
Journal of Machine Learning Research 17 (2016) 1-32 Submitted 2/15; Revised 4/16; Published 8/16

ǫ-PAL: An Active Learning Approach to the Multi-Objective

Optimization Problem

Marcela Zuluaga zuluaga@inf.ethz.ch

Department of Computer Science
ETH Zurich
Zurich, Switzerland

Andreas Krause andreas.krause@inf.ethz.ch

Department of Computer Science
ETH Zurich
Zurich, Switzerland

Markus Püschel pueschel@inf.ethz.ch

Department of Computer Science

ETH Zurich

Zurich, Switzerland

Editor: Kevin Murphy

Abstract

In many fields one encounters the challenge of identifying out of a pool of possible designs
those that simultaneously optimize multiple objectives. In many applications an exhaustive
search for the Pareto-optimal set is infeasible. To address this challenge, we propose the
ǫ-Pareto Active Learning (ǫ-PAL) algorithm which adaptively samples the design space
to predict a set of Pareto-optimal solutions that cover the true Pareto front of the design
space with some granularity regulated by a parameter ǫ. Key features of ǫ-PAL include (1)
modeling the objectives as draws from a Gaussian process distribution to capture structure
and accommodate noisy evaluation; (2) a method to carefully choose the next design to
evaluate to maximize progress; and (3) the ability to control prediction accuracy and sam-
pling cost. We provide theoretical bounds on ǫ-PAL’s sampling cost required to achieve a
desired accuracy. Further, we perform an experimental evaluation on three real-world data
sets that demonstrate ǫ-PAL’s effectiveness; in comparison to the state-of-the-art active
learning algorithm PAL, ǫ-PAL reduces the amount of computations and the number of
samples from the design space required to meet the user’s desired level of accuracy. In
addition, we show that ǫ-PAL improves significantly over a state-of-the-art multi-objective
optimization method, saving in most cases 30% to 70% evaluations to achieve the same
accuracy.

Keywords: multi-objective optimization, active learning, pareto optimality, Bayesian
optimization, design space exploration

1. Introduction

A fundamental challenge in many problems in engineering and other domains is to find
the right balance amongst several objectives. As a concrete example, in hardware design,
one often has to choose between different candidate designs that trade multiple objectives

c©2016 M. Zuluaga, A. Krause and M. Püschel.

Zuluaga, Krause and Püschel

0 5 10 15 20 25 30 35

f1

0

5

10

15

20

25

30

35

f
2

Pareto front

ǫ-accurate

Pareto front

Figure 1: Assume that two objective functions are to be maximized simultaneously. This
figure shows an example of the true Pareto front of a design space contrasted with
an ǫ-accurate Pareto front, with ǫ = (3, 3).

such as energy consumption, throughput, or chip area. Usually there is not a single design
that excels in all objectives, and therefore one may be interested in identifying all (Pareto-
)optimal designs. Furthermore, often in these domains, evaluating the objective functions is
expensive and noisy. In hardware design, for example, synthesis of only one design can take
hours or even days. The fundamental problem addressed in this paper is how to predict a
Pareto-optimal set at low cost, i.e., by evaluating as few designs as possible.

In this paper we propose a solution for finite design spaces that we call the ǫ-Pareto
Active Learning (ǫ-PAL) algorithm. The parameter ǫ allows users to control the accuracy
of the prediction produced by the algorithm. This accuracy is defined in terms of the density
or granularity of the estimated Pareto front that is returned. Decreasing granularity means
the algorithm can discard more points along its execution. Fewer Pareto points are returned,
but spread to offer a wide range of trade-offs in the objective space.

More specifically, the granularity is controlled by a vector ǫ, containing one value per
objective, which is given in the same units as the corresponding objective function. It
specifies that for the user a difference of ǫ in the objective space is negligible. Accordingly,
an ǫ-accurate Pareto front might have fewer points than the true Pareto front. Fig. 1
visualizes this idea for two objective functions that are to be maximized simultaneously.
The true Pareto-front is shown in red, and an ǫ-accurate Pareto front, which contains fewer
points, is shown in grey. While the true Pareto front of a design space is unique, there can
be many ǫ-accurate Pareto fronts; finding one of them efficiently is our goal.

ǫ-PAL has several key features. In the spirit of Bayesian optimization, it captures
domain knowledge about the regularity of the design space by using Gaussian process (GP)
models to predict objective values for designs that have not been evaluated yet. Further,
it uses the predictive uncertainty associated with these nonparametric models in order to
guide the iterative sampling. Specifically, ǫ-PAL’s sampling strategy aims to maximize
progress on designs that are likely to be Pareto-optimal. ǫ-PAL iteratively discards points
that are either redundant or suboptimal, and it terminates when no more points can be
removed in order to guarantee that, with high probability, the remaining points define an
ǫ-accurate Pareto set of the given design space.

2

Active Learning for Multi-Objective Optimization

A main contribution of this paper is the theoretical performance analysis of ǫ-PAL,
that provides bounds on the sampling cost required to achieve a desired accuracy. These
bounds depend on the parameter ǫ and on the characteristics of the covariance function
used for the GP models. Finally, we carry out an extensive empirical evaluation, where
we demonstrate ǫ-PAL’s effectiveness on several real-world multi-objective optimization
problems. Two cases are from different applications in the domain of hardware design, in
which it is very expensive to run low level synthesis to obtain the exact cost and performance
of a single design (Zuluaga et al., 2012b; Almer et al., 2011). The third application is from
software optimization, where different compilation settings are evaluated for performance
and memory footprint size (Siegmund et al., 2012).

We compare the performance of ǫ-PAL against PAL, a predecessor of ǫ-PAL proposed
by Zuluaga et al. (2013), and with another state-of-the-art multi-objective optimization
method called ParEGO, proposed by Knowles (2006). Across all data sets and almost all
desired accuracies, ǫ-PAL outperforms ParEGO, requiring in most cases 30% to 70% less
function evaluations. In comparison to PAL, our experiments show that ǫ-PAL reduces the
runtime by one to two orders of magnitude, while also reducing the number of evaluations
and offering more flexibility in the desired error.

1.1 Main Contributions

Our main contributions are summarized as follows.

• We propose ǫ-PAL, an active learning approach towards identifying a set of optimal
solutions in a given multi-objective optimization problem in which function evalua-
tions are expensive. This includes sampling strategy and stopping criteria. ǫ-PAL

allows users to specify the desired level of granularity through the parameter ǫ, and
guarantees that with high probability an ǫ-accurate Pareto front is returned.

• We theoretically analyze ǫ-PAL when the design space is a finite set, and the objective
functions satisfy regularity assumptions as specified via a positive definite kernel. We
provide bounds on the number of iterations required by the algorithm to achieve a
desired target accuracy.

• In comparison to the state-of-the-art algorithm PAL, ǫ-PAL reduces the asymptotic
complexity of the number of computations performed in each iteration, making it
more suitable for larger design spaces.

• We perform an extensive experimental evaluation to demonstrate ǫ-PAL’s effective-
ness and superiority over PAL and ParEGO on three real-world multi-objective opti-
mization problems.

1.2 Organization

In Section 2, we introduce background concepts such as multi-objective optimization, Pareto
optimality, ǫ-accurate Pareto optimality, and Gaussian processes. In addition, we formally
define the problem tackled in this paper. Section 3 presents the proposed algorithm ǫ-
PAL, explains the stages that take place during its execution, and analyzes run time. In

3

Zuluaga, Krause and Püschel

Section 4, we present the theoretical analysis of the algorithm and provide upper bounds
for the number of samples needed before ǫ-PAL terminates, when the target functions
have bounded RKHS norm. Section 5 discusses some implementation issues that might
arise in practice when using our algorithm. Section 6 reviews related work in the areas of
multi-objective optimization, Bayesian optimization and evolutionary algorithms. Section 7
shows the effectiveness of ǫ-PAL in comparison with state-of-the-art alternative algorithms,
using three data sets obtained from real applications. In the Appendix, we prove our main
Theorem, which is stated in Section 4.

2. Background and Problem Statement

In this section, we review multi-objective optimization and Pareto optimality, and introduce
the terminology and notation used in the rest of the paper. At the end of the section, we
formally define the problem addresses by ǫ-PAL.

2.1 Multi-Objective Optimization

We consider a multi-objective optimization problem over a finite set E (called the de-
sign space). This means that we wish to simultaneously optimize m objective functions
f1, . . . , fm : E → R. In our analysis, we assume that f1(x), . . . , fm(x) are to be maxi-
mized, however our results straightforwardly generalize to a minimization or a combined
minimization/maximization problem. We use the notation f(x) = (f1(x), . . . , fm(x)) to
refer to the vector of all objectives evaluated on the input x. The objective space is the
image f(E) ⊂ R

m.1

2.2 Pareto Optimality

The goal in multi-objective optimization is to identify2 the Pareto set of E. Formally, we
consider the canonical partial order in R

m: y � y′ iff yi ≥ y′i, 1 ≤ i ≤ m, and define the
induced relation on E: x � x′ iff f(x) � f(x′). We say that x dominates x′ in this case.
Note that � on E is not a partial order, but only a preorder, since it lacks antisymmetry
(i.e., two different designs can have the same objectives).

Definition 1 (Pareto set) The Pareto set Π(f(E))) in the objective space f(E) ⊂ R
m

is, as usual, the set of maximal points. Further, we call any set Π(E) ⊆ E a Pareto set of
E if it satisfies

f(Π(E)) = Π(f(E))).

In words, Π(E) is any set of designs that yields all optimal objectives. It is not unique since
� on E is not antisymmetric.

1. Scalars and functions that return scalars are written unbolded; tuples and vectors are boldfaced.
2. Note that one may also approach multi-objective optimization via scalarization, see, e.g., Roijers et al.

(2013). In our approach, we focus on retrieving an approximate Pareto-frontier, so that we do not have
to commit to a particular family of scalarization functions.

4

Active Learning for Multi-Objective Optimization

(c)

(a) (b)

(d)

Pareto Set ¦(f(E))

Figure 2: (a) Example of Pareto set and Pareto front for m = 2. (b) Example of an ǫ-Pareto
front for m = 2. (c) Example of a predicted Pareto set that is not ǫ-accurate. (d)
Example of a predicted Pareto set that is ǫ-accurate.

Definition 2 (Pareto front) We define the Pareto front Z(E) as the set of points in R
m

that constitutes the surface of the space dominated by the Pareto set Π(f(E)). Formally,

Z(E) = ∂{y ∈ R
m : there is an x ∈ E with f(x) � y)}. (1)

Hereby, the operator ∂ applied to a set Y denotes the boundary of Y .
Fig. 2(a) visualizes the concepts of Pareto set and Pareto front for m = 2.

2.3 ǫ-Pareto Optimality

We now relax the relation � in R
m and E for the purpose of our algorithm by adding a

small tolerance. Consider a vector ǫ = (ǫ1, . . . , ǫd), with ǫi ≥ 0, 1 ≤ i ≤ m. We say that
a point y ∈ R

m ǫ-dominates y′, written as y �ǫ y
′, if y + ǫ � y′. As before, we pull the

relation to E: x �ǫ x
′ iff f(x) �ǫ f(x

′). Note that this relation is neither a partial order
nor a preorder: antiysmmetry and transitivity do not hold.

We use this relation next to define an appropriate notion of ǫ-accurate Pareto set. To
do so we first need two auxiliary definitions.

Definition 3 (ǫ-Pareto front) We define the ǫ-Pareto front Zǫ(E) of E as the set of
points between Z(E) and Z(E)− ǫ, including the boundaries. Formally,

Zǫ(E) = {y ∈ R
m : y′ � y for some y′ ∈ Z(E) and y �ǫ y

′′ for some y′′ ∈ Z(E)}

Fig. 2(b) shows the ǫ-Pareto front associated with Fig. 2(a).

5

Zuluaga, Krause and Püschel

Definition 4 (ǫ-Pareto front covering) We say that a nonempty set C ⊆ Zǫ(E) covers
Zǫ(E), if for every point y ∈ Zǫ(E) there is at least one point y′ ∈ C s.t. y′ �ǫ y.

In words, Definition 4 requires that the Pareto front spanned by Π(C) is contained in Zǫ(E).

Definition 5 (ǫ-Accurate Pareto set) We call a set of points Πǫ(E) ⊆ E an ǫ-accurate
Pareto set of E, if f(Πǫ(E)) covers Zǫ(E).

In words, for an ǫ-accurate Pareto set, the associated front is contained in the ǫ-Pareto
front Zǫ(E) and it contains no suboptimal designs. As examples, the set with objectives P̂
in Fig. 2(c) does not satisfy this property, but in Fig. 2(d) it does. Note that the ǫ-accurate
Pareto set may have fewer points than the actual Pareto set.

An ǫ-accurate Pareto set Πǫ(E) is a natural approximate substitute of the original set
E. Having access to it, one can rest assured that for any point on the Pareto front Z(E)
associated with E, there is some element x ∈ Πǫ(E) which is at most ǫ worse according
to all of the objectives. The high level goal of our algorithm ǫ-PAL is to find, with few
evaluations f(x), a small ǫ-accurate Pareto set of E.

2.4 Gaussian Processes (GP)

ǫ-PAL models f as a draw from an m-variate Gaussian process (GP) distribution. A GP
distribution over a real function f(x) is fully specified by its mean function µ(x) and its
covariance function k(x,x′) (Rasmussen and Williams, 2006). The kernel or covariance
function k captures regularity in the form of the correlation of the marginal distributions
f(x) and f(x′).

In our multi-objective setting, we model each objective function fi(x) as a draw from
an independent3 GP distribution.

On every iteration t in our algorithm we choose a design xt to evaluate, which yields a
noisy sample4 yt,i = fi(xt) + νt,i; after T iterations we have a vector yT,i = (y1,i, . . . , yT,i).
Assuming νt,i ∼ N(0, σ2) (i.i.d. Gaussian noise), the posterior distribution of fi is a Gaussian
process with mean µT,i(x), covariance kT,i(x,x

′), and variance σ2
T,i(x):

µT,i(x) = kT,i(x)
T (KT,i + σ2I)−1yT,i, (2)

kT,i(x,x
′) = ki(x,x

′)− kT,i(x)
T (KT,i + σ2I)−1kT,i(x

′), (3)

σ2
T,i(x) = kT,i(x,x), (4)

where x,x′ ∈ E, kT,i(x) = (ki(x,xt))1≤t≤T and KT,i = (ki(xj ,xℓ))1≤j,ℓ≤T . Note that this
posterior distribution captures our uncertainty about f(x) for all points x ∈ E.

2.5 Reproducing Kernel Hilbert Spaces (RKHS)

Using Gaussian processes to model the target functions fi assumes that we know the prior
from which they have been generated. This is rarely the case in practice. Therefore, for

3. Note that dependence amongst the outputs could be captured as well; e.g., Bonilla et al. (2008).
4. We use the term “sampling” to refer to evaluating a design via a noisy measurement.

6

Active Learning for Multi-Objective Optimization

our theoretical analysis we take a more agnostic approach in which we assume that fi are
arbitrary functions from the RKHS associated with kernel k.

The RKHS Hk(E) is a Hilbert space consisting of functions f on the domain E, endowed
with an inner product 〈·, ·〉k that satisfies the following properties with respect to a positive
definite function k:

• For every x ∈ E, k(x,x′) as a function of x′ belongs to Hk(E).

• The reproducing property holds for k, i.e., 〈f, k(x, ·)〉k = f(x).

The smoothness of the functions f ∈ Hk(E) with respect to k is encoded by the norm
||f ||k =

√

〈f, f〉k. Functions with low norm are usually relatively smooth. In our case, as
E is a finite set, any f is guaranteed to have bounded norm, i.e., ||f ||k < ∞, as long as the
kernel is universal (such as the Gaussian kernel).

2.6 Problem Statement

Let E be a finite set with a positive definite kernel. We wish to simultaneously optimize m
objective functions f1, . . . , fm : E → R, considering that evaluating f(x) for any x ∈ E is
expensive. We wish to identify an ǫ-accurate Pareto set Πǫ(E) ⊆ E while minimizing the
number of evaluations f(x).

In the following, we develop an active learning algorithm that iteratively and adaptively
selects a sequence of designs x1,x2, . . . to be evaluated, and that uses these evaluations
along with the model’s predictive uncertainty to predict an ǫ-accurate Pareto set of E. This
iterative algorithm terminates when, with high probability, an ǫ-accurate Pareto set of E
has been found, and therefore no more evaluations are needed. In addition, we theoretically
analyze our algorithm and provide a bound on the number of evaluations required by the
algorithm to generate an ǫ-accurate prediction.

3. ǫ-PAL Algorithm

In this section we describe our algorithm: ǫ-Pareto Active Learning (ǫ-PAL).

3.1 Overview

Our approach to predicting an ǫ-accurate Pareto set of E trains GP models on a small
subset of E. The models predict the objective functions fi, 1 ≤ i ≤ m, allowing us to
make statistical inferences about the Pareto-optimality of every point in E. The true value
of f(x) is approximated by the models as f̂(x) = µ(x) = (µi(x))16i6m. Additionally
σ(x) = (σi(x))16i6m is interpreted as the uncertainty of this prediction. We capture this
uncertainty through the hyper-rectangle5

Qµ,σ,β(x)={y :µ(x)−β1/2σ(x)�y�µ(x)+β1/2σ(x)}, (5)

where β is a scaling parameter to be chosen later.
The goal of the algorithm is to return a set P̂ ⊆ E such that, with high probability,

P̂ is an ǫ-accurate Pareto set of E. P̂ may contain points that are not sampled yet, but

5. conservatively bounding the ellipsoid with radii σi.

7

Zuluaga, Krause and Püschel

probabilistically, it is guaranteed to cover Zǫ(E), i.e., with high probability, all points in E
are ǫ-dominated by a point in P̂ .

ǫ-PAL iterates over four stages: modeling, discarding, ǫ-Pareto front covering, and
sampling. It stops when all remaining points have been either sampled, discarded or de-
termined to belong to Zǫ(E) with high probability. The following sections explain each of
these stages, and Alg. 1 presents the corresponding pseudocode.

The algorithm maintains two working sets, indexed by the iteration number t, starting
at 0:

• Ut: undecided points, U0 = E,

• Pt: points predicted to be members of an ǫ-accurate Pareto set of E, P0 = ∅.

On the first iteration (t = 0), all points in E are copied to a set U0. Subsequently, on any
iteration t, a point to be sampled is chosen from Ut or Pt. Points in Ut that with high
probability are ǫ-dominated by another point are discarded, i.e., removed from Ut, and
points that are determined to belong to Zǫ(E) are moved from Ut to set Pt. The algorithm
terminates at some iteration T when UT is empty. Then P̂ = PT is returned. ǫ-PAL

guarantees that with high probability P̂ is an ǫ-accurate Pareto set of E.

3.2 Modeling

ǫ-PAL uses Gaussian process inference to predict the mean vector µt(x) and the standard
deviation vector σt(x) of any point x ∈ E that has not been discarded yet. This prediction
is generated based on the noisy samples obtained. Each point x ∈ Pt ∪ Ut is then assigned
its uncertainty region, which is the hyperrectangle

Rt(x) = Rt−1(x) ∩Qµt,σt,βt+1
(x), (6)

where βt+1 is a positive value that defines how large this region is in proportion to σt. In
Section 4 we will suggest a value for this parameter. The iterative intersection ensures that
all uncertainty regions are non-increasing with t. Intuitively, for a point x ∈ E that has not
been evaluated yet, we can say that with high probability f(x) ∈ Rt(x).

Within Rt(x), the pessimistic and optimistic outcomes are min(Rt(x)) and max(Rt(x)),
respectively, both taken in the partial order � and unique. Fig. 3(a) shows this with an
example. Notice that points that have been evaluated also have an uncertainty region, since
we only have access to noisy samples on those points.

3.3 Discarding

The goal of this stage is to discard points in Ut that with high probability are ǫ-dominated
by another point in E, while making sure that at least one of such dominating points ends
up in PT .

Under uncertainty, a point x is ǫ-dominated by another point x′, with high probability,
if the pessimistic outcome of x′ (min(Rt(x

′))) ǫ-dominates the optimistic outcome of x

(max(Rt(x))):

max(Rt(x)) �ǫ min(Rt(x
′)).

In this case, x can be discarded, i.e., removed from Ut.

8

Active Learning for Multi-Objective Optimization

f1(x)

f2(x)

max(RT (x))

min(RT (x))

Sampled point

f1(x)

f2(x) Pessimistic Pareto points

(a)$ (b)$

x$

Figure 3: (a) Example of min(Rt(x)) and max(Rt(x)) for m = 2. (b) Example of a set of
pessimistic Pareto points for m = 2.

If this relationship does not hold, either the uncertainty regions are still too large to
draw any conclusions, or x and x′ are not comparable.

To check if a point is ǫ-dominated by another one in E, ǫ-PAL compares its relationship
with all pessimistic Pareto points.

Definition 6 (Pessimistic Pareto set) For a subset D ⊆ E, we define ppess(D), or the
pessimistic Pareto set of D, as the set of points x ∈ D for which there is no other point
x′ ∈ D such that

min(Rt(x)) � min(Rt(x
′)).

Fig. 3(b) illustrates this situation.

We discard any point x ∈ Ut \ppess(Pt∪Ut) if x �ǫ x
′ for some x′ ∈ ppess(Pt∪Ut). This

ensures that no element in ppess(St∪Pt∪Ut) is discarded and therefore, for every point that
is discarded there will always be a point in the working sets that ǫ-dominates it.

A point in ppess(Pt ∪ Ut) is only discarded if it is ǫ-dominated by any point in Pt, since
all points in Pt are already guaranteed to belong to the returned set P̂ . Points in Pt are
never discarded.

3.4 ǫ-Pareto Front Covering

The goal of ǫ-PAL is to empty Ut as fast as possible, i.e., with the least amount of points
sampled and with the least amount of points in Pt needed to cover the ǫ-Pareto front of
E. As previously stated, a point is moved to Pt if it can be determined that with high
probability it belongs to Zǫ(E).

Therefore, care must be taken not to sample when all points in Ut can be either discarded
or moved to Pt. If there is at least one point in Ut that cannot be discarded or moved to
Pt, we proceed with sampling.

9

Zuluaga, Krause and Püschel

Definition 7 (x belongs to Zǫ(E) with high probability) We can determine that with
high probability x ∈ E belongs to Zǫ(E) if there is no other point x′ ∈ Pt ∪ Ut such that

max(Rt(x
′)) �ǫ min(Rt(x)).

In this stage we attempt to update the set Pt, to make progress in covering the ǫ-Pareto
front of E, until we find a point in Ut that cannot be moved to Pt. After a point is moved
to Pt, we check what points in Ut are ǫ-dominated by it, and therefore can be discarded.
Details on this procedure can be found in Alg. 1.

3.5 Sampling

As long as Ut 6= ∅, on each iteration, a new point xt is selected for sampling with the
following selection rule. Each point x ∈ Ut ∪ Pt is assigned a value

wt(x) = max
y,y′∈Rt(x)

||y − y′||2,

which is the diameter of its uncertainty region Rt(x). Amongst these points, the one with
the largest wt(x) (i.e., most uncertain) is chosen as the next sample xt to be evaluated. We
refer to wt(xt) as wt. Note that our approach does not simply pick the most uncertain point
over the whole space E, but only over the set Ut ∪Pt, i.e., the points that (in a statistically
plausible manner) might be useful in constructing an ǫ-accurate Pareto set. This is similar
to exploration–exploitation tradeoffs commonly encountered in Bayesian optimization.

3.6 Stopping Criteria

The iterations terminate at t = T when UT = ∅, i.e., all points have been either moved to
PT or have been discarded. The predicted set P̂ = PT is guaranteed to be an ǫ-accurate
Pareto set of E. Termination occurs at the latest when wt ≤ ǫ. In this case, dominated
points can be discarded in one pass.

3.7 Analysis of Execution Time

In this section, we review the most time consuming subroutines of ǫ-PAL and analyze
their computational cost, which depends on the number of points in the working sets:
nt = |Ut| + |Pt|. While n0 = |E| in the first iteration, discarded points are removed from
the working sets and thus the number of computations is reduced as t increases. As it is
not possible to make conclusions in how nt decreases with t, we assume the upper bound
n = |E|. In practice, the number of computations is much lower for most iterations of the
algorithm. On the other hand, we assume that the number m of objective functions is a
small constant.

In the modeling stage, ǫ-PAL updates Gaussian process models and evaluates the pre-
diction µ and the uncertainty σ for every point. Let s be the number of points that have
been sampled, the complexity of this step is O(s3 + ns2) (Rasmussen and Williams, 2006).
Note that typically s ≪ n.

In the discarding stage, ǫ-PAL first finds the Pareto pessimistic points of a set. The
problem of efficiently determining the Pareto points (or maxima) of a set of vectors is

10

Active Learning for Multi-Objective Optimization

Algorithm 1 The ǫ-PAL algorithm
Input: design space E (|E| = n); GP prior µ0,i, σ0, ki for all 1 ≤ i ≤ n; ǫ; βt for t ∈ N

Output: predicted Pareto set P̂
1: P0 = ∅ {predicted set}, U0 = E {undecided set}
2: R0(x) = R

n for all x ∈ E, t = 1
3: repeat

4: Pt = Pt−1, Ut = Ut−1

5: Modeling

6: Obtain µt(x) and σt(x) for all x ∈ Pt ∪ Ut

7: Rt(x) = Rt−1(x) ∩Qµ
t
,σt,βt+1

(x) for all x ∈ Pt ∪ Ut

8: Discard

9: ppess(Pt) = Pareto pessimistic set of Pt

10: discard points x in Ut that are ǫ-dominated by some point x′ in ppess(Pt), i.e., where max(Rt(x)) �ǫ

min(Rt(x
′)) (See Alg. 2 for m = 2)

11: ppess(Pt ∪ Ut) = Pareto pessimistic set of Pt and Ut

12: discard points x in Ut \ ppess(Pt ∪ Ut) that are ǫ-dominated by some point x′ in ppess(Pt ∪ Ut), i.e.,
where max(Rt(x)) �ǫ min(Rt(x

′)). (See Alg. 2 for m = 2)
13: ǫ-Pareto Front Covering

14: repeat

15: Choose x′ = argmaxx∈Ut
{wt(x)}

16: if for all x ∈ Pt ∪ Ut \ {x
′} it holds that max(Rt(x)) �ǫ min(Rt(x

′)) then

17: Pt = Pt ∪ {x′}, Ut = Ut \ {x
′}

18: else

19: break
20: end if

21: until Ut = ∅
22: Sampling

23: Choose xt = argmaxx∈Ut∪Pt
{wt(x)}

24: Sample yt(xt) = f(xt) + νt

25: t = t+ 1
26: until Ut = ∅
27: return P̂ = Pt

Algorithm 2 Discard points in U that are ǫ-dominated by ppess for m = 2.

Input: set U ; Pareto pessimistic set ppess; ǫ
Output: updated set U
1: U ′ = {(x,min(Rt(x)) + ǫ) : x ∈ ppess} ∪ {(x,max(Rt(x))) : x ∈ U \ ppess} {U ′ is a set of (x, (f̂1, f̂2))

pairs}
2: sortU = sort U ′ with respect to f̂1 in ascending order
3: currentMax = −∞
4: for (x, (f̂1, f̂2)) in sortU do

5: if x ∈ ppess then

6: currentMax = f̂2
7: else

8: if f̂2 ≤ currentMax then

9: U = U \ {x} {discard x}
10: end if

11: end if

12: end for

addressed by Kung et al. (1975). For m = 2, their algorithm starts by ordering the list
of vectors in the first dimension f1. Then, the list is traversed in ascending order while
discarding the vectors for which the second dimension f2 is smaller than the greatest value

11

Zuluaga, Krause and Püschel

of f2 seen so far. This procedure exhibits computational complexity of O(n log n) for m = 2.
The same computational complexity is achieved by a similar implementation for m = 3.
For m > 3, Kung et al. (1975) presents a divide and conquer algorithm with worst case
asymptotic complexity of O(n(log n)m−2) +O(n log n).

In the discarding stage, ǫ-PAL also discards points in a set U that are ǫ-dominated
by a set ppess. This means that, if done naively, every point max(x) with x ∈ U must be
compared with every min(x′) + ǫ with x′ ∈ ppess. However, this can be done by adapting
the above mentioned implementations to compute the Pareto points of a set of vectors to
substantially reduce the runtime of the algorithm. Alg. 2 shows the pseudocode for this
adaptation. A joined set U ′ is created from points max(x) with x ∈ U and min(x′)+ǫ with
x′ ∈ ppess. This joint list is ordered with respect to the first dimension f1. Then, the list
is traversed in ascending order, but the maximum value of f2 is only updated by a point
that belongs to ppess, and only points that belong to U can be discarded. For m ≥ 3 the
adaptation of the algorithm by Kung et al. (1975) is analogous.

In the ǫ-Pareto front covering stage, ǫ-PAL checks if a point x can be guaranteed to
belong to Zǫ(E) according to Definition 7. This is done by comparing x with the rest of the
points x′ in the working sets, until a case in which min(Rt(x

′)) + ǫ � max(Rt(x)) is found.
The number of computations for this step is O(n); in practice, however, it is much smaller
than n for most iterations. This operation might be done several times per iteration, until
no more points in Ut can be moved to Pt or Ut = ∅. The number of times is assumed to be
much smaller than n.

The computational complexity of an iteration is therefore dependent on m and s. For
m = 2 and m = 3 it is O(ns2 + s3 + n log n), and for m > 3 it is O(n(log n)m−2) +O(ns2 +
s3 + n log n).

4. Correctness and Sample Complexity

So far we have left the parameter βt undefined. In this section, we will choose a βt that
guarantees the correctness of the algorithm, and the number of iterations required to meet
our bounds.

Of key importance in the convergence analysis is the effect of the regularity imposed by
the kernel function k. In our analysis, this effect is quantified by the maximum information
gain associated with the GP prior. Formally, we consider the information gain

I(y1 . . .yT ;f) = H(f)−H(f | y1 . . .yT),

i.e, the reduction of uncertainty on f caused by (noisy) observations of f on the T first
sampled points. The crucial quantity governing the convergence rate is

γT = max
y1...yT

I(y1 . . .yT ;f),

i.e., the maximal reduction of uncertainty achievable by sampling T points. Intuitively, if
the kernel k imposes strong regularity (smoothness) on f , few samples suffice to gather
much information about f , and as a consequence γT grows sub-linearly (exhibits a strong
diminishing returns effect). In contrast, if k imposes little regularity (e.g., is close to di-
agonal), γT grows almost linearly with T . Srinivas et al. (2010, 2012) established γT as

12

Active Learning for Multi-Objective Optimization

key quantity in bounding the regret in single-objective GP optimization. Here, we show
that this quantity more broadly governs convergence in the much more general problem of
predicting the Pareto-optimal set in multi-criterion optimization.

We obtain bounds on the number of iterations required when assuming that the target
functions fi, 0 ≤ i ≤ m, lie in the RKHS Hk(E) corresponding to kernel k(x,x′), and
that the noise νt is an arbitrary martingale difference sequence which has zero mean and
is uniformly bounded by σ. Furthermore, in order to obtain the bounds, it is necessary to
specify an upper bound6 B on all ||fi||k.

The following theorem constitutes our main theoretical result.

Theorem 1 Assume that the true functions fi lie in the RKHS Hk(E) corresponding to
kernel k(x,x′), and that the noise νt has zero mean conditioned on the history and is
bounded by σ almost surely. Let δ ∈ (0, 1) and ||fi||2k ≤ B. Running ǫ-PAL with βt =
2B2 + 300γt log

3(m|E|t/δ), prior GP (0, k(x,x′)) and noise N(0, σ2), the following holds
with probability 1− δ.

An ǫ-accurate Pareto set can be obtained after at most T iterations, where T is the
smallest number satisfying

√

C1βTγT
T

≥ ǫ. (7)

Here, C1 = 8/ log(1 + σ−2), ǫ = ||ǫ||∞, and γT depends on the type of kernel used.

This means that, with high probability, wt is bounded by O∗((B
√
γT +γT)/

√
T). Note that

in practice one might want to, in addition to identifying an ǫ-accurate Pareto front, seek
to be sufficiently confident such that for all predicted Pareto points (i.e., points x in PT

in Algorithm 1) it holds that wT (x) ≤ ǫ. This requirement can be added to the stopping
condition in Line 26 of Algorithm 1, and the same sample complexity of Theorem 1 holds.

4.1 Proof Outline

The above theorem implies that by specifying δ and a target accuracy ǫ, ǫ-PAL automati-
cally stops when the target error is achieved with confidence 1−δ. Additionally, the theorem
bounds the number of iterations T required to obtain this result.

Our strategy for the proof consists of four parts. First, Lemma 1 shows that |fi(x) −
µt−1,i(x)| ≤ β

1/2
t σt−1,i(x) for 1 ≤ i ≤ m, t ≥ 1, and for all x ∈ E. Then, we analyze how

wt decreases with t. Subsequently, we relate ǫ and wt to ensure the termination of the
algorithm. The last two parts are analyzed in Section 4.2. Finally, Lemma 8 supports the
accuracy of the ǫ-PAL, given that the proper βt value is used on every iteration t.

4.2 Reduction in Uncertainty

The first step of the proof is to show that with probability at least 1 − δ, f(x) lies for all
x ∈ E within the uncertainty region (see (5) and (6)):

Rt(x) = Qµ0,σ0,β1
(x) ∩ · · · ∩Qµt,σt,βt+1

(x),

6. While in practice this might not be possible, a standard guess-and-doubling approach can be applied.

13

Zuluaga, Krause and Püschel

which is achieved by choosing βt = 2B2 + 300γt log
3(m|E|t/δ).

Srinivas et al. (2010) showed that information gain can be expressed in terms of the pre-
dicted variances. Similarly, we show how the cumulative

∑t
k=1wk can also be expressed in

terms of maximum information gain γt. Since the sampling rules used by ǫ-PAL guarantee
that wt decreases with t, we get the following bound for wt. With probability ≥ 1− δ,

wt ≤
√

C1βtγt
t

for all t ≥ 1, (8)

where C1 = 8/ log(1 + σ−2) and βt is as before.

The proof is supported by Lemmas 1 to 5 found in the appendix of this paper. Key
challenges and differences in comparison to Srinivas et al. (2010) include (1) dealing with
multiple objectives; (2) the use of a different sampling criterion; and (3) incorporating the
monotonic classification scheme.

We also show that, with probability 1 − δ, the algorithm terminates with no further
sampling at iteration T if

wT ≤ ǫ, (9)

where ǫ = ||ǫ||∞ = max(ǫi)1≤i≤m. This is proved in Lemma 7.

4.3 Explicit Bounds for the Squared Exponential Kernel

Theorem 1 holds for general covariance functions k(x,x′). Srinivas et al. (2010) derived
bounds for γT depending on the choice of kernel. These can be used to specialize Theorem 1.

We illustrate this using the squared exponential kernel as example, i.e., k(x,x′) =
exp

(

l−2‖x− x′‖22
)

for some l > 0.

Let E ⊂ R
d be compact and convex, d ∈ N. According to Srinivas et al. (2010), for

m = 1, there exists a constant K such that

γt ≤ K logd+1 t for all t > 1.

For m > 1, since we assume i.i.d. GPs, we thus get

γt ≤ Km logd+1 t

and hence the following corollary to Theorem 1.

Corollary 1 Let ki be the squared exponential kernel used by ǫ-PAL, and assume fi lies
in the RKHS with its norm bounded by ||fi||2k ≤ B, for all 1 ≤ i ≤ m. When choosing
δ ∈ (0, 1), a target accuracy specified by ǫ, the following holds with probability 1− δ. ǫ-PAL

terminates after at most T iterations, where T is the smallest number satisfying

√

16B2K2m logd+1 T + 2400K2m2 log2(d+1) T log3(m|E|T/δ)
√

T log(1 + σ−2)
≥ ǫ.

These results suggests that, under both scenarios, ǫ increases as T decreases in the following
manner: Asymptotically, for any ρ > 0, as well as fixed m, n and d, we have T = O(1

ǫ2+ρ).

14

Active Learning for Multi-Objective Optimization

5. Discussion and Implementation Details

We now discuss some of the limitations, choices made, and other aspects that arose when
implementing and using our ǫ-PAL algorithm.

5.1 Sampling Strategy

After clearly non-competitive designs are removed in the discarding phase, our sampling
strategy (Section 3.5) chooses the one with the highest uncertainty. Other choices would
be possible, e.g, chosing the one that maximizes the expected gain in hypervolume. Our
choice aims at reducing time to termination, which is achieved by reducing uncertainty in
the model as fast as possible.

5.2 Parameterization

For practical usage, two parameters, namely ǫ and δ, need to be specified. These parameters
relate to the desired level of accuracy of the prediction. Our theoretical bounds are likely
to be loose in practice; thus, it may be useful to choose more “aggressive” values than
recommended by the theory. The choice of δ impacts the value of βt and therefore the
convergence rate of the algorithm, since the latter scales the uncertainty regions Rt(x).
Since the analysis is conservative, scaling down βt, possibly to be constant, is a viable
option.

In contrast, the choice of ǫ should pose no problem. One only may consider scaling the
objective functions so that all ǫi components of ǫ have comparable values.

5.3 Kernel Hyper-Parameters

So far, we have assumed that the kernel function is given. Usually, its parameters need
to be chosen. Therefore, prior to running ǫ-PAL, it may be practical to randomly sample
a small fraction of the design space and to optimize the parameters (e.g., by maximizing
the marginal likelihood). One may also consider maintaining uncertainty in the hyper-
parameters by placing and updating priors on them. These can then be marginalized
to obtain suitable hyper-rectangles to capture the uncertainty about the designs. This
extension poses new challenges in computational efficiency (i.e., using approximate Bayesian
inference), and we defer it to future work.

5.4 Scalability

The computational complexity of our algorithm depends on our ability to perform efficient
inference in Gaussian processes. In general, this complexity grows cubically with the number
of samples (function evaluations), which can pose a challenge in large design spaces. This
is a general issue in Bayesian optimization, and not specific to our approach. Fortunately,
there are many techniques available for scaling up Gaussian process inference that our
approach can immediately benefit from (see, e.g., Rasmussen and Williams (2006)).

15

Zuluaga, Krause and Püschel

5.5 Continuous vs. discrete domains

In our approach, we have focused on finite, discrete domains E, which often naturally arise
in design-space exploration problems as those considered in our experiments. For Lipschitz-
continuous objectives (which are commonly assumed in Bayesian optimization), it is be
possible to handle continuous compact domains E via standard covering arguments. Given
the allowed tolerances ǫ and Lipschitz constants, one can construct a discretization Ê such
that for any point x ∈ E in the domain, there is one in the discretization x′ ∈ Ê such that
f(x′) �ǫ f(x). It can be seen that any ǫ-accurate Pareto set of Ê is a 2ǫ-accurate Pareto
set of E. This discretization-based approach becomes impractical with higher dimensions.
Developing a variant of our approach that does not require an explicit discretization is an
interesting direction for future work.

5.6 Current Implementation

For our experimental evaluation, we implemented a prototype that is restricted to m = 2
objectives. The code is available at Zuluaga et al. (2015).

6. Related Work

We now discuss different lines of related work.

6.1 Evolutionary Algorithms

One class of approaches uses evolutionary algorithms to approximate the Pareto frontier via
a population of evaluated designs that is iteratively evolved (Künzli et al., 2005; Coello et al.,
2006; Zitzler et al., 2002). Most of these approaches do not use models for the objectives,
and consequently cannot make predictions about unevaluated designs. As a consequence, a
large number of evaluations are typically needed for convergence with reasonable accuracy.
To overcome this challenge, model-based (or “response surface”) approaches approximate
the objectives by models, which are fast to evaluate. A concrete example is the algorithm
presented by Emmerich et al. (2006), which uses Gaussian random fields metamodels to
predict the objective functions. These models are used to screen each generation of the
population and to extract promising individuals. On the other hand, Laumanns and Oce-
nasek (2002) and Buche et al. (2005) investigate the use of Gaussian models to maintain
and improve the diversity of the population during the offspring-generation phase.

We will compare against ParEGO (Knowles, 2006) (explained in Section 6.6 below),
which improves on the above work by combining the evolutionary approach with optimiza-
tion to reduce the number of evaluations needed.

6.2 Scalarization to the Single-Objective Setting

An alternative approach to multi-objective optimization problems is the reduction to a
single-objective problem (for which a wealth of methods are available). This is commonly
done via scalarization, for example by considering convex combinations of the objective func-
tions (Boyd and Vandenberghe, 2004). Some evolutionary algorithms use this approach to
tackle multiple objectives. For example, the approach presented by Zhang and Li (2007)

16

Active Learning for Multi-Objective Optimization

optimizes simultaneously several single-objective subproblems that are created using differ-
ent scalarization criteria. The diversity amongst the subproblems will lead to diversity in
the approximated Pareto front.

A number of global optimization algorithms are also conditioned to the multi-objective
setting by using scalarization. As a concrete example, Zhang et al. (2010) and Knowles
(2006) extend the single-objective efficient global optimization (EGO) approach of Jones
et al. (1998) by decomposing the optimization problem into several single-objective sub-
problems. A GP model is built for every subproblem, and sample candidates are selected
based on their expected improvement.

A major disadvantage of the scalarization approach is that without further assumptions
(e.g., convexity) on the objectives, not all Pareto-optimal solutions can be recovered (Boyd
and Vandenberghe, 2004). Therefore, we avoid scalarization in our approach.

6.3 Heuristics-based Methods

Instead of weighted combinations, numerous domain-specific heuristics have been proposed
that aim at identifying Pareto-optimal solutions. These approaches typically combine search
algorithms to suit the nature of the problem (Deng et al., 2008; Palermo et al., 2009; Zuluaga
et al., 2012a) and defy theoretical analysis to provide bounds on the sampling cost. With
this work we aim at creating a method that generalizes across a large range of applications
and target scenarios and that is analyzable, i.e., comes with theoretical guarantees.

6.4 Single-Objective Bayesian Optimization and Active Learning

In the single-objective setting, there has been much work on active learning, in particular
for classification (see, e.g., Settles (2010) for an overview). For optimization, model-based
approaches are used to address settings where the objective is noisy and expensive to eval-
uate. In particular in Bayesian optimization (see the survey by Brochu et al. (2010)), the
objective is modeled as a draw from a stochastic process (often a Gaussian process), as orig-
inally proposed by Mockus et al. (1978). The advantage of this approach is the flexibility in
encoding prior assumptions (e.g., via choice of the kernel and likelihood functions), as well
as the ability to guide sampling: several different (usually greedy) heuristic criteria have
been proposed to pick the next sample based on the predictive uncertainty of the Bayesian
model. A common example is the EGO approach of Jones et al. (1998), which uses the ex-
pected improvement. In recent years, there have been considerable theoretical advances in
Bayesian optimization. Several analyses focus on the case of deterministic (i.e., noise-free)
observations. Vazquez and Bect (2010) prove that under some conditions the EGO approach
produces a dense sequence of samples in the domain, i.e., asymptotically getting arbitrarily
close to the optimum. Bull (2011) go further in providing convergence rates for this setting.
Srinivas et al. (2010) analyzed the GP-UCB criterion (Cox and John, 1997), and proved
global convergence guarantees and rates for Bayesian optimization allowing noisy observa-
tions. We build on their results to establish guarantees about our ǫ-PAL algorithm in the
multi-objective setting. de Freitas et al. (2012) improve the results of Srinivas et al. (2010)
using a UCB-like algorithm under deterministic observations to obtain exponential regret
bounds.

17

Zuluaga, Krause and Püschel

6.5 Multi-Objective Bayesian Optimization and Active Learning

The algorithm PAL by Zuluaga et al. (2013), is an earlier version of ǫ-PAL. It also requires
a parameter ǫ that allows the user to set different levels of prediction accuracy. PAL
attempts to classify points as Pareto optimal or not Pareto-optimal until all points have
been classified; it uses ǫ to ease this classification. However, it fails to generate an ǫ-accurate
Pareto set. It only uses ǫ to stop the algorithm in different stages of training, and as a
result, less accuracy is achieved when the value of ǫ is increased.

There are two main advantages of ǫ-PAL over PAL. The more effective use of ǫ is one of
them. This not only allows it to generate an ǫ-accurate Pareto set, but it also reduces the
runtime of the algorithm, as it attempts to remove redundancy and discards points more
efficiently along the execution of the algorithm. In addition, the convergence bounds are
also defined in terms of ǫ, which is intuitive. In contrast, PAL uses the hypervolume error,
a concept that is more difficult to reason about.

The other advantage is the asymptotic improvement in the number of computations
required per iteration, which is independent to the improvements just mentioned above. As
analyzed in Section 3.7, for problems with two or three objective functions, ǫ-PAL requires
O(n log n) computations on every iteration, whereas PAL requires O(n2 log n). For problems
with more than two objective functions, ǫ-PAL requires O(n(log n)m−2) +O(n log n) com-
putations on every iteration, whereas PAL requires O(n2(log n)m−2) + O(n log n). Here, n
is the number of elements in the design space. This is very important since it allows ǫ-PAL

to handle larger design spaces.

There have been recent approaches that simplify to some extent the PAL algorithm.
Campigotto et al. (2014) proposes an active learning algorithm that also uses Gaussian
process modeling to predict the objective function. It iteratively samples the most uncertain
point in the design space until a threshold in information gain is reached. On the other
hand, Steponavice et al. (2014) propose an algorithm that probabilistically classifies points
as Pareto-optimal or not. This probability is used to provide flexibility on the accuracy
of the prediction. This algorithm does not use Gaussian process modeling with the goal
of improving runtime. Neither of these two approaches provides an approximation to the
Pareto front with some granularity as ǫ-PAL does. Also, they do not provide any theoretical
support on the convergence of the algorithm.

Multi-objective Bayesian optimization is also related to several other variants of Bayesian
optimization studied in the literature. For example, there has been work on contextual
(Krause and Ong, 2011), multi-task (Swersky et al., 2013) and collaborative (Bardenet et al.,
2013) Bayesian optimization. These approaches can be viewed as carrying out Bayesian
optimization for multiple related objectives, exploiting dependencies between them in order
to share statistical strength. While also considering multiple objectives, the goal is to find
separate optimizers for each of them, rather than identifying a Pareto frontier. Lastly Multi-
objective Bayesian optimization is also related to Bayesian optimization under unknown
constraints (Gelbart et al., 2014), since one way to obtain Pareto-optimal solutions is to
optimize one objective under constraints on the others. The approach of (Gelbart et al.,
2014) however only aims to identify a (single) optimal feasible solution as opposed to an
entire Pareto frontier.

18

Active Learning for Multi-Objective Optimization

6.6 Multi-Objective Global Optimization and Evolutionary Algorithms

Global optimization algorithms have been paired with evolutionary algorithms to find the
solution that maximizes an acquisition function, for example expected improvement. The
best amongst these appears to be ParEGO (Knowles, 2006), which also uses GP models of
the objective functions. On every iteration, the problem is scalarized using a different weight
vector, and the solution that maximizes the expected improvement, based on the current
single-objective function, is chosen for evaluation. An evolutionary algorithm performs the
search using the GP models to asses the expected improvement of each solution. A similar
approach, presented by Zhang et al. (2010), generates several populations per iteration
to take advantage of a parallel implementation. As a result, several points are sampled
on every iteration. We will compare our approach against ParEGO, as it also generates
serialized function evaluations; this method might be preferred when the objective functions
are expensive to evaluate.

7. Experiments

In this section we evaluate ǫ-PAL on three real world data sets obtained from different
applications in computer science and engineering. We assess the prediction error versus the
number of evaluations required to obtain it, for different settings of the accuracy parameter
ǫ. Further, we compare with PAL (Zuluaga et al. (2013)) and ParEGO (Knowles, 2006),
a state-of-the-art multi-objective optimization method based on evolutionary algorithms,
using an implementation provided by the authors and adapted to run with our data sets.
ParEGO also uses GP modeling to aid convergence.

Before presenting the results we introduce the data sets, and explain the experimental
setup.

7.1 Data Sets

The first data set, called SNW, is taken from Zuluaga et al. (2012b). The design space
consists of 206 different hardware implementations of a sorting network for 256 inputs.
Each design is characterized by d = 3 parameters. The objectives are area and throughput
when synthesized for a field-programmable gate array (FPGA) platform. This synthesis is
very costly and can take up to many hours for large designs.

The second data set, called NoC, is taken from Almer et al. (2011). The design space con-
sists of 259 different implementations of a tree-based network-on-chip, targeting application-
specific circuits (ASICs) and multi-processor system-on-chip designs. Each design is defined
by d = 4 parameters. The objectives are energy and runtime for the synthesized designs
run on the Coremark benchmark workload. Again, the evaluation of each design is very
costly.

The third data set, called SW-LLVM, is taken from Siegmund et al. (2012). The design
space consists of 1023 different compiler settings for the LLVM compiler framework. Each
setting is specified by d = 11 binary flags. The objectives are performance and memory
footprint for a given suite of software programs when compiled with these settings. Note
that the Pareto-optimal set consists of two points only.

19

Zuluaga, Krause and Püschel

0.06 0.08 0.10 0.12 0.14

log(f1)

2

4

6

8

10

12

14

16

lo
g
(f

2
)

Pareto front

SNW (|E| =206)

0 2 4 6 8 10 12 14 16

log(f1)

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

lo
g
(f

2
)

Pareto front

NoC (|E| =259)

0.05 0.10 0.15 0.20 0.25 0.30

log(f1)

6.7

6.8

6.9

7.0

7.1

7.2

7.3

7.4

lo
g
(f

2
)

Pareto front

SW-LLVM (|E| =1023)

Figure 4: Objective space of the input sets use in our experiments.

Data set d m |E|

SNW 3 2 206

NoC 4 2 259

SW-LLVM 11 2 1023

Table 1: Data sets used in our experiments.

The main characteristics of the data sets are summarized in Table 1; note that in all
cases m = 2. To obtain the ground truth, we completely evaluated all data sets to determine
P in each case. This was very costly, most notably, it took 20 days for NoC alone. The
evaluations are plotted in log scale in Fig. 4; the Pareto fronts are emphasized. All the data
is normalized such that all objectives are to be maximized.

7.2 Experimental Setup

Our implementation of ǫ-PAL uses the Gaussian Process Regression and Classification Tool-
box for Matlab (Rasmussen and Nickisch, 2013). In our experiments we used the squared
exponential covariance function with automatic relevance determination. The standard
deviation of the noise ν is fixed to 0.1. We use

β
1/2
t =

1

3

√

2 log(m|E|π2t2/(6δ)),

which is the value suggested in Zuluaga et al. (2013) scaled by 1/3. This factor is empirical
and used because the theoretical analysis is too conservative. In Srinivas et al. (2010) 1/5
is used.

All of the experiments were repeated 200 times and the median of the outcomes is
shown in the plots. Additionally, several values of ǫ = (ǫi)1≤i≤2 were evaluated, where ǫi is
proportional to the range ri = maxx∈E{fi(x)}−minx∈E{fi(x)}. We start with ǫi = 0.01×ri
and increase it up to ǫi = 0.3× ri. When we say ǫ = 1%, we mean that ǫi is 1% of the range
ri.

Prior to running ǫ-PAL, a subset of the design space was evaluated in order to initialize
the training set and optimize the kernel parameters used by the model. For SNW and NoC,

20

Active Learning for Multi-Objective Optimization

15 points were chosen uniformly at random. For LLVM-SW, as the dimensionality of the
design space is much larger, 30 points were taken.

All of the experiments were run on a machine equipped with two 6-Core Intel Xeon
X5680 (3.06GHz) and 144GB (1333MHz) of memory.

7.3 Prediction Error

After running ǫ-PAL with any of the data sets, a prediction P̂ ⊂ E of the true Pareto set
is returned. Some of the points in P̂ are then already evaluated, i.e., f is already known;
for the others the exact value of f was not necessary to generate the prediction. For such
points, the objective functions are evaluated after running ǫ-PAL to determine their values
and thus all of f(P̂). We compare the prediction P̂ with the true Pareto set P , where f(P)
is obtained through exhaustive evaluation. The comparison uses a percentage prediction
error e(P, P̂) based on the concept of ǫ-dominance. It is the average maximum distance
found between a point in f(P) and the closest point in f(P̂).

When considering two objective functions, i.e., m = 2, f(x) = (f1(x), f2(x)). In this
case, the prediction error is calculated as

e(P, P̂) = avgx∈Pminx′∈P̂max1≤i≤2
(fi(x)− fi(x

′)) · 100
ri

.

The distance is expressed as a percentage of the range ri, in order to compare the results
between the two dimensions and amongst the different data sets.

7.4 Quality of Pareto Front Prediction

The first row of Fig. 5 shows the ǫ-accurate Pareto front Z(P̂) obtained with ǫ-PAL for
three different configurations of ǫ, using the first data set. The red shaded line is the true
Pareto front found by exhaustive evaluation. The gray points are the ones that have been
either sampled during the execution of ǫ-PAL or selected to be part of the ǫ-Pareto front.
We can see that, as intended, with larger values of ǫ, a less accurate Pareto front is obtained,
but also fewer points are evaluated. The rest of the points are discarded by ǫ-PAL during
its execution.

The second row of Fig. 5 shows equivalent plots obtained with PAL. PAL attempts to
classify points as Pareto optimal or not Pareto-optimal until all points have been classified;
it uses ǫ to ease this classification. Therefore, as ǫ increases, more points are selected
as Pareto optimal. The gray points in the plots correspond to solutions that are either
evaluated during the execution of PAL or classified as Pareto optimal. It is clear that PAL
does not generate an ǫ-accurate Pareto set, but simply uses a parameter ǫ to make the
algorithm terminate at different stages. The prediction can be as precise as the models
for fi generated with the samples gathered by the termination of the algorithm. For small
values of ǫ, the resulting Pareto front is close to the true Pareto front because more samples
have been taken and a more accurate classification can be made. On the other hand, for
large values of ǫ, this happens because most points are classified as Pareto optimal, even
though they are far from the true Pareto front. In all cases, the returned Pareto front
attempts to be as close as possible to the true Pareto front.

21

Zuluaga, Krause and Püschel

0.06 0.08 0.10 0.12 0.14

log(f1)

2

4

6

8

10

12

14

16

lo
g
(f

2
)

ǫ-PAL with ǫ = 1%

0.06 0.08 0.10 0.12 0.14

log(f1)

2

4

6

8

10

12

14

16

lo
g
(f

2
)

ǫ-PAL with ǫ = 12%

0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15

log(f1)

2

4

6

8

10

12

14

16

lo
g
(f

2
)

ǫ-PAL with ǫ = 30%

0.06 0.08 0.10 0.12 0.14

log(f1)

2

4

6

8

10

12

14

16

lo
g
(f

2
)

PAL (ICML 2013) with ǫ = 1%

0.06 0.08 0.10 0.12 0.14

log(f1)

2

4

6

8

10

12

14

16

lo
g
(f

2
)

PAL (ICML 2013) with ǫ = 12%

0.06 0.08 0.10 0.12 0.14

log(f1)

2

4

6

8

10

12

14

16

lo
g
(f

2
)

PAL (ICML 2013) with ǫ = 30%

F (P̂) F (P)

Figure 5: The first row shows the ǫ-accurate Pareto fronts (black line) of the SNW design
space obtained with ǫ-PAL for ǫ ∈ {1%, 12%, 30%}. The second row shows equiv-
alent plots for PAL in which the prediction P̂ is composed of the sampled points
and the points classified as Pareto optimal at the termination of the algorithm.
The red shaded line in each plots is the true Pareto front of the design space.

Fig. 6 shows a set of experiments in which we do both, exploring the effect of choosing ǫ

and comparing against PAL and ParEGO (Knowles, 2006). Every plot in Fig. 6 corresponds
to one data set in Table 1. In each case, the x-axis shows the number of evaluations
(sampling cost) of f . For ǫ-PAL and PAL this is T (the total number of iterations) plus
the evaluations of designs in P̂ that have not been evaluated yet while running the algorithm.
On the y-axis, we show the average percentage error e(P, P̂) as defined above. We measure
the error at each iteration, and plot (t, e(P, P̂)). As expected, the error in all cases decreases
with increasing numbers of evaluations.

ǫ-PAL provides a wide range of accuracy-cost trade-offs as an effect of choosing different
ǫ configurations. When ǫ = 30%, only a few iterations are made by the algorithm, returning
an error of less than 7% with less than 30 function evaluations in all cases. On the other
hand, for ǫ = 1%, ǫ-PAL yields an error of less than 0.7% with less than 50 function
evaluations in all cases.

22

Active Learning for Multi-Objective Optimization

0 20 40 60 80 100 120

Evaluations

0

1

2

3

4

5

6

7

8

e
(P

,
P̂
)[
%
]

ǫ = 30%

ǫ = 1%
ǫ = 0

SNW (|E| =206)

0 10 20 30 40 50 60 70 80

Evaluations

0

1

2

3

4

5

6

e
(P

,
P̂
)[
%
]

ǫ = 30%

ǫ = 1% ǫ = 0

NoC (|E| =259)

0 20 40 60 80 100

Evaluations

0

1

2

3

4

5

6

e
(P

,
P̂
)[
%
]

ǫ = 30%

ǫ = 1% ǫ = 0

SW-LLVM (|E| =1023)

ǫ-PAL PAL [ICML 2013] ParEGO

Figure 6: Prediction error e(P, P̂) vs. number of evaluations. For ǫ-PAL and PAL the
values ǫ ∈ {30%, 20%, 16%, 12%, 8%, 4%, 2%, 1%} are used. The corresponding
points are consecutive in the lines for ǫ-PAL and PAL.

The measured error e(P, P̂) is comparable with ǫ as they both measure how far the
predicted Pareto front is from the true Pareto front. ǫ measures the desired accuracy, and
e(P, P̂) measures what is obtained. We can then say that ǫ-PAL meets the expectations
on the prediction for all ǫ configurations and in all cases.

The plots in Fig. 6 also show a point in which ǫ-PAL achieves an error of 0. This is
obtained with ǫ = 0, δ = 0.05 and βt having the exact value suggested by Theorem 1. Under
these configurations, ǫ-PAL yields a perfect prediction with less than 115 evaluations in all
cases.

PAL (purple line) generates a more constrained set of trade-offs using the same ǫ con-
figurations that were used for ǫ-PAL. The actual P̂ reported in (Zuluaga et al., 2013)
corresponds to the Pareto-optimal points amongst all pairs (µ1(x), µ2(x)) for x ∈ E. On
the other hand, ParEGO (gray line) does not provide a methodology to stop the algorithm
in different stages of accuracy and cost. We then plot a continuous line that shows the
error obtained by the set St of sampled points on every iteration of the algorithm t, i.e.,
we plot points (|St|, e(P, St)). ParEGO uses a heuristic to find the number of samples of
the starting population depending on the characteristics of the design space. Hence the line
always starts with a certain minimum number of evaluations.

We observe that ǫ-PAL and PAL in all cases significantly improve over ParEGO. In
particular, the gains on SW-LLVM were considerable. Overall, the number of evaluations
was reduced by 1/3 to 2/3 in all cases when comparing against ParEGO. ǫ-PAL overall
compares favorably to PAL except for SW-LLVM, where PAL wins for a small range in the
error/performance tradeoff space.

23

Zuluaga, Krause and Püschel

As explained above, ǫ-PAL returns an ǫ-accurate Pareto set and PAL returns a more
dense Pareto set, therefore, the prediction error in PAL is always fairly small and in most
of the cases it requires more function evaluations. In the case of SW-LLVM, there are
some trade-offs obtained with ǫ-PAL that yield slightly higher errors than those obtained
with PAL. This is because ǫ-PAL eliminates solutions along its execution and as the corre-
sponding design space has only one Pareto point, when this is removed, the error obtained
increases considerably. However the error is within the expected range, i.e., below that
indicated by ǫ. Additionally, if the design space is not too large, after the termination of
the algorithm, all points that were discarded can be again predicted by the model to find a
more accurate Pareto set similar to what PAL returns.

In conclusion, ǫ-PAL in most cases produces better trade-offs than PAL and ParEGO.
In comparison to PAL, it uses more effectively the fact that the users, by setting ǫ, are
expressing their desire to generate only ǫ-accurate Pareto fronts in exchange for a smaller
number of function evaluations. This means that it can offer a wider range of trade-offs
between accuracy and number of evaluations. Moreover, the resulting Pareto fronts contain
a variety of trade-offs between the underlying multi-objective design space, that are spread
evenly along the range of possibilities.

7.5 Execution Time

A drawback of PAL is the high number of computations required per iteration, which
constrains it to small design spaces. As explained in Section 6, ǫ-PAL reduces the number
of computations per iteration by a factor of n while achieving better results than PAL. In
this section, we compare the runtime of executing PAL and ǫ-PAL with our three data sets.
Another advantage of ǫ-PAL that helps improving its computational efficiency is that it
uses ǫ to discard more points from the design space as its value increases. In PAL on the
other hand, as ǫ increases, the number of points classified as Pareto optimal increases, and
thus those points require computations on every iteration until the algorithm terminates.

The first plot in Fig. 7 shows runtime speedups, obtained with the three data sets and
all the values of ǫ considered before. We measured for each value of ǫ the runtime for
ǫ-PAL and PAL and divide them to obtain the speedups. Here we assume that the cost of
evaluating f is 0. The plot shows that, as expected, the speedups improve as n increases.
Therefore, LLVM-SW, which has the largest design space of all data sets, obtains the largest
speedups, from 45× with ǫ = 1% up to 420× with ǫ = 30%. Better speedups are obtained
with larger values of ǫ since more points can be discarded during the first iterations.

The second plot in Fig. 7 shows equivalent results but this time assuming that evaluating
f takes 30 minutes. In this case, the speedups are smaller, going up to almost 3× for
ǫ = 30%. This is because the data sets are relatively small and thus the gains in runtime
are offset by the high cost of evaluating f . In other words, the speedups that we observed
here are speedups on function evaluations and are related to the improvements that can
be visualized in Fig. 6. These improvements come from the fact that ǫ-PAL requires less
function evaluations than PAL to achieve an error equivalent to the requested ǫ. As a result,
the denser the true Pareto front of the design space, the better the speedups obtained by
using ǫ-PAL. For this reason, LLVM-SW does not generate important speedups on function
evaluations, since the true Pareto front is composed of only one point. The best speedups

24

Active Learning for Multi-Objective Optimization

ǫ = 1% ǫ = 2% ǫ = 4% ǫ = 8% ǫ = 12% ǫ = 16% ǫ = 20% ǫ = 30%

0

50

100

150

200

250

300

350

400

450

S
p

e
e
d

u
p

Function Evaluation Cost = 0 Minutes

ǫ = 1% ǫ = 2% ǫ = 4% ǫ = 8% ǫ = 12% ǫ = 16% ǫ = 20% ǫ = 30%

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
p

e
e
d

u
p

Function Evaluation Cost = 30 Minutes

SNW NoC SW-LLVM

Figure 7: Speedups obtained by using ǫ-PAL against using PAL. The plot of the left shows
the speedups on the runtime of ǫ-PAL, assuming that function evaluations are
free. The plot on the right shows speedups assuming that one function evaluation
takes 30 minutes.

are obtained with SNW, followed by NoC, tha same order as the densities of their true
Pareto curves.

8. Conclusions

In this paper, we proposed a novel algorithm for efficiently localizing an ǫ-accurate Pareto-
frontier in multi-objective optimization. In the spirit of Bayesian optimization, it uses
Gaussian processes to exploit prior information about the objective functions’ regularity to
predict the objective functions, to guide the sampling process, and to make inferences about
the optimality of designs without directly evaluating them. We presented an extensive
theoretical analysis including bounds for the number of samples required to achieve the
desired target accuracy.

The algorithm described in this paper presents major improvements from its predecessor
PAL. First, it returns an ǫ-accurate Pareto front instead of a dense approximation of the
true Pareto front. It is often the case that a small difference in the objective function,
conveyed to the algorithm with the parameter ǫ, does not affect the quality of a design
significantly. Thus, it is preferable to reduce the number of evaluations made and to obtain
a set of close-to-optimal solutions well distributed in the objective space.

A second improvement over PAL is that ǫ-PAL reduces the asymptotic runtime, which
facilitates the exploration of larger design spaces, in which perhaps the function evaluation
is less expensive.

Finally, we demonstrated the effectiveness of our approach on three case studies obtained
from real engineering applications. Our results show that we offer better cost-performance
trade-offs in comparison to ParEGO and PAL. Across all data sets and almost all desired
accuracies, ǫ-PAL outperforms ParEGO, requiring in most cases 30% to 70% less function

25

Zuluaga, Krause and Püschel

evaluations. Moreover, we showed that our parameterization strategy provides a wide range
of cost-performance trade-offs. In comparison to PAL, our experiments show that ǫ-PAL

reduces the amount of computations by up to 420×, and the number of samples from the
design space required to meet the user’s desired level of accuracy by up to 2.9×.

Acknowledgments. We would like to thank the authors of (Almer et al., 2011) and (Siegmund et al.,

2012) for providing the data for our experiments. This research was supported in part by SNSF grants

200021 137971, 200021 137528, DARPA MSEE FA8650-11-1-7156 and ERC StG 307036.

26

Active Learning for Multi-Objective Optimization

Appendix A. Theoretical Analysis and Asymptotic Bounds

This section provides the proofs of Theorem 1, which follows from Lemmas 1 to 8.

Lemma 1 Assume that the target functions fi, 0 ≤ i ≤ m, are bounded on their RKHS
norm ||fi||k. Given δ ∈ (0, 1) and βt = 2||fi||2k + 300γt log

3(m|E|t/δ), the following holds
with probability ≥ 1− δ:

|fi(x)− µt−1,i(x)| ≤ β
1/2
t σt−1,i(x)

for all 1 ≤ i ≤ m, x ∈ E, for all t ≥ 1. (10)

In other words, with probability ≥ 1− δ:

f(x) ∈ Rt(x) for all x ∈ E, for all t ≥ 1

Proof According to Theorem 6 in (Srinivas et al., 2012), the following inequality holds:

Pr
{

|fi(x)− µt−1,i(x)| > β
1/2
t σt−1,i(x)

}

≤ δ′,

with βt = 2||fi||2k + 300γt log
3(t/δ′). Applying the union bound for i, t ∈ N, we obtain that

the following holds with probability ≥ 1−m|E|δ′:

|fi(x)− µt−1,i(x)| ≤ β
1/2
t σt−1,i(x)

for all 1 ≤ i ≤ m, for all x ∈ E, (11)

with βt = 2||fi||2k + 300γt log
3(t/δ′). The lemma holds by choosing δ = m|E|δ′.

Lemma 2 If m = 1 and fT = (f(xt))1≤t≤T , then

I(yT ;fT) =
1

2

T
∑

t=1

log(1 + σ−2σ2
t−1(xt)).

This is directly taken from Lemma 5.3 in (Srinivas et al., 2010). Hereby I(yT ;fT) =
H(fT) − H(fT | (x1,y1), . . . , (xT ,yT)) is the mutual information between the function
values fT and the noisy observations yT = fT + νT where where νT ∼ N(0, σ2I). This
relation holds no matter in what sequence the samples xt are picked by ǫ-PAL, and no
matter what values yt are being observed. Latter statement is true since for Gaussian
processes the posterior variance over f only depends on where it is evaluated, i.e., xT , not
on the actual values yT observed (Srinivas et al., 2010).

Lemma 3 Given δ ∈ (0, 1) and βt = 2 log(m|E|πt/δ), the following holds:

T
∑

t=1

w2
t ≤ βTC1I(yT ;fT) ≤ C1βTγT for all T ≥ 1,

where C1 = 8/ log(1 + σ−2).

27

Zuluaga, Krause and Püschel

Proof One of the rectangles of which Rt(xt) is the intersection has a diagonal length of

2β
1/2
t ‖σt−1(xt)‖2: as a consequence,

w2
t ≤ 4βt‖σt−1(xt)‖22.

As βt is increasing, we have that

w2
t ≤ 4βTσ

2
m
∑

i=1

σ−2σ2
t−1,i(xt)

≤ 4βTσ
2C2

m
∑

i=1

log(1 + σ−2σ2
t−1,i(xt))

with C2 = σ−2/ log(1 + σ−2) ≥ 1, since s2 ≤ C2 log(1 + s2) for 0 ≤ s ≤ σ−2, and
σ−2σ2

t−1,i(xt) ≤ σ−2ki(xt,xt) ≤ σ−2.

Using C1 = 8σ2C2 and Lemma 2 we have that

T
∑

t=1

w2
t ≤ βTC1

m
∑

i=1

I(yT ; fT,i)

≤ βTC1I(yT ;fT)

Lemma 4 Given δ ∈ (0, 1) and βt = 2 log(m|E|πt/δ), the following holds with probability
≥ 1− δ:

T
∑

t=1

wt ≤
√

C1TβTγT for all T ≥ 1

Proof This follows from Lemma 3, since (
∑T

t wt)
2 ≤ T

∑T
t=1w

2
t by the Cauchy-Schwarz

inequality.

Lemma 5 Running ǫ-PAL with a monotonic classification, it holds that wt decreases with
t.

Proof As a direct consequence of the sample selection rule, wt−1(xt) ≤ wt−1. On the other
hand, wt(x) ≤ wt−1(x) and thus, wt ≤ wt−1(xt). The lemma follows.

Lemma 6 Running ǫ-PAL with δ ∈ (0, 1) and βt = 2 log(m|E|πt/δ), the following holds:

Pr

{

wT ≤
√

C1βTγT
T

for all T ≥ 1

}

≥ 1− δ, (12)

where C1 = 8/ log(1 + σ−2) and πt = π2t2/6.

28

Active Learning for Multi-Objective Optimization

Proof This is derived from Lemmas 4 and 5, since
∑T

t=1wt/T ≥ wT .

Lemma 7 If when running ǫ-PAL, wt ≤ ||ǫ||∞ holds at iteration t, then the algorithm
terminates without further sampling.

Proof Since wt is un upper bound of ||max(Rt(x))−min(Rt(x))||2, it is enough to show

that the statement is true if w = max(Rt(xi)) − min(Rt(xi)) = (w
(1)
t , . . . , w

(m)
t) for all

xi ∈ Ut ∪ Pt. Therefore, wt ≤ ||ǫ||∞ implies w � ǫ.
We show that if w � ǫ, in the same iteration of ǫ-PAL all points in Ut will be either

moved to Pt or discarded.
If a point x does not belong to Zǫ(E), then there is a point x′ such that

max(Rt(x
′)) � min(Rt(x)) + ǫ.

Using max(Rt(x
′)) = min(Rt(x

′)) +w, we can rewrite

min(Rt(x)) + ǫ � min(Rt(x
′)) +w.

Since w � ǫ, this is equivalent to

min(Rt(x)) +w � min(Rt(x
′)) + ǫ.

It follows that
max(Rt(x)) � min(Rt(x

′)) + ǫ,

which is the condition that ensures that x �ǫ x
′. This means that there is a point x′ ∈ Ut∪Pt

that dominates x, and therefore x will be discarded.

Lemma 8 If ǫ-PAL is run until its termination with some ǫ and confidence parameter δ,
then with probability at least 1− δ it holds that Π(P̂) is an ǫ-accurate Pareto set of E.

Proof According to Definition 5, an ǫ-accurate Pareto set of E requires every point of E
to have an ǫ-dominator in P̂ . In the discarding stage of ǫ-PAL, points in Ut are discarded
if they are ǫ-dominated by a pessimistic Pareto point. If a point is ǫ-dominated in E, it
is ǫ-dominated by a point in the pessimistic Pareto set of E. Therefore, the discarding
stage of ǫ-PAL ensures that there will be always be a point in the remaining sets that
ǫ-dominates the points that are discarded. Pessimistic Pareto points are only discarded
if they are ǫ-dominated by any point in Pt. Hence, all discarding decisions are “safe”, in
the sense that for every discarded point, there is always at least one ǫ-dominating point
remaining. They are also “complete”, i.e., only points that belong to Zǫ(E) are moved to
Pt. Hence, at termination, since Ut is empty, all remaining points Pt form an ǫ-accurate
Pareto set of E.

29

Zuluaga, Krause and Püschel

References

O. Almer, N. Topham, and B. Franke. A learning-based approach to the automated design
of MPSoC networks. Architecture of Computing Systems (ARCS), pages 243–258, 2011.

R. Bardenet, M. Brendel, B. Kégl, and M. Sebag. Collaborative hyperparameter tuning. In
Intl. Conference on Machine Learning (ICML), pages 199–207, 2013.

E. Bonilla, K. M. A. Chai, and C. K. I. Williams. Multi-task Gaussian process prediction. In
Advances in Neural Information Processing Systems (NIPS), volume 20, pages 153–160,
2008.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement
learning. Arxiv preprint arXiv:1012.2599, 2010.

D. Buche, N. N. Schraudolph, and P. Koumoutsakos. Accelerating evolutionary algorithms
with Gaussian process fitness function models. IEEE Trans. on Systems, Man, and
Cybernetics, 35:183–194, 2005.

A. Bull. Convergence rates of efficient global optimization algorithms. Journal of Machine
Learning Research, 12:2879–2904, 2011.

P. Campigotto, A. Passerini, and R Battiti. Active learning of Pareto fronts. IEEE Trans.
on Neural Networks and Learning Systems, 25:506–519, 2014.

C. Coello, G. B. Lamont, and D. Veldhuizen. Evolutionary algorithms for solving multi-
objective problems. Springer, 2006.

D. D. Cox and S. John. SDO: A statistical method for global optimization. Multidisciplinary
Design Optimization: State of the Art, pages 315–329, 1997.

N. de Freitas, A. Smola, and M. Zoghi. Exponential regret bounds for Gaussian process ban-
dits with deterministic observations. In Intl. Conference on Machine Learning (ICML),
pages 1743–1750, 2012.

L. Deng, K. Sobti, and C. Chakrabarti. Accurate models for estimating area and power of
FPGA implementations. In Intl. Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1417–1420, 2008.

M. T. M. Emmerich, K. C. Giannakoglou, and B. Naujoks. Single- and multiobjective
evolutionary optimization assisted by Gaussian random field metamodels. IEEE Trans.
on Evolutionary Computation, 10(4):421–439, 2006.

M. A. Gelbart, J. Snoek, and R. P. Adams. Bayesian optimization with unknown constraints.
In Uncertainty In Artificial Intelligence (UAI), 2014.

D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13:455–492, 1998.

30

Active Learning for Multi-Objective Optimization

J. Knowles. ParEGO: a hybrid algorithm with on-line landscape approximation for expen-
sive multiobjective optimization problems. IEEE Trans. on Evolutionary Computation,
10(1):50 – 66, 2006.

A. Krause and C. S. Ong. Contextual Gaussian process bandit optimization. In Advances
in Neural Information Processing Systems (NIPS), pages 2447–2455, 2011.

H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of vectors.
Journal of the ACM, 22:469–476, 1975.

S. Künzli, L. Thiele, and E. Zitzler. Modular design space exploration framework for
embedded systems. Computers & Digital Techniques, 152(2):183–192, 2005.

M. Laumanns and J. Ocenasek. Bayesian optimization algorithms for multi-objective op-
timization. In Conference on Parallel Problem Solving from Nature, pages 298–307.
Springer, 2002.

J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian methods for seeking
the extremum. Towards Global Optimization, 2:117–129, 1978.

G. Palermo, C. Silvano, and V. Zaccaria. ReSPIR: A response surface-based Pareto iterative
refinement for application-specific design space exploration. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, 28:1816 –1829, 2009.

C. E. Rasmussen and H. Nickisch. Gaussian process regression and classification toolbox
Version 3.2 for Matlab 7.x, 2013.

C. E Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT
Press, 2006.

D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley. A survey of multi-objective
sequential decision-making. Journal of Artificial Intelligence Research, 48:67–113, 2013.

Burr Settles. Active Learning Literature Survey. Technical Report 1648, University of
Wisconsin-Madison, 2010.

N. Siegmund, S.S. Kolesnikov, C. Kastner, S. Apel, D. Batory, M. Rosenmuller, and
G. Saake. Predicting performance via automated feature-interaction detection. In Intl.
Conference on Software Engineering (ICSE), pages 167–177, 2012.

N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the ban-
dit setting: no regret and experimental design. In Intl. Conference on Machine Learning
(ICML), pages 1015–1022, 2010.

N. Srinivas, A. Krause, S.M. Kakade, and M. Seeger. Information-theoretic regret bounds
for Gaussian process optimization in the bandit setting. IEEE Trans. on Information
Theory, 58(5):3250–3265, 2012.

I. Steponavice, R. J. Hyndman, Smith-Miles K., and L. Villanova. Efficient identification
of the Pareto optimal set. In Learning and Intelligent Optimization Conference (LION),
volume 8426 of Lecture Note of Computer Science, pages 341–352, 2014.

31

Zuluaga, Krause and Püschel

K. Swersky, J. Snoek, and R. P. Adams. Multi-task Bayesian optimization. In Advances in
Neural Information Processing Systems, pages 2004–2012, 2013.

E. Vazquez and J. Bect. Convergence properties of the expected improvement algorithm
with fixed mean and covariance functions. Journal of Statistical Planning and inference,
140(11):3088–3095, 2010.

Q. Zhang and H. Li. MOEA/D: a multiobjective evolutionary algorithm based on decom-
position. IEEE Trans. on Evolutionary Computations, 11:712–731, 2007.

Q. Zhang, L. Wudong, E. Tsang, and B. Virginas. Expensive multiobjective optimization
by MOEA/D with Gaussian process model. IEEE Trans. on Evolutionary Computation,
14(3):456 –474, 2010.

E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: improving the strength Pareto evolu-
tionary algorithm for multiobjective optimization. In Evolutionary Methods for Design,
Optimisation, and Control, pages 95–100, 2002.

M. Zuluaga, A. Krause, Milder P. A., and M. Püschel. “Smart” design space sampling
to predict Pareto-optimal solutions. In Languages, Compilers, Tools and Theory for
Embedded Systems (LCTES), pages 119–128, 2012a.

M. Zuluaga, P. Milder, and M. Püschel. Computer generation of streaming sorting networks.
In Design Automation Conference (DAC), pages 1245–1253, 2012b.

M. Zuluaga, A. Krause, G. Sergent, and M. Püschel. Active learning for multi-objective
optimization. In Intl. Conference on Machine Learning (ICML), pages 462–470, 2013.

M. Zuluaga, A. Krause, and M. Püschel. e-PAL source code, 2015. URL
http://www.spiral.net/software/pal.html.

32

