
BIOINFORMATICS Vol. 19 no. 13 2003, pages 1727–1729
DOI: 10.1093/bioinformatics/btg221

E-Cell 2: Multi-platform E-Cell simulation system

K. Takahashi1, N. Ishikawa2, Y. Sadamoto2, H. Sasamoto2,
S. Ohta2, A. Shiozawa2, F. Miyoshi1, Y. Naito1, Y. Nakayama1 and
M. Tomita2,∗

1Laboratory for Bioinformatics, Institute for Advanced Biosciences, Keio University,
Fujisawa 252-8520, Japan and 2Bioscience Division, Mitsui Knowledge Industry Co.,
Ltd., Harmony Tower 21st Floor 32-2, Higashinakano 1-chome, Nakano-ku,
Tokyo 164-8721, Japan

Received on December 19, 2002; revised on March 1, 2003; accepted on March 17, 2003

ABSTRACT
Summary: A new version of the E-Cell simulation system,
which runs on Windows as well as Linux, has been released
as free software under the terms of the GNU General Public
License.
Availability: Downloadable from http://www.E-Cell.org
Contact: mt@sfc.keio.ac.jp

The E-Cell system is a generic software package for
cell simulation. Given a set of reaction rules and initial
values, users can run simulations and observe dynamic
changes in quantities and concentrations of intra- and extra-
cellular metabolites and substances through graphical user
interfaces (GUI). Activities of biochemical reactions can
be monitored, and amounts of substances can be altered
(increased/decreased) by the users at any time during the sim-
ulation. E-Cell system makes it possible to conductin silico
experiments (Tomitaet al., 1999).

E-Cell is based on an object-oriented modeling the-
ory, structured Substance–Reactor Model (SRM), in which
simulation models are constructed with three fundamental
object classes, Substance, Reactor and System. Substances
represent state variables, Reactors represent operations on the
state variables, and Systems represent logical and/or phys-
ical compartments containing other objects. Users can define
and dynamically load their own subclasses of any of the
three fundamental classes in C++ programming language.
The newly defined object classes can be used to incorpor-
ate new data structures and computational procedures in the
simulation models.

The first version of E-Cell (E-Cell 1) was initially developed
in 1996 at Keio University. E-Cell 1 is written entirely in
C++ and runs on Linux operating system, and has been
used for numerous modeling projects. The development of
E-Cell version 2 (E-Cell 2) had started in 2000 in order to
continue the development over the previous version. One

∗To whom correspondence should be addressed.

outcome of the development is its portability. Unlike the previ-
ous version, which is specialized in Linux, E-Cell 2 compiles
and runs on several different platforms such as Windows and
Linux. Presently, E-Cell version 2.25 works stably on several
operating systems including Windows98, WindowsNT4.0,
Windows2000, and WindowsXP.

In order to reduce compiler dependency and optimize
simulation performance, internal data structure has been
re-designed resulting in a concise and more maintainable
implementation. The GUI has been reconstructed in the Java
language to provide a uniform GUI environment on different
platforms including Windows and Linux. The C++ simula-
tion core and the Java GUI is coupled by using Java Native
Interface (JNI).

E-Cell 2 allows the users to incrementally add Reactor sub-
classes, plug-in modules compute cellular phenomena such
as chemical reactions, as Windows Dynamic Link Library
(DLL) files. The distributed package of version 2.25 con-
tains 18 different classes of standard Reactors, such as for
Michaelis–Menten formula and generalized chemical equi-
librium. User-defined reactors can be developed and added
with Borland C++ Compiler version 5.5.1. In addition to
an interactive GUI mode, E-Cell 2 runs in a batch mode,
performing simulations efficiently without a need to syn-
chronize with the GUI (see Figure 1). The reactor definition
files and the simulation rule files are 100% compatible with
E-Cell 1. In addition to a standard time-value data logging
as in the previous version, E-Cell 2 can record max, min,
and average value with a user-specified logging interval. This
feature enables the users to detect small time-scale fluctu-
ations without causing a big logging overhead. To ensure
correctness of the simulation after the thorough reorganiza-
tion of the simulator kernel, it has been carefully verified that
both versions produce completely the same result to machine
epsilon.

Despite the development described in this paper, there
still remain several difficulties regarding the simulation
of realistic cell models (Takahashiet al., 2002). Another

Bioinformatics 19(13) © Oxford University Press 2003; all rights reserved. 1727

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/13/1727/225049 by U
.S. D

epartm
ent of Justice user on 16 August 2022

http://www.E-Cell.org


K.Takahashi et al.

Fig. 1. Snapshot of E-Cell 2 simulation system. Top: the main control panel. Upper middle: a Reactor window showing an activity value of
a Reactor object. Lower middle: a Substance window, by which the user can alter the quantity of a Substance. Hiding in the back: the message
window, which displays messages from the software. The windows with plots (Tracer windows) present time-series of Substance quantities
and Reactor activities. Plots can be magnified on demand.

version of the software, E-Cell Version 3 (E-Cell 3), is
concurrently being developed. E-Cell 3 is capable of run-
ning various different algorithms simultaneously in a single
simulation. Suitable algorithms can be used for different sub-
models of various cellular phenomena at different levels of
abstraction and in different time-scales. The new version
provides a compact front end API in C++ and Python,
allowing development of front-end software in a modular
way. These features of multi-algorithm simulation and soft-
ware modularity are necessary for large-scale cell simulation
(Tomita, 2001, 2002).

E-Cell 2 is distributed as free software under the terms
of the GNU General Public License. The package includes
an automated installer and a model development environ-
ment consisting of several software components such as the

Borland C++ Compiler, Java Development Kit, and Cygwin
(a UNIX-like shell and library layer for Windows). Several
example models including a human erythrocyte metabolism
model developed by Nakayamaet al. are bundled with the
package.

ACKNOWLEDGEMENTS
We thank Kenta Hashimoto, Katsuyuki Yugi, Yuri Matsuzaki,
Takeshi Sakurada and other members of the E-Cell project; it
would have been impossible to develop E-Cell 1 and E-Cell 2
without their comments and feedbacks.

This work was supported by Japan Science and Technology
Agency (JST), and in part by the Ministry of Agriculture,

1728

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/13/1727/225049 by U
.S. D

epartm
ent of Justice user on 16 August 2022



E-Cell 2: Multi-platform E-Cell simulation system

Forestry and Fisheries of Japan (Rice Genome Project SY-
2103) and New Energy and Industrial Technology Develop-
ment and Organization (NEDO) of the Ministry of Economy,
Trade and Industry of Japan (Development of a Technological
Infrastructure for Industrial Bioprocess Project).

REFERENCES
Tomita,M., Hashimoto,K., Takahashi,K., Shimizu,T., Matsuzaki,Y.,

Miyoshi,F., Saito,K., Tanida,S., Yugi,K., Venter,J.C.

and Hutchison,C. (1999) E-Cell: software environment for
whole cell simulation.Bioinformatics, 15(1), 72–84.

Takahashi,K., Yugi,K., Hashimoto,K., Yamada,Y., Pickett,C., and
Tomita,M. (2002) Computational challenges in cell simulation.
IEEE Intell. Syst., 17(5), 64–71.

Tomita,M. (2001) Whole cell simulation: a grand chal-
lenge of the 21st century.Trends Biotechnol., 19(6),
205–210.

Tomita,M. (2002) Towards computer aided design (CAD) of useful
microorganisms.Bioinformatics, 17, 1091–1092.

1729

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/13/1727/225049 by U
.S. D

epartm
ent of Justice user on 16 August 2022


