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Abstract— The Internet of Things (IoT) devices are able to collect and share data directly with other devices through the cloud 

environment, providing a huge amount of information to be gathered, stored and analyzed for data-analytics processes. The scenarios 

in which the IoT devices may be useful are amazing varying, from automotive, to industrial automation or remote monitoring of 

domestic environment. Furthermore, has been proved that healthcare applications represent an important field of interest for IoT 

devices, due to the capability of improving the access to care, reducing the cost of healthcare and most importantly increasing the 

quality of life of the patients. In this paper, we analyze the state-of-art of IoT in medical environment, illustrating an extended range 

of IoT-driven healthcare applications that, however, still need innovative and high technology-based solutions to be considered ready 

to market. In particular, problems regarding characteristics of response-time and precision will be examined.  Furthermore, wearable 

and energy saving properties will be investigated in this paper and also the IT architectures able to ensure security and privacy 

during the all data-transmission process. Finally, considerations about data mining applications, such as risks prediction, 

classification and clustering will be provided, that are considered fundamental issues to ensure the accuracy of the care processes. 
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I. INTRODUCTION 

The Internet of Things (IoT) application are today part of 
our life and used in almost every human and industry 
activity: from e-health  [1] to Cultural Heritage [2], 
[3],[4],[5],[6] not forgetting legal domain [7][8][9], Public 
Administration domain[10][11][12],[13], and Humanitarian 
Assistance and Disaster Relief[14][15][16], but also  home 
automation, autonomous and connected vehicles [17], and 
wearable technology. IoT promises to change our lives to 
make them easier, more efficient and "smart". 

This paper aims to provide an analysis of the E-Health-
IoT universe from different point of view in order to 
underline the growing importance of this kind of 
technologies in medical environment. 

Starting from his introduction in e-health environment, 
IoT technologies are continuously growing in term of device 
installations (see Figure 1) this trend shows as IoT has 
become a fundamental technology in the medical 
environment. 

We aims to analyze the existing IoT architecture for E-
Health, the sensor devices employed into the E-Health-IOT 
universe with particular attention to new trends in wearable 
devices, the data collection, and management technologies 
implemented into the IoT architectures with particular 
attention to Personalized Medicine, Precision Medicine and 
security and privacy issues related to E-Health-IOT universe.  

 

 
 

Fig. 1  IoT device installations trend 
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The paper is organized as follow: In Sect. I the 
background of IoT the medical environment is analyzed, in 
Sect. II issues and state of the art relative to wearable sensor 
nodes, data collection and management are discussed and 
finally in Sect. IV conclusions are provided. 

II. MATERIAL AND METHOD 

As mentioned above, IoT in medical environment has 
become a widespread technology. To analyze this 
phenomenon, first of all we consider the different scenarios 
of IoT systems.  

Recently, many applications have been realized in 
different scenarios from home healthcare to hospital 
healthcare not forgetting doctor’s office and smart cities. In 
Table 1 we show a list of papers classified into four 
categories of IoT scenarios: Hospitals: IoT medical systems 
implemented into the medical structure, Home healthcare: 
IoT medical systems realized for the smart home, Doctor's 
Offices: smart system ideated to support doctors in their 
activities, and Smart Cities: e-health systems for smart cities. 

Has showed in Table 1 many different implementations of 
IoT medical application has been provided, to realize them 
are been implemented different devices as radio frequency 
identification (RFID), wireless sensor network (WSN), smart 
mobile technologies and wearable devices. 

 

TABLE I 
DIFFERENT APPLICATION SCENARIOS FOR IOT MEDICAL SYSTEM 

 

 

In Table 2 has shown a list of research work that exploit 
different devices to realize the IoT in the medical 
environment.  
 

TABLE II 
DIFFERENT DEVICES FOR IOT MEDICAL SYSTEM 

 
Each  of these devices is able to collect data about patients, 

doctors, nurses, caregivers etc., furthermore these devices 
can be able to: send alarms in case of emergency, tutoring 
patients during therapy (medications, rehabilitation therapies, 
etc.), and manage information about medical services 
(doctors' rounds, nurse’s rounds, patient medical visits 
calendar etc.) (Table 3Table ). 

 

TABLE III 
DIFFERENT APPLICATIONS FOR IOT MEDICAL SYSTEM 

Application Articles 

Real-time patients 

monitoring [43][23][35][39][45] 
Patients information 

management [21] [44][46] 

Risk alarms [23][47][35][27] 

Rehabilitation therapies [30][26] 

Medications [25][48][49] 
 

Thanks to the cost reduction, the user-friendliness of 
monitoring and wearable devices and the technological 
achievements in the area of IoT, the diffusion of 
environmental sensors, physiological parameters monitoring 
devices, and home automation devices, are becoming the 
“hardware” of a dedicated IoT eHealth layered architecture 
as illustrated in figure 2. In this architecture, it is assumed 
that the system would create ad hoc web services exposed 
through a dedicated cloud infrastructure. The user’s data 
could be then collected and stored, being available for 
healthcare service provisioning applications by possibly 
multiple third parties.  

Figure 2 shows a typical 3-Layer architecture, where a set 
of heterogeneous devices belonging to the device layer are 
connected to the eHealth cloud and security services 
provided by the network layer. 

The data provided by the devices are collected, stored and 
analysed by BI technologies and data analytics 
methodologies in order to obtain reactions (e.g.: alarms) to 
be re-transmitted towards the users. 
 

Device Layer Network Layer Application Layer

MQTT Protocol

MQTT Protocol

eHealth Cloud and 
Security Services

HealthCare

Control Panel

Repository

Internet Protocol

Internet Protocol

BI and Data Analytics

 

Fig. 2: IoT eHealth Layered Architecture 

 

III. RESULTS AND DISCUSSION 

In this Section will be provided issues and state of the art 
relative to wearable sensor nodes, data collection and 
management in the E-health IoT field 

The actual sensor, it is the element that transforms the 
health parameters in an electric signal.  In the following a 
review about the trends on the most common sensors used in 
wearable healthcare systems 

A. Wearable sensors for Healthcare IoT 

In this section will be analyzed Health IOT wearable 
sensors, such sensors play an important role in Health IOT. 
They acquire medical data from people and transmit such 
data using different wireless technologies to other devices 
like smartphones, gateway or directly to the Internet.  

Scenario Articles 

Hospitals 

[18][19] 
[20][21][22][23][24][25] 

Home healthcare [26][27][28]  

Doctor's Offices [29] 

Smart Cities [30][31][32][33] [34] [35] 

Device Articles 

RFID [36][24][18]  

WSN [37][18][19][38][37][23][25] 
Smart Mobile 

technologies [33][35][27][18] 
Wearable 

devices [39][37][40][41][42][43][44][45] 
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Human health can be monitored observing different 
parameters, and for each parameter different sensors could 
be required. Most common solutions proposed in the 
literature are focused on[50]: Diabetes, Heart rate 
monitoring, Oxygen Saturation Pulmonary diseases etc. 

Medical sensors involved in IoT should be small enough 
in order to be easily wearable and must be characterized by a 
reduced power consumption. In facts, wearable devices are 
not directly connected to the power grid and consequently, 
power consumption should be limited in order to avoid 
frequent battery change. For this reason, there are many 
works in literature focused this issue. [51],[52].  

In this paragraph, electronic devices involved in Health 
wireless sensor nodes are analyzed. Analysis is focused on 
sensors, analog to digital converters, and processing 
elements. 

B. Diabetes sensors  

Today’s medical records present that type 1 diabetes 
mellitus is a major health problem worldwide [53]. For this 
reason, literature presents several solutions for diabetes 
monitoring. The most common way to monitoring diabetes 
consists of monitoring glucose level in the blood. Glucose 
sensors can be implanted under local anesthesia in 
abdominal tissue [54]. In order to avoid the implanting, 
innovative non-invasive techniques have been introduced. 
Among these, the ones based on the breath acetone 
monitoring and sudomotor dysfunction are the most 
interesting. 

Breath acetone concentration is reported to be elevated in 
type 1 diabetes mellitus, and it can be used to diagnose the 
onset of diabetes [55].  

C. Diabetes sensors Heart rate monitoring sensors 

The electrocardiographic signal (ECG) is one of the most 
commonly bio-signals used for the analysis and monitoring 
of health conditions. Today, thanks to the development of 
advanced wearable devices, it is possible to track patient 
conditions outside hospital setting for several days [56]. Ecg 
sensors are usually electrodes that attached to the skin 
surface, convert ion current in the body to electron current in 
the biopotential circuit. In ECG signal, the QRS complex is 
the most important waveform and represents the electrical 
activity of the heart during the ventricular contraction. The 
position of its peak (R-peak) is the most evident feature and 
the distance between more consecutive R-peaks (RRperiod) 
is a relevant parameter in the analysis of heart pathologies 
[57]. For this reason, wearable ECG sensor offers the 
capability to extract the QRS complex [58],[59]. 

D. Oxygen Saturation sensors 

Blood oxygen saturation (SpO2) measurement is a clinical 
procedure involved in the diagnosis of several health 
diseases[60]. 

SpO2 is measured using arterial blood gas (ABG) test 
where a sample of blood is drawn from an artery of a person. 

Although the ABG test provides an accurate 
representation of blood oxygen saturation, it is an expensive, 
invasive, and time-consuming procedure that cannot be used 
for continuous monitoring [61] 

Near-infrared spectroscopy (NIRS) is becoming a widely 
used research instrument to measure tissue oxygen (O2) 
status non-invasively. For this purpose, are usually used 
continuous-wave spectrometers. Such devices, provide semi-
quantitative changes in oxygenated and deoxygenated 
haemoglobin in small blood vessels. 

In the last few years several wearable devices are 
proposed, in [60] a device has been designed to study the 
feasibility of extracting photoplethysmogram (PPG) signals 
at the neck in reflectance pulse oximetry mode. 

The proposed device is very interesting for two main 
reasons. It offers the possibility to acquire signals from the 
neck, a position used for the monitoring other parameters of 
the body such as the breathing and heart rates. The second 
interesting aspect is the reduced power consumptions that 
allow batteries to operate for over 36 hours continuously 
when powered using a coin cell.  

E. Pulmonary diseases sensors 

Several Pulmonary diseases are correlated with the 
presence of a cough, Coughing is a prominent indicator of 
several problems such as Chronic Obstructive Pulmonary 
Disease COPD. For this reason, literature offers several 
solutions for the coughing detection and classification. These 
solutions are usually based on the using of audio 
microphones[61],[62]. 

Other interesting sensors for pulmonary disease 
monitoring are  [63] and [64]. In the first authors present a 
pulmonary edema monitoring sensor with integrated Body-
Area Network. In the second, it is shown a system that 
permits a better understanding of the impact of increased 
ozone levels and other pollutants on chronic asthma 
conditions 

F. Analog To Digital Conversion 

Analog to digital conversion represents a crucial aspect of 
the wireless sensor node. Data acquired by the sensor must 
be digitalized before the wireless transmission. The 
digitalization is necessary for two main reasons: 

1) Wireless IoT standards are able to manage only digital 
data 

2) Data could require digital signal processing before the 
transmission. 

The ADCs involved in Healthcare IoT usually don’t 
require high sample rates. This is because signals coming 
from the human body are usually slow. The main capability 
required for these devices is the low power consumption to 
preserve battery life. 

Literature offers several solutions, in [65] A 0.4-to-1 V 
Voltage Scalable  ADC with Two-Step Hybrid Integrator in 
65 nm CMOS is presented. Such devices present a scalable 
power consumption and bandwidth with maintaining an 
SNDR higher than 60dB. In [66] a very low power ADC has 
been presented. This device is characterized by a very low 
power consumption (1µW) and consequently a very low 
conversion rate 

 
 
 

G. Processing Element 
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Health IoT sensor nodes must be able to process data 
acquired by sensors and provide these data to the wireless 
transceivers. These two operations are performed by a 
processing element that usually is a Microcontroller. The 
choice of Microcontrollers as processing element has three 
main reasons: 
•  Health parameters are usually low-speed signals and 

consequently, the processing speed of microcontrollers 
is sufficient. 

•  Microcontrollers are provided with several standard 
interfaces that allow an efficient communication with 
IoT wireless transceivers available on the market.  

•  Microcontrollers are characterized by ease of use and 
flexibility.  

Considering all these motivations, Microcontrollers 
vendors introduce on the market several solutions for the IoT 
integrating low power Microcontrollers and wireless 
transceiver [67][68]. 

As previously discussed the power consumption 
represents one of the most important aspects of Health 
wearable systems [69], [70]. For this reason, it could be 
interesting investigate solutions to further reduce the power 
consumption microcontrollers. An interesting solution could 
be the introduction of hardware accelerators [71], [72], 
[73],[74]. 

The speedup introduced by the hardware accelerator 
allows the reducing of the processing time and consequently 
the energy required for the processing 

H.   Data Collection and Management 

The adoption of the IoT in medicine is able to allow 
collecting a large quantity of medical data related to 
monitored patients [75]. 

This data can be stored and analysed to provide useful 
information about the patient’s diseases.  

Moreover, in literature, there are many attempts to create 
systems able to provides collaborative management tools 
[76][77] and appealing graphical interfaces[78][79] for data 
that can be adopted in the IoT environment. 

Following we investigate the data collection and 
correlation methodologies adopted in the E-Health-IoT 
Universe. 

I.  Big Data for Healthcare IoT 

There are a number of application areas medicine for 
which computer-aided decision support systems have 
become designed and implemented. After decades of 
technological laggard, the field of medicine has begun to 
acclimatize to today's digital data age. New technologies 
make it possible to capture vast amounts of information 
about each individual patient over a large timescale. Today, 
a variety of devices monitor every sort of patient behaviour – 
from glucose monitors to fetal monitors to 
electrocardiograms to blood pressure. Many of these 
measurements require a follow-up visit with a physician. But 
smarter monitoring devices communicating with other 
patient devices could greatly refine this process, possibly 
lessening the needs for direct physician intervention and 
maybe replacing it with a phone call from a nurse. 

The conceptual framework for Big Data analytics in 
healthcare differs from that of a traditional health 

informatics for how processing is executed while the 
algorithms and models are similar. The innovation in 
Healthcare Big Data systems is to analyze very large data 
sets as healthcare providers start to tap into their large data 
repositories to gain insight for making better-informed 
health-related decisions. Big data analytics tools are 
extremely complex and require the application of a variety 
of skills (Figure 3) [80].  

 

 
Fig. 3: An applied conceptual architecture of big data analytics 

 
The complexity of them begin with the data itself (e.g., 

electronic health records, clinical decision support systems, 
government and laboratories sources, etc.) often in multiple 
formats (flat files, .csv, ASCII, etc.) with sources and data 
types different (web and social media data, human-generated 
unstructured and semi-structured data such as email, and 
paper documents, and Biometric data such as finger prints, 
genetics, handwriting, retinal scans, etc.). 

Between the key capabilities that leading platforms for 
medical IoT (mIoT) must enable, Information ingestion and 
Informative analytics are that have the greatest improvement 
for effectively using Big Data. 

Between the 5 key capabilities that leading platforms for 
medical IoT (mIoT) must enable, Information ingestion and 
Informative analytics are that have the greatest improvement 
for effectively using Big Data. 

J. Information Ingestion 

The Information Ingestion focuses on intelligently 
transform and store IoT data and to prepare and retrieve it 
for analysis. APIs bridge the divide between the data and the 
cloud, making it easy to pull in the data that's needed. The 
volume of medical data is growing exponentially. For 
instance, ImageCLEF medical image dataset contained 
around 66,000 images between 2005 and 2007 while just in 
the year of 2013 around 300,000 images were stored 
everyday [81]. 

Data is ingested from diverse data sources and platforms, 
then the essential values are extracted using rich analytics. 

Typically, each health system has its own custom 
relational database schemas and data models which inhibit 
interoperability of healthcare data for multi-institutional data 
sharing or research studies. 

Research community has interest in consuming data 
captured from live monitors for developing continuous 
monitoring technologies [80]. There are also products being 
developed in the industry that facilitate device manufacturer 
agnostic data acquisition from patient monitors across 
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healthcare systems. For example, HereIsMyData
1 , is a 

database where patients can store their health data and 
determine who can access them and MongoDB2 is becoming 
much more common with the healthcare research 
communities. MongoDB is a free cross-platform document-
oriented database which eschews traditional table-based 
relational database. 

Based on the Hadoop platform, a system has been 
designed for exchanging, storing, and sharing electronic 
medical records (EMR) among different healthcare systems 
[82]. This system can also help users retrieve medical 
images from a database. Medical data has been investigated 
from an acquisition point of view where patients' vital data is 
collected through a network of sensors [83]. This system 
delivers data to a cloud for storage, distribution, and 
processing.  A prototype system has been implemented in 
[84] to handle standard store/query/retrieve requests on a 
database of Digital Imaging and Communications in 
Medicine (DICOM) images. 

Integration of disparate sources of data, developing 
consistency within the data, standardization of data from 
similar sources, and improving the confidence in the data 
especially towards utilizing automated analytics are among 
challenges facing data aggregation in healthcare systems 
[85]. 

There are considerable efforts in compiling waveforms 
and other associated electronic medical information into one 
cohesive database that are made publicly available for 
researchers worldwide [86]. 

By illustrating the data with a graph model, a framework 
for analyzing large-scale data has been presented [87]. 

K. Informative Analytics 

Informative Analytics gains insight from huge volumes of 
IoT data to make better decisions and optimize operations. 
Apply real-time analytics to monitor current conditions and 
respond accordingly characterizes the second challenge. The 
purpose is to leverage cognitive analytics with both 
structured and unstructured data to understand situations, 
reason through options, and learn as conditions change. For 
example, predictive artificial intelligence (AI) algorithms 
indicate people who may be at highest risk based on an 
analysis of available data collected from existing patient 
records. 

Big Data Analytics in Healthcare: evolution of healthcare 
practices and research. Some of these major challenges with 
a focus on three upcoming and promising areas of medical 
research: image, signal, and genomics based analytics. Many 
areas in health care such as diagnosis, prognosis, and 
screening can be improved by utilizing computational 
intelligence [88]. Popular areas of research where the 
concepts of big data analytics are currently being applied are: 
Image Processing, Signal Processing, and Genomics [89].  

Medical images are an important source of data frequently 
used for diagnosis, therapy assessment and planning [90]. 
Medical image data can range anywhere from a few 
megabytes for a single study to hundreds of megabytes per 
study. The integration of computer analysis with appropriate 

                                                 
1 http://www.hereismydata.com/ 
2https://gigaom.com/2013/08/27/10gen-embraces-what-it-created-becomes-
mongodb-inc/  

care could improve the accuracy of diagnosis and outcome 
prediction of disease [91]. In addition to the growing volume 
of images, they differ in modality, resolution, dimension, 
and quality which introduce new challenges such as data 
integration and mining specially if multiple datasets are 
involved. When utilizing data at a local/institutional level, an 
important aspect of a research project is on how the 
developed system is evaluated and validated. Having 
annotated data or a structured method to annotate new data is 
a real challenge. In order to benefit the multimodal images 
and their integration with other medical data, new analytical 
methods that deal with some aspects of big data are required.  

In facing medical image analysis an application of data 
integration/mining is in finding dependencies/patterns 
among multimodal data and/or the data captured at different 
time points, in order to increase the accuracy of diagnosis, 
prediction, and overall performance of the system [18], [92]–
[95]. Toro and Muller have compared some organ 
segmentation methods when data is considered as big data. 
They have proposed a method that incorporates both local 
contrast of the image and atlas probabilistic information[96]. 
Tsymbal et al. have designed a clinical decision support 
system that exploits discriminative distance learning with 
significantly lower computational complexity compared to 
classical alternatives and hence this system is more scalable 
to retrieval [97]. A computer-aided decision support system 
was developed by Chen et al. [94] that could assist 
physicians to provide accurate treatment planning for 
patients suffering from traumatic brain injury (TBI). In [98], 
molecular imaging technology is designed to aid in early 
detection of cancer by integrating molecular and 
physiological information with anatomical information. 
Using this imaging technique for patients with advanced 
ovarian cancer, the accuracy of the predictor of response to a 
special treatment has been increased compared to other 
clinical or histopathologic criteria. A hybrid digital-optical 
correlator (HDOC) can be employed to compare images in 
the absence of coordinate matching or geo-registration. In 
this multichannel method, the computation is performed in 
the storage medium which is a volume holographic memory 
which could help HDOC [99]. 

Similar to medical images, medical signals also pose 
volume and velocity obstacles especially during continuous, 
high-resolution acquisition and storage from a multitude of 
monitors connected to each patient, “alarm fatigue” for both 
care givers and patients [100], [101]. Research in signal 
processing for developing big data based clinical decision 
support systems (CDSSs) is getting more prevalent [102]. 

The cost to sequence the human genome is rapidly 
decreasing with the development of high-throughput 
sequencing technology [103], [104]. With implications for 
current public health policies and delivery of care analyzing 
genome-scale data for developing actionable 
recommendations in a timely manner is a significant 
challenge to the field of computational biology[105], [106]. 

L. Machine learning in IoT 

In literature has been provided many approaches to 
manage data with the aims to extract knowledge from data. 
In this section, we provide a review of machine learning 
approaches in E-Health-Iot Universe. 
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Initiatives such as meaningful use are accelerating the 
adoption of Electronic Health Records (EHR), and the 
volume and detail of patient information is growing rapidly. 
Being able to combine and analyse a variety of structured 
and unstructured data across multiple data sources aids in the 
accuracy of diagnosing patient conditions, matching 
treatments with outcomes, and predicting patients at risk for 
disease or readmission. Predictive modelling of data derived 
from EHRs is being used for early diagnosis with the 
intention of reducing mortality rates from problems such as 
congestive heart failure and sepsis or to prevent 
complicances as VTE in oncological patients [107][108].  

A machine learning example from Georgia Tech 
demonstrated that machine learning algorithms could look at 
many more factors in patients’ charts than doctors, and by 
adding additional features, there was a substantial increase in 
the ability of the model to distinguish people who have CHF 
from people who don’t. 

Predictive modelling and machine learning on large 
sample sizes, with more patient data, can uncover nuances 
and patterns that couldn’t be previously uncovered. Optum 
Labs has collected EHRs of over 30 million patients to 
create a database for predictive analytics tools that will help 
doctors make big data-informed decisions to improve 
patients’ treatment. 

Machine learning approaches in medicine aim to exploit 
significant patterns in data, in order to produce risk 
predictors. These predictors could be integrated into IoT 
architecture to realize the risk alarm systems or exploited to 
evaluate data collected from IoT architectures. 

There are a lot of research works that adopt machine 
learning techniques to realize the precision medicine and the 
personalized medicine, following we provide some 
significant examples. 

In [109] authors analyse machine learning techniques in 
the diabetes research with respect to a) Prediction and 
Diagnosis, b) Diabetic Complications, c) Genetic 
Background and Environment, and e) Health Care and 
Management. 

In [110] authors realize a computerized decision support 
systems (DSSs) on transfusion practice. 

In [111] authors apply the neural networks to the 
classification of breast cancer. 

In [112] authors discuss the state-of-art of clinical data 
warehouse and show the possible solutions for this issue. 

M. Security and Privacy Issues 

From the introduction of the IoT architecture in the 
medical environment we need to facing major challenges: 
security, data protection and privacy [113].  Many initiatives 
to the regulation of the data collection have been provided 
both in the Europe and in the other countries. Article 29 of 
Directive 95/46/EC set up a Working Party (WP), an 
independent European advisory body on data protection and 
privacy. The WP has identified six significant privacy and 
data protection issues related to the Internet of Things:  

 
1. Lack of control and information asymmetry  

2. Low-quality consent  

3. Extrapolation of inferences from data and repurposing 

of original processing 

4. Intrusive identification of behaviour patterns and user 

profiling  

5. Limitations on the possibility of remaining anonymous 

whilst using services  

6. Security risks”[114]. 
 

In order to addresses these issues two new principles has 
been introduced: "Privacy by Design" and "Privacy by 
default" [115].  

"Privacy by Design" principle affirm that privacy must be 
incorporated in the design and architecture of IoT systems.  

"Privacy by default" principle states that every IT system 
should ensure that only the personal information necessary 
for each specific purpose of the processing are treated, by 
default, and that the amount of data collected and the 
duration of their preservation does not go beyond the 
minimum necessary for the purposes sought. 

In particular, personal data should not be accessible to an 
indefinite number of people and those involved must be able 
to control the distribution of their personal data. 

In conclusion, we can affirm that the analysis of the data 
flow in a IoT architecture should be designed in accordance 
with the above-mentioned principles of "Privacy by Design" 
and "Privacy by default". 

N. Personalized Medicine and Precision Medicine  

The “personalized medicine” [116] research field deal 
with the definition of a tailored therapy for a patient or a 
class of patients. To realize this, recently research methods 
provide solutions for the collection and correlation of big 
data related to patients able to determine a precise therapy.  

Many of these solutions are provided by the introduction 
of IoT devices in medicine in order to collect a large amount 
of data related to the patients. 

The considered data can be exploited to precisely tailoring 
therapies to subcategories of disease and to divided patients 
into different classes of similar individuals. Often this 
purpose is achieved by the exploitation of the genomics 
techniques. 

Another important research field has been introduced 
thanks to the adoption of IoT in medical environment the 
“precision medicine”. The “precision medicine” [117] 
paradigm has become very popular over recent years, 
powered by scientific as well as political perspectives.   

In January 20, 2015, the president of United States Barack 
Obama announced: 

“Tonight, I'm launching a new Precision Medicine 
Initiative to bring us closer to curing diseases like cancer and 
diabetes — and to give all of us access to the personalized 
information we need to keep ourselves and our families 
healthier.” 

We intend the precision medicine as the union of 
technologies and methodologies able to harvesting and 
managing a large set of data related to a patient. 

Differently from the “personalized medicine”, the set of 
data in “precision medicine” is related to a single patient and 
the determinate therapy is only for this particular patient. 

All of these approaches are related to the necessity to 
harvest a lot of heterogeneous data and to manage them. 

IV. CONCLUSIONS 
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In this paper, we analyze the state-of-art of IoT in medical 
environment. Despite the large number of applications of 
IoT in medicine many issues are still open and they need 
innovative solutions to be solved. One of the main problems 
is the prototyping of sensors able to recognize medical 
information in rapidly and precise way. These sensors 
should be small enough in order to be easily wearable and 
should be characterized by a reduced power consumption. 
Sensors will be the cornerstone of the IoT architecture, these 
architectures must be able to ensure security and privacy 
during the data transmission. The clinical data collected 
from the sensors in the IoT architectures need to be 
harvested and stored in secure data-warehouse.  Finally, data 
mining applications, such as risks prediction, classification 
and clustering should provide more accurate results also 
considering the increase of the amount of data due to the 
improvement of IoT devices. 
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