E-BOCHNER CURVATURE TENSOR ON (κ, μ) -CONTACT METRIC MANIFOLDS

UDAY CHAND DE AND SRIMAYEE SAMUI

Dedicated to memory of Proffessor Franki Dillen

ABSTRACT. We study E-Bochner curvature tensor B^e satisfying $R \cdot B^e = 0$, $B^e \cdot R = 0$, $B^e \cdot B^e = 0$ and $B^e \cdot S = 0$ in n-dimensional (κ, μ) -contact metric manifolds.

1. Introduction

In [3], Blair, Koufogiorgos and Papantoniou introduced (κ, μ) -contact metric manifolds. A class of contact metric manifold M with contact metric structure (φ, ξ, η, g) in which the curvature tensor R satisfies the condition

(1.1)
$$R(X,Y)\xi = (KI + \mu h)(\eta(Y)X - \eta(X)Y),$$

for all $X,Y\in TM$ is called (κ,μ) -manifolds. On the other hand, Bochner [5] introduced a Kahler analogue of Weyl conformal curvature tensor by purely formal consideration which is known as Bochner Curvature Tensor. A geometric meaning of Bochner Curvature Tensor was given by Blair [2]. By using Boothby-Wang's fibration [7], Matsumoto and Chuman [15] constructed C-Bochner curvature tensor. In [9], Endo defined E-Bochner curvature tensor as an extended C-Bochner curvature tensor. E-Bochner curvature tensor is defined as

$$B^{e}(X,Y)Z = B(X,Y)Z - \eta(X)B(\xi,Y)Z - \eta(Y)B(X,\xi)Z - \eta(Z)B(X,Y)\xi$$
, for all

²⁰¹⁰ Mathematics Subject Classification. 53C15,53C25.

Key words and phrases. (κ, μ) -contact metric manifolds, N(k)-contact metric manifolds, extended bochner curvature tensor, Einstein manifolds, η -Einstein manifolds, Sasakian manifolds.

X, Y, Z belongs to TM, B is the C-Bochner curvature tensor defined by

$$B(X,Y)Z = R(X,Y)Z + \frac{1}{n+3} [S(X,Z)Y - S(Y,Z)X + g(X,Z)QY - g(Y,Z)QX + S(\varphi X,Z)\varphi Y - S(\varphi Y,Z)\varphi X + g(\varphi X,Z) Q\varphi Y - g(\varphi Y,Z)Q\varphi X + 2S(\varphi X,Y)\varphi Z + 2g(\varphi X,Y)Q\varphi Z - S(X,Z)\eta(Y)\xi + S(Y,Z)\eta(X)\xi - \eta(X)\eta(Z)QY + \eta(Y) \eta(Z)QX] - \frac{p+n-1}{n+3} [g(\varphi X,Y)\varphi Y - g(\varphi Y,Z)\varphi X + 2 g(\varphi X,Y)\varphi Z] - \frac{p-4}{n+3} [g(X,Z)Y - g(Y,Z)X] + \frac{p}{n+3} (1.2)$$

$$[g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi + \eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X],$$

where S is Ricci tensor of type of type (0,2), Q is the Ricci operator defined by g(QX,Y) = S(X,Y) and $p = \frac{n+r-1}{n+1}$, r is the scalar curvature of the manifold. E-Bochner curvature tensor is denoted by B^e .

A Riemannian manifold (M^{2m+1}, g) is said to be semisymmetric if its curvature tensor R satisfies the condition $R(X, Y) \cdot R = 0$, for all X, Y belongs to TM where R(X, Y) acts on R as a derivation ([14], [18]).

In [20], Yildiz and De studied h-projectively semisymmetric on (κ, μ) -contact metric manifolds. Besides this, in [13] Kim, Tripathi and Choi proved that a (κ, μ) -contact metric manifold with vanishing E-Bochner curvature tensor is a Sasakian manifold. Motivated by the above studies, we characterize a (κ, μ) -contact metric manifold satisfying certain curvature conditions on E-Bochner curvature tensor. The present paper is organized as follows:

After preliminaries in section 3 and 4, we characterize (κ, μ) -contact metric manifolds satisfying $R \cdot B^e = 0$ and $B^e \cdot R = 0$ respectively. Besides these we prove that a (κ, μ) -contact metric manifold is Sasakian if and only if it satisfies $B^e \cdot B^e = 0$. Finally, we prove that a (κ, μ) -contact metric manifold satisfying $B^e \cdot S = 0$ is an η -Einstein manifold. Also we obtain some important corollaries.

2. Preliminaries

An n = 2m+1 dimensional differentiable manifold M is called an almost contact manifold if there is an almost contact structure (φ, ξ, η) consisting of a (1, 1) tensor field φ , a vector field ξ , a 1-form η satisfying

(2.1)
$$\varphi^{2}(X) = -X + \eta(X)\xi, \ \eta(\xi) = 1, \ \varphi\xi = 0, \ \eta \circ \varphi = 0.$$

An almost contact structure is said to be normal if the induced almost complex structure J on the product manifold $M^n \times \mathbb{R}$ defined by

 $J(X, f\frac{d}{dt}) = (\phi X - f\xi, \eta(X)\frac{d}{dt})$ is integrable where X is tangent to M, t is the coordinate of R and f is a smooth function on $M^n \times \mathbb{R}$.

The condition for being normal is equivalent to vanishing of the torsion tensor $[\varphi, \varphi] + 2d\eta \otimes \xi$ where $[\varphi, \varphi]$ is the Nijenhuis tensor of φ .

Let g be a compatible Reimannian metric with (φ, ξ, η) , that is,

$$(2.2) g(X,Y) = g(\varphi X, \varphi Y) + \eta(X)\eta(Y),$$

or equivalently,

(2.3)
$$g(X,\xi) = \eta(X), g(\varphi X, Y) = -g(X, \varphi Y),$$

for all X, Y belongs to TM.

An almost contact metric structure becomes a contact metric structure if

$$(2.4) g(X, \varphi Y) = d\eta(X, Y),$$

for all X,Y belongs to TM. Given a contact metric manifold $M^n(\varphi,\xi,\eta,g)$ we define a (1,1) tensor field h by $h=\frac{1}{2}\mathrm{L}_\xi\varphi$ where L denotes the Lie differentiation. Then h is symmetric and satisfies

$$(2.5) h\xi = 0, \ h\varphi + \varphi h = 0,$$

(2.6)
$$\nabla \xi = -\varphi - \varphi h, \ trace(h) = trace(\varphi h) = 0,$$

where ∇ is the Levi-Civita connection.

A contact metric manifold is said to be an η -Einstein if

$$(2.7) S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y),$$

where a, b are smooth functions and S is the Ricci tensor.

A normal contact metric manifold is called a Sasakian manifold. An almost contact metric manifold is Sasakian if and only if

$$(2.8) \qquad (\nabla_X \varphi) Y = q(X, Y) \xi - \eta(Y) X.$$

On a Sasakian manifold the following relation holds

$$(2.9) R(X,Y)\xi = \eta(Y)X - \eta(X)Y,$$

for all X, Y belongs to TM.Blair, Koufogiorgos and Papantoniou [3] considered the (κ, μ) -nullity condition and gave several reasons for studying it. The (κ, μ) -nullity distribution $N(\kappa, \mu)$ ([3], [17]) of a contact metric manifold M is defined by

$$N(\kappa,\mu): p \mapsto N_p(\kappa,\mu) = [U \in T_pM \mid R(X,Y)U = (\kappa I + \mu h)(g(Y,U)X - g(X,U)Y)]$$

for all X, Y belongs to TM, where $(\kappa, \mu) \in \mathbb{R}^2$.

A contact metric manifold M^n with $\xi \in N(\kappa, \mu)$ is called a (κ, μ) - contact metric manifold. Then we have

(2.10)
$$R(X,Y)\xi = \kappa[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)hX - \eta(X)hY],$$

for all X,Y belongs to TM. For (κ,μ) -metric manifolds, it follows that $h^2=(\kappa-1)\varphi^2$. This class contains Sasakian manifolds for $\kappa=1$ and h=0. In fact, for a (κ,μ) -metric manifold, the condition of being Sasakian manifold, κ -contact manifold, $\kappa=1$ and h=0 are equivalent. If $\mu=0$, then the (κ,μ) -nullity distribution N (κ,μ) is reduced to κ -nullity distribution N (κ) [19]. If $\xi\in N(\kappa)$, then we call contact metric manifold M an N (κ) - contact metric manifold.

 (κ, μ) -contact metric manifolds have been studied by several authors ([16], [1], [8], [10], [11], [12]) and many others.

In a (κ, μ) -contact metric manifold the following relations hold [3]:

$$(2.11) h^2 = (\kappa - 1)\varphi^2,$$

$$(2.12) \qquad (\nabla_X \varphi) Y = g(X + hX, Y) \xi - \eta(Y)(X + hX),$$

(2.13)
$$R(\xi, X)Y = \kappa[g(X, Y)\xi - \eta(Y)X] + \mu[g(hX, Y)\xi - \eta(Y)hX],$$

$$(2.14) S(X,\xi) = (n-1)\kappa\eta(X),$$

(2.15)
$$S(X,Y) = [(n-3) - \frac{n-1}{2}\mu]g(X,Y) + [(n-3) + \mu]g(hX,Y) + [(3-n) + \frac{n-1}{2}\mu]g(X,Y)$$
$$(2\kappa + \mu)\eta(X)\eta(Y),$$

(2.16)
$$r = (n-1)\left(n-3+\kappa - \frac{n-1}{2}\mu\right),$$

(2.17)
$$S(X, hY) = \left[(n-3) - \frac{(n-1)}{2} \mu \right]$$
$$g(X, hY) - (\kappa - 1) \left[(n-3) + \mu \right] g(X, Y)$$
$$+ (\kappa - 1) \left[(n-3) + \mu \right] \eta(X) \eta(Y),$$
$$Q\varphi - \varphi Q = 2 \left[(n-3) + \mu \right] h\varphi,$$

where Q is the Ricci operator defined by g(QX,Y)=S(X,Y). Let us recall the following result:

Lemma 2.1. [4] A contact metric manifold M^{2m+1} satisfying $R(X,Y)\xi = 0$ is locally isometric to the Riemannian product $E^{m+1} \times S^m(4)$ for m > 1.

Besides these, it can be easily verified that in a (κ, μ) -contact metric manifold M^n , $n \geq 5$, the E-Bochner curvature tensor satisfies the following conditions

(2.18)
$$B^{e}(X,Y)\xi = \frac{4(\kappa - 1)}{n+3}(\eta(X)Y - \eta(Y)X) + \mu(\eta(X)hY - \eta(Y)hX),$$

(2.19)
$$B^{e}(\xi, X)Z = \eta(Z) \frac{4(\kappa - 1)}{n + 3} (X - \eta(X)\xi) + \eta(Z)\mu hX,$$

(2.20)
$$B^{e}(X,\xi)Z = \eta(Z)\frac{4(\kappa-1)}{n+3}(\eta(X)\xi - X) - \eta(Z)\mu hX,$$

(2.21)
$$B^{e}(X,\xi)\xi = \frac{4(\kappa-1)}{n+3}[\eta(X)\xi - X] - \mu hX,$$

(2.22)
$$B^{e}(\xi, X)\xi = \frac{4(\kappa - 1)}{n + 3}[X - \eta(X)\xi] + \mu hX,$$

$$(2.23) B^e(\xi,\xi)\xi = 0,$$

(2.24)
$$\sum_{i=1}^{n} \widetilde{B}^{e}(e_{i}, Y, Z, e_{i}) = \frac{6(n-3) + \mu}{n+3} g(hY, Z) - \frac{4(\kappa-1)}{(n+3)} g(Y, Z) - \left[\frac{(n-1)\kappa + (2-n)p + r}{n+3} - \frac{4(\kappa-1)}{n+3}\right] \eta(Y) \eta(Z),$$

where $p = \frac{n+r-1}{n+1}$, r is the scalar curvature of M, $\{e_1, e_2, ..., e_m, e_{m+1} = \varphi e_1, ... e_{2m} = \varphi e_m, e_{2m+1} = \xi\}$ is a φ basis of M and $\widetilde{B}^e(X, Y, Z, W) = g((B^e(X, Y)Z, W).$

3. E-Bochner Semisymmetric (κ , μ)-Contact Metric Manifolds

Definition 3.1: An n-dimensional (κ, μ) -contact metric manifold is said to be E-Bochner semisymmetric if it satisfies the following equation

$$(3.1) R(X,Y) \cdot B^e = 0,$$

for all X, Y belongs to TM and B^e is E-Bochner curvature tensor.

Let us consider that M be an n(=2m+1) dimensional (κ, μ) -contact metric manifold and M is E-Bochner semisymmetric. From (3.1) we have $(R(X,Y) \cdot B^e)(U,V)W=0$, which implies that

$$R(X,Y)B^{e}(U,V)W - B^{e}(R(X,Y)U,V)W - B^{e}(U,R(X,Y)V)W -$$
 (3.2)
$$B^{e}(U,V)R(X,Y)W = 0.$$

Putting $Y = \xi$ in (3.2) and using (2.13), we obtain

$$\kappa[-g(X, B^{e}(U, V)W)\xi + \eta(B^{e}(U, V)W)X + g(X, U)B^{e}(\xi, V)W - \eta(U)B^{e}(X, V)W + g(X, V)B^{e}(U, \xi)W - \eta(V)B^{e}(U, X)W + g(X, W)B^{e}(U, V)\xi - \eta(W)B^{e}(U, V)X] + \mu[-g(hX, B^{e}(U, V)W)\xi + \eta(B^{e}(U, V)W)hX + g(hX, U)B^{e}(\xi, V)W - \eta(U)B^{e}(hX, V)W + g(hX, V)B^{e}(\xi, V)W - \eta(V)B^{e}(hX, V)W + g(hX, V$$

(3.3)
$$g(hX, W)B^{e}(U, V)\xi - \eta(W)B^{e}(U, V)hX] = 0.$$

Again putting $W = \xi$ in (3.3) and using (2.18), (2.20), (2.21) and (2.22) we have

$$\begin{split} & \frac{4\kappa(\kappa-1)}{n+3}[g(X,U)V - g(X,V)U] + \frac{4(\kappa-1)\mu}{n+3}[g(hX,U) - g(hX,V)U] \\ & + \mu\kappa[\eta(V)g(X,hU)\xi - \eta(U)g(X,hV)\xi + g(X,U)hV - g(X,V)hU] \\ & + \mu^2[\eta(V)g(hX,hU)\xi - \eta(U)g(hX,hV)\xi + g(hX,U)hV - g(hX,$$

(3.4)
$$g(hX, V)hU - \kappa B^{e}(U, V)X - \mu B^{e}(U, V)hX = 0.$$

Taking inner product of (3.4) with Z we obtain

$$\begin{split} &\frac{4\kappa(\kappa-1)}{n+3}[g(X,U)g(V,Z)-g(X,V)g(U,Z)] + \frac{4(\kappa-1)\mu}{n+3}[g(hX,U)g(V,Z)\\ &-g(hX,V)g(U,Z)] + \mu\kappa[\eta(V)\eta(Z)g(X,hU) - \eta(U)\eta(Z)g(X,hV)\\ &+g(X,U)g(hV,Z) - g(X,V)g(hU,Z)] + \mu^2[\eta(V)g(hX,hU)\eta(Z) - \eta(U)\eta(Z)\\ &g(hX,hV) + g(hX,U)g(hV,Z) + g(hX,U)g(hV,Z)] - \kappa\widetilde{B^e}(U,V,X,Z) - \mu\widetilde{B^e}(U,V,hX,Z) = 0. \end{split}$$

Let $\{e_i\}_{i=1}^n$, be an orthonormal basis of the tangent space. Putting $U=Z=e_i$ and summing up over 1 to n, we have

(3.5)
$$g(hX, V) = a_1 g(X, V) + b_1 \eta(X) \eta(V),$$

where

$$a_1 = \left[\frac{-4\kappa(\kappa - 1)(2 - n) - 6\mu(n - 3 + \mu)(\kappa - 1) + \mu^2(n + 3)}{4\mu(\kappa - 1)(1 - n) - (n - 1)\mu^2 - 6\kappa(n - 3 + \mu) + \mu\kappa(n + 3) + 4\mu(\kappa - 1)} \right],$$

and

$$b_1 = \left[\frac{\kappa^2(n-1) + \kappa p(2-n) + r\kappa + 4\kappa(\kappa-1) + 6\mu(n-3+\mu)(\kappa-1) + \mu^2(\kappa-1)(n+3)}{4\mu(\kappa-1)(1-n) - (n-1)\mu^2 - 6\kappa(n-3+\mu) + \mu\kappa(n+3) + 4\mu(\kappa-1)} \right],$$

where $p = \frac{n+r-1}{n+1}$, r being the scalar curvature of M. From (2.15) and (3.5) we obtain

$$(3.6) S(X,V) = aq(X,V) + b\eta(X)\eta(V),$$

where

$$a = \left[(n-3) - \frac{n-1}{2} \mu \right] + \left[(n-3) + \mu \right]$$

$$\left[\frac{-4\kappa(\kappa - 1)(2-n) - 6\mu(n-3+\mu)(\kappa - 1) + \mu^2(n+3)}{4\mu(\kappa - 1)(1-n) - (n-1)\mu^2 - 6\kappa(n-3+\mu) + \mu\kappa(n+3) + 4\mu(\kappa - 1)} \right],$$

and

$$b = \left[(3-n) + \frac{n-1}{2} (2\kappa + \mu) \right] + \left[(n-3) + \mu \right]$$

$$\left[\frac{\kappa^2(n-1) + \kappa p(2-n) + r\kappa + 4\kappa(\kappa - 1) + 6\mu(n-3+\mu)(\kappa - 1) + \mu^2(\kappa - 1)(n+3)}{4\mu(\kappa - 1)(1-n) - (n-1)\mu^2 - 6\kappa(n-3+\mu) + \mu\kappa(n+3) + 4\mu(\kappa - 1)} \right].$$

Thus, from (3.6) we can state the following:

Theorem 3.1. Let M be an n-dimensional ($n \ge 5$) E-Bochner semisymmetric (κ , μ)-contact metric manifold. Then the manifold is an η -Einstein manifold.

Putting the value $\kappa = 1$ and h = 0 in the equation (3.5) we have the following:

Corollary 3.1. An E-Bochner semisymmetric Sasakian manifold $M^n (n \ge 5)$ is E-Bochner flat.

In general, in a (κ, μ) -contact metric manifold the Ricci operator Q does not commute with φ . However, Yildiz and De [20] proved the following:

Lemma 3.1. In a non-Sasakian (κ, μ) -contact metric manifold the following conditions are equivalent:

- (a) η -Einstein manifold,
- (b) $Q\varphi = \varphi Q$.

From Lemma 3.1 we can state that

Corollary 3.2. Let M^n be an n-dimensional ($n \geq 5$) E-Bochner semisymmetric non-Sasakian (κ , μ)-contact metric manifold. Then the Ricci operator Q commutes with φ .

4.
$$(\kappa, \mu)$$
-Contact Metric Manifolds Satisfying $B^e(\xi, U) \cdot R = 0$

In this section, we consider an n-dimensional (κ, μ) -contact metric manifold satisfying $(B^e(\xi, U) \cdot R)(X, Y)Z = 0$. Therefore, we have

$$B^{e}(\xi, U)R(X, Y)Z - R(B^{e}(\xi, U)X, Y)Z - R(X, B^{e}(\xi, U)Y)Z -$$

$$(4.1) \qquad R(X, Y)B^{e}(\xi, U)Z = 0.$$

Using (2.19) in (4.1), we get

$$\frac{4(\kappa - 1)}{n + 3} \quad \left[\quad -\eta(U)\eta(R(X, Y)Z)\xi + \eta(R(X, Y)Z)U + \\ \eta(X)\eta(U)R(\xi, Y)Z - \eta(X)R(U, Y)Z + \eta(Y)\eta(U)R(X, \xi)Z - \\ -\eta(Y)R(X, U)Z + \eta(Z)\eta(U)R(X, Y)\xi - \eta(Z)R(X, Y)U \right] \\ +\mu[\eta(R(X, Y)Z)hU - \eta(X)R(hU, Y)Z - \\ \eta(Y)R(X, hU)Z - \eta(Z)R(X, Y)hU \right] = 0,$$

$$(4.2)$$

Taking inner product with ξ of (4.2) and using $h\xi = 0$, $g(R(X,Y)\xi,\xi) = 0$ we get

$$\frac{4(\kappa - 1)}{n + 3} \quad \left[\quad \eta(X)\eta(U)g(R(\xi, Y)Z, \xi) - \eta(X)g((U, Y)Z, \xi) + \right.$$

$$\eta(Y)\eta(U)g(R(X, \xi)Z, \xi) - \eta(Y)g(R(X, U)Z, \xi) -$$

$$\eta(Z)g(R(X, Y)U, \xi] +$$

$$\mu[-\eta(X)g(R(hU, Y)Z, \xi) - \eta(Y)g(R(X, hU)Z, \xi) -$$

$$\eta(Z)g(R(X, Y)hU, \xi)] = 0,$$

$$(4.3)$$

Let us consider the following cases:

CASE 1. $\kappa = 0 = \mu$.

CASE 2. $\kappa = 0, \, \mu \neq 0.$

CASE 3. $\kappa \neq 0$, $\mu = 0$.

CASE 4. $\kappa \neq 0$, $\mu \neq 0$

For Case 1, we observe that $R(X,Y)\xi = 0$, for all X,Y. Hence, by Lemma 2.1, M is locally the Remannian product $E^{m+1} \times S^m(4)$.

For Case 2, from (4.3) we get

$$\begin{array}{ll} \frac{4(-1)}{n+3} & \left[& \eta(X)\eta(U)g(R(\xi,Y)Z,\xi) - \eta(X)g((U,Y)Z,\xi) + \right. \\ & \left. & \eta(Y)\eta(U)g(R(X,\xi)Z,\xi) - \eta(Y)g(R(X,U)Z,\xi) - \right. \\ & \left. & \eta(Z)g(R(X,Y)U,\xi] + \right. \\ & \left. & \mu[-\eta(X)g(R(hU,Y)Z,\xi) - \eta(Y)g(R(X,hU)Z,\xi) - \eta(Z)g(R(X,Y)hU,\xi)] = 0. \end{array}$$

Let $\{e_i\}_{i=1}^n$, be an orthonormal basis of the tangent space. Putting $Y = Z = e_i$ in (4.3) and summing over 1 to n, we get

(4.5)
$$g(X, hU) = a_1 g(X, U) + b_1 \eta(X) \eta(U),$$

where

$$a_1 = \left[\frac{\mu(n+3)}{4}\right],$$

and

$$b_1 = -\left[\frac{\mu(n+3)}{4}\right].$$

From (2.15) and (4.5) we get

$$(4.6) S(X,U) = ag(X,U) + b\eta(X)\eta(U),$$

where

$$a = \left[(n-3) - \frac{n-1}{2} \mu \right] + \left[(n-3) + \mu \right] \left[\frac{\mu(n+3)}{4} \right],$$

$$b = \left[(3-n) + \frac{n-1}{2}\mu \right] - \left[(n-3) + \mu \right] \left[\frac{\mu(n+3)}{4} \right].$$

For Case 2, M becomes an η -Einstein manifold.

For Case 3, from (4.3) we get

$$\frac{4(\kappa - 1)}{n + 3} \quad [\quad \eta(X)\eta(U)g(R(\xi, Y)Z, \xi) - \eta(X)g((U, Y)Z, \xi) + \\ \eta(Y)\eta(U)g(R(X, \xi)Z, \xi) - \eta(Y)g(R(X, U)Z, \xi) - \\ \eta(Z)g(R(X, Y)U, \xi] = 0.$$

Therefore, either $\kappa = 1$ or

$$[\eta(X)\eta(U)g(R(\xi,Y)Z,\xi) - \eta(X)g((U,Y)Z,\xi) + \eta(Y)\eta(U)g(R(X,\xi)Z,\xi) - \eta(Y)g(R(X,U)Z,\xi) - \eta(Z)g(R(X,Y)U,\xi] = 0.$$
(4.8)

Let $\{e_i\}_{i=1}^n$, be an orthonormal basis of the tangent space. Putting $Y = Z = e_i$ in (4.8) and summing over 1 to n, we get

$$(4.9) g(X,U) = \eta(X)\eta(U),$$

which is not possible.

Thus, for Case 3, M is a Sasakian manifold.

For Case 4, putting $Y = Z = e_i$ in (4.3) we get

(4.10)
$$g(X, hU) = a_1 g(X, U) + b_1 \eta(X) \eta(U),$$

where

$$a_{1} = \left[\frac{\mu^{2}(\kappa - 1)(n + 3) - 4\kappa(\kappa - 1)}{4\mu(\kappa - 1) + \kappa\mu(n + 3)}\right],$$

$$b_{1=} = -\left[\frac{\mu^{2}(\kappa - 1)(n + 3) - 4\kappa(\kappa - 1)}{4\mu(\kappa - 1) + \kappa\mu(n + 3)}\right].$$

Form (2.15) and (4.10) we get

$$(4.11) S(X,U) = ag(X,U) + b\eta(X)\eta(U),$$

where

$$a = \left[(n-3) - \frac{n-1}{2}\mu \right] + \left[(n-3) + \mu \right] \left[\frac{\mu^2(\kappa-1)(n+3) - 4\kappa(\kappa-1)}{4\mu(\kappa-1) + \kappa\mu(n+3)} \right],$$

and

$$b = \left[(3-n) + \frac{n-1}{2} (2\kappa + \mu) \right] - \left[(n-3) + \mu \right] \left[\frac{\mu^2(\kappa - 1)(n+3) - 4\kappa(\kappa - 1)}{4\mu(\kappa - 1) + \kappa\mu(n+3)} \right].$$

Summing up we can state the following:

Theorem 4.1. Let M^n be an (n = 2m + 1)-dimensional (κ, μ) -contact metric manifold satisfying $B^e(\xi, U) \cdot R = 0$. Then we have one of the following:

- (a) M^n is locally the Remannian product $E^{m+1} \times S^m(4)$.
- (b) M^n is an η -Einstein manifold.
- (c) M^n is a Sasakian manifold.

5. (κ, μ) -Contact Metric Manifolds Satisfying $B^e(\xi, U) \cdot B^e = 0$

Let M^n be an n-dimensional (κ, μ) -contact metric manifold satisfying $B^e(\xi, U) \cdot B^e = 0$

Then we have

$$B^{e}(\xi, U)B^{e}(X, Y)Z - B^{e}(B^{e}(\xi, U)X, Y)Z - B^{e}(X, B^{e}(\xi, U)Y)Z - B^{e}(X, Y)B^{e}(\xi, U)Z = 0,$$
(5.1)

Using (2.19), we get

$$\frac{4(\kappa - 1)}{n + 3} [\eta(B^{e}(X, Y)Z)U - \eta(B^{e}(X, Y)Z)\eta(U)\xi - \eta(X)B^{e}(U, Y)Z + \eta(U)\eta(X)B^{e}(\xi, Y)Z - \eta(Y)B^{e}(X, U)Z + \eta(Y)\eta(U)B^{e}(X, \xi)Z - \eta(Z)B^{e}(X, Y)U + \eta(Z)\eta(U)B^{e}(X, Y)\xi] + \mu[\eta(B^{e}(X, Y)Z)hU - \eta(Z)B^{e}(X, Y)U + \eta(Z)\eta(U)B^{e}(X, Y)\xi] + \mu[\eta(B^{e}(X, Y)Z)hU - \eta(Z)B^{e}(X, Y)U + \eta(Z)\eta(U)B^{e}(X, Y)\xi] + \mu[\eta(B^{e}(X, Y)Z)hU - \eta(Z)B^{e}(X, Y)Z] + \mu[\eta(B^{e}(X, Y)Z)hU] +$$

(5.2)
$$\eta(X)B^{e}(hU,Y)Z - \eta(Y)B^{e}(X,hU)Z - \eta(Z)B^{e}(X,Y)hU] = 0.$$

Putting $X = Z = \xi$ in (5.2) and using (2.22) and (2.23), we obtain

(5.3)
$$\frac{4(\kappa-1)}{n+3} \left[2(\eta(U) \frac{4(\kappa-1)}{n+3} (Y - \eta(Y)\xi) + \mu \eta(U)hY) \right] = 0.$$

From (5.3) and (2.19) it follows that either $\kappa=1,$ or $B^e(\xi,Y)U=0.$

For $\kappa = 1$, the manifold is Sasakian.

If $B^e(\xi, Y)U = 0$, then $B^e(\xi, Y) \cdot B^e = 0$ and if the manifold is Sasakian, then from (2.19) we obtain $B^e(\xi, Y)U = 0$ and hence $B^e(\xi, Y) \cdot B^e = 0$

Lemma 5.1. [13] A (κ, μ) -contact metric manifold with vanishing E-Bochner curvature tensor is a Sasakian manifold.

From the above discussion and Lemma 5.1 we conclude that

Theorem 5.1. A (κ, μ) -contact metric manifold $M^n (n \geq 5)$ satisfies $B^e(\xi, U) \cdot B^e = 0$ if and only if the manifold is Sasakian.

6.
$$(\kappa, \mu)$$
-Contact Metric Manifolds Satisfyng $B^e(\xi, X) \cdot S = 0$

Let M be an n-dimensional (κ, μ) -contact metric manifold satisfying $B^e(\xi, X) \cdot S = 0$.

Therefore, $(B^e(\xi, X) \cdot S)(U, V) = 0$ implies

(6.1)
$$S(B^{e}(\xi, X)U, V) + S(U, B^{e}(\xi, X)V) = 0.$$

Using (2.19), we get

$$\frac{4(\kappa - 1)}{n + 3} [\eta(U)S(X, V) + \eta(V)S(U, X)] + \mu[\eta(U)S(hX, V) + \eta(V)S(hX, V)] + \mu[\eta(U)S(hX, V)] +$$

(6.2)
$$\eta(V)S(U, hX) = 0.$$

Putting $V = \xi$ in (6.2), we get

(6.3)
$$\frac{4(\kappa - 1)}{n+3} [2\kappa(n-1)\eta(U)\eta(X) + S(U,X)] + \mu S(U,hX) = 0.$$

Using (2.15) and (2.17) in (6.3) we have

(6.4)
$$S(U,X) = ag(U,X) + b\eta(U)\eta(X),$$

where

$$\begin{array}{lcl} a & = & \left[(n-3) - \frac{(n-1)}{2} \mu \right] + \left[(n-3) + \mu \right] \\ & & \frac{\left[-4(\kappa-1)((n-3) - \frac{(n-1)}{2} \mu) + \mu((\kappa-1)(n^2-9) - \frac{(n+3)(n-1)}{2} \mu) \right]}{\left[4(\kappa-1)((n-3) + \mu) + \mu((n^2-9) - \frac{n+3)(n-1)}{2} \mu) \right]}, \end{array}$$

and

$$b = \left[(3-n) + \frac{(n-1)}{2} (2\kappa + \mu) \right] - \left[(n-3) + \mu \right]$$

$$\frac{\left[4(\kappa - 1)(3\kappa(n-1) + (3-n) + \frac{(n-1)}{2}\mu) + \mu((\kappa - 1)(n^2 - 9) + \mu(\kappa - 1)(n+3)) \right]}{\left[4(\kappa - 1)((n-3) + \mu) + \mu((n^2 - 9) - \frac{n+3)(n-1)}{2}\mu) \right]}$$

From (6.4) we conclude that

Theorem 6.1. Let $M^n (n \geq 5)$ be a (κ, μ) -contact metric manifold satisfying $B^e(\xi, X) \cdot S = 0$. Then the manifold is an η -Einstein Manifold.

From Lemma 3.1 we can state that

Corollary 6.1. Let M^n be an n-dimensional ($n \ge 5$) non-Sasakian (κ , μ)-contact metric manifold satisfying $B^e(\xi, X) \cdot S = 0$. Then the Ricci operator Q commutes with φ .

References

- [1] Arslan, K., Ezentas, R., Mihai, I., Murthan, C. and Özgür, C., Certain inequalities for submanifolds in (κ, μ) -contact space forms, Bull. Austral. Soc., **64**(2001), 201-212.
- [2] Blair, D.E, Contact manifolds in Reimannian geometry, Lecture notes in Math., 509, Springer-verlag., 1976.
- [3] Blair, D.E, Koufogiorgos T. and Papantoniou B.J., Contact metric manifold satisfying a nullity condition, Israel J.Math. 91(1995), 189-214.
- [4] Blair, D.E, Two remarks on contact metric structures, Tohoku Math. J. 29(1977), 319-324.
- [5] Bochner, S., Curvature and Betti number, Ann. of Math., 50(1949), 77-93 .
- [6] Boeckx, E., A full classification of contact metric (κ , μ)-spaces, Illinois J.Math. **44**(2000), 212-219 .
- [7] Boothby, W.M. and Wang, H.C., On contact manifolds, Annals of Math., 68(1958), 721-734.
- [8] De, U.C and Sarkar, A., On Quasi-conformal curvature tensor of (κ, μ) -contact metric manifold, Math. Reports **14(64)**, (2012), 115-129.
- [9] Endo, H., On K-contact Reimannian manifolds with vanishing E-contact Bochner curvature tensor, Colloq.Math. **62**(1991), 293-297.
- [10] Ghosh,S. and De, U.C, On a class of (κ, μ) -contact metric manifolds, Analele Universitătii Oradea Fasc. Mathematica, Tom. **19**(2012), 231-242.
- [11] Ghosh, S. and De, U.C., On ϕ -Quasiconformally symmetric (κ , μ)-contact metric manifolds, Lobachevskii Journal of Mathematics, **31**(2010), 367-375.

- [12] Jun, J.B., Yildiz, A. and De, U.C.,On ϕ -recurrent (κ , μ)-contact metric manifolds, Bull. Korean Math. Soc. **45(4)**, 689(2008).
- [13] Kim, J.S, Tripathi, M.M. and Choi, J.D, On C-Bochner curvature tensor of a contact metric manifold, Bull. Korean Math. Soc. 42(2005), 713-724.
- [14] Kowalski, O., An explicit classification of 3-dimensional Reimannian spaces satisfying $R(X,Y)\cdot R=0$, Czecchoslovak Math. J. **46(121)** (1996), 427-474.
- [15] Matsumoto, M. and Chuman, G., On C-Bochner curvature tensor, TRU Math., 5(1969), 21-30.
- [16] Özgür, C., Contact metric manifolds with cyclic-parallel Ricci tensor, Diff. Geom. Dynamical systems, 4(2000), 21-25.
- [17] Papantoniou, B.J., Contact Remannian manifolds satisfying $R(\xi, X) \cdot R = 0$ and $\xi \in (\kappa, \mu)$ -nullity distribution, Yokohama Math.J., **40**(1993), 149-161.
- [18] Szabo, Z.I., Structure theorems on Reimannian spaces satisfying $R(X,Y) \cdot R = 0$. I. The local version, J. Differential Geom. **17**(1982), 531-582.
- [19] Tanno, S., Ricci curvatures of contact Reimannian manifolds, Tôhoku Math. J., ${\bf 40} (1988)$, 441-448.
- [20] Yildiz, A., De, U.C, A classification of (κ, μ) -contact matric manifold, Commun. Korean Math.Soc. **27**(2012), 327-339.

Department of Pure Mathematics, Calcutta University, 35 Ballygunge Circular Road, Kol 700019, West Bengal, India.

UMES CHANDRA COLLEGE, 13, SURYA SEN STREET, KOL 700012, WEST BENGAL, INDIA.

E-mail address: uc_de@yahoo.com

 $E ext{-}mail\ address: srimayee.samui@gmail.com}$