) represented by V0. We

do this by writing A for the adjoint of E8 transforming under the local K(E8) subgroup

and define

P̂ϕ,α ≡ Pϕ,α − ηABY1APB,α ,

χ̂ϕ ≡ χ̃ϕ − ηABY1Aχ̃B ,

P̂A,αT
A
n ≡ PA,αV0T

A
n V −1

0 ,

χ̂AT
A
n ≡ χ̃AV0T

A
n V −1

0 .
(5.12)

More generally, we shall consider the notation that an underlined index is related to a
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normal one through XAT
A = XAV0T

AV −1
0 and in particular

PA,αPB,β〈0|V0T
A
n V −1

0 (V0T
B
n V −1

0 )†|0〉 = nMAB
0 PA,αPB,β

= P̂A,αP̂B,β〈0|TA
n (TB

n )†|0〉 = n δABP̂A,αP̂B,β . (5.13)

Since PM,αT
α belongs to the coset component it satisfies the Hermiticity property

PM,αT
α = (PM,αT

α)† and thus the components (5.12) can be decomposed as

P̂ϕ,αT
α = Pϕ,0L0 + Pϕ,KK+ Pϕ,AT

A +
1

2

∞
∑

n=1

Pϕ,
n
A

(

T
A
−n + (T

A
−n)

†
)

,

P̂A,αT
α = PA,0L0 + PA,KK+ PA,BT

B +
1

2

∞
∑

n=1

PA,
n
B

(

T
B
−n + (T

B
−n)

†
)

. (5.14)

Since (Pϕ,AT
A)† = Pϕ,AT

A we did not explicitly symmetrise this e8-valued component

of P̂.

Using this notation, one obtains for the L1 part of (5.9)

ηαβ〈Pα|V−1V−1†|Pβ〉 = e2σηαβ
(

P̂ϕ,αP̂ϕ,β + ρ2MAB
0 PA,αPB,β

)

, (5.15)

for the L2 part

〈Pα|V−1T βTαV−1†|Pβ〉 = e2σ〈0|
(

P̂ϕ,βT
βP̂ϕ,αT

α + ρ2T
C
1 P̂D,βT

βP̂C,αT
α(T

D
1 )†

)

|0〉

+ 2ρe2σ〈0|TC
1 P̂ϕ,βT

βP̂C,αT
α|0〉 , (5.16)

and similarly for L3

2〈Pα|V−1S−1(T
β)S1(T

α)V−1†|Pβ〉+ 2〈Pα|V−1S1(T
α)V−1†|χ̃〉+ 1

2
〈χ̃|V−1V−1†|χ̃〉

=
1

2
e2σ〈0|(2P̂ϕ,βS−1(T

β) + χ̂ϕ)(2P̂ϕ,αS−1(T
α)† + χ̂ϕ)|0〉

+
1

2
e2σρ2〈0|TC

1 (P̂D,βS−1(2T
β) + χ̂D)(2P̂C,αS−1(T

α)† + χ̂C)(T
D
1 )†|0〉

+e2σρ〈0|TC
1 (2P̂ϕ,βS−1(T

β) + χ̂ϕ)(2P̂C,αS−1(T
α)† + χ̂C)|0〉 . (5.17)

We now start to collect the different pieces in the potential term 1
4L1 − 1

2L2 +
1
2L3

in order to match them with the corresponding terms in the E8 exceptional field theory
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action. We begin with the terms bilinear in Pϕ,α. These are, after removing the overall

e2σ factor,

ηαβP̂ϕ,αP̂ϕ,β−2〈0|P̂ϕ,βT
βP̂ϕ,αT

α|0〉+1

2
〈0|(2P̂ϕ,βS−1(T

β)+χ̂ϕ)(2P̂ϕ,αS−1(T
α)†+χ̂ϕ)|0〉

= δABP̂ϕ,AP̂ϕ,B−2P̂ϕ,0P̂ϕ,K+
1

2

∞
∑

n=1

δABP̂ϕ,
n
AP̂ϕ,

n
B

−2P̂ϕ,KP̂ϕ,K−
1

2

∞
∑

n=1

nδABP̂ϕ,
n
AP̂ϕ,

n
B+

1

2
χ̂ϕχ̂ϕ+

1

2

∞
∑

n=1

nδABP̂ϕ,
n+1
A P̂ϕ,

n+1
B

= δABP̂ϕ,AP̂ϕ,B−2(P̂ϕ,0+P̂ϕ,K)P̂ϕ,K+
1

2
χ̂ϕχ̂ϕ . (5.18)

Note that all the higher potential field strengths P̂ϕ,
n
A cancel.

Next we consider all terms bilinear in PC,α. The L1 terms are simply 2ηαβMCD
0 PC,αPD,β,

while the ones from L2 are

4〈0|TC
1 PD,βT

βPC,αT
α(T

D
1 )†|0〉

= 〈0|
[

2(PD,0 + PD,K)T
C
1 + 2PD,Bf

CB
ET

E
1 + PD,

1
Bη

CB +
∞
∑

n=1

PD,
n
BT

C
1 (T

B
−n)

†
]

[

2(PC,0 + PC,K)(T
D
1 )† + 2PC,Af

DA
F (T

F
1 )† + PC,

1
Aη

DA +

∞
∑

n=1

PC,
n
AT

A
−n(T

D
1 )†

]

|0〉

= 4δCD(PD,0 + PD,K)(PC,0 + PC,K) + 4PD,BPC,Aδ
EF fCB

Ef
DA

F

+ 8(PD,0 + PD,K)PC,Aδ
CEfDA

E + (ηCBηDA + ηBDηAC)PD,
1
BPC,

1
A

+
∞
∑

n=1

(nδABδCD + δBEδDF fGE
AfCG

F )PD,
n
BPC,

n
A . (5.19)

The terms quadratic in PC,α coming from L3 are

〈0|TC
1 (2P̂D,βS−1(T

β) + χ̂D)(2P̂C,αS−1(T
α)† + χ̂C)(T

D
1 )†|0〉

= 〈0|
[

χ̂DT
C
1 + PD,

1
Bδ

BF fFE
CT

E
1 + 2PD,Bη

CB +
∞
∑

n=1

PD,
n+1
B T

C
1 (T

B
−n)

†
]

[

χ̂C(T
D
1 )† + PC,

1
Aδ

AGfGH
D(T

H
1 )† + 2PC,Aη

DA +

∞
∑

n=1

PC,
n+1
A TA

−n(T
D
1 )†

]

|0〉

= δCDχ̂C χ̂D + 4ηCBηDAPD,BPC,A + 2fCA
Bδ

BDχ̂DPC,
1
A + δEF fDB

Ef
CA

FPD,
1
BPC,

1
A

+ ηBDηACPD,
2
BPC,

2
A +

∞
∑

n=1

(

(n− 1)δABδCD + δBEδDF fGE
AfCG

F

)

PD,
n
BPC,

n
A . (5.20)

In rewriting the final expression we have used,8

δBEδDF fGE
CfAG

F = δBEδDF fGE
AfCG

F + δEF fDB
Ef

CA
F . (5.21)

8The structure constants fAB
C are given by fAB

C = ηADηBEη
CF fDE

F = −δADδBEδ
CF fDE

F and one

uses the Jacobi identity to derive this identity.
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Combining the terms bilinear in PC,α in 1
4L1− 1

2L2+
1
2L3 determined above then gives the

following somewhat lengthy expression

ηαβMCD
0 PC,αPD,β−2〈0|TC

1 P̂D,βT
βP̂C,αT

α(T
D
1 )†|0〉

+
1

2
〈0|TC

1 (2P̂D,βS−1(T
β)+χ̂D)(2P̂C,αS−1(T

α)†+χ̂C)(T
D
1 )†|0〉

=MCD
0 δABPC,APD,B−2MCD

0 PC,0PD,K+
1

2
δCD

∞
∑

n=1

δABPC,
n
APD,

n
B

−2δCD(PD,0+PD,K)(PC,0+PC,K)−2PD,BPC,Aδ
EF fCB

Ef
DA

F

−4(PD,0+PD,K)PC,Aδ
CEfDA

E−
1

2
(ηCBηDA+ηBDηAC)PD,

1
BPC,

1
A

− 1

2

∞
∑

n=1

(nδABδCD+δBEδDF fGE
AfCG

F )PD,
n
BPC,

n
A

+
1

2
δCDχ̂C χ̂D+2ηCBηDAPD,BPC,A+fCA

Bδ
BDχ̂DPC,

1
A+

1

2
δEF fDB

Ef
CA

FPD,
1
BPC,

1
A

+
1

2
ηBDηACPD,

2
BPC,

2
A+

1

2

∞
∑

n=1

(

(n−1)δABδCD+δBEδDF fGE
AfCG

F

)

PD,
n
BPC,

n
A

=MCD
0 ηABPC,APD,B−2MEF

0 fCB
Ef

DA
FPD,BPC,A+2ηCBηDAPD,BPC,A

− 1

2
MCD

0

(

4PC,0PD,0+12PC,0PD,K+4PC,KPD,K−χ̂C χ̂D

)

− 1

2
(ηCBηDA+ηBDηAC)PD,

1
BPC,

1
A+

1

2
MEF

0 fDB
Ef

CA
FPD,

1
BPC,

1
A

−4MAB
0 fCD

APC,D(PB,0+PB,K)+fAB
DM

DC
0 PA,

1
Bχ̂C+

1

2
ηBDηACPD,

2
BPC,

2
A . (5.22)

Because the structure constant fAB
C and the Killing form ηAB are E8 invariant, trading

local K(E8) indices A,B, . . . for E8 indices A,B, . . . by conjugation with V0 amounts in

practice to simply replacing δAB by MAB
0 according to (5.13). Once again all the higher

level scalar field strengths PA,
n
B cancel out for n > 2 for the final expression involving all

bilinears in PC,α.

Finally, we collect all the terms in Pϕ,βPC,α. These have no contribution from L1 and

the terms arising in −1
2L2 +

1
2L3 are

−2〈0|TC
1 P̂ϕ,βT

βP̂C,αT
α|0〉+1

2
〈0|TC

1 (2P̂ϕ,βS−1(T
β)+χ̂ϕ)(2P̂C,αS−1(T

α)†+χ̂C)|0〉

=−ηABPϕ,
1
APB,K+2fABCPϕ,APB,

1
C−(Pϕ,0+Pϕ,K)η

ABPA,
1
B+

1

2

∞
∑

n=1

δCDfAB
DPϕ,

n
CPA,

n+1
B

+ηABPϕ,Aχ̂B+
1

2
χ̂ϕη

ABPA,
2
B− 1

2

∞
∑

n=1

δCDfAB
DPϕ,

n
CPA,

n+1
B

=−ηABPϕ,
1
APB,K+fABCPϕ,APB,

1
C−(Pϕ,0+Pϕ,K)η

ABPA,
1
B+ηABPϕ,Aχ̂B+

1

2
χ̂ϕη

ABPA,
2
B .

(5.23)
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Finally we compute the expression of 1
2L4 that gives

2〈P0|V−1TαV−1†|Pα〉 = e2σ
(

2Pϕ,0Pϕ,K + ρηABPA,0Pϕ,
1
B + ρPϕ,0η

ABPA,
1
B (5.24)

+ 2ρ2MAB
0 PA,0(PB,0 + PB,K) + 2ρ2MAB

0 fCD
BPA,0PC,D

)

.

Having collected and simplified all the terms appearing in the potential, we now need

to explain how the various components relate to the quantities of E8 exceptional field

theory. First, we identify the dual potential Y A
1 with the three-dimensional vector field

along the ϕ direction Y A
1 = AA. This is natural as the vector fields in D = 3 are dual

to the scalar fields and after reduction to two dimensions the relevant part of this duality

equation becomes exactly (3.3). Similarly, the ϕ component of the E8 constrained vector

field reduces to a constrained scalar in two dimensions, that is we impose χ̃A = ρ−1BA.

Evaluating the components of Pϕ one obtains

Pϕ,0 = −ρ−1(∂ϕρ−AA∂Aρ) ≡ −ρ−1Dρ ,

Pϕ,K = −(∂ϕσ −AA∂Aσ) ≡ −Dσ ,

Pϕ,
1
A = ρ−1ηAB(∂ϕA

B −AC∂CA
B) ≡ ρ−1ηABDAB ,

(5.25)

where we have introduced the notation D for ∂ϕ−AA∂A. Note that D as introduced here is

not the full covariant derivative Dϕ that defines JmA and R̂ in (5.3) [24], but only includes

the transport term.

The components of PA become similarly

PA,0 = −ρ−1∂Aρ ,

2PA,B = ηBCJA,
C ,

PA,
2
B = ρ−2ηBC

(

∂AY
C
2 +

1

2
fDE

CAD∂AA
E
)

.

PA,K = −∂Aσ ,

PA,
1
B = ρ−1ηBC∂AA

C , (5.26)

Here, JA,
C denotes the internal component of the e8 current defined from M0 as

M−1CD
0 ∂AM0BD = JA,

DfDB
C . (5.27)

With these identifications we can now rewrite the full potential (5.9) using also the

rearrangements (5.18), (5.20), (5.23) and (5.24) for the various bilinears. The result is the

following long expression

e−2σV =−2ρ−1(Dσ)2+DAA(∂Aρ
−1+2ρ−1∂Aσ)+(−Dρ−1+2ρ−1Dσ)∂AA

A

+ρ−1ηABPϕ,APϕ,B−2ρ−1fAB
CηADPϕ,D∂CA

B+
1

2
ρ−3
(

ρχ̂ϕ+∂AY
A
2 +

1

2
fAB

CAA∂CA
B
)2

− 1

2
ρ−1(∂AA

B∂BA
A+∂AA

A∂BA
B)+

1

2
ρ−1MAB

0 fAC
D∂DA

CfBE
F∂FA

E

+
1

4
ρ
(

MCD
0 ηABJC,

AJD,
B−2MEF

0 fBE
CfAF

DJD,
BJC,

A+2JA,
BJB,

A
)

−2MAB
0 ∂Aσ

(

ρ∂Bσ+2∂Bρ
)

−MAB
0 fAD

CJC,
D(∂Bρ+2ρ∂Bσ)

+2ρ−1ηABPϕ,BBA+
1

2
ρ−1MAB

0 BABB−ρ−1MAB
0 fAC

D∂DA
CBB . (5.28)
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5.3 Comparison with E8 exceptional theory

The above form of the potential still does not look very similar to the standard action of

E8 exceptional field theory sketched in (5.3), and in particular it still contains the dual

potential Y A
2 and the constrained scalar χ̂ϕ that were not considered in [24]. In order to

recognise the standard terms we now expand them out.

The kinetic term for the scalar fields reduces to an expression in terms of the covariant

current along the ϕ direction

JA = 2ηABPϕ,B − (MAB
0 + ηAB)(fBC

D∂DA
C −BB) , (5.29)

with 2Pϕ,AT
A = M−1

0 (∂ϕ − AA∂A)M0 = M−1
0 DM0. This is the only non-trivial surviving

part of the kinetic term and becomes explicitly

1

2
ηABJ

AJB =2ηABPϕ,APϕ,B−4fAB
CηADPϕ,D∂CA

B+∂AA
B∂BA

A+(∂AA
A)2+MAB

0 BABB

+4BAη
ABPϕ,B−2MAB

0 fAC
D∂DA

CBB+MAB
0 fAC

D∂DA
CfBE

F∂FA
E , (5.30)

where we can already anticipate how several of the terms in (5.28) above simplify.

With the metric (5.4), one computes that

g−1∂Ag = 2ρ−1(2ρ∂Aσ + ∂Aρ) ,

g−1∂Agg
−1∂Bg + ∂Ag

µν∂Bgµν = 8ρ−1∂(Aσ(ρ∂B)σ + 2∂B)ρ) , (5.31)

and dropping the dependence in t and x one obtains for the improved Ricci scalar that

e2σρR̂− d(εabce
a ∧ ωbc) + ∂A(A

Aea ∧ ωbd) = −2ρ−1e2σ
(

Dσ − ∂AA
A
)2

. (5.32)

The two total derivatives were introduced to write the Einstein-Hilbert Lagrangian in terms

of the generalised anholonomies. Using integration by part one obtains from this

e2σ
(

2DAA(∂Aρ
−1 + 2ρ−1∂Aσ) + 2(−Dρ−1 + 2ρ−1Dσ)∂AA

A
)

= 2ρ−1e2σ
(

4Dσ∂AA
A + ∂AA

B∂BA
A − (∂AA

A)2
)

+ 2∂A

(

ρ−1e2σ(DAA +AA∂BA
B)
)

− 2∂ϕ

(

ρ−1e2σ∂AA
A
)

. (5.33)

Using (5.30) and (5.33) to rewrite (5.28) one obtains that

−e−2σV = ρR̂− 1

4
ρ−1ηABJ

AJB +
1

2
∂ABA +

1

2
∂ϕB0

− ρ

(

1

4
MCD

0 ηABJC,
AJD,

B − 1

2
MEF

0 fBE
CfAF

DJD,
BJC,

A +
1

2
JA,

BJB,
A

)

+
1

2
MAB

0 fAD
CJC,

Dg−1∂Bg +
1

4
MAB

0

(

g−1∂Agg
−1∂Bg + ∂Ag

µν∂Bgµν
)

− 1

2
ρ−1

(

χ̂ϕ + ρ−1

(

∂AY
A
2 +

1

2
fAB

CAA∂CA
B

))2

. (5.34)

Here, BA and B0 are boundary terms introduced by the partial integrations. The three

first lines of (5.34) reproduce indeed the Lagrangian (5.3), when neglecting the dependence
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in the two-dimensional external coordinates t and x, such that the topological term does

not contribute. In particular, the second and third line correspond to the potential of E8

exceptional field theory written in terms of currents and is structurally the same as (4.2).

The last line exhibits that χ̂ϕ is an auxiliary field that can be integrated out without

affecting the other fields, and after its elimination the Lagrangian does not depend on the

higher level potential Y A
2 . The fields 〈χ| is eventually fixed to

〈χ| = ρ−2〈0|
(

−∂AY
A
2 − 1

2
fAB

CAA∂CA
B +BAA

A +BAT
A
1

)

+ 2ωα
1 (V−1)〈Pα| . (5.35)

This removes all dependence on the unwanted fields so that we obtain a perfect match

with all terms of E8 exceptional field theory that can be reproduced from the E9 potential

constructed in this paper.

It was shown in [49, 50], and more generally in [51], that the only two inequivalent

maximal hyperplane solutions to the section constraint of En exceptional field theories

for n ≤ 8, correspond to eleven-dimensional supergravity and type IIB supergravity. For

E8 exceptional field theory, a partial dictionary with eleven-dimensional supergravity was

provided explicitly in [24, 52]. The above results then imply that, after appropriately

solving the section constraint, our E9 exceptional field theory potential reduces to the

eleven-dimensional or type IIB supergravity Lagrangians for field configurations that do

not depend on the two external coordinates t and x.

6 Conclusions

In this paper, we have constructed the potential of E9 exceptional field theory as an in-

variant under E9 generalised diffeomorphisms. This potential is constructed out of (at

most) two internal derivatives acting on the scalar fields and is the first example of such

an invariant potential for an infinite-dimensional duality group and an infinite-dimensional

coordinate representation. The potential consists of four terms, separately invariant un-

der rigid Ê8 ⋊ RL−1 transformations and transforming homogeneously under R
+
d
, where

E9 = Ê8 ⋊R
+
d
. Invariance under generalised diffeomorphisms (up to a total derivative)

is only achieved by conspiring cancellations among the variations of the different terms.

Another key new feature of E9 exceptional field theory is the appearance of a covariantly

constrained field χM already in the scalar sector. This constrained scalar field also enters

crucially in the potential by forming an indecomposable representation together with the

(non-central) components of the e9 current.

Because of the complicated representation theory of E9 and of its extension by RL−1 ,

which admit indecomposable (but not irreducible) representations, it is not known whether

there are only a finite number of terms invariant under the rigid symmetries of the theory

that could in principle contribute to the potential. It is therefore difficult to state whether

our result could be uniquely determined by requiring invariance under generalised diffeo-

morphisms. This is however not necessary for our purpose, as we also require that the

dynamics of D = 11 and type IIB supergravity are reproduced upon solving the section

constraint, and have proved that this is the case by mapping our expression to the potential

of E8 exceptional field theory. This is sufficient to guarantee uniqueness of our result.
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The result of this paper is the first building block for the full E9 exceptional field the-

ory. Specifically, it represents the truncation of E9 exceptional field theory to scalar fields

and vanishing external derivatives. The full theory will combine the scalar fields intro-

duced in this paper with gauge fields {Aµ
M , Bµ

M
N}, transforming in the representations

of the gauge parameters of the generalised diffeomorphisms (3.15). These gauge fields

will covariantise external derivatives but also couple separately via a topological (Wess-

Zumino-like) term. As customary in all even dimensions, the full theory will presumably

admit its most compact formulation in terms of a pseudo-action supplemented by certain

first-order duality equations, in this case for the scalar fields. The latter would define the

extension of the linear system underlying two-dimensional maximal supergravity to the full

exceptional field theory — after solving the section constraints thus to full D = 11 and

type IIB supergravity. In particular, these equations should provide first order equations

for the constrained scalar field χM , confirming that this is not an additional propagating

degree of freedom, but rather is determined by the physical fields of the theory. The precise

match with two-dimensional supergravity will require the identification of the dictionary

among the components of our matrix MMN and the infinite tower of dual scalar potentials

encoded in the various formulations of the linear system [17, 39, 53–55].

As already discussed in the introduction, an immediate application of E9 exceptional

field theory will be its reduction by means of a generalised Scherk-Schwarz ansatz [13],

which together with the dictionary to supergravity fields would exhibit the structure of the

yet elusive scalar potential of gauged maximal D = 2 supergravity [31] without the need

to resort to the fermionic sector and supersymmetry of the theory. A notable aspect of the

gauged maximal D = 2 supergravities studied in [31] is the ubiquity of the gauging of the

L−1 generator that also featured in our construction and the generalised Lie derivative.

The constrained scalar field χM is also indispensable in the generalised Scherk-Schwarz

ansatz for such gaugings.

It would also be very desirable to reformulate our potential in terms of the manifestly

covariant components of a suitably defined internal Ricci tensor, analogous to the structures

identified for the lower-rank groups [6, 56, 57]. However, such a formulation would first

require the identification of (the unambiguous components of) an appropriate internal

K(E9) spin connection, which at the moment seems a formidable task given the non-

reductiveness of K(E9) and the fact that it does not admit highest weight representations.

Our work can also be considered as a step towards understanding the E11 conjec-

ture [58–60] as well as the E10 conjecture [61]. The advantage of the group E9 considered

here is that it admits an explicit realisation as a vertex operator algebra which allows to

define explicitly the full non-linear theory. One can nevertheless expect that there exists an

E11 exceptional field theory that would include all the others by considering specific partial

solutions of its section constraint. The latter does not appear explicitly in the formulation

of [60] but played a crucial role in a different linearised system extending E11 [62].

While we have focussed on the construction of the potential of E9 exceptional field

theory, our expressions and proof of invariance are equally valid for any affine Kac-Moody

group based on a finite-dimensional simple Lie group G, in which case the rigid symmetry

group of the potential is Ĝ ⋊ (R+
d
⋉ RL−1), with Ĝ the centrally extended loop group
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over G. The expressions for the generalised Lie derivative are entirely analogous as proved

in [13]. Our result can then also be seen as the extension of the expressions for extended

field theory potentials in [14] to the case of affine Kac-Moody groups with scalar fields

in indecomposable representations. An especially interesting case is the affine group over

SO(8, n) governing two-dimensional half-maximal supergravity. Extended field theories for

the duality groups of half-maximal supergravities in four and three dimensions have been

recently formulated [63, 64] and capture ten-dimensional heterotic and six-dimensional

(2, 0) supergravities as solutions of the section constraint. The potential constructed in

this paper corresponds to ten-dimensional (1, 0) and six-dimensional (2, 0) supergravities

coupled to abelian supermultiplets. The introduction of gauge interactions for these half-

maximal extended field theories requires a deformation of the generalised diffeomorphisms,

of the potential and of the full dynamics [63, 65] which would also be interesting to pursue.

Along these lines, a further interesting development would be the construction of an ‘X-

deformation’ of our potential (and later of the full E9 exceptional field theory) that would

also reproduce the dynamics of massive type IIA supergravity upon solving the section

constraint, in analogy with the higher-dimensional cases [66].
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A Properties of the cocycle

A.1 E9 group 1-cocycles in the co-adjoint

The group E9 acts on its Lie algebra e9 by conjugation and we aim to extend this group

action on the extra vir generators Lm, m 6= 0. To this end let

X = XKK+X0L0 +
∑

n∈Z

Xn
A TA

n = XαT
α (A.1)

be an element of e9 in the R(Λ0)0 representation, where d = L0. As in this section we

are only concerned with the adjoint representation of e9 and its extension by 〈Lm〉 for

fixed m 6= 0, we are allowed to ignore the distinction between d and L0 throughout our

discussion. Notice also that compared to (4.52), there is no L−1 component here. The

non-trivial commutator between the Virasoro generators and e9 is given by

[X,Lm] = −mX0Lm +
∑

n∈Z

nXn
AT

A
n+m = −mX0Lm +

∑

n∈Z

(n−m)Xn−m
A TA

n . (A.2)

We see that Lm transforms under e9 by a rescaling proportional to the derivation com-

ponent of X, plus extra elements in the loop algebra ê8. The same happens for a finite
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transformation g ∈ E9, where we define

g−1Lmg ≡ ρ(g)−2mLm − ωα
−m(g) ηαβT

β , (A.3)

where ρ(g)2 is the component of g along the one-dimensional subgroup generated by

the derivation:

g ≡ ρ(g)−2L0 ĝ , ĝ ∈ Ê8 . (A.4)

By construction and for fixed m, the algebra e9 h 〈Lm〉 with commutation relations (A.2)

defines a representation of E9 under the adjoint action. For X ∈ e9 and em ∈ R, no sum

over m, one gets

g−1(X − emLm)g =
(

g−1X g + emηαβω
α
−m(g)T β

)

− ρ(g)−2memLm , (A.5)

such that there is a non-trivial effect of the Lm component on the e9 component X, i.e., the

representation matrices are block triangular and the representation is indecomposable. One

can understand this representation to be built out of two E9 representations, the adjoint

representation e9 and the one-dimensional representation ρ(g)−2m mentioned above (2.5),

linked together by the non-trivial map from E9 to e9 defined by g 7→ ηαβω
α
−m(g)T β . The

ωα
−m are the components of a map from E9 to the co-adjoint representation e∗9 that one

calls a group 1-cocycle. The ωα
−m determine in this sense the extension of the adjoint

E9 representation e9 to the indecomposable E9 representation e9 h 〈Lm〉. For the above

formula (A.5) to define an action of E9, i.e., acting twice being compatible with the group

multiplication, the map ωα
−m must satisfy the 1-cocyle condition9

ωα
−m(g1g2) = R(g−1

2 )αβ ω
β
−m(g1) + ρ(g1)

−2mωα
−m(g2) , (A.6)

for any g1, g2 ∈ E9 and where

g−1Tαg = R(g)αβT
β (A.7)

defines representation matrices R(g)αβ of the adjoint E9 action: R(g1)
α
γR(g2)

γ
β =

R(g1g2)
α
β . Note also that the invariance of ηαβ on e9 implies ηβγ R(g−1)γδη

δα = R(g)αβ .

We will discuss the proof of (A.6) momentarily. If the 1-cocycle was trivial, i.e. if there

existed a co-adjoint vector vα such that

ωα
−m(g)

?
= Rα

β(g
−1)vβ − ρ−2m(g)vα , (A.8)

then the representation e9 h 〈Lm〉 would decompose into the direct sum of e9 and the

one-dimensional representation ρ(g)−2m, but ωα
−m is a non-trivial cocycle for all m and

e9 h 〈Lm〉 is indecomposable.

The dual of the extended representation can be constructed in the usual way. Denoting

the basis dual to ηαβT
β and Lm by Λα and Λm one finds for the action of E9 that (no sum

over m)

g−1 (jαΛ
α + χmΛm) g = jαR(g)αβΛ

β +
(

ρ(g)2mχm − jα ρ(g)
2mR(g)αβ ω

β
−m(g)

)

Λm ,

(A.9)

9In the standard mathematical definition it is ρ2m(g)ωα
−m(g) that defines an E9 1-cocycle in the co-

adjoint representation.
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from which one can read off the transformation of the coefficients jα and χm. Using (A.6)

we find

ωα
−m(g) = −ρ(g)−2mR(g−1)αβω

β
−m(g−1) (A.10)

so that (A.9) can be rewritten succinctly as follows

(jα, χm) →
(

jβR(g)βα , ρ(g)2mχm + ωα
−m(g−1)jα

)

. (A.11)

Setting m = −1, this is the transformation we have for the currents and the field χ at

ρ̃ = 0 (4.13).

An important observation is that ωα
−m(g) can be defined in terms of the shift oper-

ators (2.18). First, we notice that the bilinear forms (2.17) transform under E9 only by

a rescaling

ηmαβ g
−1Tαg ⊗ g−1T βg = ρ(g)−2mηmαβT

α ⊗ T β . (A.12)

Then, using (2.19) for n = 0 and conjugating by g, we obtain for m 6= 0,

ωα
−m(g)K ≡ ρ(g)−2mg Sm(Tα)g−1 − Sm(g Tαg−1) , (A.13)

which is therefore equivalent to (A.3) and allows to straightforwardly prove the cocycle

condition (A.6). Crucially, (A.13) holds for any Tα ∈ f (with g ∈ E9) and for this reason

we will take it as our definition of ωα
−m(g). The cocycle condition (A.6) is still satisfied by

this more general definition, where (A.7) also generalises to any Tα ∈ f and ωα
−m(g) is an

E9 group 1-cocyle in the conjugate representation f∗.

For the computation of section 4, it is useful to present the expansion of the loop

components of the cocycle. Up to linear order in the components of X ∈ e9 of g = eX , we

find using (A.13) that10

ω A
−mn(g) = −(m+ n)ηAB X−m−n

B +O(X2) . (A.14)

The expansion of the Ln components of the cocycle ω−mn(g) = O(X2) only starts at

quadratic order in X while the component along K simply vanishes. Another particularly

important expression will be the cocycle associated with the Hermitian coset representative

M at ρ̃ = 0. A convenient expression equivalent to (A.13) is

ωα
m(M)K = ρ2mM−1Sm

(

Tα †
)

M−Sm

(

M−1Tα †M
)

when ρ̃ = 0 . (A.15)

Finally, it is instructive to write explicit expressions for ωα
−m(g) for g = eX . Here we

restrict to m = ±1 only. Going back to (A.2), it is useful to rewrite the second term as

−
∑

n∈Z

(n± 1)Xn±1
A TA

n = 〈[L0, X] , Tα 〉±1 ηαβT
β , (A.16)

10One computes that [X,Sm(TA
n )] + mX0Sm(TA

n ) − Sm([X,TA
n ]) = −(m + n)ηABX−m−n

B , while

[X,Sm(Ln)] +mX0Sm(Ln)− Sm([X,Ln]) = 0.
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where the sum on α runs over all E9 generators with indices raised and lowered with the

standard ηαβ = η0αβ of (2.17) and the shifted form on the loop generators in e9 is defined as

〈

TA
m, TB

n

〉

±1
= ηABδm,−n±1 (A.17)

and agrees with the restriction to the loop part of the bilinear form η±1αβ . To illus-

trate (A.16) further, we write out the right-hand side explicitly

−〈[L0,X] ,Tα〉±1 ηαβT
β = 〈[L0,X] ,K〉±1L0+〈[L0,X] ,L0〉±1K−

∑

n∈Z

〈

[L0,X] ,TA
−n

〉

±1
TB
n ηAB

=
∑

m,n∈Z

mXm
C

〈

TC
m ,TA

−n

〉

±1
TB
n ηAB

=
∑

n∈Z

(n±1)Xn±1
A TA

n , (A.18)

where we have used that η±1 does not pair K and L0 non-trivially with anything in e9.

Using (A.16), we can thus restate (A.2) as

adXL±1 = ∓X0L±1 − 〈[L0, X] , Tα〉∓1 ηαβT
β (A.19)

and we have also introduced the notation adXL±1 = [X,L±1] for the commutator between

e9 and L±1. This is the action we aim to exponentiate.

By induction one can show for any k ≥ 0 that

adkXL±1 = (∓X0)
kL±1 −

〈

[L0, X] ,

k−1
∑

ℓ=0

(∓X0)
ℓ(−adX)k−1−ℓ Tα

〉

∓1

ηαβT
β , (A.20)

which can be exponentiated to g = eX easily since X0 is central in the representation. This

leads to

g−1L±1g = e±X0L±1 −
〈

[L0, X] ,
eadX − e±X0

−adX ±X0
Tα

〉

∓1

ηαβT
β , (A.21)

which compared to (A.3) gives

ρ(g) = e−
X0
2 , (A.22a)

ωα
±(g) =

〈

[L0, X] ,
eadX − e∓X0

−adX ∓X0
Tα

〉

±1

, (A.22b)

This explicit expression of the cocycle is only valid for Tα ∈ e9.

A.2 Generalisation to Ê8 ⋊ SL(2)

In the previous discussion g was an element of E9. When the axion ρ̃ 6= 0, M is no longer

an element of E9 and instead belongs to the group Ê8⋊SL(2). We thus require an extension

of some of the formulas above to this case. We shall now give a generalisation of (A.15)

that can be expressed as an infinite power series in ρ̃ and reduces to the previous formula

when ρ̃ = 0.
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As in (3.10) we shall decompose the Hermitian M as

M = mĝM = ĝ†Mm (A.23)

with Hermitian m ∈ SL(2) and non-Hermitian ĝM in Ê8. The generalisation of the cocycle

that has the needed properties is

Ωα(M)K = ĝ−1
MS+1

(

m−1Tα †m
)

ĝM − S+1

(

M−1Tα †M
)

. (A.24)

Compared with (A.15), we see that we have made a choice in the split between m and ĝM
and that the character factor ρ does not appear explicitly anymore. This is natural since

this part is contained in the action of m ∈ SL(2). We have also defined this only for S+1.

Notice that because of the presence of m inside the first shift operator, this expression

does not satisfy (A.6) and is therefore not a group cocycle. However, when ρ̃ = 0 we have

m ∈ R
+
d
and Ωα(M) reduces to ωα

1 (M).

Since the Tα that belong to ê8 can be represented by e8 elements that depend on a

spectral parameter w via TA
m = wmTA, leading to meromorphic functions of w, and SL(2)

acts on these generators by Möbius transformations of w, it is convenient to work out the

conjugation by m in this picture. More explicitly, the form of the SL(2) generators as

differential operators in w is

L+1 = −w2∂w , L0 = −w∂w , L−1 = −∂w , (A.25)

such that their exponentiated action on any function f(w) is given by Möbius transforma-

tions leading to11

m−1f(w)m = f

(

ρ−2(w − ρ̃)

1 + ρ̃ρ−2(w − ρ̃)

)

, (A.26)

which when combined with the shift operator S+1 that multiplies by w leads to

mS+1

(

m−1f(w)m
)

m−1=

(

ρ2
w

1−ρ̃w
+ρ̃

)

f(w)= ρ2
∑

k≥0

ρ̃kwk+1f(w)+ρ̃f(w)

= ρ2
∑

k≥0

ρ̃kS1+k(f(w))+ρ̃f(w) . (A.27)

Inserting this into (A.24) leads to

Ωα(M)K = M−1
(

ρ2
∑

k≥0

ρ̃kS1+k(T
α †) + ρ̃ Tα †

)

M−S+1

(

M−1Tα †M
)

− ρ̃ δαKK , (A.28)

where the last term is due to the fact that ΩK(M) = 0 in (A.24) but the expansion using

the Möbius transformations above generates a spurious term.

11The exponentiation of the individual transformations is

eρ̃L+1f(w)e−ρ̃L+1 = f

(

w

1 + ρ̃w

)

, ρ2L0f(w)ρ−2L0 = f(ρ−2w) , eρ̃L−1f(w)e−ρ̃L
−1 = f(w − ρ̃) .
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A.3 Useful identities

Here we collect some useful identities for the generalisation of the cocycle Ωα(M) discussed

above and the effect of SL(2) conjugations on expressions appearing in the derivation of

the potential.

Using the same argument as above based on Möbius transformations, one works out

the conjugation under L−1 of the shift operator as

eρ̃L−1S−1(e
−ρ̃L−1f(w)eρ̃L−1)e−ρ̃L−1 =

1

w − ρ̃
f(w) (A.29)

such that

eρ̃L−1S−1(e
−ρ̃L−1Tαeρ̃L−1)e−ρ̃L−1 =

∞
∑

k=0

ρ̃kS−1−k(T
α) . (A.30)

It is sometimes convenient to rewrite the geometric series of shifted generators appearing

in J −
α in this way.

The Ê8 invariant bilinear form ηnαβ is not invariant under the action of SL(2). To

compute the effect of a conjugation with the Virasoro generator Lq for q = −1, 0, 1, it is

useful to first show that at the Lie algebra level

ηnαβ [Lq, T
α]⊗ T β + ηnαβT

α ⊗ [Lq, T
β ] = (q − n)ηn+qαβT

α ⊗ T β . (A.31)

Using this formula, one computes that for m ∈ SL(2) one has

η−1αβm
−1Tα†m⊗T β =

(

1

ρ2
η1αβ−2

ρ̃

ρ2
ηαβ+

ρ̃2

ρ2
η−1αβ

)

Tα⊗m−1T β†m (A.32)

ηαβm
−1Tα†m⊗T β =

(

ρ̃

ρ2
η1αβ+

(

1−2
ρ̃2

ρ2

)

ηαβ−ρ̃

(

1− ρ̃2

ρ2

)

η−1αβ

)

Tα⊗m−1T β†m

η1αβm
−1Tα†m⊗T β=

(

ρ̃2

ρ2
η1αβ+2ρ̃

(

1− ρ̃2

ρ2

)

ηαβ+ρ2
(

1− ρ̃2

ρ2

)2

η−1αβ

)

Tα⊗m−1T β†m

η2αβm
−1Tα†m⊗T β=

(

ρ̃3

ρ2
η1αβ+ρ̃2

(

3−2
ρ̃2

ρ2

)

ηαβ+ρ̃

(

3ρ2−3ρ̃2+
ρ̃4

ρ2

)

η−1αβ

+ρ4
∞
∑

k=0

ρ̃kη−2−kαβ

)

Tα⊗m−1T β†m.

Note in particular that

(

ηαβ − ρ̃ η−1αβ

)

m−1Tα†m⊗ T β =
(

ηαβ − ρ̃ η−1αβ

)

Tα ⊗m−1T β†m. (A.33)
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These formulas can be used to obtain some properties of Ωα(M). One computes using

the definition (A.24) that

ηαβΩ
α (M)K⊗T β = ηαβ

(

ĝ−1
MS1

(

m−1Tα†m
)

ĝM−S1

(

ĝ−1
Mm−1Tα†mĝM

))

⊗T β (A.34)

=

(

ρ̃

ρ2
η1αβ+

(

1−2
ρ̃2

ρ2

)

ηαβ−ρ̃

(

1− ρ̃2

ρ2

)

η−1αβ

)

×
(

ĝ−1
MS1 (T

α) ĝM⊗m−1T β†m−S1 (T
α)⊗ĝ−1

Mm−1T β†mĝM

)

=K⊗
(

ρ̃
(

L0−ĝ−1
ML0ĝM

)

+ρ2
∞
∑

k=0

ρ̃k
(

L−1−k−ĝ−1
ML−1−kĝM

)

)

,

where we used (A.32) in the first step and (2.19) in the second. One therefore obtains the

useful identity

ηαβΩ
α(M)T β = ρ̃(L0 − ĝ−1

ML0ĝM) + ρ2
∞
∑

k=0

ρ̃k(L−1−k − ĝ−1
ML−1−kĝM) . (A.35)

We want also to compute ηαβH(M)αγΩ
γ(M)T β with H(M)αβ defined in (3.27). Us-

ing instead formula (A.28), one computes that

ηαβH (M)α γΩ
γ (M)K⊗ T β

= ηαβ

(

M−1ρ2
∞
∑

k=0

ρ̃kS−1−k

(

M−1Tα†M
)†

M+ ρ̃Tα − S1 (T
α)

)

⊗ T β

+ ρ̃K⊗
(

ρ̃

ρ2
M−1L−1M+

(

1− 2
ρ̃2

ρ2

)

M−1L0M− ρ̃

(

1− ρ̃2

ρ2

)

M−1L1M
)

= K⊗
(

ĝ−1
ML1ĝM − L1

)

(A.36)

so one obtains the very simple result that

ηαβH(M)αγΩ
γ(M)T β = ĝ−1

ML1ĝM − L1 . (A.37)

Using this formula and reinserting the m matrix using (A.32) one obtains that

L1+ηαβH (M)α γΩ
γ (M)T β =M−1

(

ρ2
(

1− ρ̃2

ρ2

)2

L1+2ρ̃

(

1− ρ̃2

ρ2

)

L0+
ρ̃2

ρ2
L−1

)

M .

(A.38)

Using again (A.32) one computes that

ηαβH (M)α KT
β = M−1

(

ρ̃

(

1− ρ̃2

ρ2

)

L1 −
(

1− 2
ρ̃2

ρ2

)

L0 −
ρ̃

ρ2
L−1

)

M , (A.39)

such that

L1 + ηαβH(M)αγ(Ω
γ(M) + ρ̃δγ

K
)T β = M−1

(

(ρ2 − ρ̃2)L1 + ρ̃L0

)

M . (A.40)

By a similar reasoning, one also obtains

η−1αβ Ω
α(M)T β = ρ̃ L−1 + ρ2

∞
∑

k=0

ρ̃kL−2−k − ĝ−1
M

(

ρ̃ L−1 + ρ2
∞
∑

k=0

ρ̃kL−2−k

)

ĝM , (A.41)

and

η−1αβ Ω
γ(M)H(M)αγ T

β = ĝ−1
M L0 ĝM − L0 . (A.42)
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B Gauge algebra closure on 〈χ|

The closure of the algebra of generalised diffeomorphisms on the Ê8⋊ (R+
d
⋉RL−1) scalars

M follows from its closure on a vector field |V 〉 (3.15), which was derived in [13]. The

field 〈χ| does not transform under generalised diffeomorphisms simply as a generalised Lie

derivative, and the mixing with the ê8hsl(2) current makes it non-obvious that the algebra

closes on this field. In this appendix we show that this is indeed the case.

Because the algebra closes on M and therefore on 〈Jα|, one can check the closure of

the algebra on any linear combination of 〈χ| and 〈Jα|. Since the transformation of 〈χ|
is not manifestly covariant, it is indeed convenient to check the closure of the algebra on

the combination

〈ξ| ≡ 〈χ|+
∞
∑

k=0

ρ̃k〈Jα|S−1−k(T
α) +

ρ̃

ρ2
(

〈Jα|Tα + ρ−1〈∂ρ|
)

, (B.1)

that transforms as

δ〈ξ| = 〈∂ξ|Λ〉〈ξ|+ ηαβ〈∂Λ|Tα|Λ〉〈ξ|T β +
1

ρ2
η1αβ〈∂Λ|Tα|Λ〉〈∂Λ|M−1T β†M

+ η−1αβTr(T
αΣ)〈ξ|T β +

1

ρ2
ηαβTr(T

αΣ)〈∂Σ|M−1T β†M

− 1

ρ2
〈∂Σ|Σ+

1

ρ2
Tr(Σ)

(

〈Jα|Tα + ρ−1〈∂ρ|
)

. (B.2)

To compute the closure it is convenient to use the BRST formalism, for which Λ and Σ

are understood as anticommuting ghost fields, with their own variation defined according

to (3.21) as

δ|Λ〉 = 1

2

(

〈∂Λ1 |Λ2〉|Λ1〉 − ηαβ〈∂Λ2 |Tα|Λ2〉T β |Λ1〉 − 〈∂Λ2 |Λ2〉|Λ1〉
)

, (B.3)

δΣ = 〈∂Σ|Λ〉Σ− ηαβ〈∂Λ|Tα|Λ〉T βΣ− Σ|Λ〉〈∂Λ|

+
1

4
η1αβ

(

〈∂Λ2 |Tα|Λ2〉T β |Λ1〉+ 〈∂Λ2 |Tα|Λ1〉T β |Λ2〉
)

〈∂Λ2 | −
1

2
η−1αβTr(T

αΣ)T βΣ ,

for which the labels on |Λ1〉 and |Λ2〉 only indicate on which |Λ〉 the derivative acts, despite
the fact that they are the same anticommuting ghost |Λ〉. For example, in index notation

one has

δΛM =
1

2

(

ΛN∂NΛM − ηαβ(T
α)PN∂PΛ

N (T β)MQΛ
Q − ∂NΛN ΛM

)

. (B.4)

In this notation, the closure on the algebra on a vector field |V 〉 is equivalent to the property
that δ2|V 〉 = 0. Note that δ2|Λ〉 6= 0, but it gives a trivial generalised diffeomorphism,

whereas the definition of a truly nilpotent operator requires the introduction of an infinite

chain of ghosts for ghosts generating an L∞ algebra structure [7, 67, 68].

In the BRST formulation it is easier to check that δ2〈ξ| indeed vanishes. Here, we shall

only give some of the steps for the terms quadratic in |Λ〉. The parts of the transformations
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corresponding to the Lie derivative of an ordinary vector field work as in [13], whereas the

other give the following contributions

δ2〈ξ|= η1αβ〈∂1|Tα|Λ1〉〈∂1|Λ2〉〈∂1|M−1T β†M

− 1

4
ηαβη1γδ

(

〈∂2|[Tα,T γ ]|Λ1〉〈∂2|T δ|Λ2〉+〈∂2|[Tα,T γ ]|Λ2〉〈∂2|T δ|Λ1〉
)

〈∂1+∂2|M−1T β†M

+
1

4
η1αβ

(

〈∂1|Tα|Λ2〉〈∂2|T β |Λ1〉+〈∂1|Tα|Λ1〉〈∂2|T β |Λ2〉
)

〈∂2|

+η1αβ〈∂1|Tα|Λ1〉
(

〈∂2|Λ2〉〈∂1|+〈∂1|Λ2〉〈∂2|
)

M−1T β†M

+η1αβηγδ〈∂1|Tα|Λ1〉〈∂2|T γ |Λ2〉〈∂1|M−1[T β ,T δ]†M
+η1αβηγδ〈∂1+∂2|[Tα,T γ ]|Λ1〉〈∂2|T γ |Λ2〉〈∂1+∂2|M−1T β†M

+
1

2
η1αβ

(

〈∂2|Tα|Λ1〉〈∂1|Λ2〉−〈∂1|Tα|Λ1〉〈∂2|Λ2〉
)

〈∂1+∂2|M−1T β†M

+
1

2
η1αβ〈∂1+∂2|Tα|Λ1〉〈∂2−∂1|Λ2〉〈∂1+∂2|

=0 , (B.5)

where 〈∂1| = 〈∂Λ1 | and 〈∂2| = 〈∂Λ2 | for short, and one uses that all the terms involving

commutators simplify according to

η1αβηγδ

(

−〈∂2|[Tα, T γ ]|Λ1〉〈∂2| − 〈∂1|[Tα, T γ ]|Λ1〉〈∂1|+ 2〈∂1 + ∂2|[T β , T γ ]|Λ1〉〈∂2|
)

T δ|Λ2〉

× 〈∂1 + ∂2|M−1T β†M
− 4η1αβηγδ〈∂1|[Tα, T γ ]|Λ1〉〈∂2|T δ|Λ2〉〈∂1|M−1T β†M

= η1αβ〈∂1|Tα|Λ1〉〈∂2|T β |Λ2〉〈∂1 − ∂2| . (B.6)

Open Access. This article is distributed under the terms of the Creative Commons
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[44] E. Cremmer, H. Lü, C.N. Pope and K.S. Stelle, Spectrum generating symmetries for BPS

solitons, Nucl. Phys. B 520 (1998) 132 [hep-th/9707207] [INSPIRE].

[45] V.G. Kac and D.H. Peterson, Defining relations of certain infinite dimensional groups,
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