$E-B O C H N E R$ CURVATURE TENSOR ON (κ, μ)-CONTACT METRIC MANIFOLDS

UDAY CHAND DE AND SRIMAYEE SAMUI

Dedicated to memory of Proffessor Franki Dillen

Abstract

We study E-Bochner curvature tensor B^{e} satisfying $\mathrm{R} \cdot \mathrm{B}^{e}=0$, $\mathrm{B}^{e} \cdot \mathrm{R}=0, \mathrm{~B}^{e} \cdot \mathrm{~B}^{e}=0$ and $\mathrm{B}^{e} \cdot \mathrm{~S}=0$ in n -dimensional (κ, μ)-contact metric manifolds.

1. Introduction

In [3], Blair, Koufogiorgos and Papantoniou introduced (κ, μ)-contact metric manifolds. A class of contact metric manifold M with contact metric structure (φ, $\xi, \eta, g)$ in which the curvature tensor R satisfies the condition

$$
\begin{equation*}
R(X, Y) \xi=(K I+\mu h)(\eta(Y) X-\eta(X) Y) \tag{1.1}
\end{equation*}
$$

for all $X, Y \in T M$ is called (κ, μ)-manifolds. On the other hand, Bochner [5] introduced a Kahler analogue of Weyl conformal curvature tensor by purely formal consideration which is known as Bochner Curvature Tensor. A geometric meaning of Bochner Curvature Tensor was given by Blair [2]. By using Boothby-Wang's fibration [7], Matsumoto and Chuman [15] constructed C-Bochner curvature tensor. In [9], Endo defined E-Bochner curvature tensor as an extended C-Bochner curvature tensor. E-Bochner curvature tensor is defined as
$\mathrm{B}^{e}(X, Y) Z=\mathrm{B}(X, Y) Z-\eta(X) \mathrm{B}(\xi, Y) Z-\eta(Y) \mathrm{B}(X, \xi) Z-\eta(Z) \mathrm{B}(X, Y) \xi$, for all

[^0]X, Y, Z belongs to TM, B is the C-Bochner curvature tensor defined by
\[

$$
\begin{align*}
B(X, Y) Z= & R(X, Y) Z+\frac{1}{n+3}[S(X, Z) Y-S(Y, Z) X+g(X, Z) Q Y \\
& -g(Y, Z) Q X+S(\varphi X, Z) \varphi Y-S(\varphi Y, Z) \varphi X+g(\varphi X, Z) \\
& Q \varphi Y-g(\varphi Y, Z) Q \varphi X+2 S(\varphi X, Y) \varphi Z+2 g(\varphi X, Y) Q \varphi Z \\
& -S(X, Z) \eta(Y) \xi+S(Y, Z) \eta(X) \xi-\eta(X) \eta(Z) Q Y+\eta(Y) \\
& \eta(Z) Q X]-\frac{p+n-1}{n+3}[g(\varphi X, Y) \varphi Y-g(\varphi Y, Z) \varphi X+2 \\
& g(\varphi X, Y) \varphi Z]-\frac{p-4}{n+3}[g(X, Z) Y-g(Y, Z) X]+\frac{p}{n+3} \\
& {[g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi+\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X], } \tag{1.2}
\end{align*}
$$
\]

where S is Ricci tensor of type of type $(0,2), Q$ is the Ricci operator defined by $g(Q X, Y)=S(X, Y)$ and $p=\frac{n+r-1}{n+1}, r$ is the scalar curvature of the manifold. E-Bochner curvature tensor is denoted by B^{e}.
A Riemannian manifold $\left(M^{2 m+1}, g\right)$ is said to be semisymmetric if its curvature tensor R satisfies the condition $R(X, Y) \cdot R=0$, for all X, Y belongs to TM where $R(X, Y)$ acts on R as a derivation ([14], [18]).
In [20], Yildiz and De studied h-projectively semisymmetric on (κ, μ)-contact metric manifolds. Besides this, in [13] Kim, Tripathi and Choi proved that a (κ, μ)-contact metric manifold with vanishing E-Bochner curvature tensor is a Sasakian manifold. Motivated by the above studies, we characterize a (κ, μ)-contact metric manifold satisfying certain curvature conditions on E-Bochner curvature tensor. The present paper is organized as follows:
After preliminaries in section 3 and 4, we characterize (κ, μ)-contact metric manifolds satisfying $\mathrm{R} \cdot \mathrm{B}^{e}=0$ and $\mathrm{B}^{e} \cdot \mathrm{R}=0$ respectively. Besides these we prove that $\mathrm{a}(\kappa, \mu)$-contact metric manifold is Sasakian if and only if it satisfies $\mathrm{B}^{e} \cdot \mathrm{~B}^{e}=0$. Finally, we prove that a (κ, μ)-contact metric manifold satisfying $\mathrm{B}^{e} \cdot \mathrm{~S}=0$ is an η-Einstein manifold. Also we obtain some important corollaries.

2. Preliminaries

An $n(=2 m+1)$ dimensional differentiable manifold M is called an almost contact manifold if there is an almost contact structure (φ, ξ, η) consisting of a $(1,1)$ tensor field φ, a vector field ξ, a 1-form η satisfying

$$
\begin{equation*}
\varphi^{2}(X)=-X+\eta(X) \xi, \eta(\xi)=1, \varphi \xi=0, \eta \circ \varphi=0 . \tag{2.1}
\end{equation*}
$$

An almost contact structure is said to be normal if the induced almost complex structure J on the product manifold $\mathrm{M}^{n} \times \mathbb{R}$ defined by
$\mathrm{J}\left(X, f \frac{d}{d t}\right)=\left(\phi X-f \xi, \eta(X) \frac{d}{d t}\right)$ is integrable where X is tangent to M, t is the coordinate of R and f is a smooth function on $\mathrm{M}^{n} \times \mathbb{R}$.
The condition for being normal is equivalent to vanishing of the torsion tensor $[\varphi, \varphi]+2 d \eta \otimes \xi$ where $[\varphi, \varphi]$ is the Nijenhuis tensor of φ.

Let g be a compatible Reimannian metric with (φ, ξ, η), that is,

$$
\begin{equation*}
g(X, Y)=g(\varphi X, \varphi Y)+\eta(X) \eta(Y) \tag{2.2}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
g(X, \xi)=\eta(X), g(\varphi X, Y)=-g(X, \varphi Y) \tag{2.3}
\end{equation*}
$$

for all X, Y belongs to TM.
An almost contact metric structure becomes a contact metric structure if

$$
\begin{equation*}
g(X, \varphi Y)=d \eta(X, Y) \tag{2.4}
\end{equation*}
$$

for all X, Y belongs to TM. Given a contact metric manifold $M^{n}(\varphi, \xi, \eta, g)$ we define a $(1,1)$ tensor field h by $h=\frac{1}{2} \mathrm{~L}_{\xi} \varphi$ where L denotes the Lie differentiation. Then h is symmetric and satisfies

$$
\begin{gather*}
h \xi=0, h \varphi+\varphi h=0 \tag{2.5}\\
\nabla \xi=-\varphi-\varphi h, \operatorname{trace}(h)=\operatorname{trace}(\varphi h)=0 \tag{2.6}
\end{gather*}
$$

where ∇ is the Levi-Civita connection.
A contact metric manifold is said to be an η-Einstein if

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y) \tag{2.7}
\end{equation*}
$$

where a, b are smooth functions and S is the Ricci tensor.
A normal contact metric manifold is called a Sasakian manifold. An almost contact metric manifold is Sasakian if and only if

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=g(X, Y) \xi-\eta(Y) X \tag{2.8}
\end{equation*}
$$

On a Sasakian manifold the following relation holds

$$
\begin{equation*}
R(X, Y) \xi=\eta(Y) X-\eta(X) Y \tag{2.9}
\end{equation*}
$$

for all X, Y belongs to TM.Blair, Koufogiorgos and Papantoniou [3] considered the (κ, μ)-nullity condition and gave several reasons for studying it. The (κ, μ)-nullity distribution $\mathrm{N}(\kappa, \mu)([3],[17])$ of a contact metric manifold M is defined by
$N(\kappa, \mu): p \mapsto N_{p}(\kappa, \mu)=\left[U \in T_{p} M \mid R(X, Y) U=(\kappa I+\mu h)(g(Y, U) X-g(X, U) Y)\right]$ for all X, Y belongs to TM, where $(\kappa, \mu) \in \mathbb{R}^{2}$.
A contact metric manifold M^{n} with $\xi \in N(\kappa, \mu)$ is called a (κ, μ) - contact metric manifold. Then we have

$$
\begin{align*}
R(X, Y) \xi= & \kappa[\eta(Y) X-\eta(X) Y]+ \tag{2.10}\\
& \mu[\eta(Y) h X-\eta(X) h Y]
\end{align*}
$$

for all X, Y belongs to TM.For (κ, μ)-metric manifolds, it follows that $h^{2}=$ $(\kappa-1) \varphi^{2}$. This class contains Sasakian manifolds for $\kappa=1$ and $h=0$. In fact, for a (κ, μ)-metric manifold, the condition of being Sasakian manifold, κ-contact manifold, $\kappa=1$ and $h=0$ are equivalent. If $\mu=0$, then the (κ, μ)-nullity distribution $\mathrm{N}(\kappa, \mu)$ is reduced to κ-nullity distribution $\mathrm{N}(\kappa)$ [19]. If $\xi \in N(\kappa)$, then we call contact metric manifold M an $\mathrm{N}(\kappa)$ - contact metric manifold.
(κ, μ)-contact metric manifolds have been studied by several authors ([16], [1], [8], [10], [11], [12]) and many others.

In a (κ, μ)-contact metric manifold the following relations hold [3]:

$$
\begin{gather*}
h^{2}=(\kappa-1) \varphi^{2} \tag{2.11}\\
\left(\nabla_{X} \varphi\right) Y=g(X+h X, Y) \xi-\eta(Y)(X+h X) \tag{2.12}
\end{gather*}
$$

$$
\begin{align*}
& R(\xi, X) Y= \kappa[g(X, Y) \xi-\eta(Y) X]+\mu[g(h X, Y) \xi-\eta(Y) h X] \tag{2.13}\\
& S(X, \xi)=(n-1) \kappa \eta(X) \tag{2.14}\\
& S(X, Y)= {\left[(n-3)-\frac{n-1}{2} \mu\right] g(X, Y)+} \tag{2.15}\\
& {[(n-3)+\mu] g(h X, Y)+\left[(3-n)+\frac{n-1}{2}\right.} \\
&(2 \kappa+\mu)] \eta(X) \eta(Y) \\
& r=(n-1)\left(n-3+\kappa-\frac{n-1}{2} \mu\right) \tag{2.16}\\
& S(X, h Y)= {\left[(n-3)-\frac{(n-1)}{2} \mu\right] } \tag{2.17}\\
& g(X, h Y)-(\kappa-1)[(n-3)+\mu] g(X, Y) \\
&+(\kappa-1)[(n-3)+\mu)] \eta(X) \eta(Y) \\
& Q \varphi-\varphi Q=2[(n-3)+\mu] h \varphi
\end{align*}
$$

where Q is the Ricci operator defined by $g(Q X, Y)=S(X, Y)$. Let us recall the following result:

Lemma 2.1. [4] A contact metric manifold $M^{2 m+1}$ satisfying $R(X, Y) \xi=0$ is locally isometric to the Riemannian product $E^{m+1} \times S^{m}(4)$ for $m>1$.

Besides these, it can be easily verified that in a (κ, μ)-contact metric manifold $M^{n}, n \geq 5$, the E-Bochner curvature tensor satisfies the following conditions

$$
\begin{gather*}
B^{e}(X, Y) \xi=\frac{4(\kappa-1)}{n+3}(\eta(X) Y-\eta(Y) X)+\mu(\eta(X) h Y-\eta(Y) h X), \tag{2.18}\\
B^{e}(\xi, X) Z=\eta(Z) \frac{4(\kappa-1)}{n+3}(X-\eta(X) \xi)+\eta(Z) \mu h X \tag{2.19}\\
B^{e}(X, \xi) Z=\eta(Z) \frac{4(\kappa-1)}{n+3}(\eta(X) \xi-X)-\eta(Z) \mu h X, \tag{2.20}\\
B^{e}(X, \xi) \xi=\frac{4(\kappa-1)}{n+3}[\eta(X) \xi-X]-\mu h X, \tag{2.21}\\
B^{e}(\xi, X) \xi=\frac{4(\kappa-1)}{n+3}[X-\eta(X) \xi]+\mu h X, \tag{2.22}\\
B^{e}(\xi, \xi) \xi=0, \tag{2.23}\\
\sum_{i=1}^{n} \widetilde{B^{e}}\left(e_{i}, Y, Z, e_{i}\right)=\frac{6(n-3)+\mu)}{n+3} g(h Y, Z) \tag{2.24}\\
\quad-\frac{4(\kappa-1)}{(n+3)} g(Y, Z)- \\
{\left[\frac{(n-1) \kappa+(2-n) p+r}{n+3}\right.} \\
\\
\left.-\frac{4(\kappa-1)}{n+3}\right] \eta(Y) \eta(Z)
\end{gather*}
$$

where $p=\frac{n+r-1}{n+1}$, r is the scalar curvature of $M,\left\{e_{1}, e_{2}, \ldots, e_{m}, e_{m+1}=\varphi e_{1}, . . e_{2 m}=\right.$ $\left.\varphi e_{m}, e_{2 m+1}=\xi\right\}$ is a φ basis of M and $\widetilde{B^{e}}(X, Y, Z, W)=g\left(\left(B^{e}(X, Y) Z, W\right)\right.$.

3. E-Bochner Semisymmetric (κ, μ)-Contact Metric Manifolds

Definition 3.1: An n-dimensional (κ, μ)-contact metric manifold is said to be E-Bochner semisymmetric if it satisfies the following equation

$$
\begin{equation*}
R(X, Y) \cdot B^{e}=0 \tag{3.1}
\end{equation*}
$$

for all X, Y belongs to TM and B^{e} is E-Bochner curvature tensor.
Let us consider that M be an $n(=2 m+1)$ dimensional (κ, μ)-contact metric manifold and M is E-Bochner semisymmetric. From (3.1) we have $(R(X, Y)$. $\left.B^{e}\right)(U, V) W=0$, which implies that

$$
\begin{align*}
& R(X, Y) B^{e}(U, V) W-B^{e}(R(X, Y) U, V) W-B^{e}(U, R(X, Y) V) W- \\
& B^{e}(U, V) R(X, Y) W=0 \tag{3.2}
\end{align*}
$$

Putting $Y=\xi$ in (3.2) and using (2.13), we obtain

$$
\begin{aligned}
& \kappa\left[-g\left(X, B^{e}(U, V) W\right) \xi+\eta\left(B^{e}(U, V) W\right) X+g(X, U) B^{e}(\xi, V) W\right. \\
& -\eta(U) B^{e}(X, V) W+g(X, V) B^{e}(U, \xi) W-\eta(V) B^{e}(U, X) W \\
& \left.+g(X, W) B^{e}(U, V) \xi-\eta(W) B^{e}(U, V) X\right]+ \\
& \mu\left[-g\left(h X, B^{e}(U, V) W\right) \xi+\eta\left(B^{e}(U, V) W\right) h X+g(h X, U) B^{e}(\xi, V) W\right. \\
& -\eta(U) B^{e}(h X, V) W+g(h X, V) B^{e}(\xi, V) W-\eta(V) B^{e}(h X, V) W+ \\
& \left.g(h X, W) B^{e}(U, V) \xi-\eta(W) B^{e}(U, V) h X\right]=0 .
\end{aligned}
$$

Again putting $W=\xi$ in (3.3) and using (2.18), (2.20), (2.21) and (2.22) we have

$$
\begin{aligned}
& \frac{4 \kappa(\kappa-1)}{n+3}[g(X, U) V-g(X, V) U]+\frac{4(\kappa-1) \mu}{n+3}[g(h X, U)-g(h X, V) U] \\
& +\mu \kappa[\eta(V) g(X, h U) \xi-\eta(U) g(X, h V) \xi+g(X, U) h V-g(X, V) h U] \\
& +\mu^{2}[\eta(V) g(h X, h U) \xi-\eta(U) g(h X, h V) \xi+g(h X, U) h V- \\
& g(h X, V) h U]-\kappa B^{e}(U, V) X-\mu B^{e}(U, V) h X=0 .
\end{aligned}
$$

Taking inner product of (3.4) with Z we obtain

$$
\begin{aligned}
& \frac{4 \kappa(\kappa-1)}{n+3}[g(X, U) g(V, Z)-g(X, V) g(U, Z)]+\frac{4(\kappa-1) \mu}{n+3}[g(h X, U) g(V, Z) \\
& -g(h X, V) g(U, Z)]+\mu \kappa[\eta(V) \eta(Z) g(X, h U)-\eta(U) \eta(Z) g(X, h V) \\
& +g(X, U) g(h V, Z)-g(X, V) g(h U, Z)]+\mu^{2}[\eta(V) g(h X, h U) \eta(Z)-\eta(U) \eta(Z) \\
& g(h X, h V)+g(h X, U) g(h V, Z)+g(h X, U) g(h V, Z)]-\kappa \widetilde{B^{e}}(U, V, X, Z)- \\
& \mu \widetilde{B^{e}}(U, V, h X, Z)=0 .
\end{aligned}
$$

Let $\left\{e_{i}\right\}_{i=1}^{n}$, be an orthonormal basis of the tangent space. Putting $U=Z=e_{i}$ and summing up over 1 to n, we have

$$
\begin{equation*}
g(h X, V)=a_{1} g(X, V)+b_{1} \eta(X) \eta(V) \tag{3.5}
\end{equation*}
$$

where

$$
a_{1}=\left[\frac{-4 \kappa(\kappa-1)(2-n)-6 \mu(n-3+\mu)(\kappa-1)+\mu^{2}(n+3)}{4 \mu(\kappa-1)(1-n)-(n-1) \mu^{2}-6 \kappa(n-3+\mu)+\mu \kappa(n+3)+4 \mu(\kappa-1)}\right],
$$

and
$b_{1}=\left[\frac{\kappa^{2}(n-1)+\kappa p(2-n)+r \kappa+4 \kappa(\kappa-1)+6 \mu(n-3+\mu)(\kappa-1)+\mu^{2}(\kappa-1)(n+3)}{4 \mu(\kappa-1)(1-n)-(n-1) \mu^{2}-6 \kappa(n-3+\mu)+\mu \kappa(n+3)+4 \mu(\kappa-1)}\right]$, where $p=\frac{n+r-1}{n+1}$, r being the scalar curvature of M. From (2.15) and (3.5) we obtain

$$
\begin{equation*}
S(X, V)=a g(X, V)+b \eta(X) \eta(V) \tag{3.6}
\end{equation*}
$$

where

$$
\begin{aligned}
a= & {\left[(n-3)-\frac{n-1}{2} \mu\right]+[(n-3)+\mu] } \\
& {\left[\frac{-4 \kappa(\kappa-1)(2-n)-6 \mu(n-3+\mu)(\kappa-1)+\mu^{2}(n+3)}{4 \mu(\kappa-1)(1-n)-(n-1) \mu^{2}-6 \kappa(n-3+\mu)+\mu \kappa(n+3)+4 \mu(\kappa-1)}\right], }
\end{aligned}
$$

and

$$
\begin{aligned}
b= & {\left[(3-n)+\frac{n-1}{2}(2 \kappa+\mu)\right]+[(n-3)+\mu] } \\
& {\left[\frac{\kappa^{2}(n-1)+\kappa p(2-n)+r \kappa+4 \kappa(\kappa-1)+6 \mu(n-3+\mu)(\kappa-1)+\mu^{2}(\kappa-1)(n+3)}{4 \mu(\kappa-1)(1-n)-(n-1) \mu^{2}-6 \kappa(n-3+\mu)+\mu \kappa(n+3)+4 \mu(\kappa-1)}\right] . }
\end{aligned}
$$

Thus, from (3.6) we can state the following:
Theorem 3.1. Let M be an n-dimensional ($n \geq 5$) E-Bochner semisymmetric (κ, $\mu)$-contact metric manifold. Then the manifold is an η-Einstein manifold.

Putting the value $\kappa=1$ and $h=0$ in the equation (3.5) we have the following:
Corollary 3.1. An E-Bochner semisymmetric Sasakian manifold $M^{n}(n \geq 5)$ is E-Bochner flat.

In general, in a (κ, μ)-contact metric manifold the Ricci operator Q does not commute with φ. However, Yildiz and De [20] proved the following:
Lemma 3.1. In a non-Sasakian (κ, μ)-contact metric manifold the following conditions are equivalent:
(a) η-Einstein manifold,
(b) $Q \varphi=\varphi Q$.

From Lemma 3.1 we can state that
Corollary 3.2. Let M^{n} be an n-dimensional $(n \geq 5)$ E-Bochner semisymmetric non-Sasakian (κ, μ)-contact metric manifold. Then the Ricci operator Q commutes with φ.

4. (κ, μ)-Contact Metric Manifolds Satisfying $B^{e}(\xi, U) \cdot R=0$

In this section, we consider an n-dimensional (κ, μ)-contact metric manifold satisfying $\left(B^{e}(\xi, U) \cdot R\right)(X, Y) Z=0$. Therefore, we have

$$
\begin{aligned}
& B^{e}(\xi, U) R(X, Y) Z-R\left(B^{e}(\xi, U) X, Y\right) Z-R\left(X, B^{e}(\xi, U) Y\right) Z- \\
& R(X, Y) B^{e}(\xi, U) Z=0
\end{aligned}
$$

Using (2.19) in (4.1), we get

$$
\begin{align*}
\frac{4(\kappa-1)}{n+3}[& -\eta(U) \eta(R(X, Y) Z) \xi+\eta(R(X, Y) Z) U+ \\
& \eta(X) \eta(U) R(\xi, Y) Z-\eta(X) R(U, Y) Z+\eta(Y) \eta(U) R(X, \xi) Z \\
& -\eta(Y) R(X, U) Z+\eta(Z) \eta(U) R(X, Y) \xi-\eta(Z) R(X, Y) U] \\
& +\mu[\eta(R(X, Y) Z) h U-\eta(X) R(h U, Y) Z- \\
& \eta(Y) R(X, h U) Z-\eta(Z) R(X, Y) h U]=0 \tag{4.2}
\end{align*}
$$

Taking inner product with ξ of (4.2) and using $h \xi=0, g(R(X, Y) \xi, \xi)=0$ we get

$$
\begin{align*}
\frac{4(\kappa-1)}{n+3}[& \eta(X) \eta(U) g(R(\xi, Y) Z, \xi)-\eta(X) g((U, Y) Z, \xi)+ \\
& \eta(Y) \eta(U) g(R(X, \xi) Z, \xi)-\eta(Y) g(R(X, U) Z, \xi)- \\
& \eta(Z) g(R(X, Y) U, \xi]+ \\
& \mu[-\eta(X) g(R(h U, Y) Z, \xi)-\eta(Y) g(R(X, h U) Z, \xi)- \\
& \eta(Z) g(R(X, Y) h U, \xi)]=0, \tag{4.3}
\end{align*}
$$

Let us consider the following cases:
CASE 1. $\kappa=0=\mu$.
CASE 2. $\kappa=0, \mu \neq 0$.
CASE 3. $\kappa \neq 0, \mu=0$.
CASE 4. $\kappa \neq 0, \mu \neq 0$
For Case 1, we observe that $R(X, Y) \xi=0$, for all X,Y. Hence, by Lemma 2.1, M is locally the Remannian product $E^{m+1} \times S^{m}(4)$.
For Case 2, from (4.3) we get

$$
\begin{align*}
\frac{4(-1)}{n+3} \quad[& \eta(X) \eta(U) g(R(\xi, Y) Z, \xi)-\eta(X) g((U, Y) Z, \xi)+ \\
& \eta(Y) \eta(U) g(R(X, \xi) Z, \xi)-\eta(Y) g(R(X, U) Z, \xi)- \\
& \eta(Z) g(R(X, Y) U, \xi]+ \\
& \mu[-\eta(X) g(R(h U, Y) Z, \xi)-\eta(Y) g(R(X, h U) Z, \xi) \\
& -\eta(Z) g(R(X, Y) h U, \xi)]=0 . \tag{4.4}
\end{align*}
$$

Let $\left\{e_{i}\right\}_{i=1}^{n}$, be an orthonormal basis of the tangent space. Putting $Y=Z=e_{i}$ in (4.3) and summing over 1 to n, we get

$$
\begin{equation*}
g(X, h U)=a_{1} g(X, U)+b_{1} \eta(X) \eta(U) \tag{4.5}
\end{equation*}
$$

where

$$
a_{1}=\left[\frac{\mu(n+3)}{4}\right]
$$

and

$$
b_{1}=-\left[\frac{\mu(n+3)}{4}\right] .
$$

From (2.15) and (4.5) we get

$$
\begin{equation*}
S(X, U)=a g(X, U)+b \eta(X) \eta(U) \tag{4.6}
\end{equation*}
$$

where

$$
a=\left[(n-3)-\frac{n-1}{2} \mu\right]+[(n-3)+\mu]\left[\frac{\mu(n+3)}{4}\right],
$$

$$
b=\left[(3-n)+\frac{n-1}{2} \mu\right]-[(n-3)+\mu]\left[\frac{\mu(n+3)}{4}\right] .
$$

For Case 2, M becomes an η-Einstein manifold.
For Case 3, from (4.3) we get

$$
\begin{align*}
\frac{4(\kappa-1)}{n+3}[& \eta(X) \eta(U) g(R(\xi, Y) Z, \xi)-\eta(X) g((U, Y) Z, \xi)+ \\
& \eta(Y) \eta(U) g(R(X, \xi) Z, \xi)-\eta(Y) g(R(X, U) Z, \xi)- \\
& \eta(Z) g(R(X, Y) U, \xi]=0 . \tag{4.7}
\end{align*}
$$

Therefore, either $\kappa=1$ or

$$
\begin{align*}
& {[\eta(X) \eta(U) g(R(\xi, Y) Z, \xi)-\eta(X) g((U, Y) Z, \xi)+} \\
& \eta(Y) \eta(U) g(R(X, \xi) Z, \xi)-\eta(Y) g(R(X, U) Z, \xi)- \\
& \eta(Z) g(R(X, Y) U, \xi]=0 \tag{4.8}
\end{align*}
$$

Let $\left\{e_{i}\right\}_{i=1}^{n}$, be an orthonormal basis of the tangent space. Putting $Y=Z=e_{i}$ in (4.8) and summing over 1 to n, we get

$$
\begin{equation*}
g(X, U)=\eta(X) \eta(U) \tag{4.9}
\end{equation*}
$$

which is not possible.
Thus, for Case 3, M is a Sasakian manifold.
For Case 4, putting $Y=Z=e_{i}$ in (4.3) we get

$$
\begin{equation*}
g(X, h U)=a_{1} g(X, U)+b_{1} \eta(X) \eta(U) \tag{4.10}
\end{equation*}
$$

where

$$
\begin{aligned}
a_{1} & =\left[\frac{\mu^{2}(\kappa-1)(n+3)-4 \kappa(\kappa-1)}{4 \mu(\kappa-1)+\kappa \mu(n+3)}\right] \\
b_{1} & =-\left[\frac{\mu^{2}(\kappa-1)(n+3)-4 \kappa(\kappa-1)}{4 \mu(\kappa-1)+\kappa \mu(n+3)}\right] .
\end{aligned}
$$

Form (2.15) and (4.10) we get

$$
\begin{equation*}
S(X, U)=a g(X, U)+b \eta(X) \eta(U) \tag{4.11}
\end{equation*}
$$

where

$$
a=\left[(n-3)-\frac{n-1}{2} \mu\right]+[(n-3)+\mu]\left[\frac{\mu^{2}(\kappa-1)(n+3)-4 \kappa(\kappa-1)}{4 \mu(\kappa-1)+\kappa \mu(n+3)}\right],
$$

and

$$
b=\left[(3-n)+\frac{n-1}{2}(2 \kappa+\mu)\right]-[(n-3)+\mu]\left[\frac{\mu^{2}(\kappa-1)(n+3)-4 \kappa(\kappa-1)}{4 \mu(\kappa-1)+\kappa \mu(n+3)}\right] .
$$

Summing up we can state the following:
Theorem 4.1. Let M^{n} be an $(n=2 m+1)$-dimensional ($\left.\kappa, \mu\right)$-contact metric manifold satisfying $B^{e}(\xi, U) \cdot R=0$. Then we have one of the following:
(a) M^{n} is locally the Remannian product $E^{m+1} \times S^{m}(4)$.
(b) M^{n} is an η-Einstein manifold.
(c) M^{n} is a Sasakian manifold.
5. (κ, μ)-Contact Metric Manifolds Satisfying $B^{e}(\xi, U) \cdot B^{e}=0$

Let M^{n} be an n-dimensional (κ, μ)-contact metric manifold satisfying $B^{e}(\xi, U)$. $B^{e}=0$
Then we have

$$
\begin{align*}
& B^{e}(\xi, U) B^{e}(X, Y) Z-B^{e}\left(B^{e}(\xi, U) X, Y\right) Z-B^{e}\left(X, B^{e}(\xi, U) Y\right) Z- \\
& B^{e}(X, Y) B^{e}(\xi, U) Z=0, \tag{5.1}
\end{align*}
$$

Using (2.19), we get

$$
\begin{align*}
& \frac{4(\kappa-1)}{n+3}\left[\eta\left(B^{e}(X, Y) Z\right) U-\eta\left(B^{e}(X, Y) Z\right) \eta(U) \xi-\eta(X) B^{e}(U, Y) Z\right. \\
& +\eta(U) \eta(X) B^{e}(\xi, Y) Z-\eta(Y) B^{e}(X, U) Z+\eta(Y) \eta(U) B^{e}(X, \xi) Z \\
& \left.-\eta(Z) B^{e}(X, Y) U+\eta(Z) \eta(U) B^{e}(X, Y) \xi\right]+\mu\left[\eta\left(B^{e}(X, Y) Z\right) h U-\right. \\
& \left.\eta(X) B^{e}(h U, Y) Z-\eta(Y) B^{e}(X, h U) Z-\eta(Z) B^{e}(X, Y) h U\right]=0 . \tag{5.2}
\end{align*}
$$

Putting $X=Z=\xi$ in (5.2) and using (2.22) and (2.23), we obtain

$$
\begin{equation*}
\frac{4(\kappa-1)}{n+3}\left[2\left(\eta(U) \frac{4(\kappa-1)}{n+3}(Y-\eta(Y) \xi)+\mu \eta(U) h Y\right)\right]=0 . \tag{5.3}
\end{equation*}
$$

From(5.3) and (2.19) it follows that either $\kappa=1$, or $B^{e}(\xi, Y) U=0$.
For $\kappa=1$, the manifold is Sasakian.
If $B^{e}(\xi, Y) U=0$, then $B^{e}(\xi, Y) \cdot B^{e}=0$ and if the manifold is Sasakian, then from (2.19) we obtain $B^{e}(\xi, Y) U=0$ and hence $B^{e}(\xi, Y) \cdot B^{e}=0$

Lemma 5.1. [13] A ($\kappa, \mu)$-contact metric manifold with vanishing E-Bochner curvature tensor is a Sasakian manifold.

From the above discussion and Lemma 5.1 we conclude that
Theorem 5.1. $A(\kappa, \mu)$-contact metric manifold $M^{n}(n \geq 5)$ satisfies $B^{e}(\xi, U)$. $B^{e}=0$ if and only if the manifold is Sasakian.
6. (κ, μ)-Contact Metric Manifolds Satisfyng $B^{e}(\xi, X) \cdot S=0$

Let M be an n-dimensional (κ, μ)-contact metric manifold satisfying $B^{e}(\xi, X)$. $S=0$.
Therefore, $\left(B^{e}(\xi, X) \cdot S\right)(U, V)=0$ implies

$$
\begin{equation*}
S\left(B^{e}(\xi, X) U, V\right)+S\left(U, B^{e}(\xi, X) V\right)=0 \tag{6.1}
\end{equation*}
$$

Using (2.19), we get

$$
\begin{align*}
& \frac{4(\kappa-1)}{n+3}[\eta(U) S(X, V)+\eta(V) S(U, X)]+\mu[\eta(U) S(h X, V)+ \\
& \eta(V) S(U, h X)]=0 . \tag{6.2}
\end{align*}
$$

Putting $V=\xi$ in (6.2), we get

$$
\begin{equation*}
\frac{4(\kappa-1)}{n+3}[2 \kappa(n-1) \eta(U) \eta(X)+S(U, X)]+\mu S(U, h X)=0 . \tag{6.3}
\end{equation*}
$$

Using (2.15) and (2.17) in (6.3) we have

$$
\begin{equation*}
S(U, X)=a g(U, X)+b \eta(U) \eta(X), \tag{6.4}
\end{equation*}
$$

where

$$
\begin{aligned}
a= & {\left[(n-3)-\frac{(n-1)}{2} \mu\right]+[(n-3)+\mu] } \\
& \frac{\left[-4(\kappa-1)\left((n-3)-\frac{(n-1)}{2} \mu\right)+\mu\left((\kappa-1)\left(n^{2}-9\right)-\frac{(n+3)(n-1)}{2} \mu\right)\right]}{\left[4(\kappa-1)((n-3)+\mu)+\mu\left(\left(n^{2}-9\right)-\frac{n+3)(n-1)}{2} \mu\right)\right]},
\end{aligned}
$$

and

$$
\begin{aligned}
b= & {\left[(3-n)+\frac{(n-1)}{2}(2 \kappa+\mu)\right]-[(n-3)+\mu] } \\
& \frac{\left[4(\kappa-1)\left(3 \kappa(n-1)+(3-n)+\frac{(n-1)}{2} \mu\right)+\mu\left((\kappa-1)\left(n^{2}-9\right)+\mu(\kappa-1)(n+3)\right)\right]}{\left[4(\kappa-1)((n-3)+\mu)+\mu\left(\left(n^{2}-9\right)-\frac{n+3)(n-1)}{2} \mu\right)\right]} .
\end{aligned}
$$

From (6.4) we conclude that
Theorem 6.1. Let $M^{n}(n \geq 5)$ be a ($\left.\kappa, \mu\right)$-contact metric manifold satisfying $B^{e}(\xi, X) \cdot S=0$. Then the manifold is an η-Einstein Manifold.

From Lemma 3.1 we can state that
Corollary 6.1. Let M^{n} be an n-dimensional ($n \geq 5$) non-Sasakian (κ, μ)-contact metric manifold satisfying $B^{e}(\xi, X) \cdot S=0$. Then the Ricci operator Q commutes with φ.

References

[1] Arslan, K., Ezentas, R., Mihai, I., Murthan, C. and Özgür, C., Certain inequalities for submanifolds in (κ, μ)-contact space forms, Bull. Austral. Soc., 64(2001), 201-212.
[2] Blair, D.E, Contact manifolds in Reimannian geometry, Lecture notes in Math., 509, Springer-verlag., 1976.
[3] Blair, D.E, Koufogiorgos T. and Papantoniou B.J., Contact metric manifold satisfying a nullity condition, Israel J.Math. 91(1995), 189-214.
[4] Blair, D.E, Two remarks on contact metric structures, Tohoku Math. J. 29(1977), 319-324.
[5] Bochner, S., Curvature and Betti number, Ann. of Math., 50(1949), 77-93 .
[6] Boeckx, E., A full classificstion of contact metric (κ, μ)-spaces, Illinois J.Math. 44(2000), 212-219 .
[7] Boothby, W.M. and Wang, H.C.,On contact manifolds, Annals of Math., 68(1958), 721-734 .
[8] De, U.C and Sarkar, A., On Quasi-conformal curvature tensor of (κ, μ)-contact metric manifold, Math. Reports 14(64), (2012), 115-129.
[9] Endo, H., On K-contact Reimannian manifolds with vanishing E-contact Bochner curvature tensor, Colloq.Math. 62(1991), 293-297.
[10] Ghosh,S. and De, U.C, On a class of (κ, μ)-contact metric manifolds, Analele Universitătii Oradea Fasc. Mathematica, Tom. 19(2012), 231-242.
[11] Ghosh, S. and De, U.C., On ϕ-Quasiconformally symmetric (κ, μ)-contact metric manifolds, Lobachevskii Journal of Mathematics, 31(2010), 367-375.
[12] Jun, J.B., Yildiz, A. and De, U.C.,On ϕ-recurrent (κ, μ)-contact metric manifolds, Bull. Korean Math. Soc. 45(4), 689(2008).
[13] Kim, J.S, Tripathi, M.M. and Choi, J.D, On C-Bochner curvature tensor of a contact metric manifold, Bull. Korean Math. Soc. 42 (2005), 713-724.
[14] Kowalski, O., An explicit classification of 3-dimensional Reimannian spaces satisfying $R(X, Y) \cdot R=0$, Czecchoslovak Math. J. 46(121) (1996), 427-474.
[15] Matsumoto, M. and Chuman, G., On C-Bochner curvature tensor, TRU Math., 5(1969), 21-30.
[16] Özgür, C., Contact metric manifolds with cyclic-parallel Ricci tensor, Diff. Geom. Dynamical systems, 4(2000), 21-25.
[17] Papantoniou, B.J., Contact Remannian manifolds satisfying $R(\xi, X) \cdot R=0$ and $\xi \in(\kappa, \mu)-$ nullity distribution, Yokohama Math.J., 40(1993), 149-161.
[18] Szabo, Z.I., Structure theorems on Reimannian spaces satisfying $R(X, Y) \cdot R=0$. I. The local version, J. Differential Geom. 17(1982), 531-582.
[19] Tanno, S., Ricci curvatures of contact Reimannian manifolds, Tôhoku Math. J., 40(1988), 441-448.
[20] Yildiz, A., De, U.C, A classification of (κ, μ)-contact matric manifold, Commun. Korean Math.Soc. 27(2012), 327-339.

Department of Pure Mathematics, Calcutta University, 35 Ballygunge Circular Road, Kol 700019, West Bengal, India.

Umes Chandra College, 13, Surya Sen Street, Kol 700012, West Bengal, India.
E-mail address: uc_de@yahoo.com
E-mail address: srimayee.samui@gmail.com

[^0]: 2010 Mathematics Subject Classification. 53C15,53C25.
 Key words and phrases. (κ, μ)-contact metric manifolds, $\mathrm{N}(\mathrm{k})$-contact metric manifolds, extended bochner curvature tensor, Einstein manifolds, η-Einstein manifolds, Sasakian manifolds.

