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Abstract. Minimal solutions for relative rotation and translation esti-
mation tasks have been explored in different scenarios, typically relying
on the so-called co-visibility graphs. However, how to build direct rota-
tion relationships between two frames without overlap is still an open
topic, which, if solved, could greatly improve the accuracy of visual
odometry. In this paper, a new minimal solution is proposed to solve rel-
ative rotation estimation between two images without overlapping areas
by exploiting a new graph structure, which we call Extensibility Graph
(E-Graph). Differently from a co-visibility graph, high-level landmarks,
including vanishing directions and plane normals, are stored in our E-
Graph, which are geometrically extensible. Based on E-Graph, the rota-
tion estimation problem becomes simpler and more elegant, as it can deal
with pure rotational motion and requires fewer assumptions, e.g. Man-
hattan/Atlanta World, planar/vertical motion. Finally, we embed our
rotation estimation strategy into a complete camera tracking and map-
ping system which obtains 6-DoF camera poses and a dense 3D mesh
model. Extensive experiments on public benchmarks demonstrate that
the proposed method achieves state-of-the-art tracking performance.

1 Introduction

Camera pose estimation is a long-standing problem in computer vision as a key
step in algorithms for visual odometry, Simultaneous Localization and Mapping
(SLAM) and related applications in robotics, augmented reality, autonomous
driving (to name a few). As part of the camera pose estimation problem, the
minimal case [40] provides an estimate of whether the problem can be solved and
how many elements are required to obtain a reliable estimate. According to the
input data type and scenarios, different solutions [1,28,15,9] were proposed, most
of which became very popular in the computer vision and robotic community,
such as the seven-point [1] and five-point [28] approaches. A typical limitation
of traditional pose estimation solutions based on the minimal case [1,28,31,9] is
that both rotation and translation estimation rely on the co-visibility features
between two frames, this having as a consequence that the length of an edge
between two nodes is often relatively short. Therefore, tracking errors tend to
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(a) Dense scene reconstruction (b) Sparse scene reconstruction

(c) Covisibility graph (d) Extensibility graph

Fig. 1. Dense (a) and sparse (b) scene reconstruction of the office-room scene from the
ICL dataset [10] obtained by the proposed method. (c) and (d): keyframes (in blue)
and connected frames are linked with green and red lines, respectively, to build up
the proposed covisibility and extensibility graphs. The black ellipses denote the start
points of the camera trajectory.

accumulate easily based on a frame-to-frame or frame-to-keyframe strategy. To
solve this issue, more advanced tracking systems [26,3] with optimization solu-
tions, including local and global bundle adjustment approaches, were exploited
to refine poses from minimal solutions. Loop Closure is a common algorithm
used in feature-based [24] and direct [7] methods to remove drift. However, it
also requires the camera to revisit the same place, which is a limiting assumption
in many scenarios.

Compared with point features, lines and planes require more computation to
be extracted and described. Early multi-feature SLAM systems [8] use them to
increase the number of features to combat low-textured scenes. After that, co-
planar, parallel and perpendicular relationships were explored [39,18,20] to add
more constraints in the optimization module, still following a similar tracking
strategy as ORBSLAM [25] or DSO [36] for the initial pose estimation.

Different to the tightly coupled estimation strategy, some works [43] proposed
to decouple the 6-DoF pose estimation into rotation and translation estimation
aiming to achieve a more accurate rotation estimation, based on the idea that
pose drift is mainly caused by the rotation component [14]. At the same time,
based on an estimated rotation matrix [31], only two points are required to
compute the translation motion, leading to more robustness in low-textured
regions.

The Manhattan World (MW) [43] and Atlanta World (AW) [13] assump-
tions introduce stronger constraints since they require a single orthogonal scene,
or a scene with a unified vertical direction. Unlike loop closure that removes
drift by detecting trajectory loops, the assumption of MW and AW is intro-
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duced for indoor tracking scenarios [19,14] to improve the accuracy of camera
pose estimation, since most indoor artificial environments follow this assump-
tion. MW and AW improve accuracy when the main structure of the scene has
orthogonal elements However, since this assumption requires the observation of
vertical/orthogonal environmental features (such as straight lines or planes), the
SLAM system using this method is also limited in the types of scenarios it can
be successfully applied to.

In this paper we propose a rigid rotation estimation approach based on a novel
graph structure, which we dub Extensibility Graph (E-Graph), for landmark
association in RGB-D data. Our approach is designed to reduce drift and improve
the overall trajectory accuracy in spite of loop closure or MW/AW assumptions.
Benefiting of E-Graph, the drift-free rotation estimation problem is simplified to
the alignment problem of rotating coordinate systems. Importantly, our rotation
step does not need overlaps between two frames by making use of vanishing
directions of lines and plane normals in the scene, hence can relate a higher
number of keyframes with respect to standard co-visibility graphs, with benefits
in terms of accuracy and robustness in presence of pure rotational motions.

In addition, we develop a complete tracking and dense mapping system base
on the proposed E-Graph and rotation estimation strategies, which we demon-
strate to outperform state-of-the-art SLAM approaches [20,38,26,3]. To summa-
rize, the main contributions of this paper are as follows: i) a new perspective for
reducing drift is proposed based on our novel graph structure, E-Graph, which
connects keyframes across long distances; ii) a novel drift-free rotation alignment
solution between two frames without overlapping areas based on E-Graph; iii) a
complete SLAM system based on the two previous contributions to improve ro-
bustness and accuracy in pose estimation and mapping. The proposed approach
is evaluated on common benchmarks such as ICL [10] and TUM-RGBD [33],
demonstrating an improved performance compared to the state of the art.

2 Related work

By making the assumption of planar motion [9], two-view relative pose estima-
tion is implemented based on a single affine correspondence. Point features are
common geometric features used in VO and SLAM [3] systems. To remove the
drift from point-based front ends, different types of back ends are explored in
tracking methods. Loop closing is an important module to remove drift, which
happens when the system recognizes that a place [6,23] has been visited be-
fore. After closing the loop, associated keyframes in the covisibility graph will
be adjusted. Benefiting of loop closure and optimization modules, ORB-SLAM
series [26,3] organize the keyframes efficiently, which provides robust support for
tracking tasks. Different from sparse point features used in ORB-SLAM, BAD-
SLAM [32] implements a direct bundle adjustment formulation supported by
GPU processing.

However, in indoor environments, to cover texture-less regions that have few
point features, more geometric features are merged into the front end of sys-
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tems. At the early stage, methods build re-projection error functions for lines
and planes. CPA-SLAM [22] makes use of photometric and plane re-projection
terms to estimate the camera pose. Based on estimated camera poses, detected
planes are merged together with a global plane model. Similar to our method,
CPA-SLAM and KDP-SLAM [11] can build constraints between non-overlapping
frames. However those constraints are used to build heavy optimization targets
instead of improving the efficiency. Furthermore, the relationship between paral-
lel lines (vanishing points) and perpendicular planes is explored in [17,41]. Based
on the regularities of those structural features, they obtain a more accurate per-
formance. Instead of exploring the parallel/perpendicular relationships between
lines/planes, [30,18] make use of constraints between co-planar points and lines
in the optimization module.

Those regularities aim to build constraints between local features, [14,20] in-
troduce global constraints by modeling the environment as a special shape, like
MW and AW. The MW assumption is suitable for a cuboid scenario, which is
supposed to be built by orthogonal elements. Based on this assumption, those
methods estimate each frame’s rotation between the frame and the Manhattan
world directly, which is useful to avoid drift between frames in those scenes.
L-SLAM [14] groups normal vectors of each pixel into an orthogonal coordi-
nate by projecting them into a Gaussian Sphere [43] and tracks the coordinate
axes to compute the relative rotation motion. Similar to the main idea of L-
SLAM, [15] provides a RGB-D compass by using a single line and plane. Since
the line lies on the plane, the underlying assumption of the system is the MW-
based rotation estimation method. However, the limitation of this strategy is
also very obvious, that it works only in Manhattan environments. Based on
ORB-SLAM2 [26], Structure-SLAM [19,20] merges the MW assumption with
keyframe-based tracking, to improve the robustness of the system in non-MW
indoor scenes, which refine decoupled camera pose by using a frame-to-model
strategy. Compared with MW-based tracking methods, our approach is less sen-
sitive to the structure of environments.

3 Minimal case in orientation estimation

Commonly, the 6-DoF Euclidean Transform T ∈ SE(3) defines motions as a set
of rotation R ∈ SO(3) and translation t ∈ R3. Based on point correspondences,
camera pose estimation can be defined as,

P
′

= RP + t (1)

where P
′

and P are 3D correspondences, and [R, t] defines the relative motion
between two cameras. For monocular sensors, their image normalized represen-

tations are X
′

c and Xc,

X
′

c = α(RXc + γt) (2)
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where α and γ are depth-related parameters. After multiplying (2) by X
′T
c [t]x,

we can obtain the classic essential matrix equation,

X
′T
c EXc = 0 (3)

where E = [t]xR and [t]x is the skew symmetric matrix formed by t.
For RGB-D sensors, the task is simplified since the absolute depth infor-

mation is directly provided by sensors. Equation (3) can be solved by using
3 non-collinear correspondences only [29], although the distance between two
frames is supposed to be kept small to extract enough correspondences.

3.1 Minimal solution for rotation

Fig. 2. Minimal case of rotation estimation in EG

Different from traditional methods based on co-visibility graphs, the proposed
method decouples rotation and translation estimation into two separate stages.
Moreover, the rotation estimation task does not require feature correspondences.
As shown in Figure 2, non-parallel direction vectors vm,m ∈ [0, 1, . . . , n] are de-
tected in the camera coordinate Cj , where vjm = [xv

j
m,y v

j
m,z v

j
m]T . In Euclidean

3D space, the size of a finite and linearly independent set of vectors is less then
four. According to the Gram-Schmidt orthogonalization process, we can obtain
an orthogonal set S = [u0,u1,u2],

u0 = vj0
u1 = vj1 − proj[vj

0]
(vj1)

u2 = vj2 − proj[vj
0]

(vj2)− proj[vj
1]

(vj2)

(4)

by using the projection operator proj[u](v) = <u,v>
<u,v>u, where < u,v > shows

the inner product of the vectors u and v. Furthermore, we obtain the normalized
vectors e0, e1 and e2 via em = um

||um|| .



6 Y. Li and F. Tombari

For the Euclidean space R3, the relevant orthonormal basis set based on
the detected direction vectors is (e0, e1, e2). In the jth camera coordinate, the
orthonormal set is detected as (e0, e1, e2), while (e∗0, e

∗
1, e
∗
2) in the kth camera

coordinate.
Therefore, from the perspective of the orthonormal set, those jth and kth

coordinates are represented as [e0, e1, e2]T and [e∗0, e
∗
1, e
∗
2]T , respectively.

Given

eT0eT1
eT2

 [e0, e1, e2] is the identity matrix, the matrix [e0, e1, e2] is an

orthogonal matrix and the columns of [e0, e1, e2]T are orthonormal vectors as
well, which can be used to build the orthonomal basis set of the jth camera
coordinate. Therefore, in R3 an arbitrary vector x can be represented by two
orthonormal sets, (e0, e1, e2)T and (e∗0, e

∗
1, e
∗
2)T , independently,

x = (e0, e1, e2)T (x0, x1, x2)T

= (e∗0, e
∗
1, e
∗
2)T (x∗0, x

∗
1, x
∗
2)T

(5)

Finally, (x0, x1, x2)T = (e0, e1, e2)(e∗0, e
∗
1, e
∗
2)T (x∗0, x

∗
1, x
∗
2)T where the rota-

tion motion Rcjck from camera k to camera j is [e0, e1, e2][e∗0, e
∗
1, e
∗
2]T .

Two-Observation case. In the spatial case where two linearly independent
direction vectors are detected, u2 can be achieved by the cross product process
of u0 and u1. Obviously, the new set [u0,u1,u0 × u1] maintains the orthogonal
property, which is the minimal solution for relative pose estimation problems.

Orthogonal-Observation case. As discussed in Section 2, the MW assump-
tion is enforced mostly by SLAM/VO methods designed to work indoor [15,14,19,38],
achieving particularly good results when the MW assumption holds. When the
observation vectors vjm are orthogonal, the projection operation between differ-
ent vectors is zero and the proposed method degenerates to a multi-MW case,

Rcjck = RcjMiR
T
ckMi

= [
vj
0

||vj
0||
,

vj
1

||vj
1||
,

vj
2

||vj
2||

][
vk
0

||vk
0 ||
,

vk
1

||vk
1 ||
,

vk
2

||vk
2 ||

]T .
(6)

For single-MW scenarios, a global orthogonal set can be obtained by every
frame, therefore Rcjw, from world to camera Cj , can be computed by RcjMR

T
c0M

,
here Rc0w is an identity matrix.

Compared with the visual compass [15] method making use of a combina-
tion of line and plane features from MW [14] to estimate camera rotation, our
graph is more robust and flexible. Furthermore, compared to [31] that generates
four rotation candidates after aligning two frames’ vanishing points, our method
not only leverages plane features, but also solves the ambiguity regarding the
directions of the vanishing points [31].

After the relative rotation pose estimation step between two frames, in case
of no overlap between them, we need to make use of their neighboring frames to
compute translation vectors. Note that only two correspondences are required in
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translation estimation by making use of Equation 3, which is particularly suited
to deal with scenes and environments characterized by different texture types
compared to traditional approaches [26,3].

4 Extensibility Graph (E-Graph)

(a) (b) (c)

Fig. 3. Vanishing point detection and Rotation connection examples. (a) Detection
results of J-Linkage. (b) Refined results by our system. (c) E-Graph (black) and co-
visibility graph (red).

As shown in Figure 3(c), the E-Graph method builds rotation connections
(edges) between frames [CEG1 , CEG2 , CEG3 ] that share global directions instead
of any low-level correspondences (like points and lines). At the same time, no
connection between CCG4 and CCG6 can be made since these frames have no co-
visible features within the co-visibility graph. The proposed connection strategy
will be detailed in the following subsections.

4.1 Landmarks from a RGB-D frame

Similar to the co-visibility graph, the proposed graph is also a topological rep-
resentation of scenes. The difference is that the proposed graph is built based
on the scene structure rather than on overlapping parts between frames. The
distance between connected frames in a co-visibility graph tends to be small (see
Figure 3) since two frames that are distant from each other rarely overlap, lead-
ing to the pose of the current frame being estimated based on the last frame or
last keyframes only. The issue can be alleviated by using global bundle adjust-
ment and loop closure modules, although they bring in intensive computation
and trajectory constraints (e.g. need to re-visit a certain area).

In our graph G = [Nc,Nlm,E ] frames and landmarks are regarded as nodes
Nc and Nlm respectively, while E represents the edges among connected frames.
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Note that landmarks are border-less planes and vanishing directions, e.g. VD1,2,3,
of lines detected in multiple views. In particular, an edge is established between
two frames every time two or more structural elements are matched across them.

Features and landmarks. Vanishing directions are estimated from parallel
lines detected by a joint 2D-3D process, where LSD [35] is used to extract 2D
line features from RGB images. Meanwhile, AHP [5] is carried out to extract
plane features from depth maps.

Firstly, as shown in Figure 3(a), we make use of the J-Linkage algorithm
to classify detected 2D lines into different groups of parallel lines as described
in [34]. However, there are still outliers left based on the 2D process. To solve this
issue, we take advantage of depth maps to check the directions of lines in each
group by using RANSAC to detect the best direction vector VDn to represent
the group Sn.

As for planar landmarks, we make use of the Hessian (πππ = (nπ, dπ)) to
represent a plane detected from the ith frame, where nπ denotes the normal
vector and dπ represents the distance between the camera center and this plane,
which is transferred to world coordinates via the initial pose Twci .

4.2 Data Association

After generating vanishing directions and planes, we now explain how to initialize
and update them.

Initialization. Combined with the first keyframe Kf 0, detected planes and
optimized vanishing directions are used to initialize the E-Graph. The camera
pose T0 of Kf 0 is set as the world coordinate for landmarks in the E-Graph.
Planes πππi measured by Kf 0 are transferred to the graph directly as,

G0 = [Nc0 ,Nlm0 ,E0] (7)

where Nc0 is Kf 0 and E0 has no edges yet. Nlm0
contains [πππi,VD i,PDj ], where

VD i and PDj refer to two different types of 3D lines detected in the RGB-D
frame: the former refers to lines that are parallel to at least another 3D line,
the latter to lines that are not parallel to any line. The first type of lines can
generate vanishing directions VD i in a single view, which are stored into the
graph directly, similarly to planes. In addition, lines that do not have parallel
lines detected in this RGB-D frame are marked as potential vanishing direction
PDj . In case parallel lines will be detected in successive frames, these lines will
also be transferred to VDj , otherwise, they are removed from the E-Graph.

Landmarks fusion. For each new input frame we need to extract vectors nπ,
VD and PD from the current frame. After rotating VDc

i to the world coordinate
frame as VDw

i , if the direction between VDc
i is parallel to VDw

k , k ∈ [0, . . . ,m],
where m is the number of vanishing directions saved in E-Graph, VDc

i is then
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associated to the graph. To solve the unsure issues [31] of vanishing directions,
we will unify the direction during the association process by using

˜V D
c

i =

{
VDc

i (|norm(VDw
i ·VDw

k )− 1| < thvd)
−VDc

i (|norm(VDw
i ·VDw

k ) + 1| < thvd)
(8)

where norm(·) shows a dot product between two normalized vectors and | · | is
the absolute difference. thvd is a threshold to check the angle distance between
two vectors. To include additional graph connections, we also try to associate
PDc

j with VDw
k and PDw

k . If new pairs can be made at this stage, the associated
PD vectors are transferred to the vanishing directions and fused into the graph.

Since the vanishing direction is independent from translation motion, VDw
i ,

the vanishing direction in the world coordinate can be obtained as

VDw
i = RwcVDc

i (9)

where Rwc is the rotation motion from the camera coordinate frame to the world
coordinate frame.

In certain indoor scenes, e.g. a corridor or hallway, when a robot moves along
the wall, an extended planar region is detected across multiple views, with most
of these views encompassing no overlap. To address this issue, we extract the
normal vector [ncx, n

c
y, n

c
z] of the plane in the camera coordinate, which can be

fused into the world coordinate in the same way as the vanishing directions.

Edge connection. In E-Graph, all landmarks come from keyframes that follow
the decision mechanisms of a feature-based SLAM system [24,20], which we
summarize in the following. A new keyframe is detected if it satisfies one of the
following two conditions: 1) 20 frames have passed from the last keyframe; 2)
the current frame tracks less than 85% points and lines correspondences with
the last keyframe. Furthermore, when the current frame detects a new plane or a
new vanishing direction, the frame is considered as a new keyframe. In addition,
new landmarks connected to this keyframe are also merged into the graph at
this stage.

By sequentially processing keyframes, if more than two pairs of matched
landmarks are observed between two keyframes, an edge will be created to con-
nect the respective two graph nodes. As shown in Figure 2, Cj and Ck detect the
plane πππ and the same vanishing point generated by L1 and L2. Notably, even if
these two frames do not have any correspondence, they can still be connected in
our E-Graph.

5 Experiments

In this section, the proposed system is evaluated on different indoor benchmarks:
ICL-NUIM [10] and TUM RGB-D [33]. ICL-NUIM [10] contains eight synthetic
sequences recorded in two scenarios (living room and office room). TUM RGB-
D [33] is recorded in real scenarios and includes varied sequences in terms of
texture, scene size, presence of moving objects, etc.
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Rotation estimation. The proposed rotation algorithm is compared with other
state-of-the-art orientation estimation approaches. Compass [15] makes use of
a single line and plane. OPRE [43] and GOME [12] estimate the distribution
of surface normal vectors based on depth maps. OLRE [2] and ROVE [16] take
advantage of vanishing directions for rotation estimation. Importantly, Compass,
GOME, OLRE, OPRE, and P-SLAM [20] are all based on the MW assumption,
while our method, ORB-SLAM2 [25] and ROVE are designed for general scenes.

Translation estimation. Since the rotation of the current frame is estimated
from a keyframe that may not be overlapping with the current frame, we follow
the 3D translation estimation model [26,20] to estimate the translation t based
on the predicted rotation. In this module, re-projection errors from point-line-
plane feature correspondences are used to build a target optimization function,
t = argmin(

∑n
j=0 e

π
i,jΛ

πeπi,j + eLi,jΛ
LeLi,j + ePi,jΛ

LePi,j), where eπ, eL and eP are
re-projection error functions for planes, lines and points, respectively. The target
function is optimized by using the Levenberg-Marquardt method. The transla-
tion is compared with the following state-of-the-art methods. ORB-SLAM2 [26]
and ORB-SLAM3 [3] are popular keypoint-based SLAM systems. In our exper-
iments, for fairness of comparison the loop closure is removed to reduce the
effect of the back-ends. SP-SLAM [39] additionally uses points and planes in
the tracking and optimization modules based on ORB-SLAM2. P-SLAM [19]
assumes the indoor environments as MW, and includes a refinement module to
make the tracking process more robust. Moreover, we also compare our system
with GPU-based methods, including BadSLAM [32] and BundleFusion [4].

Dense mapping. In this paper, a mapping module is implemented to recon-
struct unknown environments in sparse and dense types. The sparse map is
reconstructed by the point-line-plane features extracted from keyframes, which
supports a frame-to-map pose refinement step. Since sparse maps cannot pro-
vide enough information for robots, our system also generates a dense mesh
map incrementally based on CPU. When a new keyframe is generated from the
tracking thread, we make use of the estimated camera pose and the RGB-D pair
to build a dense TSDF model based on [42,27]. After that, the marching cubes
method [21] is exploited to extract the surface from voxels.

Metrics. The metrics used in our experiments include absolute trajectory error
(ATE), absolute rotation error (ARE), and relative pose error (RPE) that shows
the difference in relative motion between two pairs of poses to evaluate the
tracking process. Our results are reported in Table 2 and obtained on an Intel
Core @i7-8700 CPU @3.20GHz and without any use of GPU resources.

5.1 ICL NUIM dataset

As shown in Table 1, the proposed method outperforms other MW-based and
feature-based methods in terms of average rotation error. In office room se-
quences, OPRE and P-SLAM also perform well since orthogonal planar features
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Table 1. Comparison of the average value of the absolute rotation error (degrees) on
ICL-NUIM and TUM RGB-D structural benchmarks. The best result for each sequence
is bolded. × shows that the method fails to track the orientation.

Sequence Ours Compass [15] OPRE [43] GOME [12] ROVE [16] OLRE [2] ORB2 [26] P-SLAM [20]

office room 0 0.11 0.37 0.18 5.12 29.11 6.71 0.40 0.57
office room 1 0.22 0.37 0.32 × 34.98 × 2.30 0.22
office room 2 0.39 0.38 0.33 6.67 60.54 10.91 0.51 0.29
office room 3 0.24 0.38 0.21 5.57 10.67 3.41 0.36 0.21

living room 0 0.44 0.31 × × × × 0.97 0.36
living room 1 0.24 0.38 0.97 8.56 26.74 3.72 0.22 0.26
living room 2 0.36 0.34 0.49 8.15 39.71 4.21 0.83 0.44
living room 3 0.36 0.35 1.34 × × × 0.42 0.27

f3 stru notex 4.46 1.96 3.01 4.07 × 11.22 × 4.71
f3 stru tex 0.60 2.92 3.81 4.71 13.73 8.21 0.63 2.83
f3 l cabinet 1.45 2.04 36.34 3.74 28.41 38.12 2.79 2.55
f3 cabinet 2.47 2.48 2.42 2.59 × × 5.45 1.18

can be found in the environment. However, in office room 0, parts of the camera
movement only contain a single plane and some lines, leading to performance
degradation, while our method achieves robust orientation tracking by taking
advantage of a set of non-parallel planes and lines.

Furthermore, we compare the translation results against two feature-based
methods as shown in Table 2. The first four sequences are related to a living
room scenario, while the remaining sequences are from an office scenario. All
methods obtain good results in living room 0 where the camera moves back and
forth between the two parallel walls. P-SLAM detects a good MW model, and
ORB-SLAM3 also observes enough features, benefiting from paintings hanging
on the wall and small furniture. Compared with the living room, the office room
has many low-textured regions. The performance of feature-based algorithms is
not as good as in the living room scenes, especially in office room 1 and office
room 3.

To analyze the relationship between rotation and translation results of dif-
ferent methods, absolute translation and rotation errors on the office room 0
sequence are presented in Figure 4. When the camera moves to the ceiling,
the number of detected features decreases, then an interesting phenomenon is
witnessed (see also Figure 4(a)): the tracking error of feature-based systems
quickly and drastically increases, then gradually fades as the number of features
increases. At the same time, our method and P-SLAM exhibit a more robust
performance when they face this challenge. An important difference is that, while
P-SLAM underperforms due to the non-rigid MW scene, our method’s perfor-
mance is accurate thanks to the use of the E-Graph, which demonstrates to be
more flexible than MW-based paradigms.

5.2 TUM RGB-D

Different types of sequences are included from the TUM RGB-D benchmark,
which aims to test general indoor scenes with low-textured scenes and sharp
rotational motions. f1 360, f1 room, f2 rpy and f2 xyz are recorded in real office
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Table 2. Comparison in terms of translation RMSE (m) for ICL-NUIM and TUM
RGB-D sequences. × means that the system fails in the tracking process.

Sequence Ours P-SLAM[20] ORB-SLAM3[3]

office room 0 0.014 0.068 0.035
office room 1 0.013 0.020 0.091
office room 2 0.020 0.011 0.010
office room 3 0.011 0.012 0.096

living room 0 0.008 0.006 0.006
living room 1 0.006 0.015 0.206
living room 2 0.017 0.020 0.018
living room 3 0.021 0.012 0.019

f1 360 0.114 × 0.108
f1 room 0.095 × ×
f2 rpy 0.002 0.154 0.003
f2 xyz 0.003 0.009 0.004
f3 l o house 0.012 0.122 0.009
f3 stru notex 0.017 0.025 ×
f3 l cabinet 0.058 0.071 0.072

(a) ATE

(b) Ours (c) P-SLAM (d) ORB-SLAM3

Fig. 4. Comparison of the proposed system against state-of-the-art methods in the
office room 0 sequence of ICL NUIM in terms of mean/average absolute translation
errors (top) and rotation errors (bottom).
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(a)

(b)
(c)

(d)

(e)

Fig. 5. Scene and graphs of f3 l o house. (a) 2D image, (b) dense mesh model, (c)
sparse map, (d) E-Graph, (e) co-visibilitity graph.

scenes, but the camera’s rotation motion changes sharply especially in the first
sequence. f3 l o house, f3 sn near and f3 l cabinet contain more structural infor-
mation, where f3 sn near is built on two white corners, and f3 l cabinet records
several movements around the white cabinet. Table 1 shows that ROVE, OLRE
and ORB-SLAM2 have problems in low/non-textured regions. In f3 l cabinet
that is not a rigid MW environment, the quality of depth maps is noisy, the
surface normal maps extracted by OPRE have a negative effect on rotation es-
timation.

Table 3. ATE RMSE results (cm) on the TUM RGB-D dataset. Results for Bundle-
Fusion and BadSLAM are taken from [32]

Sequence
Ours BundleFusion [4] ElasticFusion [37] BadSLAM [32]
CPU GPU GPU GPU

f1 desk 1.0 1.6 2.0 1.7
f2 xyz 0.7 1.1 1.1 1.1
f3 office 1.4 2.2 3.6 1.7

For structural sequences listed in Table 1, P-SLAM shows stable performance.
In Table 2, general scenes are added as a comparison. As listed in Table 2, the
keypoint-based method [3] cannot achieve robust results in f3 sn near, i.e. , a
textureless scenario, while the MW-based method [20] has problems when the
scene structure breaks the MW assumption, by reporting a low performance in
f2 rpy and f3 l o house, and even losing track in f1 360 and f1 room. There-
fore, the proposed method shows more robust performances in different types
of scenarios, compared with MW-based systems [20,15] and feature-based ap-
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proaches [26,3]. Furthermore, compared with GPU-based systems, our system
only works on limited computation sources. As shown in Figure 5, f3 l o house
is used to compare E-Graph and co-visibility graph. As clearly shown, E-Graph
allows connecting more distant keyframes than a co-visibility graph. When two
keyframes can be connected together, drifting phenomena can more easily be
limited, in a similar way to the underlying idea behind loop closure. The cabinet
scene is also a difficult sequence for point-based methods (see Figure 6(b)) since
point features are concentrated in a few boundary regions. However, our method
can deal with this type of scene where the same plane is observed in a number
of frames.

(a)

(b)
(c) (d)

Fig. 6. Scene and graph of f3 cabinet. (a) E-Graph, (b) trajectory from ORB-SLAM3,
(c) sparse map, (d) 2D image.

6 Conclusion

This paper proposed a new graph structure, E-Graph, to reduce tracking drift
based on plane normals and vanishing directions in a scene, which can be used
to build a rotation connection between two frames without visual overlap. The
advantage of this idea is that rotation errors that occur between two frames
have small or no effect on this relative rotation estimation step. Based on the
proposed graph, a minimal solution is presented, that shows that two landmarks
and two correspondences can be used to solve the relative camera pose. There-
fore, the proposed method is better suited for texture-less scenes compared with
traditional minimal solutions based on co-visible features. However, the proposed
method also has limitations. Compared with point-based systems, our approach
requires more types of features. Furthermore, since we need vanishing directions
and plane vectors, the method is more suitable for man-made scenes.

Feature work. The E-Graph is a new tool to establish connections across
frames and keyframes. An interesting topic for future exploration is considering
a covisibility graph and our graph together to revisit pose estimation and obtain
further improvements in drift removal.



Extensibility Graph 15

Acknowledgements. We gratefully acknowledge Xin Li, Keisuke Tateno,
Nicolas Brasch and Dr. Liang Zhao for the helpful discussion.

References

1. Andrew, A.M.: Multiple view geometry in computer vision. Kybernetes (2001)

2. Bazin, J.C., Pollefeys, M.: 3-line ransac for orthogonal vanishing point detection.
In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.
pp. 4282–4287. IEEE (2012)
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18. Li, X., Li, Y., Pınar Örnek, E., Lin, J., Tombari, F.: Co-planar parametrization
for stereo-slam and visual-inertial odometry. arXiv e-prints pp. arXiv–2009 (2020)

19. Li, Y., Brasch, N., Wang, Y., Navab, N., Tombari, F.: Structure-slam: Low-drift
monocular slam in indoor environments. IEEE Robotics and Automation Letters
5(4), 6583–6590 (2020)

20. Li, Y., Yunus, R., Brasch, N., Navab, N., Tombari, F.: Rgb-d slam with structural
regularities. In: 2021 IEEE international conference on Robotics and automation
(ICRA) (2021)

21. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. ACM siggraph computer graphics 21(4), 163–169 (1987)

22. Ma, L., Kerl, C., Stückler, J., Cremers, D.: Cpa-slam: Consistent plane-
model alignment for direct rgb-d slam. In: 2016 IEEE International
Conference on Robotics and Automation (ICRA). pp. 1285–1291 (2016).
https://doi.org/10.1109/ICRA.2016.7487260

23. Mei, C., Sibley, G., Newman, P.: Closing loops without places. In: 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems. pp. 3738–3744. IEEE
(2010)
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